1
|
Ye T, Ma T, Chen Y, Liu C, Jiao Z, Wang X, Xue H. The role of redox-active small molecules and oxidative protein post-translational modifications in seed aging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108810. [PMID: 38857563 DOI: 10.1016/j.plaphy.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Seed vigor is a crucial indicator of seed quality. Variations in seed vigor are closely associated with seed properties and storage conditions. The vigor of mature seeds progressively declines during storage, which is called seed deterioration or aging. Seed aging induces a cascade of cellular damage, including impaired subcellular structures and macromolecules, such as lipids, proteins, and DNA. Reactive oxygen species (ROS) act as signaling molecules during seed aging causing oxidative damage and triggering programmed cell death (PCD). Mitochondria are the main site of ROS production and change morphology and function before other organelles during aging. The roles of other small redox-active molecules in regulating cell and seed vigor, such as nitric oxide (NO) and hydrogen sulfide (H2S), were identified later. ROS, NO, and H2S typically regulate protein function through post-translational modifications (PTMs), including carbonylation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. These signaling molecules as well as the PTMs they induce interact to regulate cell fate and seed vigor. This review was conducted to describe the physiological changes and underlying molecular mechanisms that in seed aging and provides a comprehensive view of how ROS, NO, and H2S affect cell death and seed vigor.
Collapse
Affiliation(s)
- Tiantian Ye
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Tianxiao Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Yang Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Chang Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Zhiyuan Jiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaofeng Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Hua Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Li G, Xie J, Zhang W, Meng F, Yang M, Fan X, Sun X, Zheng Y, Zhang Y, Wang M, Chen Q, Wang S, Jiang H. Integrated examination of the transcriptome and metabolome of the gene expression response and metabolite accumulation in soybean seeds for seed storability under aging stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1437107. [PMID: 39040511 PMCID: PMC11261460 DOI: 10.3389/fpls.2024.1437107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Soybean quality and production are determined by seed viability. A seed's capacity to sustain germination via dry storage is known as its seed life. Thus, one of the main objectives for breeders is to preserve genetic variety and gather germplasm resources. However, seed quality and germplasm preservation have become significant obstacles. In this study, four artificially simulated aging treatment groups were set for 0, 24, 72, and 120 hours. Following an aging stress treatment, the transcriptome and metabolome data were compared in two soybean lines with notable differences in seed vigor-R31 (aging sensitive) and R80 (aging tolerant). The results showed that 83 (38 upregulated and 45 downregulated), 30 (19 upregulated and 11 downregulated), 90 (52 upregulated and 38 downregulated), and 54 (25 upregulated and 29 downregulated) DEGs were differentially expressed, respectively. A total of 62 (29 upregulated and 33 downregulated), 94 (49 upregulated and 45 downregulated), 91 (53 upregulated and 38 downregulated), and 135 (111 upregulated and 24 downregulated) differential metabolites accumulated. Combining the results of transcriptome and metabolome investigations demonstrated that the difference between R31 and R80 responses to aging stress was caused by genes related to phenylpropanoid metabolism pathway, which is linked to the seed metabolite caffeic acid. According to this study's preliminary findings, the aging-resistant line accumulated more caffeic acid than the aging-sensitive line, which improved its capacity to block lipoxygenase (LOX) activity. An enzyme activity inhibition test was used to demonstrate the effect of caffeic acid. After soaking seeds in 1 mM caffeic acid (a LOX inhibitor) for 6 hours and artificially aging them for 24 hours, the germination rates of the R31 and R80 seeds were enhanced. In conclusion, caffeic acid has been shown to partially mitigate the negative effects of soybean seed aging stress and to improve seed vitality. This finding should serve as a theoretical foundation for future research on the aging mechanism of soybean seeds.
Collapse
Affiliation(s)
- Guang Li
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Jianguo Xie
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Wei Zhang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Fanfan Meng
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Mingliang Yang
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xuhong Fan
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Xingmiao Sun
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Yuhong Zheng
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Yunfeng Zhang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Mingliang Wang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Qingshan Chen
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuming Wang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center), Soybean Research Institute, Changchun, China
| |
Collapse
|
3
|
Yao R, Liu H, Wang J, Shi S, Zhao G, Zhou X. Cytological structures and physiological and biochemical characteristics of covered oat (Avena sativa L.) and naked oat (Avena nuda L.) seeds during high-temperature artificial aging. BMC PLANT BIOLOGY 2024; 24:530. [PMID: 38862888 PMCID: PMC11165783 DOI: 10.1186/s12870-024-05221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Seed aging, a natural and inevitable process occurring during storage. Oats, an annual herb belonging to the Gramineae family and pooideae. In addition to being a healthy food, oats serve as ecological pastures, combating soil salinization and desertification. They also play a role in promoting grassland agriculture and supplementing winter livestock feed. However, the high lipid and fat derivatives contents of oat seeds make them susceptible to deterioration, as fat derivatives are prone to rancidity, affecting oat seed production, storage, development, and germplasm resource utilization. Comparative studies on the effects of aging on physiology and cytological structure in covered and naked oat seeds are limited. Thus, our study aimed to determine the mechanism underlying seed deterioration in artificially aged 'LongYan No. 3' (A. sativa) and 'BaiYan No. 2' (A. nuda) seeds, providing a basis for the physiological evaluation of oat seed aging and serving as a reference for scientifically safe storage and efficient utilization of oats. RESULTS In both oat varieties, superoxide dismutase and catalase activities in seeds showed increasing and decreasing trends, respectively. Variance analysis revealed significant differences and interaction in all measured indicators of oat seeds between the two varieties at different aging times. 'LongYan No. 3' seeds, aged for 24-96 h, exhibited a germination rate of < 30%, Conductivity, malondialdehyde, soluble sugar, and soluble protein levels increased more significantly than the 'BaiYan No. 2'. With prolonged aging leading to cell membrane degradation, reactive oxygen species accumulation, disrupted antioxidant enzyme system, evident embryo cell swelling, and disordered cell arrangement, blocking the nutrient supply route. Simultaneously, severely concentrated chromatin in the nucleus, damaged mitochondrial structure, and impaired energy metabolism were noted, resulting in the loss of 'LongYan No. 3' seed vitality and value. Conversely, 'BaiYan No. 2' seeds showed a germination rate of 73.33% after 96 h of aging, consistently higher antioxidant enzyme activity during aging, normal embryonic cell shape, and existence of the endoplasmic reticulum. CONCLUSIONS ROS accumulation and antioxidant enzyme system damage in aged oat seeds, nuclear chromatin condensation, mitochondrial structure damage, nucleic acid metabolism and respiration weakened, oat seed vigor decreased. 'LongYan No. 3' seeds were more severely damaged under artificial aging than 'BaiYan No. 2' seeds, highlighting their heightened susceptibility to aging effects.
Collapse
Affiliation(s)
- Ruirui Yao
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huan Liu
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jinglong Wang
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Shangli Shi
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guiqin Zhao
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiangrui Zhou
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
4
|
Kumsab J, Yingchutrakul Y, Simanon N, Jankam C, Sonthirod C, Tangphatsornruang S, Butkinaree C. Comparative Proteomic Analysis of Ridge Gourd Seed ( Luffa acutangula (L.) Roxb.) during Artificial Aging. ACS OMEGA 2024; 9:24739-24750. [PMID: 38882140 PMCID: PMC11171090 DOI: 10.1021/acsomega.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Seed aging is a complicated process influenced by environmental conditions, impacting biochemical processes in seeds and causing deterioration that results in reduced viability and vigor. In this study, we investigated the seed aging process of ridge gourd, which is one of the most exported commercial seeds in Thailand using sequential window acquisition of all theoretical fragment ion spectra mass spectrometry. A total of 855 proteins were identified among the two groups (0 d/15 d and 0 d/30 d). The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of differentially expressed proteins revealed that in ridge gourd seeds, the aging process altered the abundance of proteins related to the oxidative stress response, nutrient reservoir, and metabolism pathway. The most identified DEPs were mitochondrial proteins, ubiquitin-proteasome system proteins, ribosomal proteins, carbohydrate metabolism-related proteins, and stress response-related proteins. This study also presented the involvement of aconitase and glutathione pathway-associated enzymes in seed aging, with aconitase and total glutathione being determined as possible suggestive biomarkers for aged ridge gourd seeds. This acquired knowledge has the potential to considerably improve growing methods and seed preservation techniques, enhancing seed storage and maintenance.
Collapse
Affiliation(s)
- Jakkaphan Kumsab
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nattapon Simanon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chonchawan Jankam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chutikarn Butkinaree
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Silva MFD, Soares JM, Xavier WA, Silva FCDS, Silva FLD, Silva LJD. The role of the biochemical composition of soybean seeds in the tolerance to deterioration under natural and artificial aging. Heliyon 2023; 9:e21628. [PMID: 38046172 PMCID: PMC10686883 DOI: 10.1016/j.heliyon.2023.e21628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 09/16/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
The fast decline in the physiological quality of seeds during storage is a serious problem. It is known that the reduction of seed quality may be related to its biochemical constitution. However, the relationship between the composition and the mechanisms linked to the loss of vigor of soybean seeds during aging has not been elucidated yet. Thus, the aim of this work was to analyze the role of the biochemical composition of soybean seeds in the physiological quality and in the tolerance to deterioration due to natural and artificial aging. Seeds of six soybean genotypes were analyzed initially and after being submitted to natural aging, storage for eight months, and artificial aging, using the temperature of 41 °C and 100 % relative humidity for 96 h. Moisture content, germination and vigor tests were carried out. Also, there were measured the content of oil, total protein, soluble protein, malonaldehyde, and fatty acids palmitic, stearic, oleic, linoleic, and linolenic. It was verified that the physiological quality of soybean seeds decreased with both kinds of aging. However, the deterioration process occurs by distinct mechanisms. The biochemical composition of the seeds is associated with the physiological quality and their storage potential is changed by natural and artificial aging. The tolerance of the seed to deterioration is related to soluble protein and fatty acids content. Oleic fatty acid and soluble protein can be used as indicators of physiological quality in soybean seeds.
Collapse
Affiliation(s)
- Martha Freire da Silva
- Universidade Estadual de Maringá/UEM - Campus Regional de Umuarama - Departamento de Ciências Agrárias - Estrada Paca s/n, CEP 87507-190, Umuarama, PR - Brazil
- Universidade Federal de Viçosa/UFV - Departamento de Agronomia - Av. P H Rolfs, s/n, CEP 36570-900, Viçosa, MG - Brazil
| | - Júlia Martins Soares
- Universidade Federal de Viçosa/UFV - Departamento de Agronomia - Av. P H Rolfs, s/n, CEP 36570-900, Viçosa, MG - Brazil
| | - Wanderson Andrade Xavier
- Universidade Federal de Viçosa/UFV - Departamento de Agronomia - Av. P H Rolfs, s/n, CEP 36570-900, Viçosa, MG - Brazil
| | - Francisco Charles dos Santos Silva
- Universidade Estadual do Maranhão/UEMA - Campus Balsas - Curso de Agronomia - Praça Gonçalves Dias s/n, CEP 65800-000, Balsas, MA - Brazil
| | - Felipe Lopes da Silva
- Universidade Federal de Viçosa/UFV - Departamento de Agronomia - Av. P H Rolfs, s/n, CEP 36570-900, Viçosa, MG - Brazil
| | - Laércio Junio da Silva
- Universidade Federal de Viçosa/UFV - Departamento de Agronomia - Av. P H Rolfs, s/n, CEP 36570-900, Viçosa, MG - Brazil
| |
Collapse
|
6
|
Aslam MA, Ahmed S, Saleem M, Sardar R, Shah AA, Siddiqui MH, Shabbir Z. Mitigation of chromium-induced phytotoxicity in 28-homobrassinolide treated Trigonella corniculata L. by modulation of oxidative biomarkers and antioxidant system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115354. [PMID: 37595348 DOI: 10.1016/j.ecoenv.2023.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Chromium (Cr) is one of the toxic heavy metals that disturbs growth and physiological properties of plants. During the current study, Trigonella corniculata L. (Fenugreek) was exposed to different levels of Cr in potted soil. Chromium toxicity reduced fiber, ash, moisture, carbohydrate, protein, fats, and flavonoid content of T. corniculata. Considering the stress relieving effect of 28-homobrassinolide (28-HBR), seeds of T. corniculata were primed with different concentration of 28-HBR i.e., 0, 5, 10, and 20 µmol L-1. Application of 28-HBR reversed the toxic effect of Cr through improvement in activity of antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Conclusively, 10 µmol L-1 28-HBR increased Cr tolerance in T. corniculata seedlings due to reduction in oxidative stress markers. It is further proposed that 28-HBR is an effective stress ameliorant to relive plants from various abiotic stresses.
Collapse
Affiliation(s)
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Muhammad Saleem
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zunera Shabbir
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, USA
| |
Collapse
|
7
|
Chamma L, da Silva GF, Perissato SM, Alievi C, Chaves PPN, Giandoni VCR, Calonego JC, da Silva EAA. Does Forced Plant Maturation by Applying Herbicide with Desiccant Action Influence Seed Longevity in Soybean? PLANTS (BASEL, SWITZERLAND) 2023; 12:2769. [PMID: 37570923 PMCID: PMC10420660 DOI: 10.3390/plants12152769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 08/13/2023]
Abstract
Herbicides with desiccant actions may be used to anticipate the harvesting of soybean seeds. This technique aims to minimize the negative influence of biotic and abiotic factors on seed physiological quality at the end of the plant cycle. However, forced seed maturation with the application of herbicides can compromise the acquisition of seed quality components, especially longevity. Thus, the objective of this research was to evaluate the physiological quality of soybean seeds subjected to forced maturation with desiccants. The experiment was performed in a completely randomized design, with a treatment consisting of soybean plants subjected to the application of herbicides with desiccant action at stage R7.3 and another that underwent the natural process of maturation, that is, without herbicide application. The herbicide used was Paraquat. Seed germination, vigor (first germination count, dry mass, seedling length, time to reach 50% germination(t50), emergence index, and emergence speed), and longevity(P50) were evaluated. The herbicides did not affect germination (normal seedlings). However, the acquisition of vigor and longevity, and the preservation of seed vigor during storage were affected. Thus, the results indicate that the application of herbicide with desiccant action interrupts the process of acquisition of seed physiological quality, notably longevity in soybean seeds.
Collapse
Affiliation(s)
- Larissa Chamma
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (G.F.d.S.); (S.M.P.); (P.P.N.C.); (V.C.R.G.); (J.C.C.); (E.A.A.d.S.)
| | - Gustavo Ferreira da Silva
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (G.F.d.S.); (S.M.P.); (P.P.N.C.); (V.C.R.G.); (J.C.C.); (E.A.A.d.S.)
| | - Samara Moreira Perissato
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (G.F.d.S.); (S.M.P.); (P.P.N.C.); (V.C.R.G.); (J.C.C.); (E.A.A.d.S.)
| | - Cleonei Alievi
- Department of Crop Science, School of Agriculture, Federal Institute of Goias (IFG), Urutaí 75790-000, Brazil;
| | - Prínscilla Pâmela Nunes Chaves
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (G.F.d.S.); (S.M.P.); (P.P.N.C.); (V.C.R.G.); (J.C.C.); (E.A.A.d.S.)
| | - Valéria Cristina Retameiro Giandoni
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (G.F.d.S.); (S.M.P.); (P.P.N.C.); (V.C.R.G.); (J.C.C.); (E.A.A.d.S.)
| | - Juliano Carlos Calonego
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (G.F.d.S.); (S.M.P.); (P.P.N.C.); (V.C.R.G.); (J.C.C.); (E.A.A.d.S.)
| | - Edvaldo Aparecido Amaral da Silva
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (G.F.d.S.); (S.M.P.); (P.P.N.C.); (V.C.R.G.); (J.C.C.); (E.A.A.d.S.)
| |
Collapse
|
8
|
Rao PJM, Pallavi M, Bharathi Y, Priya PB, Sujatha P, Prabhavathi K. Insights into mechanisms of seed longevity in soybean: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1206318. [PMID: 37546268 PMCID: PMC10400919 DOI: 10.3389/fpls.2023.1206318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
Soybean, a crop of international importance, is challenged with the problem of seed longevity mainly due to its genetic composition and associated environmental cues. Soybean's fragile seed coat coupled with poor DNA integrity, ribosomal dysfunction, lipid peroxidation and poor antioxidant system constitute the rationale for fast deterioration. Variability among the genotypes for sensitivity to field weathering contributed to their differential seed longevity. Proportion and density of seed coat, glassy state of cells, calcium and lignin content, pore number, space between seed coat and cotyledon are some seed related traits that are strongly correlated to longevity. Further, efficient antioxidant system, surplus protective proteins, effective nucleotide and protein repair systems and free radical scavenging mechanisms also contributed to the storage potential of soybean seeds. Identification of molecular markers and QTLs associated with these mechanisms will pave way for enhanced selection efficiency for seed longevity in soybean breeding programs. This review reflects on the morphological, biochemical and molecular bases of seed longevity along with pointers on harvest, processing and storage strategies for extending vigour and viability in soybean.
Collapse
|
9
|
Ji J, Lin S, Xin X, Li Y, He J, Xu X, Zhao Y, Su G, Lu X, Yin G. Effects of OsAOX1a Deficiency on Mitochondrial Metabolism at Critical Node of Seed Viability in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2284. [PMID: 37375909 DOI: 10.3390/plants12122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Mitochondrial alternative oxidase 1a (AOX1a) plays an extremely important role in the critical node of seed viability during storage. However, the regulatory mechanism is still poorly understood. The aim of this study was to identify the regulatory mechanisms by comparing OsAOX1a-RNAi and wild-type (WT) rice seed during artificial aging treatment. Weight gain and time for the seed germination percentage decreased to 50% (P50) in OsAOX1a-RNAi rice seed, indicating possible impairment in seed development and storability. Compared to WT seeds at 100%, 90%, 80%, and 70% germination, the NADH- and succinate-dependent O2 consumption, the activity of mitochondrial malate dehydrogenase, and ATP contents all decreased in the OsAOX1a-RNAi seeds, indicating that mitochondrial status in the OsAOX1a-RNAi seeds after imbibition was weaker than in the WT seeds. In addition, the reduction in the abundance of Complex I subunits showed that the capacity of the mitochondrial electron transfer chain was significantly inhibited in the OsAOX1a-RNAi seeds at the critical node of seed viability. The results indicate that ATP production was impaired in the OsAOX1a-RNAi seeds during aging. Therefore, we conclude that mitochondrial metabolism and alternative pathways were severely inhibited in the OsAOX1a-RNAi seeds at critical node of viability, which could accelerate the collapse of seed viability. The precise regulatory mechanism of the alternative pathway at the critical node of viability needs to be further analyzed. This finding might provide the basis for developing monitoring and warning indicators when seed viability declines to the critical node during storage.
Collapse
Affiliation(s)
- Jing Ji
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuangshuang Lin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyue Xu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunxia Zhao
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gefei Su
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Li Y, Liu C, Qi M, Ye T, Kang Y, Wang Y, Wang X, Xue H. Effect of the metal ion-induced carbonylation modification of mitochondrial membrane channel protein VDAC on cell vitality, seedling growth and seed aging. FRONTIERS IN PLANT SCIENCE 2023; 14:1138781. [PMID: 37324694 PMCID: PMC10264620 DOI: 10.3389/fpls.2023.1138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Introduction Seeds are the most important carrier of germplasm preservation. However, an irreversible decrease in vigor can occur after the maturation of seeds, denoted as seed aging. Mitochondrion is a crucial organelle in initiation programmed cell death during seed aging. However, the underlying mechanism remains unclear. Methods Our previous proteome study found that 13 mitochondria proteins underwent carbonylation modification during the aging of Ulmus pumila L. (Up) seeds. This study detected metal binding proteins through immobilized metal affinity chromatography (IMAC), indicating that metal binding proteins in mitochondria are the main targets of carbonization during seed aging. Biochemistry, molecular and cellular biology methods were adopted to detect metal-protein binding, protein modification and subcellular localization. Yeast and Arabidopsis were used to investigate the biological functions in vivo. Results and discussion In IMAC assay, 12 proteins were identified as Fe2+/Cu2+/Zn2+ binding proteins, including mitochondrial voltage dependent anion channels (VDAC). UpVDAC showed binding abilities to all the three metal ions. His204Ala (H204A) and H219A mutated UpVDAC proteins lost their metal binding ability, and became insensitive to metal-catalyzed oxidation (MCO) induced carbonylation. The overexpression of wild-type UpVDAC made yeast cells more sensitive to oxidative stress, retarded the growth of Arabidopsis seedlings and accelerated the seed aging, while overexpression of mutated UpVDAC weakened these effects of VDAC. These results reveal the relationship between the metal binding ability and carbonylation modification, as well as the probable function of VDAC in regulating cell vitality, seedling growth and seed aging.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chang Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Manyao Qi
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Tiantian Ye
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ying Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaofeng Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hua Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Colombo F, Pagano A, Sangiorgio S, Macovei A, Balestrazzi A, Araniti F, Pilu R. Study of Seed Ageing in lpa1-1 Maize Mutant and Two Possible Approaches to Restore Seed Germination. Int J Mol Sci 2023; 24:ijms24010732. [PMID: 36614175 PMCID: PMC9820859 DOI: 10.3390/ijms24010732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023] Open
Abstract
Phytic acid (PA) is a strong anti-nutritional factor with a key antioxidant role in countering reactive oxygen species. Despite the potential benefits of low phytic acid (lpa) mutants, the reduction of PA causes pleiotropic effects, e.g., reduced seed germination and viability loss related to seed ageing. The current study evaluated a historical series of naturally aged seeds and showed that lpa1-1 seeds aged faster as compared to wildtype. To mimic natural ageing, the present study set up accelerated ageing treatments at different temperatures. It was found that incubating the seeds at 57 °C for 24 h, the wildtype germinated at 82.4% and lpa1-1 at 40%. The current study also hypothesized two possible solutions to overcome these problems: (1) Classical breeding was used to constitute synthetic populations carrying the lpa1-1 mutation, with genes pushing anthocyanin accumulation in the embryo (R-navajo allele). The outcome showed that the presence of R-navajo in the lpa1-1 genotype was not able to improve the germinability (-20%), but this approach could be useful to improve the germinability in non-mutant genotypes (+17%). (2) In addition, hydropriming was tested on lpa1-1 and wildtype seeds, and germination was improved by 20% in lpa1-1, suggesting a positive role of seed priming in restoring germination. Moreover, the data highlighted metabolic differences in the metabolome before and after hydropriming treatment, suggesting that the differences in germination could also be mediated by differences in the metabolic composition induced by the mutation.
Collapse
Affiliation(s)
- Federico Colombo
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Stefano Sangiorgio
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
12
|
Wei L, Zhang J, Wei S, Wang C, Deng Y, Hu D, Liu H, Gong W, Pan Y, Liao W. Nitric oxide alleviates salt stress through protein S-nitrosylation and transcriptional regulation in tomato seedlings. PLANTA 2022; 256:101. [PMID: 36271196 DOI: 10.1007/s00425-022-04015-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
NO enhances the resistance of tomato seedlings to salt stress through protein S-nitrosylation and transcriptional regulation, which involves the regulation of MAPK signaling and carbohydrate metabolism. Nitric oxide (NO) regulates various physiological and biochemical processes and stress responses in plants. We found that S-nitrosoglutathione (GSNO) treatment significantly promoted the growth of tomato seedling under NaCl stress, indicating that NO plays a positive role in salt stress resistance. Moreover, GSNO pretreatment resulted in an increase of endogenous NO level, S-nitrosothiol (SNO) content, S-nitrosoglutathione reductase (GSNOR) activity and GSNOR expression under salt stress, implicating that S-nitrosylation might be involved in NO-alleviating salt stress. To further explore whether S-nitrosylation is a key molecular mechanism of NO-alleviating salt stress, the biotin-switch technique and liquid chromatography/mass spectrometry/mass spectrometry (LC-MS/MS) were conducted. A total of 1054 putative S-nitrosylated proteins have been identified, which were mainly enriched in chloroplast, cytoplasm and mitochondrion. Among them, 15 and 22 S-nitrosylated proteins were involved in mitogen-activated protein kinase (MAPK) signal transduction and carbohydrate metabolism, respectively. In MAPK signaling, various S-nitrosylated proteins, SAM1, SAM3, SAM, PP2C and SnRK, were down-regulated and MAPK, MAPKK and MAPKK5 were up-regulated at the transcriptional level by GSNO treatment under salt stress compared to NaCl treatment alone. The GSNO pretreatment could reduce ethylene production and ABA content under NaCl stress. In addition, the activities of enzyme identified in carbohydrate metabolism, their expression at the transcriptional level and the metabolite content were up-regulated by GSNO supplication under salt stress, resulting in the activation of glycolysis and tricarboxylic acid cycle (TCA) cycles. Thus, these results demonstrated that NO might beneficially regulate MAPK signaling at transcriptional levels and activate carbohydrate metabolism at the post-translational and transcriptional level, protecting seedlings from energy deficiency and salinity, thereby alleviating salt stress-induced damage in tomato seedlings. It provides initial insights into the regulatory mechanisms of NO in response to salt stress.
Collapse
Affiliation(s)
- Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Dongliang Hu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Wenting Gong
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Ying Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
13
|
Lin YX, Xu HJ, Yin GK, Zhou YC, Lu XX, Xin X. Dynamic Changes in Membrane Lipid Metabolism and Antioxidant Defense During Soybean ( Glycine max L. Merr.) Seed Aging. FRONTIERS IN PLANT SCIENCE 2022; 13:908949. [PMID: 35812982 PMCID: PMC9263854 DOI: 10.3389/fpls.2022.908949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Seed viability depends upon the maintenance of functional lipids; however, how membrane lipid components dynamically change during the seed aging process remains obscure. Seed storage is accompanied by the oxidation of membrane lipids and loss of seed viability. Understanding membrane lipid changes and their effect on the cell membrane during seed aging can contribute to revealing the mechanism of seed longevity. In this study, the potential relationship between oxidative stress and membrane lipid metabolism was evaluated by using a non-targeted lipidomics approach during artificial aging of Glycine max L. Merr. Zhongdou No. 27 seeds. We determined changes in reactive oxygen species, malondialdehyde content, and membrane permeability and assessed antioxidant system activity. We found that decreased non-enzymatic antioxidant contents and catalase activity might lead to reactive oxygen species accumulation, resulting in higher electrolyte leakage and lipid peroxidation. The significantly decreased phospholipids and increased glycerolipids and lysophospholipids suggested that hydrolysis of phospholipids to form glycerolipids and lysophospholipids could be the primary pathway of membrane metabolism during seed aging. Moreover, the ratio of phosphatidylcholine to phosphatidylethanolamine, double bond index, and acyl chain length of phospholipids were found to jointly regulate membrane function. In addition, the observed changes in lipid metabolism suggest novel potential hallmarks of soybean seed aging, such as diacylglycerol 36:4; phosphatidylcholine 34:2, 36:2, and 36:4; and phosphatidylethanolamine 34:2. This knowledge can be of great significance for elucidating the molecular mechanism underlying seed aging and germplasm conservation.
Collapse
Affiliation(s)
- Yi-xin Lin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Hai-jin Xu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Guang-kun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan-chang Zhou
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Xin-xiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
15
|
Seed priming with growth regulators modulates production, physiology and antioxidant defense of Indian squash (Praecitrullus fistulosus) under semi-arid conditions. PLoS One 2022; 17:e0265694. [PMID: 35421113 PMCID: PMC9009649 DOI: 10.1371/journal.pone.0265694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/04/2022] [Indexed: 01/24/2023] Open
Abstract
Indian squash (Praecitrullus fistulosus) crop faces heat and drought during its growth that is considered the most important abiotic stress in semi-arid areas. Seed priming with growth regulators enhances stress tolerance; hence, mitigates the adverse effects of unpredictable stresses due to adverse weather conditions. This two-year (2019 and 2020) study was conducted to infer the role of seed priming in improving heat tolerance of Indian squash (cultivar Sahavi) through improvement in physiological and antioxidant defense systems. Six treatments that included no priming (control), hydropriming, priming with indole acetic acid (IAA) at 100 mg L-1, salicylic acid (SA) at 50 mg L-1, ascorbic acid (AA) at 100 mg L-1 and thiourea at 500 mg L-1 each for 06 hours) were included in the study. Results revealed that priming with AA and SA significantly (P ≤ 0.05) enhanced germination (39 and 47%), germination index (57 and 58%), plant height (23 and 22%), vine length (15 and 14%), number of fruits per plant (62%), fruit weight per plant (66 and 67%), economic yield (32%), photosynthesis rate (18 and 17%), protein content (10%), proline (23%), glycine betaine (3%), malondialdehyde content (11 and 10%) and catalase activity (24%) compared to control treatment. Furthermore, seed priming with AA and SA significantly (P ≤ 0.05) shortened the mean germination time (25 and 28%) compared to the control. The results indicated that AA and SA had significant potential to mitigate adverse effects of heat stress in Indian squash. Findings from this study showed that seed priming with AA and SA promoted heat-stress tolerance and enhanced growth and productivity of Indian squash.
Collapse
|
16
|
Li BB, Zhang SB, Lv YY, Wei S, Hu YS. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds. PLoS One 2022; 17:e0263553. [PMID: 35358205 PMCID: PMC8970375 DOI: 10.1371/journal.pone.0263553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
During the seed aging process, reactive oxygen species (ROS) can induce the carbonylation of proteins, which changes their functional properties and affects seed vigor. However, the impact and regulatory mechanisms of protein carbonylation on wheat seed vigor are still unclear. In this study, we investigated the changes in wheat seed vigor, carbonyl protein content, ROS content and embryo cell structure during an artificial aging process, and we analyzed the correlation between protein carbonylation and seed vigor. During the artificial wheat-seed aging process, the activity levels of antioxidant enzymes and the contents of non-enzyme antioxidants decreased, leading to the accumulation of ROS and an increase in the carbonyl protein content, which ultimately led to a decrease in seed vigor, and there was a significant negative correlation between seed vigor and carbonyl protein content. Moreover, transmission electron microscopy showed that the contents of protein bodies in the embryo cells decreased remarkably. We postulate that during the wheat seed aging process, an imbalance in ROS production and elimination in embryo cells leads to the carbonylation of proteins, which plays a negative role in wheat seed vigor.
Collapse
Affiliation(s)
- Bang-Bang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuai-Bing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yang-Yong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- * E-mail:
| |
Collapse
|
17
|
Wen K, Li X, Huang R, Nian H. Application of exogenous glutathione decreases chromium translocation and alleviates its toxicity in soybean (Glycine max L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113405. [PMID: 35298965 DOI: 10.1016/j.ecoenv.2022.113405] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Chromium is considered one of the most severe toxic elements affecting agriculture. Soybean seedlings under chromium stress were treated with glutathione and buthionine sulfoximine. The effects of exogenous glutathione on the physiological effects of two different chromium-resistant soybean seedlings and the expression levels of expression levels related genes were studied. This study tested the seedling weight and SPAD values, detected enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, catalase, catalase, ascorbate peroxidase), and non-enzymatic antioxidants (i.e., glutathione, proline, soluble sugars, and soluble phenols) that attenuate chromium-induced reactive oxygen species, and quantified several genes associated with glutathione-mediated chromium stress. The results showed that exogenous glutathione could improve the physiological adaptability of soybean seedlings by regulating photosynthesis, antioxidant, and related enzyme activities, osmotic system, the compartmentalization of ion chelation, and regulating the transcription level of related genes, thereby increasing the chromium accumulation of soybean seedlings, enhancing the tolerance of chromium stress, and reducing the toxicity of chromium. Overall, the application of glutathione alleviates chromium toxicity in soybeans, and this strategy may be a potential farming option for soybean bioremediation in chromium-contaminated soils.
Collapse
Affiliation(s)
- Ke Wen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Xingang Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Rong Huang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
18
|
Ciacka K, Tyminski M, Gniazdowska A, Krasuska U. Nitric Oxide as a Remedy against Oxidative Damages in Apple Seeds Undergoing Accelerated Ageing. Antioxidants (Basel) 2021; 11:antiox11010070. [PMID: 35052574 PMCID: PMC8772863 DOI: 10.3390/antiox11010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/02/2022] Open
Abstract
Seed ageing is associated with a high concentration of reactive oxygen species (ROS). Apple (Malus domestica Borkh.) seeds belong to the orthodox type. Due to a deep dormancy, they may be stored in dry condition at 5 °C for a long time, without viability loss. In the laboratory, artificial ageing of apple seeds is performed by imbibition in wet sand at warm temperature (33 °C). The aim of the work was to study nitric oxide (NO) as a seed vigour preservation agent. Embryos isolated from apple seeds subjected to accelerated ageing for 7, 14, 21 or 40 days were fumigated with NO. Embryo quality was estimated by TTC and MDA tests. ROS level was confirmed by NBT staining. We analysed the alteration in transcript levels of CAT, SOD and POX. NO fumigation of embryos of seeds aged for 21 days stimulated germination and increased ROS level which correlated to the elevated expression of RBOH. The increased total antioxidant capacity after NO fumigation was accompanied by the increased transcript levels of genes encoding enzymatic antioxidants, that could protect against ROS overaccumulation. Moreover, post-aged NO application diminished the nitro-oxidative modification of RNA, proving NO action as a remedy in oxidative remodelling after seeds ageing.
Collapse
|
19
|
Barboza da Silva C, Oliveira NM, de Carvalho MEA, de Medeiros AD, de Lima Nogueira M, Dos Reis AR. Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality. Sci Rep 2021; 11:17834. [PMID: 34497292 PMCID: PMC8426380 DOI: 10.1038/s41598-021-97223-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/13/2021] [Indexed: 12/03/2022] Open
Abstract
In the agricultural industry, advances in optical imaging technologies based on rapid and non-destructive approaches have contributed to increase food production for the growing population. The present study employed autofluorescence-spectral imaging and machine learning algorithms to develop distinct models for classification of soybean seeds differing in physiological quality after artificial aging. Autofluorescence signals from the 365/400 nm excitation-emission combination (that exhibited a perfect correlation with the total phenols in the embryo) were efficiently able to segregate treatments. Furthermore, it was also possible to demonstrate a strong correlation between autofluorescence-spectral data and several quality indicators, such as early germination and seed tolerance to stressful conditions. The machine learning models developed based on artificial neural network, support vector machine or linear discriminant analysis showed high performance (0.99 accuracy) for classifying seeds with different quality levels. Taken together, our study shows that the physiological potential of soybean seeds is reduced accompanied by changes in the concentration and, probably in the structure of autofluorescent compounds. In addition, altering the autofluorescent properties in seeds impact the photosynthesis apparatus in seedlings. From the practical point of view, autofluorescence-based imaging can be used to check modifications in the optical properties of soybean seed tissues and to consistently discriminate high-and low-vigor seeds.
Collapse
Affiliation(s)
- Clíssia Barboza da Silva
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, 13416-000, Brazil.
| | - Nielsen Moreira Oliveira
- Department of Crop Science, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Marcia Eugenia Amaral de Carvalho
- Department of Genetics, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | | | - Marina de Lima Nogueira
- Department of Genetics, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - André Rodrigues Dos Reis
- Department of Biosystems Engineering, School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, SP, 17602-496, Brazil
| |
Collapse
|
20
|
Reis LP, de Lima E Borges EE, Brito DS, Bernardes RC, Dos Santos Araújo R. Heat stress-mediated effects on the morphophysiological, biochemical, and ultrastructural parameters of germinating Melanoxylon brauna Schott. seeds. PLANT CELL REPORTS 2021; 40:1773-1787. [PMID: 34181045 DOI: 10.1007/s00299-021-02740-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The present study showed that the heat stress (40 °C) caused changes in morphophysiological, biochemical, and ultrastructural parameters to the seeds Melanoxylon brauna, ultimately leading to loss of germination capacity. Temperature is an abiotic factor that influences seed germination. In the present study, we investigated morphophysiological, biochemical, and ultrastructural changes during the germination of Melanoxylon brauna seeds under heat stress. Seed germination was evaluated at constant temperatures of 25 and 40 °C. The samples consisted of seeds soaked in distilled and ionized water for 48 and 96 h at both temperatures. For the evaluation of internal morphology, the seeds were radiographed. Ultrastructural parameters were assessed using transmission electron microscopy (TEM). The production of reactive oxygen species (ROS), content of malondialdehyde (MDA) and glucose, carbonylated proteins, and activity of the enzymes (superoxide dismutase-SOD, ascorbate peroxidase-APX, catalase-CAT, peroxidase-POX, glucose-6-phosphate dehydrogenase-G6PDH, lipase, α- and β-amylase, and protease) were measured by spectrophotometric analysis. An 82% reduction in the germination of M. brauna seeds was observed at 25 °C, and 0% at 40 °C. TEM showed that seeds submitted to heat stress (40 °C) had poorly developed mitochondria and significantly reduced respiration rates. The content of ROS and protein carbonylation in seeds subjected to 40 °C increased compared to that at 25 °C. The activity of antioxidant enzymes, namely SOD, APX, CAT, and POX, was significantly reduced in seeds subjected to heat stress. Glucose content, G6PDH, and lipase activity also decreased when the seeds were exposed to heat stress. Conversely, α- and β-amylase enzymes and the protease increased due to the increase in temperature. Our data showed that the increase in temperature caused an accumulation of ROS, increasing the oxidative damage to the seeds, which led to mitochondrial dysfunction, ultimately leading to loss of germination.
Collapse
Affiliation(s)
- Luciane Pereira Reis
- Departamento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Danielle S Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
21
|
Chen X, Börner A, Xin X, Nagel M, He J, Li J, Li N, Lu X, Yin G. Comparative Proteomics at the Critical Node of Vigor Loss in Wheat Seeds Differing in Storability. FRONTIERS IN PLANT SCIENCE 2021; 12:707184. [PMID: 34527008 PMCID: PMC8435634 DOI: 10.3389/fpls.2021.707184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The critical node (CN, 85% germination) of seed viability is an important threshold for seed regeneration decisions after long-term conservation. Dependent on the germplasm, the storage period until CN is reached varies and information on the divergence of the proteomic profiles is limited. Therefore, the study aims to identify key proteins and mechanisms relevant for a long plateau phase and a late CN during artificial seed aging of wheat. Seeds of the storage-tolerant genotype (ST) TRI 23248, and the storage-sensitive genotype (SS) TRI 10230 were exposed to artificial ageing (AA) and extracted embryos of imbibed seeds were analyzed using an iTRAQ-based proteomic technique. ST and SS required AA for 24 and 18 days to reach the CN, respectively. Fifty-seven and 165 differentially abundant proteins (DAPs) were observed in the control and aged groups, respectively. Interestingly, a higher activity in metabolic processes, protein synthesis, transcription, cell growth/division, and signal transduction were already found in imbibed embryos of control ST seeds. After AA, 132 and 64 DAPs were accumulated in imbibed embryos of both aged ST and SS seeds, respectively, which were mainly associated with cell defense, rescue, and metabolism. Moreover, 78 DAPs of ST appeared before CN and were mainly enriched in biological pathways related to the maintenance of redox and carbon homeostasis and they presented a stronger protein translation ability. In contrast, in SS, only 3 DAPs appeared before CN and were enriched only in the structural constituents of the cytoskeleton. In conclusion, a longer span of plateau phase might be obtained in seeds when proteins indicate an intense stress response before CN and include the effective maintenance of cellular homeostasis, and avoidance of excess accumulation of cytotoxic compounds. Although key proteins, inherent factors and the precise regulatory mechanisms need to be further investigated, the found proteins may also have functional potential roles during long-term seed conservation.
Collapse
Affiliation(s)
- Xiuling Chen
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Applied Technology Research and Development Center for Sericulture and Special Local Products of Hebei Universities, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Andreas Börner
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Xia Xin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manuela Nagel
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jisheng Li
- Applied Technology Research and Development Center for Sericulture and Special Local Products of Hebei Universities, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Na Li
- Applied Technology Research and Development Center for Sericulture and Special Local Products of Hebei Universities, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Małecka A, Ciszewska L, Staszak A, Ratajczak E. Relationship between mitochondrial changes and seed aging as a limitation of viability for the storage of beech seed ( Fagus sylvatica L.). PeerJ 2021; 9:e10569. [PMID: 33552713 PMCID: PMC7821764 DOI: 10.7717/peerj.10569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023] Open
Abstract
Aging is one of the most fundamental biological processes occurring in all forms of eukaryotic life. Beech trees (Fagus sylvatica L.) produce seeds in intervals of 5–10 years. Its yearly seed yield is usually very low, so there is a need for long-term seed storage to enable propagation of this species upon demand. Seeds for sowing must be of high quality but they are not easy to store without viability loss. Understanding the mechanism responsible for seed aging is therefore very important. We observed the generation of reactive oxygen species (ROS) in mitochondria of embryonic axes and cotyledons of beech seeds during natural aging. The presence of ROS led to changes in compromised mitochondrial membrane integrity and in mitochondrial metabolism and morphology. In this study, we pointed to the involvement of mitochondria in the natural aging process of beech seeds, but the molecular mechanisms underlying this involvement are still unknown.
Collapse
Affiliation(s)
- Arleta Małecka
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Liliana Ciszewska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Aleksandra Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
23
|
Zhang K, Zhang Y, Sun J, Meng J, Tao J. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:475-485. [PMID: 33250322 DOI: 10.1016/j.plaphy.2020.11.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Seed viability is an important trait in agriculture which directly influences seedling emergence and crop yield. However, even when stored under optimal conditions, all seeds will eventually lose their viability. Our primary aims were to describe factors influencing seed deterioration, determine the morphological, physiological, and biochemical changes that occur during the process of seed ageing, and explore the mechanisms involved in seed deterioration. High relative humidity and high temperature are two factors that accelerate seed deterioration. As seeds age, frequently observed changes include membrane damage and the destruction of organelle structure, an increase in the loss of seed leachate, decreases of respiratory rates and ATP production, and a loss of enzymatic activity. These phenomena could be inter-related and reflect the general breakdown in cellular organization. Many processes can result in seed ageing; it is likely that oxidative damage caused by free radicals and reactive oxygen species (ROS) is primarily responsible. ROS can have vital interactions with any macromolecule of biological interest that result in damage to various cellular components caused by protein damage, lipid peroxidation, chromosomal abnormalities, and DNA lesions. Further, ROS may also cause programmed cell death by inducing the opening of mitochondrial permeability transition pores and the release of cytochrome C. Some repairs can occur in the early stages of imbibition, but repair processes fail if sufficient damage has been caused to critical functional components. As a result, a given seed will lose its viability and eventually fail to germinate in a relatively short time period.
Collapse
Affiliation(s)
- Keliang Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Yin Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Jing Sun
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Jiasong Meng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Jun Tao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
24
|
Xu TT, Li H, Dai Z, Lau GK, Li BY, Zhu WL, Liu XQ, Liu HF, Cai WW, Huang SQ, Wang Q, Zhang SJ. Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice. Aging (Albany NY) 2020; 12:6401-6414. [PMID: 32268299 PMCID: PMC7185103 DOI: 10.18632/aging.103035] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
The natural polyamine spermidine and spermine have been reported to ameliorate aging and aging-induced dementia. However, the mechanism is still confused. An aging model, the senescence accelerated mouse-8 (SAMP8), was used in this study. Novel object recognition and the open field test results showed that oral administration of spermidine, spermine and rapamycin increased discrimination index, modified number, inner squares distance and times. Spermidine and spermine increased the activity of SOD, and decreased the level of MDA in the aging brain. Spermidine and spermine phosphorylate AMPK and regulate autophagy proteins (LC3, Beclin 1 and p62). Spermidine and spermine balanced mitochondrial and maintain energy for neuron, with the regulation of MFN1, MFN2, DRP1, COX IV and ATP. In addition, western blot results (Bcl-2, Bax and Caspase-3, NLRP3, IL-18, IL-1β) showed that spermidine and spermine prevented apoptosis and inflammation, and elevate the expression of neurotrophic factors, including NGF, PSD95and PSD93 and BDNF in neurons of SAMP8 mice. These results indicated that the effect of spermidine and spermine on anti-aging is related with improving autophagy and mitochondrial function.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - George K Lau
- Touro College of Osteopathic Medicine, New York, NY 10027, USA
| | - Ben-Yue Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Li Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Qi Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao-Fei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Wu Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shui-Qing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Salehcheh M, Alboghobeish S, Dehghani MA, Zeidooni L. Multi-walled carbon nanotubes induce oxidative stress, apoptosis, and dysfunction in isolated rat heart mitochondria: protective effect of naringin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13447-13456. [PMID: 32026367 DOI: 10.1007/s11356-020-07943-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are material with exclusive features that can be applied in different fields including industrial and medicine. It has been determined that the accumulation of MWCNTs in the organs is along with genotoxic and cytotoxic injuries. Previous studies have shown mitochondrial dysfunction in MWCNTs exposure with cell lines, but their exact mechanisms with isolated mitochondria have remained unclear. The present study evaluated toxicity induced by MWCNTs in isolated rat heart mitochondria and protective effect of naringin. Our results showed that MWCNTs toxicity caused the prevention of heart mitochondrial complex II activity. Treatment of isolated heart mitochondria with MWCNTs led to an increase in mitochondrial reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, and mitochondrial malondialdehyde (MDA) and a decrease in mitochondrial glutathione (GSH) level and mitochondrial catalase (CAT) activity. Pretreatment of isolated heart mitochondria with naringin decreased mitochondrial oxidative damage through decreasing lipid peroxidation, returned mitochondrial complex II changes, decreasing MMP collapse and ROS production, and restoration of GSH level and CAT activity. Our findings indicated that MWCNTs had toxic effects on isolated heart mitochondria by inducing oxidative stress and possibly apoptosis pathway. The protection effects of naringin may be accompanied by mitochondrial conservation by its antioxidant property or due to its free radical scavenging. Our findings indicated that naringin had a possible role in preventing the mitochondria complaints in the heart.
Collapse
Affiliation(s)
- Maryam Salehcheh
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Student Research Committee, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Student Research Committee, Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
26
|
Xia F, Cheng H, Chen L, Zhu H, Mao P, Wang M. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds. BMC PLANT BIOLOGY 2020; 20:104. [PMID: 32138669 PMCID: PMC7059392 DOI: 10.1186/s12870-020-2321-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/28/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Loss of vigor caused by seed aging adversely affects agricultural production under natural conditions. However, priming is an economical and effective method for improving the vigor of aged seeds. The objective of this study was to test the effectiveness of exogenous ascorbic acid (ASC) and glutathione (GSH) priming in the repairing of aged oat (Avena sativa) seeds, and to test the hypothesis that structural and functional systems in mitochondria were involved in this process. RESULTS Oat seeds were artificially aged for 20 days at 45 °C, and were primed with solutions (1 mmol L- 1) of ASC, GSH, or ASC + GSH at 20 °C for 0.5 h before or after their aging. Seed germination, antioxidant enzymes in the ASC-GSH cycle, cytochrome c oxidase (COX) and mitochondrial malate dehydrogenase (MDH) activities, and the mitochondrial ultrastructures of the embryonic root cells were markedly improved in aged oat seeds through post-priming with ASC, GSH, or ASC + GSH, while their malondialdehyde and H2O2 contents decreased significantly (P < 0.05). CONCLUSION Our results suggested that priming with ASC, GSH, or ASC + GSH after aging could effectively alleviate aging damage in oat seeds, and that the role of ASC was more effective than GSH, but positive effects of post-priming with ASC and GSH were not superior to post-priming with ASC in repairing aging damage of aged oat seeds. However, pre-priming with ASC, GSH, or ASC + GSH was not effective in oat seeds, suggesting that pre-priming with ASC, GSH, or ASC + GSH could not inhibit the occurrence of aging damage in oat seeds.
Collapse
Affiliation(s)
- Fangshan Xia
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 China
- Forage Seed Laboratory/Beijing Key Laboratory of Grassland Science, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian Distr, Beijing, 100193 China
| | - Hang Cheng
- Forage Seed Laboratory/Beijing Key Laboratory of Grassland Science, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian Distr, Beijing, 100193 China
| | - Lingling Chen
- Forage Seed Laboratory/Beijing Key Laboratory of Grassland Science, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian Distr, Beijing, 100193 China
| | - Huisen Zhu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 China
| | - Peisheng Mao
- Forage Seed Laboratory/Beijing Key Laboratory of Grassland Science, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian Distr, Beijing, 100193 China
| | - Mingya Wang
- Forage Seed Laboratory/Beijing Key Laboratory of Grassland Science, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian Distr, Beijing, 100193 China
| |
Collapse
|
27
|
Zhou W, Chen F, Luo X, Dai Y, Yang Y, Zheng C, Yang W, Shu K. A matter of life and death: Molecular, physiological, and environmental regulation of seed longevity. PLANT, CELL & ENVIRONMENT 2020; 43:293-302. [PMID: 31675441 DOI: 10.1111/pce.13666] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/15/2019] [Accepted: 10/12/2019] [Indexed: 05/20/2023]
Abstract
Both seed germination and early seedling establishment are important biological processes in a plant's lifecycle. Seed longevity is a key trait in agriculture, which directly influences seed germination and ultimately determines crop productivity and hence food security. Numerous studies have demonstrated that seed deterioration is regulated by complex interactions between diverse endogenous genetically controlled factors and exogenous environmental cues, including temperature, relative humidity, and oxygen partial pressure during seed storage. The endogenous factors, including the chlorophyll concentration, the structure of the seed coat, the balance of phytohormones, the concentration of reactive oxygen species, the integrity of nucleic acids and proteins and their associated repair systems, are also involved in the control of seed longevity. A precise understanding of the regulatory mechanisms underlying seed longevity is becoming a hot topic in plant molecular biology. In this review, we describe recent research into the regulation of seed longevity and the interactions between the various environmental and genetic factors. Based on this, the current state-of-play regarding seed longevity regulatory networks will be presented, particularly with respect to agricultural seed storage, and the research challenges to be faced in the future will be discussed.
Collapse
Affiliation(s)
- Wenguan Zhou
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Feng Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xiaofeng Luo
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yujia Dai
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yingzeng Yang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Chuan Zheng
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Kai Shu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
28
|
Ebone LA, Caverzan A, Chavarria G. Physiologic alterations in orthodox seeds due to deterioration processes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:34-42. [PMID: 31665665 DOI: 10.1016/j.plaphy.2019.10.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 05/22/2023]
Abstract
Seed deterioration is a partially elucidated phenomenon that happen during the life of the seed. This review describes the processes that lead to seed deterioration, including loss of seed protection capacity against reactive oxygen species (ROS), damage to the plasma membrane, consumption of reserves, and damage to genetic material. A hypothesis of how seed deterioration occurs was also addressed; in this hypothesis, seed deterioration was divided into three phases. The first is the beginning of deterioration, with a slight reduction of vigor caused by the reactions of reducing sugars with antioxidant enzymes and genetic material. In the second, the cell shows oxidative damages, causing lipid peroxidation, which leads to the leaching of solutes, the formation of malondialdehyde, and, consequently, an increase in damages to genetic material. In the third phase, there is cell collapse with mitochondrial membrane deconstruction and a high accumulation of reactive oxygen species, malondialdehyde, and reducing sugars.
Collapse
Affiliation(s)
- Luciano Antônio Ebone
- Laboratory of Plant Physiology, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Andréia Caverzan
- Laboratory of Plant Physiology, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Geraldo Chavarria
- Laboratory of Plant Physiology, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
29
|
Li L, Wang F, Li X, Peng Y, Zhang H, Hey S, Wang G, Wang J, Gu R. Comparative analysis of the accelerated aged seed transcriptome profiles of two maize chromosome segment substitution lines. PLoS One 2019; 14:e0216977. [PMID: 31710606 PMCID: PMC6844465 DOI: 10.1371/journal.pone.0216977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Seed longevity is one of the most essential characteristics of seed quality. Two chromosome segment substitution lines, I178 and X178, which show significant differences in seed longevity, were subjected to transcriptome sequencing before and after five days of accelerated aging (AA) treatments. Compared to the non-aging treatment, 286 and 220 differentially expressed genes (DEGs) were identified after 5 days of aging treatment in I178 and X178, respectively. Of these DEGs, 98 were detected in both I178 and X178, which were enriched in Gene Ontology (GO) terms of the cellular component of the nuclear part, intracellular part, organelle and membrane. Only 86 commonly downregulated genes were enriched in GO terms of the carbohydrate derivative catabolic process. Additionally, transcriptome analysis of alternative splicing (AS) events in I178 and X178 showed that 63.6% of transcript isoforms occurred AS in all samples, and only 1.6% of transcript isoforms contained 169 genes that exhibited aging-specific AS arising after aging treatment. Combined with the reported QTL mapping result, 7 DEGs exhibited AS after aging treatment, and 13 DEGs in mapping interval were potential candidates that were directly or indirectly related to seed longevity.
Collapse
Affiliation(s)
- Li Li
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Feng Wang
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xuhui Li
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yixuan Peng
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongwei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Stefan Hey
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wang
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- * E-mail: (JW); (RG)
| | - Riliang Gu
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- * E-mail: (JW); (RG)
| |
Collapse
|
30
|
Genetic Dissection of Seed Storability and Validation of Candidate Gene Associated with Antioxidant Capability in Rice ( Oryza sativa L.). Int J Mol Sci 2019; 20:ijms20184442. [PMID: 31505900 PMCID: PMC6770242 DOI: 10.3390/ijms20184442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 11/28/2022] Open
Abstract
Seed storability, defined as the ability to remain alive during storage, is an important agronomic and physiological characteristic, but the underlying genetic mechanism remains largely unclear. Here, we report quantitative trait loci (QTLs) analyses for seed storability using a high-density single nucleotide polymorphism linkage map in the backcross recombinant inbred lines that was derived from a cross of a japonica cultivar, Nipponbare, and an indica cultivar, 9311. Seven putative QTLs were identified for seed storability under natural storage, each explaining 3.6–9.0% of the phenotypic variation in this population. Among these QTLs, qSS1 with the 9311 alleles promoting seed storability was further validated in near-isogenic line and its derived-F2 population. The other locus (qSS3.1) for seed storability colocalized with a locus for germination ability under hydrogen peroxide, which is recognized as an oxidant molecule that causes lipid damage. Transgenic experiments validated that a candidate gene (OsFAH2) resides the qSS3.1 region controlling seed storability and antioxidant capability. Overexpression of OsFAH2 that encodes a fatty acid hydroxylase reduced lipid preoxidation and increased seed storability. These findings provide new insights into the genetic and physiological bases of seed storability and will be useful for the improvement of seed storability in rice.
Collapse
|
31
|
Kurek K, Plitta-Michalak B, Ratajczak E. Reactive Oxygen Species as Potential Drivers of the Seed Aging Process. PLANTS (BASEL, SWITZERLAND) 2019; 8:E174. [PMID: 31207940 PMCID: PMC6630744 DOI: 10.3390/plants8060174] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022]
Abstract
Seeds are an important life cycle stage because they guarantee plant survival in unfavorable environmental conditions and the transfer of genetic information from parents to offspring. However, similar to every organ, seeds undergo aging processes that limit their viability and ultimately cause the loss of their basic property, i.e., the ability to germinate. Seed aging is a vital economic and scientific issue that is related to seed resistance to an array of factors, both internal (genetic, structural, and physiological) and external (mainly storage conditions: temperature and humidity). Reactive oxygen species (ROS) are believed to initiate seed aging via the degradation of cell membrane phospholipids and the structural and functional deterioration of proteins and genetic material. Researchers investigating seed aging claim that the effective protection of genetic resources requires an understanding of the reasons for senescence of seeds with variable sensitivity to drying and long-term storage. Genomic integrity considerably affects seed viability and vigor. The deterioration of nucleic acids inhibits transcription and translation and exacerbates reductions in the activity of antioxidant system enzymes. All of these factors significantly limit seed viability.
Collapse
Affiliation(s)
- Katarzyna Kurek
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | | | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| |
Collapse
|
32
|
Lin YX, Xin X, Yin GK, He JJ, Zhou YC, Chen JY, Lu XX. Membrane phospholipids remodeling upon imbibition in Brassica napus L. seeds. Biochem Biophys Res Commun 2019; 515:289-295. [PMID: 31146920 DOI: 10.1016/j.bbrc.2019.05.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023]
Abstract
Successful seed germination depends on the rapid repair of cell membrane damaged by dry storage. However, little is known about the reorganization of lipids during this process. In this study, the changes of intracellular redox environment, cell membrane integrity, lipid composition, and expression of genes related to phospholipid metabolism were assessed during imbibition of Brassica napus seeds. A total number of 443 lipids belonging to 7 categories were detected by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). In the 24 h-imbibed seeds, the relative content of triacylglycerol was lower than in dry seeds, while the relative content of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS), especially PC (36:2, number of carbons in the acyl chains: number of double bonds), PC (36:3), and PE (36:3) were higher than those in dry seeds. Meanwhile, the content and unsaturation levels of phospholipids increased, indicating membrane lipids remodeling during seed imbibition. The plasma membrane integrity, which was measured by the relative electrolyte leakage (REL) of the membrane and FM4-64 fluorescent dye, was improved upon imbibition, confirming that cell membrane was repaired after 24 h-imbibition. The reduction of H2O2 content, redox potential, and malondialdehyde (MDA) content indicated that the degree of membrane lipid peroxidation was significantly decreased upon imbibition. Gene expression analysis showed that the differential expression of genes for key enzymes occurred in the plateau phase of the imbibition curve, i.e. after 8 h-to 24 h-imbibition. Moreover, the differential expression of genes such as those encoding phospholipase C (PLC), phospholipase D (PLD), triacylglycerol lipase (TAG lipase), choline/ethanolamine phosphotransferase (CEPT), and phosphatidylserine synthase (PTDSS2) during imbibition indicated that membrane lipid remodeling was related to complex metabolic pathways, among which the degradation of triacylglycerol and the synthesis of phospholipids using diacylglycerol might play an important role during membrane remodeling.
Collapse
Affiliation(s)
- Yi-Xin Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guang-Kun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan-Juan He
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan-Chang Zhou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun-Ying Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xin-Xiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
33
|
Cui M, Wu D, Bao K, Wen Z, Hao Y, Luo L. Dynamic changes of phenolic compounds during artificial aging of soybean seeds identified by high-performance liquid chromatography coupled with transcript analysis. Anal Bioanal Chem 2019; 411:3091-3101. [PMID: 31011785 DOI: 10.1007/s00216-019-01767-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/15/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022]
Abstract
Phenolic compounds are important bioactive substances in plants, but study of their alteration during soybean seed aging is still limited. In this study, we conducted artificial aging on soybean seeds, detected the dynamic changes of phenolic compound concentrations using high-performance liquid chromatography, and analyzed the gene expression of key enzymes of phenolic metabolism. A detailed method for detection of 19 phenolic compounds during artificial aging of soybean seeds was constructed, and all of these phenols significantly changed in concentration. The content of protocatechuic acid, rutin, and morin decreased, whereas that of daidzein, glycitein, genistein, and baicalin increased. The concentration of caffeic acid, epicatechin, ferulic acid, daidzin, genistin, and resveratrol first rose and then declined, and the content of ferulic acid was highest after 2 days of artificial aging, with the other five phenolic compounds showing the highest content after 4 days of artificial aging. The total content of the 19 phenolic compounds reached a peak of 2357.43 μg g-1 dry weight at 2 days. Relative expression of PAL1, PAL2, PAL3, CHS7, CHS8, IFS1, IFS2, CHR1, 4CL2, C4H, and CHI2 was mostly downregulated as the duration of artificial aging increased. This study provides novel insights into the storage and use of soybean seed resources. Graphical abstract.
Collapse
Affiliation(s)
- Meng Cui
- College of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Dong Wu
- College of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Kaixuan Bao
- College of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zenglian Wen
- College of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yingbin Hao
- College of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China.
| | - Liping Luo
- College of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China.
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
34
|
Chen B, Yin G, Whelan J, Zhang Z, Xin X, He J, Chen X, Zhang J, Zhou Y, Lu X. Composition of Mitochondrial Complex I during the Critical Node of Seed Aging in Oryza sativa. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:7-14. [PMID: 30840921 DOI: 10.1016/j.jplph.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/20/2019] [Accepted: 02/19/2019] [Indexed: 05/10/2023]
Abstract
Previous studies have documented mitochondrial dysfunction during the critical node (CN) of rice (Oryza sativa) seed aging, including a decrease in the capacity of NADH dependent O2 consumption. This raises the hypothesis that changes in the activity of NADH:ubiquinone oxidoreductase (complex I) may play a role in seed aging. The composition and activity of complex I was investigated at the CN of aged rice seeds. Using BN-PAGE and SWATH-MS 52 complex I subunits were identified, nineteen for the first time to be experimentally detected in rice. The subunits of the matrix arm (N and Q modules) were reduced in abundance at the CN, in accordance with a reduction in the capacity to oxidise NADH, reducing substrate oxidation and increase ROS accumulation. In contrast, subunits in the P module increased in abundance that contains many mitochondrial encoded subunits. It is proposed that the changes in complex I abundance subunits may indicate a premature re-activation of mitochondrial biogenesis, as evidenced by the increase in mitochondrial encoded subunits. This premature activation of mitochondrial biogenesis may under-pin the decreased viability of aged seeds, as mitochondrial biogenesis is a crucial event in germination to drive growth before autotrophic growth of the seedling is established.
Collapse
Affiliation(s)
- Baoyin Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Zesen Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoling Chen
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinmei Zhang
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanchang Zhou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
35
|
Ratajczak E, Małecka A, Ciereszko I, Staszak AM. Mitochondria Are Important Determinants of the Aging of Seeds. Int J Mol Sci 2019; 20:E1568. [PMID: 30925807 PMCID: PMC6479606 DOI: 10.3390/ijms20071568] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Seeds enable plant survival in harsh environmental conditions, and via seeds, genetic information is transferred from parents to the new generation; this stage provides an opportunity for sessile plants to settle in new territories. However, seed viability decreases over long-term storage due to seed aging. For the effective conservation of gene resources, e.g., in gene banks, it is necessary to understand the causes of decreases in seed viability, not only where the aging process is initiated in seeds but also the sequence of events of this process. Mitochondria are the main source of reactive oxygen species (ROS) production, so they are more quickly and strongly exposed to oxidative damage than other organelles. The mitochondrial antioxidant system is also less active than the antioxidant systems of other organelles, thus such mitochondrial 'defects' can strongly affect various cell processes, including seed aging, which we discuss in this paper.
Collapse
Affiliation(s)
- Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | - Arleta Małecka
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznań, Poland.
| | - Iwona Ciereszko
- Plant Physiology Department, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland.
| | - Aleksandra M Staszak
- Plant Physiology Department, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland.
| |
Collapse
|
36
|
Lv Y, Tian P, Zhang S, Wang J, Hu Y. Dynamic proteomic changes in soft wheat seeds during accelerated ageing. PeerJ 2018; 6:e5874. [PMID: 30405971 PMCID: PMC6216954 DOI: 10.7717/peerj.5874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/30/2018] [Indexed: 11/20/2022] Open
Abstract
Previous research demonstrated that soft wheat cultivars have better post-harvest storage tolerance than harder cultivars during accelerated ageing. To better understand this phenomenon, a tandem mass tag-based quantitative proteomic analysis of soft wheat seeds was performed at different storage times during accelerated ageing (germination ratios of 97%, 45%, 28%, and 6%). A total of 1,010 proteins were differentially regulated, of which 519 and 491 were up- and downregulated, respectively. Most of the differentially expressed proteins were predicted to be involved in nutrient reservoir, enzyme activity and regulation, energy and metabolism, and response to stimulus functions, consistent with processes occurring in hard wheat during artificial ageing. Notably, defense-associated proteins including wheatwin-2, pathogenesis-related proteins protecting against fungal invasion, and glutathione S-transferase and glutathione synthetase participating in reactive oxygen species (ROS) detoxification, were upregulated compared to levels in hard wheat during accelerated ageing. These upregulated proteins might be responsible for the superior post-harvest storage-tolerance of soft wheat cultivars during accelerated ageing compared with hard wheat. Although accelerated ageing could not fully mimic natural ageing, our findings provided novel dynamic proteomic insight into soft wheat seeds during seed deterioration.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Pingping Tian
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
37
|
He Y, Xue H, Li Y, Wang X. Nitric oxide alleviates cell death through protein S-nitrosylation and transcriptional regulation during the ageing of elm seeds. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5141-5155. [PMID: 30053069 PMCID: PMC6184755 DOI: 10.1093/jxb/ery270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Seed ageing is a major problem in the conservation of germplasm resources. The involvement of possible signalling molecules during seed deterioration needs to be identified. In this study, we confirmed that nitric oxide (NO), a key signalling molecule in plants, plays a positive role in the resistance of elm seeds to deterioration. To explore which metabolic pathways were affected by NO, an untargeted metabolomic analysis was conducted, and 163 metabolites could respond to both NO and the ageing treatment. The primary altered pathways include glutathione, methionine, and carbohydrate metabolism. The genes involved in glutathione and methionine metabolism were up-regulated by NO at the transcriptional level. Using a biotin switch method, proteins with an NO-dependent post-translational modification were screened during seed deterioration, and 82 putative S-nitrosylated proteins were identified. Eleven of these proteins were involved in carbohydrate metabolism, and the activities of the three enzymes were regulated by NO. In combination, the results of the metabolomic and S-nitrosoproteomic studies demonstrated that NO could activate glycolysis and inhibit the pentose phosphate pathway. In summary, the combination of these results demonstrated that NO could modulate carbohydrate metabolism at the post-translational level and regulate glutathione and methionine metabolism at the transcriptional level. It provides initial insights into the regulatory mechanisms of NO in seed deterioration.
Collapse
Affiliation(s)
- Yuqi He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Hua Xue
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Xiaofeng Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| |
Collapse
|
38
|
Chen X, Yin G, Börner A, Xin X, He J, Nagel M, Liu X, Lu X. Comparative physiology and proteomics of two wheat genotypes differing in seed storage tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:455-463. [PMID: 30077921 DOI: 10.1016/j.plaphy.2018.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
The longevity of seeds stored in Genebank is based on their storability. However, the mechanism of seed storability is largely unknown. In previous studies, accelerated ageing treatments were always applied for rapidly acquiring different seed viabilities, which could not reflect the actual situation during seed storage, especially for the seed stored in Genebank. In this study, two wheat genotypes (accession TRI_23248 and TRI_10230) were supplied by IPK-Gatersleben Genebank, Germany, where they were stored for 10 years in the long-term storage (-18 °C) and at ambient conditions (20 °C) The comparison of viability of those seed after this storage period, identified TRI_23248 as storage tolerant (ST) and TRI_10230 as storage sensitive (SS). The abundance patterns of proteins in these seeds identified 93 protein spots in the ST and 105 spots in the SS seeds that were markedly changed; their functions were mainly associated with disease or defense, protein destination and storage, energy, and other. The ST seeds possessed a stronger ability in activating the defense system against oxidative damage, utilizing storage proteins for germination, and maintaining energy metabolism for ATP supply. These results provided novel insights into the mechanism of seed storability, which can facilitate the comprehensive understanding of seed longevity.
Collapse
Affiliation(s)
- Xiuling Chen
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Xu Liu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
39
|
Khodayar MJ, Kalantari H, Khorsandi L, Rashno M, Zeidooni L. Betaine protects mice against acetaminophen hepatotoxicity possibly via mitochondrial complex II and glutathione availability. Biomed Pharmacother 2018; 103:1436-1445. [DOI: 10.1016/j.biopha.2018.04.154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
|
40
|
Yan S, Huang W, Gao J, Fu H, Liu J. Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:590-598. [PMID: 29729608 DOI: 10.1016/j.plaphy.2018.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/28/2018] [Accepted: 04/19/2018] [Indexed: 05/02/2023]
Abstract
Seed storability is an important trait for crop breeding, however, the mechanism underlying seed storability remains largely unknown. Here, a mass spectrometry-based comparative metabolomic study was performed for rice seeds before and after 24-month natural storage between two hybrid rice cultivars, IIYou 998 (IIY) with low storability and BoYou 998 (BY) with relative high storability. A total of 48 metabolites among 90 metabolite peaks detected were conclusively identified, and most of them are involved in the primary metabolism. During the 24-month storage, 19 metabolites with significant changes in abundance were found in the storage-sensitive IIY seeds, but only 8 in the BY seeds, most of which are free amino acids and soluble sugars. The observed changes of the metabolites in IIY seeds that are consistent with our protoemics results are likely to be involved in its sensitivity to storage. Levels of all identified 18 amino acid-related metabolites and most sugar-related metabolites were significantly higher in IIY seeds both before and after storage. However the level of raffinose was lower in IIY seeds before and after storage, and did not change significantly throughout the storage period in both two cultivars, suggesting its potential role in seed storability. Taken together, these results may help to improve our understanding of seed storability.
Collapse
Affiliation(s)
- Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China.
| | - Wenjie Huang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China.
| | - Jiadong Gao
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China.
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China.
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
41
|
Nitric Oxide Regulates Seedling Growth and Mitochondrial Responses in Aged Oat Seeds. Int J Mol Sci 2018; 19:ijms19041052. [PMID: 29614792 PMCID: PMC5979601 DOI: 10.3390/ijms19041052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are the source of reactive oxygen species (ROS) in plant cells and play a central role in the mitochondrial electron transport chain (ETC) and tricarboxylic acid cycle (TCA) cycles; however, ROS production and regulation for seed germination, seedling growth, as well as mitochondrial responses to abiotic stress, are not clear. This study was conducted to obtain basic information on seed germination, embryo mitochondrial antioxidant responses, and protein profile changes in artificial aging in oat seeds (Avena sativa L.) exposed to exogenous nitric oxide (NO) treatment. The results showed that the accumulation of H2O2 in mitochondria increased significantly in aged seeds. Artificial aging can lead to a loss of seed vigor, which was shown by a decline in seed germination and the extension of mean germination time (MGT). Seedling growth was also inhibited. Some enzymes, including catalase (CAT), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR), maintained a lower level in the ascorbate-glutathione (AsA-GSH) scavenging system. Proteomic analysis revealed that the expression of some proteins related to the TCA cycle were down-regulated and several enzymes related to mitochondrial ETC were up-regulated. With the application of 0.05 mM NO in aged oat seeds, a protective effect was observed, demonstrated by an improvement in seed vigor and increased H2O2 scavenging ability in mitochondria. There were also higher activities of CAT, GR, MDHAR, and DHAR in the AsA-GSH scavenging system, enhanced TCA cycle-related enzymes (malate dehydrogenase, succinate-CoA ligase, fumarate hydratase), and activated alternative pathways, as the cytochrome pathway was inhibited. Therefore, our results indicated that seedling growth and seed germinability could retain a certain level in aged oat seeds, predominantly depending on the lower NO regulation of the TCA cycle and AsA-GSH. Thus, it could be concluded that the application of 0.05 mM NO in aged oat seeds improved seed vigor by enhancing the mitochondrial TCA cycle and activating alternative pathways for improvement.
Collapse
|
42
|
Active Site Mimicry of Glutathione Peroxidase by Glutathione Imprinted Selenium-Containing Trypsin. Catalysts 2017. [DOI: 10.3390/catal7100282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
43
|
Peng L, Lang S, Wang Y, Pritchard HW, Wang X. Modulating role of ROS in re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom. JOURNAL OF EXPERIMENTAL BOTANY 2017. [PMID: 28633353 DOI: 10.1093/jxb/erx172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In close agreement with visible germination, orthodox seeds lose desiccation tolerance (DT). This trait can be regained under osmotic stress, but the mechanisms are poorly understood. In this study, germinating seeds of Caragana korshinskii Kom. were investigated, focusing on the potential modulating roles of reactive oxygen species (ROS) in the re-establishment of DT. Germinating seeds with 2 mm long radicles can be rendered tolerant to desiccation by incubation in a polyethylene glycol (PEG) solution (-1.7 MPa). Upon PEG incubation, ROS accumulation was detected in the radicles tip by nitroblue tetrazolium chloride staining and further confirmed by confocal microscopy. The PEG-induced re-establishment of DT was repressed when ROS scavengers were added to the PEG solution. Moreover, ROS act downstream of abscisic acid (ABA) to modulate PEG-mediated re-establishment of DT and serve as a new inducer to re-establish DT. Transcriptomic analysis revealed that re-establishment of DT by ROS involves the up-regulation of key genes in the phenylpropanoid-flavonoid pathway, and total flavonoid content and key enzyme activity increased after ROS treatment. Furthermore, DT was repressed by an inhibitor of phenylalanine ammonia lyase. Our data suggest that ROS play a key role in the re-establishment of DT by regulating stress-related genes and the phenylpropanoid-flavonoid pathway.
Collapse
Affiliation(s)
- Long Peng
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, China
| | - Sirui Lang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, China
| | - Yu Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, China
| | - Hugh W Pritchard
- Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly RH17 6TN, UK
| | - Xiaofeng Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, China
| |
Collapse
|
44
|
Li Y, Wang Y, Xue H, Pritchard HW, Wang X. Changes in the mitochondrial protein profile due to ROS eruption during ageing of elm (Ulmus pumila L.) seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:72-87. [PMID: 28279897 DOI: 10.1016/j.plaphy.2017.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS)-related mitochondrial dysfunction is considered to play a vital role in seed deterioration. However, the detailed mechanisms remain largely unknown. To address this, a comparison of mitochondrial proteomes was performed, and we identified several proteins that changed in abundance with accompanying ROS eruption and mitochondrial aggregation and diffusion. These are involved in mitochondrial metabolisms, stress resistance, maintenance of structure and intracellular transport during seed aging. Reduction of ROS content by the mitochondrial-specific scavenger MitoTEMPO suppressed these changes, whereas pre-treatment of seeds with methyl viologen (MV) had the opposite effect. Furthermore, voltage-dependent anion channels (VDAC) were found to increase both in abundance and carbonylation level, accompanied by increased cytochrome c (cyt c) release from mitochondria to cytosol, indicating the profound effect of ROS and VDAC on mitochondria-dependent cell death. Carbonylation detection revealed the specific target proteins of oxidative modification in mitochondria during ageing. Notably, membrane proteins accounted for a large proportion of these targets. An in vitro assay demonstrated that the oxidative modification was concomitant with a change of VDAC function and a loss of activity in malate dehydrogenase. Our data suggested that ROS eruption induced alteration and modification of specific mitochondrial proteins that may be involved in the process of mitochondrial deterioration, which eventually led to loss of seed viability.
Collapse
Affiliation(s)
- Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, PR China.
| | - Yu Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, PR China.
| | - Hua Xue
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, PR China.
| | - Hugh W Pritchard
- Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, RH17 6TN, UK.
| | - Xiaofeng Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, PR China.
| |
Collapse
|
45
|
Proteomic and Carbonylation Profile Analysis at the Critical Node of Seed Ageing in Oryza sativa. Sci Rep 2017; 7:40611. [PMID: 28094349 PMCID: PMC5240128 DOI: 10.1038/srep40611] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023] Open
Abstract
The critical node (CN), which is the transition from the plateau phase to the rapid decreasing phase of seed ageing, is extremely important for seed conservation. Although numerous studies have investigated the oxidative stress during seed ageing, information on the changes in protein abundance at the CN is limited. In this study, we aimed to investigate the abundance and carbonylation patterns of proteins at the CN of seed ageing in rice. The results showed that the germination rate of seeds decreased by less than 20% at the CN; however, the abundance of 112 proteins and the carbonylation levels of 68 proteins markedly changed, indicating oxidative damage. The abundance and activity of mitochondrial, glycolytic, and pentose phosphate pathway proteins were reduced; consequently, this negatively affected energy production and germination. Proteins related to defense, including antioxidant system and heat shock proteins, also reduced in abundance. Overall, energy metabolism was reduced at the CN, leading to a decrease in the antioxidant capacity, whereas seed storage proteins were up-regulated and carbonylated, indicating that the seed had a lower ability to utilize seed storage proteins for germination. Thus, the significant decrease in metabolic activities at the CN might accelerate the loss of seed viability.
Collapse
|
46
|
Wu X, Ning F, Hu X, Wang W. Genetic Modification for Improving Seed Vigor Is Transitioning from Model Plants to Crop Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:8. [PMID: 28149305 PMCID: PMC5241287 DOI: 10.3389/fpls.2017.00008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/03/2017] [Indexed: 05/09/2023]
Abstract
Although seed vigor is a complex physiological trait controlled by quantitative trait loci, technological advances in the laboratory are being translated into applications for enhancing seed vigor in crop plants. In this article, we summarize and discuss pioneering work in the genetic modification of seed vigor, especially through the over-expression of protein L-isoaspartyl methyltransferase (PIMT, EC 2.1.1.77) in seeds. The impressive success in improving rice seed vigor through the over-expression of PIMT provides a valuable reference for engineering high-vigor seeds for crop production. In recent decades, numerous genes/proteins associated with seed vigor have been identified. It is hoped that such potential candidates may be used in the development of genetically edited crops for a high and stable yield potential in crop production. This possibility is very valuable in the context of a changing climate and increasing world population.
Collapse
|
47
|
Lv Y, Zhang S, Wang J, Hu Y. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling. PLoS One 2016; 11:e0162851. [PMID: 27632285 PMCID: PMC5025167 DOI: 10.1371/journal.pone.0162851] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly enriched in amino acid synthesis, stress defense (plant-pathogen interactions, and ascorbate and aldarate metabolism), and energy supply (oxidative phosphorylation and carbon metabolism). Therefore, DEPs associated with seed ageing and priming can be used to characterize seed vigor and optimize germination enhancement treatments. This work reveals new proteomic insights into protein changes that occur during seed deterioration and priming.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
48
|
Yin G, Whelan J, Wu S, Zhou J, Chen B, Chen X, Zhang J, He J, Xin X, Lu X. Comprehensive Mitochondrial Metabolic Shift during the Critical Node of Seed Ageing in Rice. PLoS One 2016; 11:e0148013. [PMID: 27124767 PMCID: PMC4849721 DOI: 10.1371/journal.pone.0148013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
The critical node (CN) in seed aging in rice (Oryza sativa) is the transformation from Phase I (P-I) to Phase II (P-II) of the reverse S-shaped curve (RS-SC). Although mitochondrial dysfunction plays a key role in seed ageing, the metabolic shift in the CN remains poorly understood. Here, we investigated the mitochondrial regulatory mechanisms during the CN of rice seed ageing. We showed that during the CN of seed ageing, the mitochondrial ultrastructure was impaired, causing oxygen consumption to decrease, along with cytochrome c (cyt c) oxidase and malate dehydrogenase (MDH) activity. In addition, the transcript levels for the alternative pathway of the electron transport chain (ETC) were significantly induced, whereas the transcripts of the cytochrome oxidase (COX) pathway were inhibited. These changes were concomitant with the down-regulation of mitochondrial protein levels related to carbon and nitrogen metabolism, ATP synthase (ATPase) complex, tricarboxylic acid cycle (TCA) cycle, mitochondrial oxidative enzymes, and a variety of other proteins. Therefore, while these responses inhibit the production of ATP and its intermediates, signals from mitochondria (such as the decrease of cyt c and accumulation of reactive oxygen species (ROS)) may also induce oxidative damage. These events provide considerable information about the mitochondrial metabolic shifts involved in the progression of seed ageing in the CN.
Collapse
Affiliation(s)
- Guangkun Yin
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Shuhua Wu
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Zhou
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoyin Chen
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoling Chen
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinmei Zhang
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Xin
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail: (XL); (XX)
| | - Xinxiong Lu
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail: (XL); (XX)
| |
Collapse
|
49
|
Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M. Different Modes of Hydrogen Peroxide Action During Seed Germination. FRONTIERS IN PLANT SCIENCE 2016; 7:66. [PMID: 26870076 PMCID: PMC4740362 DOI: 10.3389/fpls.2016.00066] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Institute of Experimental Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | | | | | | |
Collapse
|
50
|
Lv Y, Zhang S, Wang J, Hu Y. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling. PLoS One 2016. [PMID: 27632285 DOI: 10.1371/journal.pone.016285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly enriched in amino acid synthesis, stress defense (plant-pathogen interactions, and ascorbate and aldarate metabolism), and energy supply (oxidative phosphorylation and carbon metabolism). Therefore, DEPs associated with seed ageing and priming can be used to characterize seed vigor and optimize germination enhancement treatments. This work reveals new proteomic insights into protein changes that occur during seed deterioration and priming.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|