1
|
Naeem S, Wang Y, Han S, Haider MZ, Sami A, Shafiq M, Ali Q, Bhatti MHT, Ahmad A, Sabir IA, Dong J, Alam P, Manzoor MA. Genome-wide analysis and identification of Carotenoid Cleavage Oxygenase (CCO) gene family in coffee (coffee arabica) under abiotic stress. BMC Genom Data 2024; 25:71. [PMID: 39030545 PMCID: PMC11264761 DOI: 10.1186/s12863-024-01248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
The coffee industry holds importance, providing livelihoods for millions of farmers globally and playing a vital role in the economies of coffee-producing countries. Environmental conditions such as drought and temperature fluctuations can adversely affect the quality and yield of coffee crops.Carotenoid cleavage oxygenases (CCO) enzymes are essential for coffee plants as they help break down carotenoids contributing to growth and stress resistance. However, knowledge about the CCO gene family in Coffee arabica was limited. In this study identified 21 CCO genes in Coffee arabica (C. arabica) revealing two subfamilies carotenoid cleavage dioxygenases (CCDs) and 9-cis-epoxy carotenoid dioxygenases (NCED) through phylogenic analysis. These subfamilies exhibited distribution patterns in terms of gene structure, domains, and motifs. The 21 CaCCO genes, comprising 5 NCED and 16 CCD genes were found across chromosomes. Promoter sequencing analysis revealed cis-elements that likely interact with plant stress-responsive, growth-related, and phytohormones, like auxin and abscisic acid. A comprehensive genome-wide comparison, between C. arabica and A. thaliana was conducted to understand the characteristics of CCO genes. RTqPCR data indicated that CaNCED5, CaNCED6, CaNCED12, and CaNCED20 are target genes involved in the growth of drought coffee plants leading to increased crop yield, in a conditions, with limited water availability. This reveals the role of coffee CCOs in responding to abiotic stress and identifies potential genes useful for breeding stress-resistant coffee varieties.
Collapse
Affiliation(s)
- Shajiha Naeem
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Yuexia Wang
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China
| | - Shiming Han
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China.
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China.
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Adnan Sami
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Muhammad Hamza Tariq Bhatti
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Arsalan Ahmad
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jihong Dong
- School of Environment and Surveying, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Rodrigues AP, Pais IP, Leitão AE, Dubberstein D, Lidon FC, Marques I, Semedo JN, Rakocevic M, Scotti-Campos P, Campostrini E, Rodrigues WP, Simões-Costa MC, Reboredo FH, Partelli FL, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Uncovering the wide protective responses in Coffea spp. leaves to single and superimposed exposure of warming and severe water deficit. FRONTIERS IN PLANT SCIENCE 2024; 14:1320552. [PMID: 38259931 PMCID: PMC10801242 DOI: 10.3389/fpls.2023.1320552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Climate changes boosted the frequency and severity of drought and heat events, with aggravated when these stresses occur simultaneously, turning crucial to unveil the plant response mechanisms to such harsh conditions. Therefore, plant responses/resilience to single and combined exposure to severe water deficit (SWD) and heat were assessed in two cultivars of the main coffee-producing species: Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered plants (WW) were exposed to SWD under an adequate temperature of 25/20°C (day/night), and thereafter submitted to a gradual increase up to 42/30°C, and a 14-d recovery period (Rec14). Greater protective response was found to single SWD than to single 37/28°C and/or 42/30°C (except for HSP70) in both cultivars, but CL153-SWD plants showed the larger variations of leaf thermal imaging crop water stress index (CWSI, 85% rise at 37/28°C) and stomatal conductance index (IG, 66% decline at 25/20°C). Both cultivars revealed great resilience to SWD and/or 37/28°C, but a tolerance limit was surpassed at 42/30°C. Under stress combination, Icatu usually displayed lower impacts on membrane permeability, and PSII function, likely associated with various responses, usually mostly driven by drought (but often kept or even strengthened under SWD and 42/30°C). These included the photoprotective zeaxanthin and lutein, antioxidant enzymes (superoxide dismutase, Cu,Zn-SOD; ascorbate peroxidase, APX), HSP70, arabinose and mannitol (involving de novo sugar synthesis), contributing to constrain lipoperoxidation. Also, only Icatu showed a strong reinforcement of glutathione reductase activity under stress combination. In general, the activities of antioxidative enzymes declined at 42/30°C (except Cu,Zn-SOD in Icatu and CAT in CL153), but HSP70 and raffinose were maintained higher in Icatu, whereas mannitol and arabinose markedly increased in CL153. Overall, a great leaf plasticity was found, especially in Icatu that revealed greater responsiveness of coordinated protection under all experimental conditions, justifying low PIChr and absence of lipoperoxidation increase at 42/30°C. Despite a clear recovery by Rec14, some aftereffects persisted especially in SWD plants (e.g., membranes), relevant in terms of repeated stress exposure and full plant recovery to stresses.
Collapse
Affiliation(s)
- Ana P. Rodrigues
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - Isabel P. Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - António E. Leitão
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Danielly Dubberstein
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
- Assistência Técnica e Gerencial em Cafeicultura - Serviço Nacional de Aprendizagem Rural (SENAR), Porto Velho, RO, Brazil
| | - Fernando C. Lidon
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Isabel Marques
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - José N. Semedo
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Miroslava Rakocevic
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Paula Scotti-Campos
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Eliemar Campostrini
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | - Weverton P. Rodrigues
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Maranhão, Brazil
| | - Maria Cristina Simões-Costa
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - Fernando H. Reboredo
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Fábio L. Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - José C. Ramalho
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
3
|
Vinci G, Marques I, Rodrigues AP, Martins S, Leitão AE, Semedo MC, Silva MJ, Lidon FC, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Protective Responses at the Biochemical and Molecular Level Differ between a Coffea arabica L. Hybrid and Its Parental Genotypes to Supra-Optimal Temperatures and Elevated Air [CO 2]. PLANTS (BASEL, SWITZERLAND) 2022; 11:2702. [PMID: 36297726 PMCID: PMC9610391 DOI: 10.3390/plants11202702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate changes with global warming associated with rising atmospheric [CO2] can strongly impact crop performance, including coffee, which is one of the most world's traded agricultural commodities. Therefore, it is of utmost importance to understand the mechanisms of heat tolerance and the potential role of elevated air CO2 (eCO2) in the coffee plant response, particularly regarding the antioxidant and other protective mechanisms, which are crucial for coffee plant acclimation. For that, plants of Coffea arabica cv. Geisha 3, cv. Marsellesa and their hybrid (Geisha 3 × Marsellesa) were grown for 2 years at 25/20 °C (day/night), under 400 (ambient CO2, aCO2) or 700 µL (elevated CO2, eCO2) CO2 L-1, and then gradually submitted to a temperature increase up to 42/30 °C, followed by recovery periods of 4 (Rec4) and 14 days (Rec14). Heat (37/28 °C and/or 42/30 °C) was the major driver of the response of the studied protective molecules and associated genes in all genotypes. That was the case for carotenoids (mostly neoxanthin and lutein), but the maximal (α + β) carotenes pool was found at 37/28 °C only in Marsellesa. All genes (except VDE) encoding for antioxidative enzymes (catalase, CAT; superoxide dismutases, CuSODs; ascorbate peroxidases, APX) or other protective proteins (HSP70, ELIP, Chape20, Chape60) were strongly up-regulated at 37/28 °C, and, especially, at 42/30 °C, in all genotypes, but with maximal transcription in Hybrid plants. Accordingly, heat greatly stimulated the activity of APX and CAT (all genotypes) and glutathione reductase (Geisha3, Hybrid) but not of SOD. Notably, CAT activity increased even at 42/30 °C, concomitantly with a strongly declined APX activity. Therefore, increased thermotolerance might arise through the reinforcement of some ROS-scavenging enzymes and other protective molecules (HSP70, ELIP, Chape20, Chape60). Plants showed low responsiveness to single eCO2 under unstressed conditions, while heat promoted changes in aCO2 plants. Only eCO2 Marsellesa plants showed greater contents of lutein, the pool of the xanthophyll cycle components (V + A + Z), and β-carotene, compared to aCO2 plants at 42/30 °C. This, together with a lower CAT activity, suggests a lower presence of H2O2, likely also associated with the higher photochemical use of energy under eCO2. An incomplete heat stress recovery seemed evident, especially in aCO2 plants, as judged by the maintenance of the greater expression of all genes in all genotypes and increased levels of zeaxanthin (Marsellesa and Hybrid) relative to their initial controls. Altogether, heat was the main response driver of the addressed protective molecules and genes, whereas eCO2 usually attenuated the heat response and promoted a better recovery. Hybrid plants showed stronger gene expression responses, especially at the highest temperature, when compared to their parental genotypes, but altogether, Marsellesa showed a greater acclimation potential. The reinforcement of antioxidative and other protective molecules are, therefore, useful biomarkers to be included in breeding and selection programs to obtain coffee genotypes to thrive under global warming conditions, thus contributing to improved crop sustainability.
Collapse
Affiliation(s)
- Gabriella Vinci
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, The University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Marques
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana P. Rodrigues
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Sónia Martins
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - António E. Leitão
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Magda C. Semedo
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Maria J. Silva
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - José C. Ramalho
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Marques I, Rodrigues AP, Gouveia D, Lidon FC, Martins S, Semedo MC, Gaillard JC, Pais IP, Semedo JN, Scotti-Campos P, Reboredo FH, Partelli FL, DaMatta FM, Armengaud J, Ribeiro-Barros AI, Ramalho JC. High-resolution shotgun proteomics reveals that increased air [CO 2] amplifies the acclimation response of coffea species to drought regarding antioxidative, energy, sugar, and lipid dynamics. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153788. [PMID: 35944291 DOI: 10.1016/j.jplph.2022.153788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
As drought threatens crop productivity it is crucial to characterize the defense mechanisms against water deficit and unveil their interaction with the expected rise in the air [CO2]. For that, plants of Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu grown under 380 (aCO2) or 700 μL L-1 (eCO2) were exposed to moderate (MWD) and severe (SWD) water deficits. Responses were characterized through the activity and/or abundance of a selected set of proteins associated with antioxidative (e.g., Violaxanthin de-epoxidase, Superoxide dismutase, Ascorbate peroxidases, Monodehydroascorbate reductase), energy/sugar (e.g., Ferredoxin-NADP reductase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, sucrose synthase, mannose-6-phosphate isomerase, Enolase), and lipid (Lineolate 13S-lipoxygenase) processes, as well as with other antioxidative (ascorbate) and protective (HSP70) molecules. MWD caused small changes in both genotypes regardless of [CO2] level while under the single imposition to SWD, only Icatu showed a global reinforcement of most studied proteins supporting its tolerance to drought. eCO2 alone did not promote remarkable changes but strengthened a robust multi-response under SWD, even supporting the reversion of impacts already observed by CL153 at aCO2. In the context of climate changes where water constraints and [CO2] levels are expected to increase, these results highlight why eCO2 might have an important role in improving drought tolerance in Coffea species.
Collapse
Affiliation(s)
- Isabel Marques
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Ana P Rodrigues
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Duarte Gouveia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-F-30200, Bagnols-sur-Cèze, France.
| | - Fernando C Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal.
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| | - Magda C Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-F-30200, Bagnols-sur-Cèze, France.
| | - Isabel P Pais
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal.
| | - José N Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal.
| | - Paula Scotti-Campos
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal.
| | - Fernando H Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal.
| | - Fábio L Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil.
| | - Fábio M DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), 36570-000, Viçosa, MG, Brazil.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-F-30200, Bagnols-sur-Cèze, France.
| | - Ana I Ribeiro-Barros
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| | - José C Ramalho
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| |
Collapse
|
5
|
Chalchissa FB, Diga GM, Feyisa GL, Tolossa AR. Impacts of extreme agroclimatic indicators on the performance of coffee ( Coffea arabica L.) aboveground biomass in Jimma Zone, Ethiopia. Heliyon 2022; 8:e10136. [PMID: 36016531 PMCID: PMC9396549 DOI: 10.1016/j.heliyon.2022.e10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
Abstract
Estimating crop biomass is critical for countries whose primary source of income is agriculture. It is a valuable indicator for evaluating crop yields and provides information to growers and managers for developing climate change adaptation strategies. The objective of the study was to model the impacts of agroclimatic indicators on the performance of aboveground biomass (AGB) in Arabica coffee trees, a critical income source for millions of Ethiopians. One hundred thirty-five coffee tree stump diameters were measured at 40 cm above ground level. The historical (1998–2010) and future (2041–2070) agroclimatic data were downloaded from the European Copernicus climate change services website. All datasets were tested for missing data, outliers, and multicollinearity and were grouped into three clusters using the K-mean clustering method. The parameter estimates (coefficients of regression) were analyzed using a generalized regression model. The performance of coffee trees' AGB in each cluster was estimated using an artificial neural network model. The future expected change in AGB of coffee trees was compared using a paired t-test. The regression model’s results reveal that the sensitivity of C. arabica to agroclimatic variables significantly differs based on the kind of indicator, RCP scenario, and microclimate. Under the current climatic conditions, the rise of the coldest minimum (TNn) and warmest (TXx) temperatures raises the AGB of the coffee tree, but the rise of the warmest minimum (TNx) and coldest maximum (TXn) temperatures decreased it (P < 0.05). Under the RCP4.5, the rise of consecutively dry days (CDD) and TNx would increase the AGB of the coffee tree, while TNx and TXx would decrease it (P < 0.05). Except for TXx, all indicators would significantly reduce the AGB of coffee trees under RCP8.5 (P < 0.05). The average values of AGB under the current, RCP4.5, and RCP85 climate change scenarios, respectively, were 26.66, 28.79, and 24.41 kg/tree. The predicted values of AGB under RCP4.5 and RCP8.5 will be higher in the first and third clusters and lower in the second cluster in the 2060s compared to the current climatic conditions. As a result, early warning systems and adaptive strategies will be necessary to reduce the detrimental consequences of climate change. More research into the effects of other climatic conditions on crops, such as physiologically effective degree days, cold, hot, and rainy periods, is also required.
Collapse
Affiliation(s)
| | - Girma Mamo Diga
- Ethiopia Agricultural Research Institute, Addis Ababa, Ethiopia
| | | | | |
Collapse
|
6
|
Fan M, Zhang Y, Li X, Wu S, Yang M, Yin H, Liu W, Fan Z, Li J. Multi-Approach Analysis Reveals Pathways of Cold Tolerance Divergence in Camellia japonica. FRONTIERS IN PLANT SCIENCE 2022; 13:811791. [PMID: 35283896 PMCID: PMC8914472 DOI: 10.3389/fpls.2022.811791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Understanding the molecular mechanism of the cold response is critical to improve horticultural plant cold tolerance. Here, we documented the physiological, transcriptome, proteome, and hormonal dynamics to cold stress in temperate genotype (Tg) and subtropical genotype (Sg) populations of Camellia japonica. Tg C. japonica suffered minimal osmotic and oxidative damage compared to Sg C. japonica under the same cold treatment. Transcriptional and translational differences increased under the cold treatment, indicating that Tg C. japonica was affected by the environment and displayed both conserved and divergent mechanisms. About 60% of the genes responding to cold had similar dynamics in the two populations, but 1,896 transcripts and 455 proteins differentially accumulated in response to the cold between Tg and Sg C. japonica. Co-expression analysis showed that the ribosomal protein and genes related to photosynthesis were upregulated in Tg C. japonica, and tryptophan, phenylpropanoid, and flavonoid metabolism were regulated differently between the two populations under cold stress. The divergence of these genes reflected a difference in cold responsiveness. In addition, the decrease in the abscisic acid (ABA)/gibberellic acid (GA) ratio regulated by biosynthetic signal transduction pathway enhanced cold resistance in Tg C. japonica, suggesting that hormones may regulate the difference in cold responsiveness. These results provide a new understanding of the molecular mechanism of cold stress and will improve cold tolerance in horticultural plants.
Collapse
Affiliation(s)
| | | | - XinLei Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
7
|
de Sousa GF, Silva MA, de Morais EG, Van Opbergen GAZ, Van Opbergen GGAZ, de Oliveira RR, Amaral D, Brown P, Chalfun-Junior A, Guilherme LRG. Selenium enhances chilling stress tolerance in coffee species by modulating nutrient, carbohydrates, and amino acids content. FRONTIERS IN PLANT SCIENCE 2022; 13:1000430. [PMID: 36172560 PMCID: PMC9511033 DOI: 10.3389/fpls.2022.1000430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 05/03/2023]
Abstract
The effects of selenium (Se) on plant metabolism have been reported in several studies triggering plant tolerance to abiotic stresses, yet, the effects of Se on coffee plants under chilling stress are unclear. This study aimed to evaluate the effects of foliar Se application on coffee seedlings submitted to chilling stress and subsequent plant recovery. Two Coffea species, Coffea arabica cv. Arara, and Coffea canephora clone 31, were submitted to foliar application of sodium selenate solution (0.4 mg plant-1) or a control foliar solution, then on day 2 plants were submitted to low temperature (10°C day/4°C night) for 2 days. After that, the temperature was restored to optimal (25°C day/20°C night) for 2 days. Leaf samples were collected three times (before, during, and after the chilling stress) to perform analyses. After the chilling stress, visual leaf injury was observed in both species; however, the damage was twofold higher in C. canephora. The lower effect of cold on C. arabica was correlated to the increase in ascorbate peroxidase and higher content of starch, sucrose, and total soluble sugars compared with C. canephora, as well as a reduction in reducing sugars and proline content during the stress and rewarming. Se increased the nitrogen and sulfur content before stress but reduced their content during low temperature. The reduced content of nitrogen and sulfur during stress indicates that they were remobilized to stem and roots. Se supply reduced the damage in C. canephora leaves by 24% compared with the control. However, there was no evidence of the Se effects on antioxidant enzymatic pathways or ROS activity during stress as previously reported in the literature. Se increased the content of catalase during the rewarming. Se foliar supply also increased starch, amino acids, and proline, which may have reduced symptom expression in C. canephora in response to low temperature. In conclusion, Se foliar application can be used as a strategy to improve coffee tolerance under low-temperature changing nutrient remobilization, carbohydrate metabolism, and catalase activity in response to rewarming stress, but C. arabica and C. canephora respond differently to chilling stress and Se supply.
Collapse
Affiliation(s)
| | | | | | | | | | - Raphael R. de Oliveira
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | - Douglas Amaral
- Agriculture and Natural Resources, University of California, Hanford, Hanford, CA, United States
| | - Patrick Brown
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Antonio Chalfun-Junior
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | | |
Collapse
|
8
|
Machado Filho JA, Rodrigues WP, Baroni DF, Pireda S, Campbell G, de Souza GAR, Verdin Filho AC, Arantes SD, de Oliveira Arantes L, da Cunha M, Gambetta GA, Rakocevic M, Ramalho JC, Campostrini E. Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153355. [PMID: 33581558 DOI: 10.1016/j.jplph.2020.153355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Knowing the key hydraulic traits of different genotypes at early seedling stages can potentially provide crucial information and save time for breeding programs. In the current study we investigated: (1) how root, stem and whole plant conductivities are linked to xylem traits, and (2) how the integrated hydraulic system impacts leaf water potential, gas exchange, chlorophyll a fluorescence and the growth of three coffee cultivars (clones of Coffea canephora Pierre ex Froehner cv. Conilon) with known differences in drought tolerance. The Conilon clones CL 14, CL 5 V and CL 109A, classified as tolerant, moderately tolerant, and sensitive to drought respectively, were grown under non-limiting soil-water supply but high atmospheric demand (i.e., high VPDair). CL 14 and CL 5 V displayed higher root and stem hydraulic conductance and conductivity, and higher whole plant conductivity than CL 109A, and these differences were associated with higher root growth traits. In addition, CL 109A exhibited a non-significant trend towards wider vessels. Collectively, these responses likely contributed to reduce leaf water potential in CL 109A, and in turn, reduced leaf gas exchange, especially during elevated VPDair. Even when grown under well-watered conditions, the elevated VPDair observed during this study resulted in key differences in the hydraulic traits between the cultivars corresponding to differences in plant water status, gas exchange, and photochemical activity. Together these results suggest that coffee hydraulic traits, even when grown under non-water stress conditions, can be considered in breeding programs targeting more productive and efficient genotypes under drought and high atmospheric demand.
Collapse
Affiliation(s)
- José Altino Machado Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Weverton Pereira Rodrigues
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| | - Danilo Força Baroni
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Saulo Pireda
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Glaziele Campbell
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Guilherme Augusto Rodrigues de Souza
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Sara Dousseau Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Lúcio de Oliveira Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Maura da Cunha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Gregory A Gambetta
- EGFV (UMR 1287), Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Miroslava Rakocevic
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil
| | - José Cochicho Ramalho
- Lab. Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Centro de Estudos Florestais (CEF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Av. República, 2784-505, Oeiras, Portugal; GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Eliemar Campostrini
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| |
Collapse
|
9
|
Kath J, Byrareddy VM, Craparo A, Nguyen-Huy T, Mushtaq S, Cao L, Bossolasco L. Not so robust: Robusta coffee production is highly sensitive to temperature. GLOBAL CHANGE BIOLOGY 2020; 26:3677-3688. [PMID: 32223007 DOI: 10.1111/gcb.15097] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/30/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Coffea canephora (robusta coffee) is the most heat-tolerant and 'robust' coffee species and therefore considered more resistant to climate change than other types of coffee production. However, the optimum production range of robusta has never been quantified, with current estimates of its optimal mean annual temperature range (22-30°C) based solely on the climatic conditions of its native range in the Congo basin, Central Africa. Using 10 years of yield observations from 798 farms across South East Asia coupled with high-resolution precipitation and temperature data, we used hierarchical Bayesian modeling to quantify robusta's optimal temperature range for production. Our climate-based models explained yield variation well across the study area with a cross-validated mean R2 = .51. We demonstrate that robusta has an optimal temperature below 20.5°C (or a mean minimum/maximum of ≤16.2/24.1°C), which is markedly lower, by 1.5-9°C than current estimates. In the middle of robusta's currently assumed optimal range (mean annual temperatures over 25.1°C), coffee yields are 50% lower compared to the optimal mean of ≤20.5°C found here. During the growing season, every 1°C increase in mean minimum/maximum temperatures above 16.2/24.1°C corresponded to yield declines of ~14% or 350-460 kg/ha (95% credible interval). Our results suggest that robusta coffee is far more sensitive to temperature than previously thought. Current assessments, based on robusta having an optimal temperature range over 22°C, are likely overestimating its suitable production range and its ability to contribute to coffee production as temperatures increase under climate change. Robusta supplies 40% of the world's coffee, but its production potential could decline considerably as temperatures increase under climate change, jeopardizing a multi-billion dollar coffee industry and the livelihoods of millions of farmers.
Collapse
Affiliation(s)
- Jarrod Kath
- Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Qld, Australia
| | - Vivekananda M Byrareddy
- Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Qld, Australia
| | - Alessandro Craparo
- International Center for Tropical Agriculture (CIAT), Hanoi, Vietnam
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
| | - Thong Nguyen-Huy
- Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Qld, Australia
- Vietnam National Space Center, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Shahbaz Mushtaq
- Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Qld, Australia
| | - Loc Cao
- Sustainable Management Services, ECOM Agroindustrial, Ho Chi Minh City, Vietnam
| | - Laurent Bossolasco
- Sustainable Management Services, ECOM Agroindustrial, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Exogenous Ascorbic Acid Induced Chilling Tolerance in Tomato Plants Through Modulating Metabolism, Osmolytes, Antioxidants, and Transcriptional Regulation of Catalase and Heat Shock Proteins. PLANTS 2020; 9:plants9040431. [PMID: 32244604 PMCID: PMC7238171 DOI: 10.3390/plants9040431] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/26/2022]
Abstract
Chilling, a sort of cold stress, is a typical abiotic ecological stress that impacts the development as well as the growth of crops. The present study was carried to investigate the role of ascorbic acid root priming in enhancing tolerance of tomato seedlings against acute chilling stress. The treatments included untreated control, ascorbic acid-treated plants (AsA; 0.5 mM), acute chilling-stressed plants (4 °C), and chilling stressed seedlings treated by ascorbic acid. Exposure to acute chilling stress reduced growth in terms of length, fresh and dry biomass, pigment synthesis, and photosynthesis. AsA was effective in mitigating the injurious effects of chilling stress to significant levels when supplied at 0.5 mM concentrations. AsA priming reduced the chilling mediated oxidative damage by lowering the electrolyte leakage, lipid peroxidation, and hydrogen peroxide. Moreover, up regulating the activity of enzymatic components of the antioxidant system. Further, 0.5 mM AsA proved beneficial in enhancing ions uptake in normal and chilling stressed seedlings. At the gene expression level, AsA significantly lowered the expression level of CAT and heat shock protein genes. Therefore, we theorize that the implementation of exogenous AsA treatment reduced the negative effects of severe chilling stress on tomato.
Collapse
|
11
|
Identification and Expression Analysis of the NAC Gene Family in Coffea canephora. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NAC gene family is one of the largest families of transcriptional regulators in plants, and it plays important roles in the regulation of growth and development as well as in stress responses. Genome-wide analyses have been performed in diverse plant species, but there is still no systematic analysis of the NAC genes of Coffea canephora Pierre ex A. Froehner. In this study, we identified 63 NAC genes from the genome of C. canephora. The basic features and comparison analysis indicated that the NAC gene members increased via duplication events during the evolution of the plant. Phylogenetic analysis divided the NAC proteins from C. canephora, Arabidopsis and rice into 16 subgroups. Analysis of the expression patterns of CocNACs under cold stress and coffee bean development indicated that 38 CocNACs were differentially expressed under cold stress; six genes may play important roles in the process of cold acclimation, and four genes among 54 CocNACs showing a variety of expression patterns during different developmental stages of coffee beans may be positively related to the bean development. This study can expand our understanding of the functions of the CocNAC gene family in cold responses and bean development, thereby potentially intensifying the molecular breeding programs of Coffea spp. plants.
Collapse
|
12
|
Ferreira WP, Ribeiro Júnior JI, de Fátima Souza C. Climate change does not impact on Coffea arabica yield in Brazil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5270-5282. [PMID: 28585396 DOI: 10.1002/jsfa.8465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Brazil is the largest producer of coffee in the world. Studies on climate change estimate large impacts on the production of Coffea arabica (C. arabica). In this context, it is necessary to know the quantitative production values to provide evidence for policy makers to target the prompt answer. RESULTS Using data from 18 municipalities located in five Brazilian states that produce more coffee in Brazil, in an unprecedented way, in this work it is shown that although the minimum temperature is the most important climatic variable for the production, its effect, although positive, and its degree of explanation, were technically too small to explain the volume of production in Brazilian conditions. According to the model of non-stationary time series ARIMA (1, 1, 0) coffee production in the future may reach almost four million tons, and the productivity almost 2500 kg ha-1 on average, with the advancement of technology as the main factor that should promote simultaneous increases in production and productivity. However, despite natural climate variations, which make it the most responsible for the variability of annual coffee production, the producer must increase the use of the technologies to support the Brazilian coffee agribusiness. CONCLUSIONS The results of this study reveal that coffee production in Brazil is due much more to productivity than to the minimum ambient temperature change over the long term; despite this, the climate variable should be considered the most influential on the production and productivity of coffee. © 2017 Embrapa. Journal of the Science of Food and Agriculture © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Williams Pm Ferreira
- Embrapa (Brazilian Agricultural Research Corporation) - Research Unit in Coffee, Vila Gianetti, Viçosa, MG, Brazil
| | | | | |
Collapse
|
13
|
Genome-Wide Identification of WRKY Genes and Their Response to Cold Stress in Coffea canephora. FORESTS 2019. [DOI: 10.3390/f10040335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
WRKY transcription factors are known to play roles in diverse stress responses in plants. Low temperatures limit the geographic distribution of Coffea canephora Pierre ex A.Froehner. The WRKYs of C. canephora are still not well characterized, and the response of C. canephora WRKYs (CcWRKYs) under cold stress is still largely unknown. We identified 49 CcWRKYs from the C. canephora genome to gain insight into these mechanisms. These CcWRKYs were divided into three groups that were based on the conserved WRKY domains and zinc-finger structure. Gene expression analysis demonstrated that 14 CcWRKYs were induced during the cold acclimation stage, 17 CcWRKYs were preferentially upregulated by 4 °C treatment, and 12 CcWRKYs were downregulated by cold stress. Subsequently, we carried out a genome-wide analysis to predict 14,513 potential CcWRKY target genes in C. canephora. These isolated genes were involved in multiple biological processes, and most of them could be grouped by the response to stimulus. Among the putative CcWRKY target genes, 235 genes were categorized into response to the cold process, including carbohydrate metabolic, lipid metabolic, and photosynthesis process-related genes. Furthermore, the qRT-PCR and correlation analysis indicated that CcWRKY might control their putative targets that respond to cold stress. These results provide a basis for understanding the molecular mechanism for CcWRKY-mediated cold responses.
Collapse
|
14
|
Ramalho JC, Rodrigues AP, Lidon FC, Marques LMC, Leitão AE, Fortunato AS, Pais IP, Silva MJ, Scotti-Campos P, Lopes A, Reboredo FH, Ribeiro-Barros AI. Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp. PLoS One 2018; 13:e0198694. [PMID: 29870563 PMCID: PMC5988331 DOI: 10.1371/journal.pone.0198694] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022] Open
Abstract
The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided.
Collapse
Affiliation(s)
- José C. Ramalho
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana P. Rodrigues
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Luís M. C. Marques
- Colóides Polimeros e Superficies, Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa (UNL), Oeiras, Portugal
| | - A. Eduardo Leitão
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana S. Fortunato
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
| | - Isabel P. Pais
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Maria J. Silva
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Paula Scotti-Campos
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - António Lopes
- Colóides Polimeros e Superficies, Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa (UNL), Oeiras, Portugal
| | - F. H. Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
15
|
DaMatta FM, Avila RT, Cardoso AA, Martins SCV, Ramalho JC. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018. [PMID: 29517900 DOI: 10.1021/acs.jafc.7b04537] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coffee is one of the most important global crops and provides a livelihood to millions of people living in developing countries. Coffee species have been described as being highly sensitive to climate change, as largely deduced from modeling studies based on predictions of rising temperatures and changing rainfall patterns. Here, we discuss the physiological responses of the coffee tree in the context of present and ongoing climate changes, including drought, heat, and light stresses, and interactions between these factors. We also summarize recent insights on the physiological and agronomic performance of coffee at elevated atmospheric CO2 concentrations and highlight the key role of CO2 in mitigating the harmful effects of heat stress. Evidence is shown suggesting that warming, per se, may be less harmful to coffee suitability than previously estimated, at least under the conditions of an adequate water supply. Finally, we discuss several mitigation strategies to improve crop performance in a changing world.
Collapse
Affiliation(s)
- Fábio M DaMatta
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - Rodrigo T Avila
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - Amanda A Cardoso
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - José C Ramalho
- Interações Planta-Ambiente & Biodiversidade Lab (Plant Stress & Biodiversity), Linking Landscape, Environment, Agriculture and Food, (LEAF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA) , Universidade de Lisboa (ULisboa) , Av. República , 2784-505 Oeiras , Portugal
- GeoBioTec, Faculdade de Ciências Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal
| |
Collapse
|
16
|
Dinh SN, Kang H. An endoplasmic reticulum-localized Coffea arabica BURP domain-containing protein affects the response of transgenic Arabidopsis plants to diverse abiotic stresses. PLANT CELL REPORTS 2017; 36:1829-1839. [PMID: 28803325 DOI: 10.1007/s00299-017-2197-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
The Coffea arabica BURP domain-containing gene plays an important role in the response of transgenic Arabidopsis plants to abiotic stresses via regulating the level of diverse proteins. Although the functions of plant-specific BURP domain-containing proteins (BDP) have been determined for a few plants, their roles in the growth, development, and stress responses of most plant species, including coffee plant (Coffea arabica), are largely unknown. In this study, the function of a C. arabica BDP, designated CaBDP1, was investigated in transgenic Arabidopsis plants. The expression of CaBDP1 was highly modulated in coffee plants subjected to drought, cold, salt, or ABA. Confocal analysis of CaBDP1-GFP fusion proteins revealed that CaBDP1 is localized in the endoplasmic reticulum. The ectopic expression of CaBDP1 in Arabidopsis resulted in delayed germination of the transgenic plants under abiotic stress and in the presence of ABA. Cotyledon greening and seedling growth of the transgenic plants were inhibited in the presence of ABA due to the upregulation of ABA signaling-related genes like ABI3, ABI4, and ABI5. Proteome analysis revealed that the levels of several proteins are modulated in CaBDP1-expressing transgenic plants. The results of this study underscore the importance of BURP domain proteins in plant responses to diverse abiotic stresses.
Collapse
Affiliation(s)
- Sy Nguyen Dinh
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
- Institute of Environment and Biotechnology, Taynguyen University, 567 Le Duan Street, Buon Ma Thuot, Daklak Province, Vietnam
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea.
| |
Collapse
|
17
|
Skupień J, Wójtowicz J, Kowalewska Ł, Mazur R, Garstka M, Gieczewska K, Mostowska A. Dark-chilling induces substantial structural changes and modifies galactolipid and carotenoid composition during chloroplast biogenesis in cucumber (Cucumis sativus L.) cotyledons. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:107-118. [PMID: 27915172 DOI: 10.1016/j.plaphy.2016.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 05/21/2023]
Abstract
Plants in a temperate climate are often subject to different environmental factors, chilling stress among them, which influence the growth especially during early stages of plant development. Chloroplasts are one of the first organelles affected by the chilling stress. Therefore the proper biogenesis of chloroplasts in early stages of plant growth is crucial for undertaking the photosynthetic activity. In this paper, the analysis of the cotyledon chloroplast biogenesis at different levels of plastid organization was performed in cucumber, one of the most popular chilling sensitive crops. Influence of low temperature on the ultrastructure was manifested by partial recrystallization of the prolamellar body, the formation of elongated grana thylakoids and a change of the prolamellar body structure from the compacted "closed" type to a more loose "open" type. Structural changes are strongly correlated with galactolipid and carotenoid content. Substantial changes in the galactolipid and the carotenoid composition in dark-chilled plants, especially a decrease of the monogalactosyldiacylglycerol to digalactosyldiacylglycerol ratio (MGDG/DGDG) and an increased level of lutein, responsible for a decrease in membrane fluidity, were registered together with a slower adaptation to higher light intensity and an increased level of non-photochemical reactions. Changes in the grana thylakoid fluidity, of their structure and photosynthetic efficiency in developing chloroplasts of dark-chilled plants, without significant changes in the PSI/PSII ratio, could distort the balance of photosystem rearrangements and be one of the reasons of cucumber sensitivity to chilling.
Collapse
Affiliation(s)
- Joanna Skupień
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Wójtowicz
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
18
|
Jayakumar M, Rajavel M, Surendran U. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:1943-1952. [PMID: 27378280 DOI: 10.1007/s00484-016-1181-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 04/04/2016] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
A study on the variability of coffee yield of both Coffea arabica and Coffea canephora as influenced by climate parameters (rainfall (RF), maximum temperature (Tmax), minimum temperature (Tmin), and mean relative humidity (RH)) was undertaken at Regional Coffee Research Station, Chundale, Wayanad, Kerala State, India. The result on the coffee yield data of 30 years (1980 to 2009) revealed that the yield of coffee is fluctuating with the variations in climatic parameters. Among the species, productivity was higher for C. canephora coffee than C. arabica in most of the years. Maximum yield of C. canephora (2040 kg ha-1) was recorded in 2003-2004 and there was declining trend of yield noticed in the recent years. Similarly, the maximum yield of C. arabica (1745 kg ha-1) was recorded in 1988-1989 and decreased yield was noticed in the subsequent years till 1997-1998 due to year to year variability in climate. The highest correlation coefficient was found between the yield of C. arabica coffee and maximum temperature during January (0.7) and between C. arabica coffee yield and RH during July (0.4). Yield of C. canephora coffee had highest correlation with maximum temperature, RH and rainfall during February. Statistical regression model between selected climatic parameters and yield of C. arabica and C. canephora coffee was developed to forecast the yield of coffee in Wayanad district in Kerala. The model was validated for years 2010, 2011, and 2012 with the coffee yield data obtained during the years and the prediction was found to be good.
Collapse
Affiliation(s)
- M Jayakumar
- Regional Coffee Research Station, Coffee Board, Chundale, Wayanad, Kerala, India.
| | - M Rajavel
- Meteorological Centre, India Meteorological Department, Raipur, Chhattisgarh, India
| | - U Surendran
- Water Management (Agriculture) Division, Centre for Water Resources Development and Management (CWRDM), Kozhikode, Kerala, India
| |
Collapse
|
19
|
Martins MQ, Rodrigues WP, Fortunato AS, Leitão AE, Rodrigues AP, Pais IP, Martins LD, Silva MJ, Reboredo FH, Partelli FL, Campostrini E, Tomaz MA, Scotti-Campos P, Ribeiro-Barros AI, Lidon FJC, DaMatta FM, Ramalho JC. Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp. FRONTIERS IN PLANT SCIENCE 2016; 7:947. [PMID: 27446174 PMCID: PMC4925694 DOI: 10.3389/fpls.2016.00947] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/14/2016] [Indexed: 05/18/2023]
Abstract
Modeling studies have predicted that coffee crop will be endangered by future global warming, but recent reports highlighted that high [CO2] can mitigate heat impacts on coffee. This work aimed at identifying heat protective mechanisms promoted by CO2 in Coffea arabica (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown at 25/20°C (day/night), under 380 or 700 μL CO2 L(-1), and then gradually submitted to 31/25, 37/30, and 42/34°C. Relevant heat tolerance up to 37/30°C for both [CO2] and all coffee genotypes was observed, likely supported by the maintenance or increase of the pools of several protective molecules (neoxanthin, lutein, carotenes, α-tocopherol, HSP70, raffinose), activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), and the upregulated expression of some genes (ELIP, Chaperonin 20). However, at 42/34°C a tolerance threshold was reached, mostly in the 380-plants and Icatu. Adjustments in raffinose, lutein, β-carotene, α-tocopherol and HSP70 pools, and the upregulated expression of genes related to protective (ELIPS, HSP70, Chape 20, and 60) and antioxidant (CAT, CuSOD2, APX Cyt, APX Chl) proteins were largely driven by temperature. However, enhanced [CO2] maintained higher activities of GR (Icatu) and CAT (Icatu and IPR108), kept (or even increased) the Cu,Zn-SOD, APX, and CAT activities, and promoted a greater upregulation of those enzyme genes, as well as those related to HSP70, ELIPs, Chaperonins in CL153, and Icatu. These changes likely favored the maintenance of reactive oxygen species (ROS) at controlled levels and contributed to mitigate of photosystem II photoinhibition at the highest temperature. Overall, our results highlighted the important role of enhanced [CO2] on the coffee crop acclimation and sustainability under predicted future global warming scenarios.
Collapse
Affiliation(s)
- Madlles Q. Martins
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- Departamento Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal Espírito SantoSão Mateus, Brazil
| | - Weverton P. Rodrigues
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte FluminenseRio de Janeiro, Brazil
| | - Ana S. Fortunato
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
| | - António E. Leitão
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| | - Ana P. Rodrigues
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
| | - Isabel P. Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e VeterináriaOeiras, Portugal
| | - Lima D. Martins
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- Departamento Produção Vegetal, Centro de Ciências Agrárias, Universidade Federal do Espírito SantoAlegre, Brazil
| | - Maria J. Silva
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| | - Fernando H. Reboredo
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| | - Fábio L. Partelli
- Departamento Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal Espírito SantoSão Mateus, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte FluminenseRio de Janeiro, Brazil
| | - Marcelo A. Tomaz
- Departamento Produção Vegetal, Centro de Ciências Agrárias, Universidade Federal do Espírito SantoAlegre, Brazil
| | - Paula Scotti-Campos
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e VeterináriaOeiras, Portugal
| | - Ana I. Ribeiro-Barros
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| | - Fernando J. C. Lidon
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| | - Fábio M. DaMatta
- Departamento Biologia Vegetal, Universidade Federal de ViçosaViçosa, Brazil
| | - José C. Ramalho
- Grupo Interações Planta-Ambiente and Biodiversidade (PlantStress&Biodiversity), Departamento Recursos Naturais, Ambiente e Território (DRAT), Linking Landscape, Environment, Agriculture and Food (LEAF), and Forest Research Center (CEF), Instituto Superior de Agronomia, Universidade de LisboaOeiras, Portugal
- GeoBioTec, Faculdade Ciências Tecnologia, Universidade NOVA de LisboaCaparica, Portugal
| |
Collapse
|
20
|
Xu M, Wang G, Li X, Cai X, Li X, Christie P, Zhang J. The key factor limiting plant growth in cold and humid alpine areas also plays a dominant role in plant carbon isotope discrimination. FRONTIERS IN PLANT SCIENCE 2015; 6:961. [PMID: 26579188 PMCID: PMC4630956 DOI: 10.3389/fpls.2015.00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Many environmental factors affect carbon isotope discrimination in plants, yet the predominant factor influencing this process is generally assumed to be the key growth-limiting factor. However, to our knowledge this hypothesis has not been confirmed. We therefore determined the carbon isotope composition (δ(13)C) of plants growing in two cold and humid mountain regions where temperature is considered to be the key growth-limiting factor. Mean annual temperature (MAT) showed a significant impact on variation in carbon isotope discrimination value (Δ) irrespective of study area or plant functional type with either partial correlation or regression analysis, but the correlation between Δ and soil water content (SWC) was usually not significant. In multiple stepwise regression analysis, MAT was either the first or the only variable selected into the prediction model of Δ against MAT and SWC, indicating that the effect of temperature on carbon isotope discrimination was predominant. The results therefore provide evidence that the key growth-limiting factor is also crucial for plant carbon isotope discrimination. Changes in leaf morphology, water viscosity and carboxylation efficiency with temperature may be responsible for the observed positive correlation between Δ and temperature.
Collapse
Affiliation(s)
- Meng Xu
- College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Guoan Wang
- College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Xiaoliang Li
- College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Xiaobu Cai
- Tibet Agricultural and Animal Husbandry College, Tibet UniversityLinzhi, China
| | - Xiaolin Li
- College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Peter Christie
- College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Junling Zhang
- College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
21
|
Lindlöf A, Chawade A, Sikora P, Olsson O. Comparative Transcriptomics of Sijung and Jumli Marshi Rice during Early Chilling Stress Imply Multiple Protective Mechanisms. PLoS One 2015; 10:e0125385. [PMID: 25973918 PMCID: PMC4431715 DOI: 10.1371/journal.pone.0125385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Low temperature is one of the major environmental factors that adversely affect plant growth and yield. Many cereal crops from tropical regions, such as rice, are chilling sensitive and, therefore, are affected already at <10 °C. Interestingly, it has been demonstrated that chilling susceptibility varies greatly among rice varieties, which indicates differences in the underlying molecular responses. Understanding these differences is vital for continued development of rational breeding and transgenic strategies for more tolerant varieties. Thus, in this study, we conducted a comparative global gene expression profiling analysis of the chilling tolerant varieties Sijung and Jumli Marshi (spp. Japonica) during early chilling stress (<24 h, 10 °C). METHODS AND RESULTS Global gene expression experiments were conducted with Agilent Rice Gene Expression Microarray 4 x 44 K. The analysed results showed that there was a relatively low (percentage or number) overlap in differentially expressed genes in the two varieties and that substantially more genes were up-regulated in Jumli Marshi than in Sijung but the number of down-regulated genes were higher in Sijung. In broad GO annotation terms, the activated response pathways in Sijung and Jumli Marshi were coherent, as a majority of the genes belonged to the catalytic, transcription regulator or transporter activity categories. However, a more detailed analysis revealed essential differences. For example, in Sijung, activation of calcium and phosphorylation signaling pathways, as well as of lipid transporters and exocytosis-related proteins take place very early in the stress response. Such responses can be coupled to processes aimed at strengthening the cell wall and plasma membrane against disruption. On the contrary, in Jumli Marshi, sugar production, detoxification, ROS scavenging, protection of chloroplast translation, and plausibly the activation of the jasmonic acid pathway were the very first response activities. These can instead be coupled to detoxification processes. CONCLUSIONS Based on the results inferred from this study, we conclude that different, but overlapping, strategies are undertaken by the two varieties to cope with the chilling stress; in Sijung the initial molecular responses seem to be mainly targeted at strengthening the cell wall and plasma membrane, whereas in Jumli Marshi the protection of chloroplast translation and detoxification is prioritized.
Collapse
Affiliation(s)
- Angelica Lindlöf
- Systems Biology Research Centre, University of Skövde, 541 28 Skövde, Sweden
- * E-mail:
| | - Aakash Chawade
- CropTailor AB, Department of Pure and Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden
- Department of Immunotechnology, Lund University, SE-22381, Lund, Sweden
| | - Per Sikora
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Olof Olsson
- CropTailor AB, Department of Pure and Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden
- Department of Pure and Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden
| |
Collapse
|
22
|
Ramalho JC, DaMatta FM, Rodrigues AP, Scotti-Campos P, Pais I, Batista-Santos P, Partelli FL, Ribeiro A, Lidon FC, Leitão AE. Cold impact and acclimation response of Coffea spp. plants. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2014; 26:5-18. [PMID: 0 DOI: 10.1007/s40626-014-0001-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
23
|
Scotti-Campos P, Pais IP, Partelli FL, Batista-Santos P, Ramalho JC. Phospholipids profile in chloroplasts of Coffea spp. genotypes differing in cold acclimation ability. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:243-9. [PMID: 23988560 DOI: 10.1016/j.jplph.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/25/2013] [Indexed: 05/11/2023]
Abstract
Environmental temperature change may induce modifications in membrane lipid properties and composition, which account for different physiological responses among plant species. Coffee plants, as many tropical species, are particularly sensitive to cold, but genotypes can present differences that can be exploited to improve crop management and breeding. This work intended to highlight the changes promoted by low non-freezing temperatures (chilling) in phospholipid (PL) composition of chloroplast membranes of genotypes from two Coffea species, Coffea arabica cv. Catuaí (moderately tolerant) and Coffea canephora cv. Conilon (Clone 153, more susceptible), and relate them with cold sensitivity differences. Such evaluation was performed considering a gradual temperature decrease, chilling (4 °C) exposure and a recovery period under rewarming conditions. Catuaí presented an earlier acclimation response than Clone 153 (CL 153). It displayed a higher metabolic activity during acclimation (total fatty acids and total PL increases) and chilling (phosphatidylglycerol increases), and an overall better recovery. Catuaí also showed the highest phosphatidylglycerol unsaturation (higher double bond index) after chilling, in contrast with CL 153 (gradual unsaturation decrease). Higher unsaturation degree in Catuaí than in CL 153 was also observed for phosphatidylcholine and phosphatidylinositol, resulting, mainly, from raises in unsaturated C18:2 and C18:3. It is suggested that an enhanced PL synthesis and turnover induced by a gradual cold exposure, as well as unsaturation increases in major PL classes, is related to decreased Catuaí susceptibility to low temperatures and strongly contributes to sustain photosynthetic activity in this genotype under chilling conditions, as reported in previous work by this team.
Collapse
Affiliation(s)
- Paula Scotti-Campos
- Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Av. República, Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Isabel P Pais
- Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Av. República, Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Fábio L Partelli
- Dept. Ciências Agrárias e Biológicas, Centro Univ. Norte Espírito Santo, Univ. Federal Espírito Santo, Rodovia BR 101 Norte, Km. 60, Bairro Litorâneo, CEP 29932-540, São Mateus, ES, Brazil
| | - Paula Batista-Santos
- Grupo Interações Planta-Ambiente (Plant Stress), Centro de Ambiente, Agricultura e Desenvolvimento (BioTrop), Instituto de Investigação Científica Tropical, I.P. (IICT), Av. República, Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - José C Ramalho
- Grupo Interações Planta-Ambiente (Plant Stress), Centro de Ambiente, Agricultura e Desenvolvimento (BioTrop), Instituto de Investigação Científica Tropical, I.P. (IICT), Av. República, Quinta do Marquês, 2784-505 Oeiras, Portugal.
| |
Collapse
|
24
|
Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato AS, Lidon FC. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:133-46. [PMID: 23647987 DOI: 10.1111/plb.12018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/16/2013] [Indexed: 05/05/2023]
Abstract
The impact of moderate water deficit on the photosynthetic apparatus of three Phaseolus vulgaris L. cultivars, Plovdiv 10 (P10), Dobrudjanski Ran (DR) and Prelom (Prel), was investigated. Water shortage had less impact on leaf hydration, RWC (predawn and midday) and predawn water potential in Prel. RWC and Ψ(p) were more reduced in P10, while there was no osmotic adjustment in any cultivar. Although drought drastically reduced stomatal opening in P10 and DR, reduced A(max) indicated non-stomatal limitations that contributed to the negligible P(n). These limitations were on potential thylakoid electron transport rates of PSI and II, pointing to photosystem functioning as a major limiting step in photosynthesis. This agrees with decreases in actual photochemical efficiency of PSII (F(v)'/F(m)'), quantum yield of photosynthetic non-cyclic electron transport (ϕ(e)) and energy-driven photochemical events (q(P)), although the impact on these parameters would also include down-regulation processes. When compared to DR, Prel retained a higher functional state of the photosynthetic machinery, justifying reduced need for photoprotective mechanisms (non-photochemical quenching, zeaxanthin, lutein, β-carotene) and maintenance of the balance between energy capture and dissipative pigments. The highest increases in fructose, glucose, arabinose and sorbitol in Prel might be related to tolerance to a lower oxidative state. All cultivars had reduced A(max) due to daytime stomatal closure in well-watered conditions. Under moderate drought, Prel had highest tolerance, higher leaf hydration and maintenance of important photochemical use of energy. However, water shortage caused appreciable non-stomatal limitations to photosynthesis linked to regulation/imbalance at the metabolic level (and growth) in all cultivars. This included damage, as reflected in decreased potential photosystem functioning, pointing to higher sensitivity of photosynthesis to drought than is commonly assumed.
Collapse
Affiliation(s)
- J C Ramalho
- Grupo Interações Planta-Ambiente, Centro Ambiente, Agricultura e Desenvolvimento/Instituto de Investigação Científica Tropical, I.P. (BioTrop/IICT), Oeiras, Portugal
| | - Z S Zlatev
- Department of Plant Physiology and Biochemistry, Agricultural University of Plovdiv, Plovdiv, Bulgaria
| | - A E Leitão
- Grupo Interações Planta-Ambiente, Centro Ambiente, Agricultura e Desenvolvimento/Instituto de Investigação Científica Tropical, I.P. (BioTrop/IICT), Oeiras, Portugal
| | - I P Pais
- URGEMP/Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - A S Fortunato
- Grupo Interações Planta-Ambiente, Centro Ambiente, Agricultura e Desenvolvimento/Instituto de Investigação Científica Tropical, I.P. (BioTrop/IICT), Oeiras, Portugal
| | - F C Lidon
- Department of Ciências e Tecnologia da Biomassa, Fac. Ciências e Tecnologia, University of Nova de Lisboa, Monte de Caparica, Portugal
| |
Collapse
|
25
|
Ramalho JC, Rodrigues AP, Semedo JN, Pais IP, Martins LD, Simões-Costa MC, Leitão AE, Fortunato AS, Batista-Santos P, Palos IM, Tomaz MA, Scotti-Campos P, Lidon FC, DaMatta FM. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2]. PLoS One 2013; 8:e82712. [PMID: 24324823 PMCID: PMC3855777 DOI: 10.1371/journal.pone.0082712] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Coffee is one of the world's most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m(-2) s(-1)), RH (75%) and 380 or 700 μL CO2 L(-1) for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L(-1). This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our data suggest that Coffea spp. plants may successfully cope with high [CO2] under the present experimental conditions.
Collapse
Affiliation(s)
- José C. Ramalho
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Ana P. Rodrigues
- Centro de Estudos Florestais, Instituto Superior Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal
| | - José N. Semedo
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Isabel P. Pais
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Lima D. Martins
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
- Departamento Produção Vegetal, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Alegre, Espirito Santo, Brazil
| | - Maria C. Simões-Costa
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - António E. Leitão
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Ana S. Fortunato
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Paula Batista-Santos
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Isabel M. Palos
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Marcelo A. Tomaz
- Departamento Produção Vegetal, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Alegre, Espirito Santo, Brazil
| | - Paula Scotti-Campos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Fernando C. Lidon
- Departamento Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Fábio M. DaMatta
- Departamento Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
26
|
Rodríguez D, Cure JR, Cotes JM, Gutierrez AP, Cantor F. A coffee agroecosystem model: I. Growth and development of the coffee plant. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2011.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Lidon FC, Ramalho JC. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:457-66. [PMID: 21696979 DOI: 10.1016/j.jphotobiol.2011.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 12/26/2022]
Abstract
The impact of UV-B radiation on photosynthetic related parameters was studied in Oryza sativa L. cv. Safari plants, after an UV-B irradiation performed 1h per day for 7days (between 8 and 14days after germination) with a ten narrow-band (λ 311nm) that resulted in a total biological effective UV-B (UVB(BE)) of 2.975kJm(-2)day(-1) and a total of 20.825kJm(-2). Gas exchange measurements were severely affected, showing reductions higher than 80% in net photosynthesis (P(n)), stomatal conductance and photosynthetic capacity (A(max)), 1day after the end of the 7-days UV-B treatment. Similarly, several fluorescence parameters (F(o), F(v)/F(m), Fv'/Fm', ϕ(e), q(P) and q(E)) and thylakoid electron transport (involving both photosystems) were also severely reduced. Concomitantly, a decline of xanthophylls, carotenes, Chl a, Chl (a+b) and Chl (a/b) values was accompanied by the increase of the lipoperoxidation level in chloroplast membranes, altogether reflecting a loss of protection against oxidative stress. Seven days after of the end of UV-B treatment, most fluorescence parameters recovered, but in P(n), A(max), thylakoid electron transport rates, Chl a and lipid classes, as well as the level of lipoperoxidation, the impacts were even stronger than immediately after the end of stress, denoting a clear loss of performance of photosynthetic structures. However, only a moderate impact on total lipids was observed, accompanied by some changes in the relative weight of the major chloroplast membrane lipid classes, with emphasis on the decrease of MGDG and the increase of phospholipids. That suggested an ability to de novo lipid synthesis allowing qualitative changes in the lipid matrix. Notably, the leaves developed after the end of UV-B irradiation showed a much lower impact, with significantly decreased values only in P(n) and g(s), rises in several fluorescence parameters, thylakoid electron transport, photosynthetic pigments (xanthophylls and chls) and DEPS, while lipid classes presented values close to control. The results showed a global impact of UV-B in the photosynthetic structures and performance in irradiated leaves, but revealed also a low impairment extent in the leaves entirely developed after the end of the irradiation, reflecting a remarkable recovery of the plant after the end of stress, what could constitute an advantage under occasional UV-B exposure events in this vital worldwide staple food crop.
Collapse
Affiliation(s)
- F C Lidon
- Dept. Ciências e Tecnologia da Biomassa, Campus da Caparica, Fac. Ciências e Tecnologia, Univ. Nova de Lisboa, 2829-516 Monte de Caparica, Portugal. ,
| | | |
Collapse
|