1
|
Häder DP, Hemmersbach R. Euglena, a Gravitactic Flagellate of Multiple Usages. Life (Basel) 2022; 12:1522. [PMID: 36294957 PMCID: PMC9605500 DOI: 10.3390/life12101522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Human exploration of space and other celestial bodies bears a multitude of challenges. The Earth-bound supply of material and food is restricted, and in situ resource utilisation (ISRU) is a prerequisite. Excellent candidates for delivering several services are unicellular algae, such as the space-approved flagellate Euglena gracilis. This review summarizes the main characteristics of this unicellular organism. Euglena has been exposed on various platforms that alter the impact of gravity to analyse its corresponding gravity-dependent physiological and molecular genetic responses. The sensory transduction chain of gravitaxis in E. gracilis has been identified. The molecular gravi-(mechano-)receptors are mechanosensory calcium channels (TRP channels). The inward gated calcium binds specifically to one of several calmodulins (CaM.2), which, in turn, activates an adenylyl cyclase. This enzyme uses ATP to produce cAMP, which induces protein kinase A, followed by the phosphorylation of a motor protein in the flagellum, initiating a course correction, and, finally, resulting in gravitaxis. During long space missions, a considerable amount of food, oxygen, and water has to be carried, and the exhaled carbon dioxide has to be removed. In this context, E. gracilis is an excellent candidate for biological life support systems, since it produces oxygen by photosynthesis, takes up carbon dioxide, and is even edible. Various species and mutants of Euglena are utilized as a producer of commercial food items, as well as a source of medicines, as it produces a number of vitamins, contains numerous trace elements, and synthesizes dietary proteins, lipids, and the reserve molecule paramylon. Euglena has anti-inflammatory, -oxidant, and -obesity properties.
Collapse
Affiliation(s)
- Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Erlangen, Germany
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
2
|
Agrobacterium tumefaciens-Mediated Nuclear Transformation of a Biotechnologically Important Microalga- Euglena gracilis. Int J Mol Sci 2021; 22:ijms22126299. [PMID: 34208268 PMCID: PMC8230907 DOI: 10.3390/ijms22126299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium (A. tumefaciens). E. gracilis was found to be highly sensitive to hygromycin and zeocin, thus offering a set of resistance marker genes for the selection of transformants. A. tumefaciens-mediated transformation (ATMT) yielded hygromycin-resistant cells. However, hygromycin-resistant cells hosting the gus gene (encoding β-glucuronidase (GUS)) were found to be GUS-negative, indicating that the gus gene had explicitly been silenced. To circumvent transgene silencing, GUS was expressed from the nuclear genome as transcriptional fusions with the hygromycin resistance gene (hptII) (encoding hygromycin phosphotransferase II) with the foot and mouth disease virus (FMDV)-derived 2A self-cleaving sequence placed between the coding sequences. ATMT of Euglena with the hptII-2A–gus gene yielded hygromycin-resistant, GUS-positive cells. The transformation was verified by PCR amplification of the T-DNA region genes, determination of GUS activity, and indirect immunofluorescence assays. Cocultivation factors optimization revealed that a higher number of transformants was obtained when A. tumefaciens LBA4404 (A600 = 1.0) and E. gracilis (A750 = 2.0) cultures were cocultured for 48 h at 19 °C in an organic medium (pH 6.5) containing 50 µM acetosyringone. Transformation efficiency of 8.26 ± 4.9% was achieved under the optimized cocultivation parameters. The molecular toolkits and method presented here can be used to bioengineer E. gracilis for producing high-value products and fundamental studies.
Collapse
|
3
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
4
|
Krüger J, Richter P, Stoltze J, Strauch SM, Krüger M, Daiker V, Prasad B, Sonnewald S, Reid S, Lebert M. Changes of Gene Expression in Euglena gracilis Obtained During the 29 th DLR Parabolic Flight Campaign. Sci Rep 2019; 9:14260. [PMID: 31582787 PMCID: PMC6776534 DOI: 10.1038/s41598-019-50611-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/02/2019] [Indexed: 01/14/2023] Open
Abstract
Parabolic flight maneuvers of Novespace's Airbus A310 ZERO-G produce subsequent phases of hypergravity (about 20 s), microgravity (about 22 s) and another 20 s hypergravity on experiments located in the experiment area of the aircraft. The 29th DLR parabolic flight campaign consisted of four consecutive flight days with thirty-one parabolas each day. Euglena gracilis cells were fixed with TRIzol during different acceleration conditions at the first and the last parabola of each flight. Samples were collected and analyzed with microarrays for one-color gene expression analysis. The data indicate significant changes in gene expression in E. gracilis within short time. Hierarchical clustering shows that changes induced by the different accelerations yield reproducible effects at independent flight days. Transcription differed between the first and last parabolas indicating adaptation effects in the course of the flight. Different gene groups were found to be affected in different phases of the parabolic flight, among others, genes involved in signal transduction, calcium signaling, transport mechanisms, metabolic pathways, and stress-response as well as membrane and cytoskeletal proteins. In addition, transcripts of other areas, e.g., DNA and protein modification, were altered. The study contributes to the understanding of short-term effects of microgravity and different accelerations on cells at a molecular level.
Collapse
Affiliation(s)
- Julia Krüger
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Peter Richter
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Julia Stoltze
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Sebastian M Strauch
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89219-710, Brazil
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Viktor Daiker
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Binod Prasad
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Sophia Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Michael Lebert
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany.
| |
Collapse
|
5
|
Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages. Int J Mol Sci 2019; 20:ijms20102402. [PMID: 31096581 PMCID: PMC6567851 DOI: 10.3390/ijms20102402] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 01/14/2023] Open
Abstract
The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10−4 to 10−5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4–19 s microgravity, and adapted subsequently until 126–151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages.
Collapse
|
6
|
Thiel CS, Tauber S, Seebacher C, Schropp M, Uhl R, Lauber B, Polzer J, Neelam S, Zhang Y, Ullrich O. Real-Time 3D High-Resolution Microscopy of Human Cells on the International Space Station. Int J Mol Sci 2019; 20:ijms20082033. [PMID: 31027161 PMCID: PMC6514950 DOI: 10.3390/ijms20082033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Here we report the successful first operation of FLUMIAS-DEA, a miniaturized high-resolution 3D fluorescence microscope on the International Space Station (ISS) by imaging two scientific samples in a temperature-constant system, one sample with fixed cells and one sample with living human cells. The FLUMIAS-DEA microscope combines features of a high-resolution 3D fluorescence microscope based on structured illumination microscope (SIM) technology with hardware designs to meet the requirements of a space instrument. We successfully demonstrated that the FLUMIAS technology was able to acquire, transmit, and store high-resolution 3D fluorescence images from fixed and living cells, allowing quantitative and dynamic analysis of subcellular structures, e.g., the cytoskeleton. The capability of real-time analysis methods on ISS will dramatically extend our knowledge about the dynamics of cellular reactions and adaptations to the space environment, which is not only an option, but a requirement of evidence-based medical risk assessment, monitoring and countermeasure development for exploration class missions.
Collapse
Affiliation(s)
- Cora Sandra Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | | | - Martin Schropp
- TILL I.D. GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany.
| | - Rainer Uhl
- TILL I.D. GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany.
| | - Beatrice Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Srujana Neelam
- National Aeronautics and Space Administration (NASA), ISS Utilization and Life Sciences Division, Kennedy Space Center, FL 32899, USA.
| | - Ye Zhang
- National Aeronautics and Space Administration (NASA), ISS Utilization and Life Sciences Division, Kennedy Space Center, FL 32899, USA.
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Carl-Zeiss-Promenade 2, 07745 Jena, Germany.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
| |
Collapse
|
7
|
Strauch SM, Grimm D, Corydon TJ, Krüger M, Bauer J, Lebert M, Wise P, Infanger M, Richter P. Current knowledge about the impact of microgravity on the proteome. Expert Rev Proteomics 2018; 16:5-16. [PMID: 30451542 DOI: 10.1080/14789450.2019.1550362] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Introduction: Microgravity (µg) is an extreme stressor for plants, animals, and humans and influences biological systems. Humans in space experience various health problems during and after a long-term stay in orbit. Various studies have demonstrated structural alterations and molecular biological changes within the cellular milieu of plants, bacteria, microorganisms, animals, and cells. These data were obtained by proteomics investigations applied in gravitational biology to elucidate changes in the proteome occurring when cells or organisms were exposed to real µg (r-µg) and simulated µg (s-µg). Areas covered: In this review, we summarize the current knowledge about the impact of µg on the proteome in plants, animals, and human cells. The literature suggests that µg impacts the proteome and thus various biological processes such as angiogenesis, apoptosis, cell adhesion, cytoskeleton, extracellular matrix proteins, migration, proliferation, stress response, and signal transduction. The changes in cellular function depend on the respective cell type. Expert commentary: This data is important for the topics of gravitational biology, tissue engineering, cancer research, and translational regenerative medicine. Moreover, it may provide new ideas for countermeasures to protect the health of future space travelers.
Collapse
Affiliation(s)
- Sebastian M Strauch
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Daniela Grimm
- b Department of Biomedicine , Aarhus University , Aarhus C , Denmark.,c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany.,d Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering , Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
| | - Thomas J Corydon
- b Department of Biomedicine , Aarhus University , Aarhus C , Denmark.,e Department of Ophthalmology , Aarhus University Hospital , Aarhus C , Denmark
| | - Marcus Krüger
- c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany
| | - Johann Bauer
- f Max-Planck-Institute of Biochemistry, Information Retrieval Services , Martinsried , Germany
| | - Michael Lebert
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Petra Wise
- g Charles R. Drew University of Medicine and Science, AXIS Center , Los Angeles , CA , USA
| | - Manfred Infanger
- c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany
| | - Peter Richter
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| |
Collapse
|
8
|
Nasir A, Le Bail A, Daiker V, Klima J, Richter P, Lebert M. Identification of a flagellar protein implicated in the gravitaxis in the flagellate Euglena gracilis. Sci Rep 2018; 8:7605. [PMID: 29765103 PMCID: PMC5954063 DOI: 10.1038/s41598-018-26046-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/01/2018] [Indexed: 01/01/2023] Open
Abstract
Flagellated cells are of great evolutionary importance across animal and plant species. Unlike higher plants, flagellated cells are involved in reproduction of macro-algae as well as in early diverging land plants. Euglena gracilis is an emerging flagellated model organism. The current study reports that a specific calmodulin (CaM2) involved in gravitaxis of E. gracilis interacts with an evolutionary conserved flagellar protein, EgPCDUF4201. The subsequent molecular analysis showed clearly that EgPCDUF4201 is also involved in gravitaxis. We performed subcellular localization of CaM2 using immunoblotting and indirect immunofluorescence. By employing yeast two-hybrid screen, EgPCDUF4201 was identified as an interaction partner of CaM2. The C-terminus of EgPCDUF4201 is responsible for the interaction with CaM2. Silencing of N- and C-terminus of EgPCDUF4201 using RNAi resulted in an impaired gravitaxis. Moreover, indirect immunofluorescence assay showed that EgPCDUF4201 is a flagella associated protein. The current study specifically addressed some important questions regarding the signal transduction chain of gravitaxis in E. gracilis. Besides the fact that it improved the current understanding of gravity sensing mechanisms in E. gracilis, it also gave rise to several interesting research questions regarding the function of the domain of unknown function 4201 in flagellated cells.
Collapse
Affiliation(s)
- Adeel Nasir
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| | - Aude Le Bail
- Cell biology department, Friedrich Alexander University, Erlangen, Germany.
| | - Viktor Daiker
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| | - Janine Klima
- Biochemistry department, Friedrich Alexander University, Erlangen, Germany
| | - Peter Richter
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| | - Michael Lebert
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| |
Collapse
|
9
|
Becker I, Strauch SM, Hauslage J, Lebert M. Long term stability of Oligo (dT) 25 magnetic beads for the expression analysis of Euglena gracilis for long term space projects. LIFE SCIENCES IN SPACE RESEARCH 2017; 13:12-18. [PMID: 28554505 DOI: 10.1016/j.lssr.2017.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/18/2017] [Indexed: 06/07/2023]
Abstract
The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells use different stimuli such as light and gravity to orient themselves in the surrounding medium to find areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena is a suitable candidate for life support systems. Participation in a long-term space experiment would allow for the analysis of changes and adaptations to the new environment, and this could bring new insights into the mechanism of perception of gravity and the associated signal transduction chain. For a molecular analysis of transcription patterns, an automated system is necessary, capable of performing all steps from taking a sample, processing it and generating data. One of the developmental steps is to find long-term stable reagents and materials and test them for stability at higher-than-recommended temperature conditions during extended storage time. We investigated the usability of magnetic beads in an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can claim that the stability is not impaired at all after an incubation period of over one year. This might be an interesting result for researchers who have to work under non-standard lab conditions, as in biological or medicinal fieldwork.
Collapse
Affiliation(s)
- Ina Becker
- Department of Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, Erlangen 91058, Germany.
| | - Sebastian M Strauch
- Department of Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, Erlangen 91058, Germany.
| | - Jens Hauslage
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Linder Höhe, Cologne 51147, Germany.
| | - Michael Lebert
- Department of Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, Erlangen 91058, Germany.
| |
Collapse
|
10
|
Häder DP, Hemmersbach R. Gravitaxis in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:237-266. [DOI: 10.1007/978-3-319-54910-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
O'Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, Zimba PV, Henrissat B, Field RA. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. MOLECULAR BIOSYSTEMS 2016; 11:2808-20. [PMID: 26289754 DOI: 10.1039/c5mb00319a] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Euglena gracilis is a highly complex alga belonging to the green plant line that shows characteristics of both plants and animals, while in evolutionary terms it is most closely related to the protozoan parasites Trypanosoma and Leishmania. This well-studied organism has long been known as a rich source of vitamins A, C and E, as well as amino acids that are essential for the human diet. Here we present de novo transcriptome sequencing and preliminary analysis, providing a basis for the molecular and functional genomics studies that will be required to direct metabolic engineering efforts aimed at enhancing the quality and quantity of high value products from E. gracilis. The transcriptome contains over 30,000 protein-encoding genes, supporting metabolic pathways for lipids, amino acids, carbohydrates and vitamins, along with capabilities for polyketide and non-ribosomal peptide biosynthesis. The metabolic and environmental robustness of Euglena is supported by a substantial capacity for responding to biotic and abiotic stress: it has the capacity to deploy three separate pathways for vitamin C (ascorbate) production, as well as producing vitamin E (α-tocopherol) and, in addition to glutathione, the redox-active thiols nor-trypanothione and ovothiol.
Collapse
Affiliation(s)
- Ellis C O'Neill
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Phipps WS, Yin Z, Bae C, Sharpe JZ, Bishara AM, Nelson ES, Weaver AS, Brown D, McKay TL, Griffin D, Chan EY. Reduced-gravity environment hardware demonstrations of a prototype miniaturized flow cytometer and companion microfluidic mixing technology. J Vis Exp 2014:e51743. [PMID: 25490614 PMCID: PMC4354048 DOI: 10.3791/51743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.
Collapse
|
13
|
Ozasa K, Lee J, Song S, Maeda M. Transient freezing behavior in photophobic responses of Euglena gracilis investigated in a microfluidic device. PLANT & CELL PHYSIOLOGY 2014; 55:1704-1712. [PMID: 25074906 DOI: 10.1093/pcp/pcu101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We found that the transient freezing behavior in photophobic responses of Euglena gracilis is a good indicator of the metabolic status of the cells. The transient blue light photophobic responses of E. gracilis cells were investigated on-chip using a new measurement, 'trace momentum' (TM), to evaluate their swimming activity quantitatively in real time. When blue light of intensity >30 mW cm(-2) was repeatedly switched on and off, a large negative spike in the TM was observed at the onset of the 'blue-light-off' phase. Single-cell trace analysis at a blue light intensity of 40 mW cm(-2) showed that 48% (on average, n = 15) of tumbling Euglena cells ceased activity ('freezing') for 2-30 s at the onset of blue-light-off before commencing forward motion in a straight line (termed 'straightforward swimming'), while 45% smoothly commenced straightforward swimming without delay. The proportion of freezing Euglena cells depended on the blue light intensity (only 20% at 20 mW cm(-2)). When the cells were stimulated by four blue light pulses at the higher intensity, without pre-exposure, the transient freezing behavior was more prominent but, on repeating the stimuli after an 80 min interval in red light, the same cells did not freeze. This shows that the metabolism of the cells had changed to anti-freezing during the interval. The relationship between the interval time with/without light irradiation and the blue light adaptation was elucidated experimentally. The origin of the freezing behavior is considered to be a shortage of a metabolic substance that promotes smooth switching of flagellum movement from in situ rotation mode to a straightforward swimming mode.
Collapse
Affiliation(s)
- Kazunari Ozasa
- Bioengineering Lab., RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Jeesoo Lee
- Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-dong, Seongdong-gu, Seoul, 133-791, Korea
| | - Simon Song
- Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-dong, Seongdong-gu, Seoul, 133-791, Korea
| | - Mizuo Maeda
- Bioengineering Lab., RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| |
Collapse
|