1
|
Cárcamo-Fincheira P, Nunes-Nesi A, Soto-Cerda B, Inostroza-Blancheteau C, Reyes-Díaz M. Ascorbic acid metabolism: New knowledge on mitigation of aluminum stress in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109228. [PMID: 39467494 DOI: 10.1016/j.plaphy.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Ascorbic acid (ASC) is an important antioxidant in plant cells, being the main biosynthesis pathway is L-galactose or Smirnoff-Wheeler. ASC is involved in plant growth and development processes, being a cofactor and regulator of multiple signaling pathways in response to abiotic stresses. Aluminum toxicity is an important stressor under acidic conditions, affecting plant root elongation, triggering ROS induction and accumulation of hydrogen peroxide (H2O2). To mitigate damage from Al-toxicity, plants have evolved mechanisms to resist stress conditions, such as Al-tolerance and Al-exclusion or avoidance, both strategies related to the forming of non-phytotoxic complexes or bind-chelates among Al and organic molecules like oxalate. Dehydroascorbate (DHA) degradation generates oxalate when ASC is recycled, and dehydroascorbate reductase (DHAR) expression is inhibited. An alternative strategy is ASC regeneration, mainly due to a higher level of DHAR gene expression and low monodehydroascorbate reductase (MDHAR) gene expression. Therefore, studies performed on Fagopyrum esculentum, Nicotiana tabacum, Poncirus trifoliate, and V. corymbosum suggest that ASC is associated with the Al-resistant mechanism, given the observed enhancements in defense mechanisms, including elevated antioxidant capacity and oxalate production. This review examines the potential involvement of ASC metabolism in Al-resistant mechanisms.
Collapse
Affiliation(s)
- Paz Cárcamo-Fincheira
- Laboratorio de Ecofisiología Molecular y Funcional de Plantas, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Braulio Soto-Cerda
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile; Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile; Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile.
| | - Marjorie Reyes-Díaz
- Laboratorio de Ecofisiología Molecular y Funcional de Plantas, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Xu S, Deng J, Wu S, Fei Q, Lin D, Chen H, Tao G, Meng L, Hu Y, Ma F. Dynamic Changes of Active Components and Volatile Organic Compounds in Rosa roxburghii Fruit during the Process of Maturity. Foods 2024; 13:2893. [PMID: 39335823 PMCID: PMC11431035 DOI: 10.3390/foods13182893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Rosa roxburghii (R. roxburghii), native to the southwest provinces of China, is a fruit crop of important economic value in Guizhou Province. However, the changes in fruit quality and flavor during R. roxburghii fruit ripening have remained unknown. Here, this study investigated the changes of seven active components and volatile organic compounds (VOCs) during the ripening of the R. roxburghii fruit at five different ripening stages including 45, 65, 75, 90, and 105 days after anthesis. The results indicated that during the ripening process, the levels of total acid, vitamin C, and soluble sugar significantly increased (p < 0.05), while the levels of total flavonoids, superoxide dismutase (SOD), and soluble tannin significantly decreased (p < 0.05). Additionally, the content of total phenol exhibited a trend of first decreasing significantly and then increasing significantly (p < 0.05). A total of 145 VOCs were detected by HS-SPME-GC-MS at five mature stages, primarily consisting of aldehydes, alcohols, esters, and alkenes. As R. roxburghii matured, both the diversity and total quantity of VOCs in the fruit increased, with a notable rise in the contents of acids, ketones, and alkenes. By calculating the ROAV values of these VOCs, 53 key substances were identified, which included aromas such as fruit, citrus, green, caramel, grass, flower, sweet, soap, wood, and fat notes. The aromas of citrus, caramel, sweet, and wood were predominantly concentrated in the later stages of R. roxburghii fruit ripening. Cluster heatmap analysis revealed distinct distribution patterns of VOCs across five different maturity stages, serving as characteristic chemical fingerprints for each stage. Notably, stages IV and V were primarily characterized by a dominance of alkenes. OPLS-DA analysis categorized the ripening process of R. roxburghii fruit into three segments: the first segment encompassed the initial three stages (I, II, and III), the second segment corresponded to the fourth stage (IV), and the third segment pertained to the fifth stage (V). Following the variable importance in projection (VIP) > 1 criterion, a total of 30 key differential VOCs were identified across the five stages, predominantly comprising ester compounds, which significantly influenced the aroma profiles of R. roxburghii fruit. By integrating the VIP > 1 and ROAV > 1 criteria, 21 differential VOCs were further identified as key contributors to the aroma changes in R. roxburghii fruit during the ripening process. This study provided data on the changes in quality and aroma of R. roxburghii fruit during ripening and laid the foundation for the investigation of the mechanism of compound accumulation during ripening.
Collapse
Affiliation(s)
- Su Xu
- College of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Dual-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Junyi Deng
- College of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Dual-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Siyao Wu
- College of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Dual-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Qiang Fei
- College of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Dual-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Dong Lin
- College of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Dual-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Haijiang Chen
- College of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Dual-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Guangcan Tao
- College of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Dual-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Lingshuai Meng
- College of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Dual-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Yan Hu
- College of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Dual-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Fengwei Ma
- College of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Dual-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| |
Collapse
|
3
|
Yang Z, Wang Y, Cheng Q, Zou X, Yang Y, Li P, Wang S, Su Y, Yang D, Kim HS, Jia X, Li L, Kwak SS, Wang W. Overexpression of sweetpotato glutamylcysteine synthetase (IbGCS) in Arabidopsis confers tolerance to drought and salt stresses. JOURNAL OF PLANT RESEARCH 2024; 137:669-683. [PMID: 38758249 DOI: 10.1007/s10265-024-01548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T3 Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.
Collapse
Affiliation(s)
- Zhe Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yuan Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Qirui Cheng
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuan Zou
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yanxin Yang
- College of Basic Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Peng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Sijie Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yue Su
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 1 25 Gwahak-ro, Daejeon, 34141, South Korea
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Lingzhi Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 1 25 Gwahak-ro, Daejeon, 34141, South Korea.
| | - Wenbin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
4
|
Yang J, Zhang J, Yan H, Yi X, Pan Q, Liu Y, Zhang M, Li J, Xiao Q. The chromosome-level genome and functional database accelerate research about biosynthesis of secondary metabolites in Rosa roxburghii. BMC PLANT BIOLOGY 2024; 24:410. [PMID: 38760710 PMCID: PMC11100184 DOI: 10.1186/s12870-024-05109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.
Collapse
Affiliation(s)
- Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| | - Jingjie Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Hengyu Yan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Yi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Qi Pan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Yahua Liu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Mian Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Jun Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Qiaoqiao Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| |
Collapse
|
5
|
Baldet P, Mori K, Decros G, Beauvoit B, Colombié S, Prigent S, Pétriacq P, Gibon Y. Multi-regulated GDP-l-galactose phosphorylase calls the tune in ascorbate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2631-2643. [PMID: 38349339 PMCID: PMC11066804 DOI: 10.1093/jxb/erae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 05/04/2024]
Abstract
Ascorbate is involved in numerous vital processes, in particular in response to abiotic but also biotic stresses whose frequency and amplitude increase with climate change. Ascorbate levels vary greatly depending on species, tissues, or stages of development, but also in response to stress. Since its discovery, the ascorbate biosynthetic pathway has been intensely studied and it appears that GDP-l-galactose phosphorylase (GGP) is the enzyme with the greatest role in the control of ascorbate biosynthesis. Like other enzymes of this pathway, its expression is induced by various environmental and also developmental factors. Although mRNAs encoding it are among the most abundant in the transcriptome, the protein is only present in very small quantities. In fact, GGP translation is repressed by a negative feedback mechanism involving a small open reading frame located upstream of the coding sequence (uORF). Moreover, its activity is inhibited by a PAS/LOV type photoreceptor, the action of which is counteracted by blue light. Consequently, this multi-level regulation of GGP would allow fine control of ascorbate synthesis. Indeed, experiments varying the expression of GGP have shown that it plays a central role in response to stress. This new understanding will be useful for developing varieties adapted to future environmental conditions.
Collapse
Affiliation(s)
- Pierre Baldet
- Université de Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
| | - Kentaro Mori
- Université de Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
| | - Guillaume Decros
- Max Planck-Institute of Plant Molecular Biology, Potsdam-Golm, Germany
| | - Bertrand Beauvoit
- Université de Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
| | - Sophie Colombié
- Université de Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
| | - Sylvain Prigent
- Université de Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Pierre Pétriacq
- Université de Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Yves Gibon
- Université de Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| |
Collapse
|
6
|
Zhou Y, Liu X, Liang X, Li H, Lai J, Liao Y, Liu K. Biochemical and metabolomics analyses reveal the mechanisms underlying ascorbic acid and chitosan coating mediated energy homeostasis in postharvest papaya fruit. Food Chem 2024; 439:138168. [PMID: 38103491 DOI: 10.1016/j.foodchem.2023.138168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Papaya is a climacteric fruit that undergoes rapid ripening and quality deterioration during postharvest storage, resulting in significant economic losses. This study employed biochemical techniques and targeted metabolomics to investigate the impact of exogenous AsA + CTS application on the energy metabolism regulation of papaya fruit during postharvest storage. We found that AsA + CTS treatment significantly increased the levels of key metabolic compounds and enzymes, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and the energy charge, as well as the succinic acid content and the activities of succinic dehydrogenase (SDH), cytochrome c oxidase (CCO), H+-ATPase, and Ca2+-ATPase. Moreover, AsA + CTS coating augmented the nicotinamide adenine dinucleotide kinase (NADK) activity and increased the NADH and NADPH concentrations. Regarding sugar metabolism, it increased the activities of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase and raised d-glucose-6-phosphate levels. These findings suggest that AsA + CTS coating application can mitigate the metabolic deterioration and sustain a primary metabolism homeostasis in papaya fruit by enhancing the tricarboxylic acid (TCA) cycle and pentose phosphate pathway (PPP), thereby preserving their quality attributes during postharvest storage.
Collapse
Affiliation(s)
- Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| | - Xiaocheng Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Xinyuan Liang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Huangming Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Jiahui Lai
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Yiran Liao
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
7
|
Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, Li P, Jiang T, Sahu SK, Yang Q, Zhang D, Li L, Qiu X, Shao W, Yang J, Li Y, Guang X, He C. Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1264-1280. [PMID: 37964640 DOI: 10.1111/tpj.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinde Yu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peilin Li
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Tao Jiang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Qingqing Yang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Deguo Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Xu Qiu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | | | - Yonghe Li
- Yunnan Agricultural University, Kunming, 650201, China
| | - Xuanmin Guang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
8
|
Huang X, Wu X, Sun G, Jiang Y, Yan H. Transcriptome Analysis Reveals Candidate Genes Involved in Gibberellin-Induced Fruit Development in Rosa roxburghii. PLANTS (BASEL, SWITZERLAND) 2023; 12:3425. [PMID: 37836165 PMCID: PMC10575181 DOI: 10.3390/plants12193425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Gibberellins (GAs) play indispensable roles in the fruit development of horticultural plants. Unfortunately, the molecular basis behind GAs regulating fruit development in R. roxburghii remains obscure. Here, GA3 spraying to R. roxburghii 'Guinong 5' at full-bloom promoted fruit size and weight, prickle development, seed abortion, ascorbic acid accumulation, and reduction in total soluble sugar. RNA-Seq analysis was conducted to generate 45.75 Gb clean reads from GA3- and non-treated fruits at 120 days after pollination. We obtained 4275 unigenes belonging to differently expressed genes (DEGs). Gene ontology and the Kyoto Encyclopedia of Genes and Genomes displayed that carbon metabolism and oxidative phosphorylation were highly enriched. The increased critical genes of DEGs related to pentose phosphate, glycolysis/gluconeogenesis, and citrate cycle pathways might be essential for soluble sugar degradation. Analysis of DEGs implicated in ascorbate revealed the myoinositol pathway required to accumulate ascorbic acid. Finally, DEGs involved in endogenous phytohormones and transcription factors, including R2R3 MYB, bHLH, and WRKY, were determined. These findings indicated that GA3-trigged morphological alterations might be related to the primary metabolites, hormone signaling, and transcription factors, providing potential candidate genes that could be guided to enhance the fruit development of R. roxburghii in practical approaches.
Collapse
Affiliation(s)
- Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550001, China
- Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang 550001, China
| | - Xiaoai Wu
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
| | - Guilian Sun
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550001, China
- Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang 550001, China
| | - Yu Jiang
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
| |
Collapse
|
9
|
Chen C, Shi L, Bin Y, Liu C, Tian M, Jiang A. Integration of transcriptome, miRNA and degradome sequencing reveals the early browning response in fresh-cut apple. Food Chem 2023; 406:134663. [PMID: 36459799 DOI: 10.1016/j.foodchem.2022.134663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/22/2022] [Accepted: 10/15/2022] [Indexed: 12/27/2022]
Abstract
Surface browning negatively impacts the shelf-life of fresh-cut apple. Herein, we found that the browning of fresh-cut apple aggravated rapidly after 24 h post-cutting, then the transcriptomic and miRNA expression profiles of fresh-cut apple immediately after cutting (T0) and 24 h post-cutting (T24) were analyzed to explore the molecular mechanism of early browning response. A total of 3156 differentially expressed mRNAs (DEGs) and 23 differentially expressed miRNAs (DEmiRNAs) were identified in T24 vs T0. Most DEGs related to respiratory, energy, antioxidant, lipid and secondary metabolism were activated in the early stage of browning. There were 63 target genes of 10 DEmiRNAs validated by degradome sequencing and among them, mdm-miR156aa_L + 1_1 targets 12-oxophytodienoate reductase, ptc-miR6478_R-1 targets patatin-like protein, mdm-miR156aa_L + 1_1 and mdm-miR156aa_L + 1_2 co-target SPLs might participate in the early browning response through regulating antioxidant, lipid and secondary metabolism. Our results will be beneficial for the technological innovation of browning amelioration for fresh-cut apple.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Lijia Shi
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yuqi Bin
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Chenghui Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Mixia Tian
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Aili Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
10
|
Zhang L, Zhang F, Wang Y, Ma X, Shen Y, Wang X, Yang H, Zhang W, Lakshmanan P, Hu Y, Xu J, Chen X, Deng Y. Physiological and metabolomic analysis reveals maturity stage-dependent nitrogen regulation of vitamin C content in pepper fruit. FRONTIERS IN PLANT SCIENCE 2023; 13:1049785. [PMID: 36714702 PMCID: PMC9880487 DOI: 10.3389/fpls.2022.1049785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Pepper is one of the most vitamin C enriched vegetables worldwide. Although applying nitrogen (N) fertilizer is an important practice for high fruit yield in pepper production, it is still unclear how N application regulates pepper fruit vitamin C anabolism at different maturity stage. To further the understanding, we combined physiological and metabolomic analysis to investigate the fruit vitamin C content (including ascorbic acid (AsA) and dehydroascorbic acid (DHA)), related enzyme activity and non-targeted metabolites of field-grown chili pepper produced under different N levels at mature green and red stages. The results showed that increasing N application reduced AsA content in pepper fruit at both maturity stages, but highly elevated DHA content only at mature green stage. Regardless of N application level, AsA content displayed an increasing trend while DHA content was reduced as pepper fruit maturity advanced, resulting in a higher content of total vitamin C at the mature green stage. The L-galactose pathway, D-galacturonate pathway, and myo-inositol pathway were identified for AsA biosynthesis. The involved precursor metabolites were mainly negatively regulated by increasing N application, and their accumulation increased when pepper fruit developed from green to red stage. Meanwhile, the activities of key enzymes and metabolites in relation to degradation and recycling processes of AsA and DHA were increased or did not change with increasing N application, and they were differently influenced as fruit maturing. As a result, the recommended N application level (250 kg N ha-1) could maintain relatively high total vitamin C content in pepper fruits without yield loss at both maturity stages. These findings highlight the importance of optimizing N application level to maximize vitamin C content in pepper fruits, and provide a better understanding of the maturity stage-dependent N regulation on vitamin C anabolism.
Collapse
Affiliation(s)
- Lu Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Fen Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Yuan Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Xiao Ma
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Yuanpeng Shen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Xiaozhong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Huaiyu Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Southwest University, Chongqing, China
| | - Wei Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Southwest University, Chongqing, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Sugarcane Research Institute, Guangxi Academy Agricultural Science, Nanning, Guangxi, China
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| | - Yuncai Hu
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jiuliang Xu
- National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Yan Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Yan Y, Liu Y, Lu M, Lu C, Ludlow RA, Yang M, Huang W, Liu Z, An H. Gene expression profiling in Rosa roxburghii fruit and overexpressing RrGGP2 in tobacco and tomato indicates the key control point of AsA biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1096493. [PMID: 36704162 PMCID: PMC9871823 DOI: 10.3389/fpls.2022.1096493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Rosa roxburghii Tratt. is an important commercial horticultural crop endemic to China, which is recognized for its extremely high content of L-ascorbic acid (AsA). To understand the mechanisms underlying AsA overproduction in fruit of R. roxburghii, content levels, accumulation rate, and the expression of genes putatively in the biosynthesis of AsA during fruit development have been characterized. The content of AsA increased with fruit weight during development, and AsA accumulation rate was found to be highest between 60 and 90 days after anthesis (DAA), with approximately 60% of the total amount being accumulated during this period. In vitro incubating analysis of 70DAA fruit flesh tissues confirmed that AsA was synthesized mainly via the L-galactose pathway although L-Gulono-1, 4-lactone was also an effective precursor elevating AsA biosynthesis. Furthermore, in transcript level, AsA content was significantly associated with GDP-L-galactose phosphorylase (RrGGP2) gene expression. Virus-induced RrGGP2 silencing reduced the AsA content in R. roxburghii fruit by 28.9%. Overexpressing RrGGP2 increased AsA content by 8-12-fold in tobacco leaves and 2.33-3.11-fold in tomato fruit, respectively, and it showed enhanced resistance to oxidative stress caused by paraquat in transformed tobacco. These results further justified the importance of RrGGP2 as a major control step to AsA biosynthesis in R. roxburghii fruit.
Collapse
Affiliation(s)
- Yali Yan
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - Yiyi Liu
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - Min Lu
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - Chen Lu
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | | | - Man Yang
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - Wei Huang
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - Zeyang Liu
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - HuaMing An
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Luo Z, Zhang J, Xiang M, Zeng J, Chen J, Chen M. Exogenous melatonin treatment affects ascorbic acid metabolism in postharvest ‘Jinyan’ kiwifruit. Front Nutr 2022; 9:1081476. [DOI: 10.3389/fnut.2022.1081476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Ascorbic acid (AsA) is an important nutritious substance in fruits, and it also can maintain the biological activity of fruits during storage. This research investigated the effect of exogenous melatonin (MT) on AsA metabolism in postharvest kiwifruit. Our results indicated that exogenous MT delayed the decrease of fruit firmness and titratable acid (TA), inhibited the increase of soluble solids content (SSC), reduced the respiration rate and ethylene production, and maintained a higher AsA content in kiwifruit during storage. The high expression of L-galactose pathway key genes in the early storage and regeneration genes in the later storage maintained the AsA content in postharvest kiwifruit. MT treatment enhanced the expression levels of AsA biosynthesis (AcGME2, AcGalDH, and AcGalLDH) and regeneration (AcGR, AcDHAR, and AcMDHAR1) genes. Meanwhile, the expression of the degradation gene AcAO was inhibited in MT-treated kiwifruits.
Collapse
|
13
|
Chen Z, Zhu Y, Lu M, Yu L, Tan S, Ren T. Effects of Rosa roxburghii Tratt glycosides and quercetin on D-galactose-induced aging mice model. J Food Biochem 2022; 46:e14425. [PMID: 36125966 DOI: 10.1111/jfbc.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
To investigate the effects of RRT (Rosa roxburghii Tratt) glucosides and quercetin on oxidative stress and chronic inflammation in D-galactose-induced aging mice, 90 mice (8 weeks old) were randomly divided into the normal group (NC), aging model group (D-gal), isoquercitrin group (D-gal+isoquercitrin), quercitrin group (D-gal+quercitrin), quercetin group (D-gal+quercetin) and positive control group (D-gal+Metformin). The aging model was established by subcutaneous injection of D-galactose (100 mg/kg). After 42 days of the administration, antioxidant and inflammatory indexes were measured, HE staining was used to investigate pathological changes in liver and brain tissue, and Western blot was used to determine the protein abundance of nuclear factor E2-related factor (Nrf2) and heme oxygenase (HO-1) in the brain. The results showed that, when compared to the NC group, the D-gal group had a significantly lower brain, liver, kidney, and spleen indexes; the contents of MDA, L-1β, IL-6, and TNF-α in serum, liver, and brain were significantly higher, but the levels of CAT, SOD, and GSH-Px were significantly lower. Isoquercitrin, quercitrin, and quercetin significantly increased organ indexes and activities of CAT, SOD, and GSH-Px while decreasing MDA, IL-1β, IL-6, and TNF-α levels in serum, liver, and brain tissues compared to the D-gal group. The morphological changes in the brain and liver tissue were significantly restored by glycosides and quercetin, as observed in HE staining. Furthermore, Western blot results revealed that glycosides and quercetin increased the protein levels of Nrf2, HO-1, and NQO1. Finally, the antioxidant and anti-inflammatory effects of RRT glycoside and quercetin in aging may be attributed to an activated Nrf2/HO-1 signaling pathway. PRACTICAL APPLICATIONS: Aging is characterized by physical changes and dysfunction of numerous biological systems caused by a variety of factors. The oxidative stress and inflammatory effects of RRT glycosides and quercetin on D-galactose-induced aging mice were investigated in this study. RRT glycosides and quercetin were found to protect organ atrophy, liver, and brain tissue in aging mice by regulating oxidative stress and chronic inflammation. It served as the theoretical foundation for the investigation of Rosa roxburghii Tratt as a health product and pharmaceutical raw material.
Collapse
Affiliation(s)
- Zhen Chen
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Yuping Zhu
- College of Basic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Mintao Lu
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Lu Yu
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Shuming Tan
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Tingyuan Ren
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
- Institute of Guizhou Distinctive Plant Resources Conservation, Guizhou Academy of Agricultural Science, Guiyang, P. R. China
| |
Collapse
|
14
|
Liu H, Wei L, Ni Y, Chang L, Dong J, Zhong C, Sun R, Li S, Xiong R, Wang G, Sun J, Zhang Y, Gao Y. Genome-Wide Analysis of Ascorbic Acid Metabolism Related Genes in Fragaria × ananassa and Its Expression Pattern Analysis in Strawberry Fruits. FRONTIERS IN PLANT SCIENCE 2022; 13:954505. [PMID: 35873967 PMCID: PMC9296770 DOI: 10.3389/fpls.2022.954505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Ascorbic acid (AsA) is an important antioxidant for scavenging reactive oxygen species and it is essential for human health. Strawberry (Fragaria × ananassa) fruits are rich in AsA. In recent years, strawberry has been regarded as a model for non-climacteric fruit ripening. However, in contrast to climacteric fruits, such as tomato, the regulatory mechanism of AsA accumulation in strawberry fruits remains largely unknown. In this study, we first identified 125 AsA metabolism-related genes from the cultivated strawberry "Camarosa" genome. The expression pattern analysis using an available RNA-seq data showed that the AsA biosynthetic-related genes in the D-mannose/L-galactose pathway were downregulated remarkably during fruit ripening which was opposite to the increasing AsA content in fruits. The D-galacturonate reductase gene (GalUR) in the D-Galacturonic acid pathway was extremely upregulated in strawberry receptacles during fruit ripening. The FaGalUR gene above belongs to the aldo-keto reductases (AKR) superfamily and has been proposed to participate in AsA biosynthesis in strawberry fruits. To explore whether there are other genes in the AKR superfamily involved in regulating AsA accumulation during strawberry fruit ripening, we further implemented a genome-wide analysis of the AKR superfamily using the octoploid strawberry genome. A total of 80 FaAKR genes were identified from the genome and divided into 20 subgroups based on phylogenetic analysis. These FaAKR genes were unevenly distributed on 23 chromosomes. Among them, nine genes showed increased expression in receptacles as the fruit ripened, and notably, FaAKR23 was the most dramatically upregulated FaAKR gene in receptacles. Compared with fruits at green stage, its expression level increased by 142-fold at red stage. The qRT-PCR results supported that the expression of FaAKR23 was increased significantly during fruit ripening. In particular, the FaAKR23 was the only FaAKR gene that was significantly upregulated by abscisic acid (ABA) and suppressed by nordihydroguaiaretic acid (NDGA, an ABA biosynthesis blocker), indicating FaAKR23 might play important roles in ABA-mediated strawberry fruit ripening. In a word, our study provides useful information on the AsA metabolism during strawberry fruit ripening and will help understand the mechanism of AsA accumulation in strawberry fruits.
Collapse
Affiliation(s)
- Huabo Liu
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Lingzhi Wei
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Yang Ni
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Inspection and Testing Laboratory of Fruits and Nursery Stocks (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Linlin Chang
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Jing Dong
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Chuanfei Zhong
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Rui Sun
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Shuangtao Li
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Rong Xiong
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Inspection and Testing Laboratory of Fruits and Nursery Stocks (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guixia Wang
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Yuntao Zhang
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Yongshun Gao
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| |
Collapse
|
15
|
Lei D, Lin Y, Chen Q, Zhao B, Tang H, Zhang Y, Chen Q, Wang Y, Li M, He W, Luo Y, Wang X, Tang H, Zhang Y. Transcriptomic Analysis and the Effect of Maturity Stage on Fruit Quality Reveal the Importance of the L-Galactose Pathway in the Ascorbate Biosynthesis of Hardy Kiwifruit ( Actinidia arguta). Int J Mol Sci 2022; 23:6816. [PMID: 35743259 PMCID: PMC9223753 DOI: 10.3390/ijms23126816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Hardy kiwifruit (Actinidia arguta) has recently become popular in fresh markets due to its edible skin and rich nutritional value. In the present study, different harvest stages of two A. arguta cultivars, 'Issai' and 'Ananasnaya' ("Ana"), were chosen for investigating the effects of maturity on the quality of the fruit. Interestingly, Issai contained 3.34 folds higher ascorbic acid (AsA) content than Ana. The HPLC method was used to determine the AsA content of the two varieties and revealed that Issai had the higher content of AsA and DHA. Moreover, RNA sequencing (RNAseq) of the transcriptome-based expression analysis showed that 30 differential genes for ascorbate metabolic pathways were screened in Issai compared to Ana, which had 16 genes down-regulated and 14 genes up-regulated, while compared to the up-regulation of 8 transcripts encoding the key enzymes involved in the L-galactose biosynthesis pathway. Our results suggested that AsA was synthesized mainly through the L-galactose pathway in hardy kiwifruit.
Collapse
Affiliation(s)
- Diya Lei
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiyang Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Bing Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
| | - Honglan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (B.Z.); (H.T.); (Y.Z.); (Q.C.); (Y.W.); (M.L.); (W.H.); (Y.L.); (X.W.); (H.T.)
| |
Collapse
|
16
|
YAN Y, LUO Z, DENG T, CUI X, YANG J, PAN X, YANG L, WANG Y, LI L, LI L, GAO M, YANG X. Effect on hypoglycemic activity and UPLC–MS/MS profiling of Rosa roxburghii fruit fermented with Chinese traditional distiller's yeast. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.41822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yanfang YAN
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Zhongsheng LUO
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Tingfei DENG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | | | - Juan YANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Xiong PAN
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Lishou YANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Yu WANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Liangqun LI
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Lilang LI
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Ming GAO
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Xiaosheng YANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| |
Collapse
|
17
|
Wang LT, Lv MJ, An JY, Fan XH, Dong MZ, Zhang SD, Wang JD, Wang YQ, Cai ZH, Fu YJ. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: a review. Food Funct 2021; 12:1432-1451. [PMID: 33533385 DOI: 10.1039/d0fo02603d] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to the growing global population, reduction in arable land and effects of climate change, incongruity between food supply and demand has become increasingly severe. Nowadays, with awareness of the elementary nutrients required for human growth, increasing attention is being paid to the health and medical functions of food. Along with increased food production achieved by modern agricultural techniques, underutilised functional foods are an important strategy for solving food security problems and maintaining the nutritional quality of the human diet. Rosa roxburghii Tratt (RRT) is a natural fruit that contains unique functional and nutritional constituents, which are characterised by a high anti-oxidant potential. This review summarises the biological characteristics, chemical composition, health-promoting properties and development status of RRT products to inspire investigations on the use of RRT fruit as a functional food, dietary supplement and pharmaceutical additive. The nutrients and functional ingredients of RRT fruit are described in detail to provide more reference information for nutritionists and pharmacists.
Collapse
Affiliation(s)
- Li-Tao Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Mu-Jie Lv
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Juan-Yan An
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Xiao-Hong Fan
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Ming-Zhu Dong
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Sun-Dong Zhang
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Yan-Qiu Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Zi-Hui Cai
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China. and Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China and Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, PR China
| |
Collapse
|
18
|
Anisimova OK, Shchennikova AV, Kochieva EZ, Filyushin MA. Identification and Variability of the GDP-L-Galactose Phosphosphorylase Gene ApGGP1 in Leek Cultivars. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Xu Y, Yu C, Zeng Q, Yao M, Chen X, Zhang A. Assessing the potential value of Rosa Roxburghii Tratt in arsenic-induced liver damage based on elemental imbalance and oxidative damage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1165-1175. [PMID: 32564172 DOI: 10.1007/s10653-020-00612-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Environmental exposure to arsenic is a major public health challenge worldwide. Growing evidence indicates that coal-burning arsenic can cause hepatic oxidative damage. However, the value of Rosa roxburghii Tratt (RRT) with antioxidant properties on arsenic-caused hepatic oxidative damage has never been elucidated yet. In this study, the animals were exposed to coal-burning arsenic (10 mg/kg bw) for 90 days and the result showed a loss of body weight, impaired liver function and liver diseases, increased hepatic oxidative damage and metabolic disorder of multiple elements including selenium, copper, zinc which were related to synthesis of antioxidant enzymes. Another finding is that RRT restored the abnormal liver function and alleviated the procedures of liver diseases of arsenic poisoning rats. In addition, it could also effectively reduce the degree of oxidative damage in serum and liver, and restore the activity of some antioxidant enzymes. Importantly, RRT reversed the content of most disordered elements caused by arsenic in liver and reduced the excretion of several essential elements in urine, including selenium, copper and zinc. Our study provides some limited evidence that RRT can alleviate coal-burning arsenic-induced liver damage induced by regulating elemental metabolic disorders and liver oxidation and antioxidant balance. The study provides a scientific basis for further studies of the causes of the arsenic-induced liver damage, and effective intervention strategies.
Collapse
Affiliation(s)
- Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Chun Yu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
20
|
Xiong Y, Yan P, Du K, Li M, Xie Y, Gao P. Nutritional component analyses of kiwifruit in different development stages by metabolomic and transcriptomic approaches. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2399-2409. [PMID: 31917468 DOI: 10.1002/jsfa.10251] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Metabolites in kiwifruit greatly influence nutritional values; however, the dynamic changes in nutrient composition and the gene expression level of yellow kiwifruit have not been studied so far. To investigate the types and accumulation patterns of metabolites, a metabolomics approach utilizing liquid chromatography-electrospray ionization mass spectrometry and transcriptomics were used to analyze the yellow flesh of kiwifruit cultivar 'jinshi 1' collected at different stages of days after full bloom. RESULTS In total, 285 metabolites were identified over the kiwifruit developmental stages. The composition of the metabolites of kiwifruit at different stages of development was different. The organic acids contents and their derivatives were higher at the initial stage of development and then gradually decreased. The lipids and amino acids contents fluctuated at different stages of development but did not change significantly. Transcript profiles throughout yellow kiwifruit development were constructed and analyzed, with a focus on the biosynthesis and metabolism of compounds such as sugars, organic acids and ascorbic acid, which are indispensable for the development and formation of quality fruit. The transcript levels of genes involved in sucrose and starch metabolism were consistent with the change in soluble sugar and starch content throughout kiwifruit development. The metabolism of ascorbic acid was primarily through the l-galactose pathway. CONCLUSION Our metabolome and transcriptome approach identified dynamic changes in five types of nutrient metabolite levels, and correlations among such levels, in developing fruit. The results provide information that can be used by metabolic engineers and molecular breeders to improve kiwifruit quality. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Xiong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Pei Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Kui Du
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resources Sciences, Chengdu, People's Republic of China
| | - Mingzhang Li
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resources Sciences, Chengdu, People's Republic of China
| | - Yue Xie
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resources Sciences, Chengdu, People's Republic of China
| | - Ping Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
21
|
Xiang N, Hu J, Wen T, Brennan MA, Brennan CS, Guo X. Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn (Zea mays L.) seedlings. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1694-1701. [PMID: 31803938 DOI: 10.1002/jsfa.10184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Extreme temperatures are among the primary abiotic stresses that affect plant growth and development. Ascorbic acid (AsA) is an efficient antioxidant for scavenging relative oxygen species accumulated under stress. Folates play a significant role in DNA synthesis and protect plants against oxidative stress. Sweet corn (Zea mays L.), a crop grown worldwide, is sensitive to extreme temperatures at seedling stage, which may cause yield loss. This study was conducted to explore the biosynthetic regulative mechanism of AsA and folates in sweet corn seedlings under temperature stress. RESULTS The AsA and folate composition and relative gene expression in sweet corn seedlings grown under different temperature stresses (10, 25, and 40 °C) were evaluated. The imposition of temperature stress altered the AsA content mainly by modulating the expression of Zm DHAR, whose encoded enzyme dehydroascorbic reductase (DHAR) is essential in the AsA recycle pathway. Low temperature stress raised the expressions of relative genes, leading to folate accumulation. High temperature stress modulated the folate content by influencing the expression of the correspondence gene for aminodeoxychorismate synthase, Zm ADCS, as well as downstream genes that connected with DNA methylation. CONCLUSION These results provided a theoretical basis, at a genetic level, for understanding the stress responses mechanism in sweet corn seedlings, offering guidance for sweet corn cultivation. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tianxiang Wen
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Margaret Anne Brennan
- Department of Wine, Food Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
- Department of Wine, Food Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
22
|
Broad RC, Bonneau JP, Hellens RP, Johnson AA. Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E1790. [PMID: 32150968 PMCID: PMC7084844 DOI: 10.3390/ijms21051790] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/03/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, and extreme temperatures, are major limiting factors in global crop productivity and are predicted to be exacerbated by climate change. The overproduction of reactive oxygen species (ROS) is a common consequence of many abiotic stresses. Ascorbate, also known as vitamin C, is the most abundant water-soluble antioxidant in plant cells and can combat oxidative stress directly as a ROS scavenger, or through the ascorbate-glutathione cycle-a major antioxidant system in plant cells. Engineering crops with enhanced ascorbate concentrations therefore has the potential to promote broad abiotic stress tolerance. Three distinct strategies have been utilized to increase ascorbate concentrations in plants: (i) increased biosynthesis, (ii) enhanced recycling, or (iii) modulating regulatory factors. Here, we review the genetic pathways underlying ascorbate biosynthesis, recycling, and regulation in plants, including a summary of all metabolic engineering strategies utilized to date to increase ascorbate concentrations in model and crop species. We then highlight transgene-free strategies utilizing genome editing tools to increase ascorbate concentrations in crops, such as editing the highly conserved upstream open reading frame that controls translation of the GDP-L-galactose phosphorylase gene.
Collapse
Affiliation(s)
- Ronan C. Broad
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Julien P. Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | | |
Collapse
|
23
|
Dos Santos CP, Batista MC, da Cruz Saraiva KD, Roque ALM, de Souza Miranda R, Alexandre E Silva LM, Moura CFH, Alves Filho EG, Canuto KM, Costa JH. Transcriptome analysis of acerola fruit ripening: insights into ascorbate, ethylene, respiration, and softening metabolisms. PLANT MOLECULAR BIOLOGY 2019; 101:269-296. [PMID: 31338671 DOI: 10.1007/s11103-019-00903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The first transcriptome coupled to metabolite analyses reveals major trends during acerola fruit ripening and shed lights on ascorbate, ethylene signalling, cellular respiration, sugar accumulation, and softening key regulatory genes. Acerola is a fast growing and ripening fruit that exhibits high amounts of ascorbate. During ripening, the fruit experience high respiratory rates leading to ascorbate depletion and a quickly fragile and perishable state. Despite its growing economic importance, understanding of its developmental metabolism remains obscure due to the absence of genomic and transcriptomic data. We performed an acerola transcriptome sequencing that generated over 600 million reads, 40,830 contigs, and provided the annotation of 25,298 unique transcripts. Overall, this study revealed the main metabolic changes that occur in the acerola ripening. This transcriptional profile linked to metabolite measurements, allowed us to focus on ascorbate, ethylene, respiration, sugar, and firmness, the major metabolism indicators for acerola quality. Our results suggest a cooperative role of several genes involved in AsA biosynthesis (PMM, GMP1 and 3, GME1 and 2, GGP1 and 2), translocation (NAT3, 4, 6 and 6-like) and recycling (MDHAR2 and DHAR1) pathways for AsA accumulation in unripe fruits. Moreover, the association of metabolites with transcript profiles provided a comprehensive understanding of ethylene signalling, respiration, sugar accumulation and softening of acerola, shedding light on promising key regulatory genes. Overall, this study provides a foundation for further examination of the functional significance of these genes to improve fruit quality traits.
Collapse
Affiliation(s)
- Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Federal Institute of Education, Science and Technology of Paraíba, Campus Princesa Isabel, Princesa Isabel, Paraíba, Brazil
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | | | | | | | | | | | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
24
|
Suekawa M, Fujikawa Y, Inoue A, Kondo T, Uchida E, Koizumi T, Esaka M. High levels of expression of multiple enzymes in the Smirnoff-Wheeler pathway are important for high accumulation of ascorbic acid in acerola fruits. Biosci Biotechnol Biochem 2019; 83:1713-1716. [DOI: 10.1080/09168451.2019.1608808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
Acerola fruits contain abundant ascorbic acid (AsA). The gene expression levels of three upstream enzymes in the primary AsA biosynthesis pathway were correlated with AsA contents in the fruits of two acerola cultivars. Multiple overexpression of the enzymes increased AsA contents, suggesting their high expression is important for high AsA accumulation in acerola fruits and the breeding of AsA-rich plants.
Abbreviations: AsA: ascorbic acid; PMI: phosphomannose isomerase; PMM: phosphomannomutase; GMP: GDP-d-mannose pyrophosphorylase; GME: GDP-d-mannose 3ʹ,5ʹ-epimerase; GGP: GDP-l-galactose phosphorylase; GPP: l-galactose-1-phosphate phosphatase; GDH: l-galactose dehydrogenase; GLDH: l-galactono-1,4-lactone dehydrogenase
Collapse
Affiliation(s)
- Marina Suekawa
- Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yukichi Fujikawa
- Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akari Inoue
- Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takayuki Kondo
- Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima, Japan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Japan
| | - Eriko Uchida
- Corporate Science Research, Nichirei Corporation, Chiba, Japan
| | - Takeshi Koizumi
- Corporate Science Research, Nichirei Corporation, Chiba, Japan
| | - Muneharu Esaka
- Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
25
|
Nutritional constituents, health benefits and processing of Rosa Roxburghii: A review. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103456] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
26
|
Tyapkina DY, Kochieva EZ, Slugina MA. Vitamin C in fleshy fruits: biosynthesis, recycling, genes, and enzymes. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
L-ascorbic acid (vitamin C) is a plant secondary metabolite that has a variety of functions both in plant tissues and in the human body. Plants are the main source of vitamin C in human nutrition, especially citrus, rose hip, tomato, strawberry, pepper, papaya, kiwi, and currant fruits. However, in spite of the biological significance of L-ascorbic acid, the pathways of its biosynthesis in plants were fully understood only in 2007 by the example of a model plant Arabidopsis thaliana. In the present review, the main biosynthetic pathways of vitamin C are described: the L-galactose pathway, L-gulose pathway, galacturonic and myo-inositol pathway. To date, the best studied is the L-galactose pathway (Smyrnoff–Wheeler pathway). Only for this pathway all the enzymes and the entire cascade of reactions have been described. For other pathways, only hypothetical metabolites are proposed and not all the catalyzing enzymes have been identified. The key genes participating in ascorbic acid biosynthesis and accumulation in fleshy fruits are highlighted. Among them are L-galactose pathway proteins (GDP-mannose phosphorylase (GMP, VTC1), GDP-D-mannose epimerase (GME), GDP-L-galactose phosphorylase (GGP, VTC2/VTC5), L-galactose-1-phosphate phosphatase (GPP/VTC4), L-galactose-1-dehydrogenase (GalDH), and L-galactono1,4-lactone dehydrogenase (GalLDH)); D-galacturonic pathway enzymes (NADPH-dependent D-galacturonate reductase (GalUR)); and proteins, controlling the recycling of ascorbic acid (dehydroascorbate reductase (DHAR1) and monodehydroascorbate reductase (MDHAR)). Until now, there is no clear and unequivocal evidence for the existence of one predominant pathway of vitamin C biosynthesis in fleshy fruits. For example, the L-galactose pathway is predominant in peach and kiwi fruits, whereas the D-galacturonic pathway seems to be the most essential in grape and strawberry fruits. However, in some plants, such as citrus and tomato fruits, there is a switch between different pathways during ripening. It is noted that the final ascorbic acid content in fruits depends not only on biosynthesis but also on the rate of its oxidation and recirculation.
Collapse
Affiliation(s)
- D. Y. Tyapkina
- Institute of Bioengineering, Research Center of Biotechnology, RAS
| | - E. Z. Kochieva
- Institute of Bioengineering, Research Center of Biotechnology, RAS;
Lomonosov Moscow State University
| | - M. A. Slugina
- Institute of Bioengineering, Research Center of Biotechnology, RAS;
Lomonosov Moscow State University
| |
Collapse
|
27
|
Li X, Ye J, Munir S, Yang T, Chen W, Liu G, Zheng W, Zhang Y. Biosynthetic Gene Pyramiding Leads to Ascorbate Accumulation with Enhanced Oxidative Stress Tolerance in Tomato. Int J Mol Sci 2019; 20:ijms20071558. [PMID: 30925709 PMCID: PMC6480547 DOI: 10.3390/ijms20071558] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Ascorbic acid (AsA) has high antioxidant activities, and its biosynthesis has been well studied by engineering of a single structural gene (SG) in staple crops, such as tomato (Solanum lycopersicum). However, engineering the AsA metabolic pathway by multi-SG for biofortification remains unclear. In this study, pyramiding transgenic lines including GDP-Mannose 3',5'-epimerase (GME) × GDP-d-mannose pyrophosphorylase (GMP), GDP-l-Gal phosphorylase (GGP) × l-Gal-1-P phosphatase (GPP) and GME × GMP × GGP × GPP, were obtained by hybridization of four key genes to get over-expression transgenic plants (GME, GMP, GGP, and GPP) in tomato. Pyramiding lines exhibited a significant increase in total ascorbate in leaves and red fruits except for GGP × GPP. Expression analysis indicated that increased accumulation of AsA in pyramiding transgenic lines is due to multigene regulation in AsA biosynthesis. Substrate feeding in leaf and fruit suggested that AsA biosynthesis was mainly contributed by the d-Man/l-Gal pathway in leaves, while alternative pathways may contribute to AsA accumulation in tomato fruit. Pyramiding lines showed an enhanced light response, stress tolerance, and AsA transport capacity. Also, fruit shape, fruit size, and soluble solids were slightly affected by pyramiding. This study provides the first comprehensive analysis of gene pyramiding for ascorbate biosynthesis in tomato. SGs pyramiding promotes AsA biosynthesis, which in turn enhances light response and oxidative stress tolerance. Also, the data revealed an alternative ascorbate biosynthesis pathway between leaves and fruit of tomato.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Protected Horticultural Engineering in Northwest, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China.
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shoaib Munir
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tao Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Zheng
- HZAU Chuwei Institute of Advanced Seeds, Wuhan 430070, China.
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- HZAU Chuwei Institute of Advanced Seeds, Wuhan 430070, China.
| |
Collapse
|
28
|
Increasing Ascorbic Acid Content and Salinity Tolerance of Cherry Tomato Plants by Suppressed Expression of the Ascorbate Oxidase Gene. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9020051] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ascorbic acid is considered to be one of the most important antioxidants in plants and plays a vital role in the adaptation of plants to unfavorable conditions. In the present study, an ascorbate oxidase gene (Solyc04g054690) was over-expressed in cherry tomato cv. West Virginia 106 lines and compared with previously studied RNAi silenced ascorbate oxidase lines. Two lines with lower ascorbate oxidase activity (AO−15 and AO−42), two lines with elevated activity (AO+14 and AO+16), and the non-transgenic line (WVa106) were grown and irrigated with 75 mM and 150 mM NaCl in 2015 and 2016. Growth, yield, and chemical composition of the lines under salinity stress were evaluated. Lines with lower ascorbate oxidase activity resulted in higher plant growth parameters (plant height, leaf number, flower, and cluster number in 2015 and stem diameter and flower number in 2016), and improved fruit quality (firmness in 2016 and soluble solid content in 2015) and total yield per plant under salinity stress over both years. In addition, we show that ascorbic acid, lycopene, and carotene contents of fruits were higher in lines with lower ascorbate oxidase activity compared to lines with elevated activity and the non-transgenic line under conditions of moderate and high salinity in both years.
Collapse
|
29
|
Lima R, Silva G, Dantas A, Dantas R, Sousa A, Melo R, Silva S. Ascorbic acid redox metabolism in ‘Paluma’ guava under nitrogen fertilization. ACTA ACUST UNITED AC 2018. [DOI: 10.17660/actahortic.2018.1194.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Jiang ZY, Zhong Y, Zheng J, Ali M, Liu GD, Zheng XL. L-ascorbic acid metabolism in an ascorbate-rich kiwifruit (Actinidia. Eriantha Benth.) cv. 'White' during postharvest. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 124:20-28. [PMID: 29331889 DOI: 10.1016/j.plaphy.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Kiwifruit (Actinidia eriantha Benth.) 'White', a novel cultivar with higher L-ascorbic acid (AsA) level, is registered in China. Changes in AsA, related metabolites, enzymatic activity, and gene expression associated with AsA biosynthesis and recycling process were investigated in this paper. The results indicated that AsA biosynthesis through L-galactose pathway supplemented by D-galacturonic acid pathway and AsA recycling collectively contributed to accumulating and remaining higher AsA level in kiwifruit cv. 'White' during postharvest. Moreover, L-galactose dehydrogenase (GalDH) activity and relative expressions of the genes encoding GDP-D-mannose pyrophosphorylase (GMP), L-galactose-1-P phosphatase (GPP), GDP-L-galactose phosphorylase (GGP), GalDH and D-galacturonate reductase (GalUR) were important for regulation of AsA biosynthesis, and the activity and expression of dehydroascorbate reductase (DHAR) were primarily responsible for regulation of AsA recycling in kiwifruit 'White' during postharvest.
Collapse
Affiliation(s)
- Zhen-Ye Jiang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Yu Zhong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Jian Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Maratab Ali
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Guo-Dong Liu
- Horticultural Sciences Department, IFAS, University of Florida, Gainesville, FL, 32611-0690, USA
| | - Xiao-Lin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
31
|
Chen G, Kan J. Characterization of a novel polysaccharide isolated from Rosa roxburghii Tratt fruit and assessment of its antioxidant in vitro and in vivo. Int J Biol Macromol 2018; 107:166-174. [DOI: 10.1016/j.ijbiomac.2017.08.160] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/30/2022]
|
32
|
Jia L, Tian J, Wei S, Zhang X, Xu X, Shen Z, Shen W, Cui J. Hydrogen gas mediates ascorbic acid accumulation and antioxidant system enhancement in soybean sprouts under UV-A irradiation. Sci Rep 2017; 7:16366. [PMID: 29180683 PMCID: PMC5703957 DOI: 10.1038/s41598-017-16021-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
The soybean sprout is a nutritious and delicious vegetable that is rich in ascorbic acid (AsA). Hydrogen gas (H2) may have potential applications in the vegetable processing industry. To investigate whether H2 is involved in the regulation of soybean sprouts AsA biosynthesis under UV irradiation, we set 4 different treatments: white light(W), W+HRW, UV-A and UV-A+HRW. The results showed that H2 significantly blocked the UV-A-induced accumulation of ROS, decreased TBARS content and enhanced SOD and APX activity in soybean sprouts. We also observed that the UV-A induced accumulation of AsA was enhanced more intensely when co-treated with HRW. Molecular analyses showed that UV-A+HRW significantly up-regulated AsA biosynthesis and recycling genes compared to UV-A in soybean sprouts. These data demonstrate that the H2 positively regulates soybean sprouts AsA accumulation under UV-A and that this effect is mediated via the up-regulation of AsA biosynthesis and recycling genes.
Collapse
Affiliation(s)
- Li Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiyuan Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shengjun Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoyan Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuan Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
33
|
Mellidou I, Kanellis AK. Genetic Control of Ascorbic Acid Biosynthesis and Recycling in Horticultural Crops. Front Chem 2017; 5:50. [PMID: 28744455 PMCID: PMC5504230 DOI: 10.3389/fchem.2017.00050] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ascorbic acid (AsA) is an essential compound present in almost all living organisms that has important functions in several aspects of plant growth and development, hormone signaling, as well as stress defense networks. In recent years, the genetic regulation of AsA metabolic pathways has received much attention due to its beneficial role in human diet. Despite the great variability within species, genotypes, tissues and developmental stages, AsA accumulation is considered to be controlled by the fine orchestration of net biosynthesis, recycling, degradation/oxidation, and/or intercellular and intracellular transport. To date, several structural genes from the AsA metabolic pathways and transcription factors are considered to significantly affect AsA in plant tissues, either at the level of activity, transcription or translation via feedback inhibition. Yet, all the emerging studies support the notion that the steps proceeding through GDP-L-galactose phosphorylase and to a lesser extent through GDP-D-mannose-3,5-epimerase are control points in governing AsA pool size in several species. In this mini review, we discuss the current consensus of the genetic regulation of AsA biosynthesis and recycling, with a focus on horticultural crops. The aspects of AsA degradation and transport are not discussed herein. Novel insights of how this multifaceted trait is regulated are critical to prioritize candidate genes for follow-up studies toward improving the nutritional value of fruits and vegetables.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece.,Laboratory of Agricultural Chemistry, Department of Crop Science, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
34
|
Fang T, Zhen Q, Liao L, Owiti A, Zhao L, Korban SS, Han Y. Variation of ascorbic acid concentration in fruits of cultivated and wild apples. Food Chem 2017; 225:132-137. [DOI: 10.1016/j.foodchem.2017.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
|
35
|
Liang D, Zhu T, Ni Z, Lin L, Tang Y, Wang Z, Wang X, Wang J, Lv X, Xia H. Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development. PLoS One 2017; 12:e0172818. [PMID: 28245268 PMCID: PMC5330498 DOI: 10.1371/journal.pone.0172818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/11/2017] [Indexed: 11/19/2022] Open
Abstract
To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium 'Hongdeng'), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit.
Collapse
Affiliation(s)
- Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tingting Zhu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiyou Ni
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Macknight RC, Laing WA, Bulley SM, Broad RC, Johnson AA, Hellens RP. Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Curr Opin Biotechnol 2017; 44:153-160. [PMID: 28231513 DOI: 10.1016/j.copbio.2017.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
Ascorbate (or vitamin C) is an essential human micronutrient predominantly obtained from plants. In addition to preventing scurvy, it is now known to have broader roles in human health, for example as a cofactor for enzymes involved in epigenetic programming and as regulator of cellular iron uptake. Furthermore, ascorbate is the major antioxidant in plants and underpins many environmentally induced abiotic stress responses. Biotechnological approaches to enhance the ascorbate content of crops therefore have potential to improve both human health and abiotic stress tolerance of crops. Identifying the genetic basis of ascorbate variation between plant varieties and discovering how some 'super fruits' accumulate extremely high levels of ascorbate should reveal new ways to more effectively manipulate the production of ascorbate in crops.
Collapse
Affiliation(s)
- Richard C Macknight
- University of Otago, Department of Biochemistry, PO Box 56, Dunedin 9054, New Zealand; Queensland University of Technology, Centre for Tropical Crops and Biocommodities, Institute for Future Environments, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - William A Laing
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Bachelor Road, Palmerston North 4474, New Zealand
| | - Sean M Bulley
- The New Zealand Institute for Plant & Food Research Limited, 412 No 1 Road, RD 2, Te Puke 3182, New Zealand
| | - Ronan C Broad
- The University of Melbourne, School of BioSciences, Parkville, Melbourne, 3010 VIC, Australia
| | - Alexander At Johnson
- The University of Melbourne, School of BioSciences, Parkville, Melbourne, 3010 VIC, Australia
| | - Roger P Hellens
- Queensland University of Technology, Centre for Tropical Crops and Biocommodities, Institute for Future Environments, GPO Box 2434, Brisbane, QLD 4001, Australia
| |
Collapse
|
37
|
Zeng F, Ge Z, Limwachiranon J, Li L, Feng S, Wang Y, Luo Z. Antioxidant and tyrosinase inhibitory activity ofRosa roxburghiifruit and identification of main bioactive phytochemicals by UPLC-Triple-TOF/MS. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fangfang Zeng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences; Zhejiang University; Hangzhou 310058 China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Simin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Yansheng Wang
- Institute of Agro-Food Science and Technology; Shandong Academy of Agricultural Sciences; Jinan 250100 China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
38
|
He JY, Zhang YH, Ma N, Zhang XL, Liu MH, Fu WM. Comparative analysis of multiple ingredients in Rosa roxburghii and R . sterilis fruits and their antioxidant activities. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
39
|
Liu MH, Zhang Q, Zhang YH, Lu XY, Fu WM, He JY. Chemical Analysis of Dietary Constituents in Rosa roxburghii and Rosa sterilis Fruits. Molecules 2016; 21:molecules21091204. [PMID: 27618004 PMCID: PMC6272847 DOI: 10.3390/molecules21091204] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/30/2023] Open
Abstract
Both Rosa roxburghii and R. sterilis, belonging to the Rosaceae, are endemic species in Guizhou Province, China. The fruits of these two species are mixed-used as functional food in the region. Aiming to elucidate the phytochemical characteristics of R. roxburghii and R. sterilis fruits, the essential oils and constituents in a methanol extract have been analyzed and compared by GC-MS and UFLC/Q-TOF-MS, respectively. As a result, a total of 135 volatile compounds were identified by GC-MS and 91 components were different between R. roxburghii and R. sterilis fruits; a total of 59 compounds in methanol extracts were identified by UFLC/Q-TOF-MS, including 13 organic acids, 12 flavonoids, 11 triterpenes, nine amino acids, five phenylpropanoid derivatives, four condensed tannins, two stilbenes, two benzaldehyde derivatives and one benzoic acid derivative; and nine characteristic compounds were found between R. roxburghii and R. sterilis fruits. This systematic study plays an important role for R. roxburghii and R. sterilis fruits in the product development.
Collapse
Affiliation(s)
- Meng-Hua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Yuan-He Zhang
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, Guangdong, China.
| | - Xian-Yuan Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Wei-Ming Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, Guangdong, China.
| | - Jing-Yu He
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, Guangdong, China.
| |
Collapse
|
40
|
Zhai Y, Wang D, Liu H, Zeng Y, Yin Z, Li L. Electrochemical Molecular Imprinted Sensors Based on Electrospun Nanofiber and Determination of Ascorbic Acid. ANAL SCI 2016; 31:793-8. [PMID: 26256603 DOI: 10.2116/analsci.31.793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, electrochemical molecularly imprinted sensors were fabricated and used for the determination of ascorbic acid (AA). Nanofiber membranes of cellulose acetate (CA)/multi-walled carbon nanotubes (MWCNTs)/polyvinylpyrrolidone (PVP) (CA/MWCNTs/PVP) were prepared by electrospinning technique. After being transferred to a glass carbon electrode (GC), the nanofiber interface was further polymerized with pyrrole through electrochemical cyclic voltammetry (CV) technique. Meanwhile, target molecules (such as AA) were embedded into the polypyrrole through the hydrogen bond. The effects of monomer concentration (pyrrole), the number of scan cycles and scan rates of polymerization were optimized. Differential pulse voltammetry (DPV) tests indicated that the oxidation current of AA (the selected target) were higher than that of the structural analogues, which illustrated the selective recognition of AA by molecularly imprinted sensors. Simultaneously, the molecularly imprinted sensors had larger oxidation current of AA than non-imprinted sensors in the processes of rebinding. The electrochemical measurements showed that the molecularly imprinted sensors demonstrated good identification behavior for the detection of AA with a linear range of 10.0 - 1000 μM, a low detection limit down to 3 μM (S/N = 3), and a recovery rate range from 94.0 to 108.8%. Therefore, the electrochemical molecularly imprinted sensors can be used for the recognition and detection of AA without any time-consuming elution. The method presented here demonstrates the great potential for electrospun nanofibers and MWCNTs to construct electrochemical sensors.
Collapse
Affiliation(s)
- Yunyun Zhai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University
| | | | | | | | | | | |
Collapse
|
41
|
Zhang C, Huang J, Li X. Transcriptomic Analysis Reveals the Metabolic Mechanism of L-Ascorbic Acid in Ziziphus jujuba Mill. FRONTIERS IN PLANT SCIENCE 2016; 7:122. [PMID: 26913041 PMCID: PMC4753306 DOI: 10.3389/fpls.2016.00122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/22/2016] [Indexed: 06/01/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is the most economically important member of the Rhamnaceae family and contains a high concentration of ascorbic acid (AsA). To explore the metabolic mechanism of AsA accumulation, we investigated the abundance of AsA in the fruit development stages, the leaf and flower of Z. jujuba cv Junzao, and the mature fruit of one type of wild jujube (Z. jujuba var. spinosa Hu, Yanchuan sour jujube). And the expression patterns of genes involved in AsA biosynthesis, degradation, and recycling were analyzed. The result showed that AsA biosynthesis during early fruit development (the enlargement stage) is the main reason for jujube high accumulation. The L-galactose pathway plays a predominant role in the biosynthesis of AsA during jujube fruit development, and the genes GMP1, GME1, GGP, and GaLDH involved in the determination of AsA concentration during fruit development and in different genotypes; the myo-inositol pathway along with the genes GME2 and GMP2 in the L-galactose pathway play a compensatory role in maintaining AsA accumulation during the ripening stage. These findings enhance our understanding of the molecular mechanism in regulating AsA accumulation for jujube.
Collapse
|
42
|
|
43
|
Liu K, Wang J, Li H, Zhong J, Feng S, Pan Y, Yuan C. Identification, Expression and IAA-Amide Synthetase Activity Analysis of Gretchen Hagen 3 in Papaya Fruit ( Carica papaya L.) during Postharvest Process. FRONTIERS IN PLANT SCIENCE 2016; 7:1555. [PMID: 27812360 PMCID: PMC5071377 DOI: 10.3389/fpls.2016.01555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/03/2016] [Indexed: 05/20/2023]
Abstract
Auxin plays essential roles in plant development. Gretchen Hagen 3 (GH3) genes belong to a major auxin response gene family and GH3 proteins conjugate a range of acylsubstrates to alter the levels of hormones. Currently, the role of GH3 genes in postharvest physiological regulation of ripening and softening processes in papaya fruit is unclear. In this study, we identified seven CpGH3 genes in a papaya genome database. The CpGH3.1a, CpGH3.1b, CpGH3.5, CpGH3.6, and CpGH3.9 proteins were identified as indole-3-acetic acid (IAA)-specific amido synthetases. We analyzed the changes in IAA-amido synthetase activity using aspartate as a substrate for conjugation and found a large increase (over 5-fold) during the postharvest stages. Ascorbic acid (AsA) application can extend the shelf life of papaya fruit. Our data showed that AsA treatment regulates postharvest fruit maturation processes by promoting endogenous IAA levels. Our findings demonstrate the important role of GH3 genes in the regulation of auxin-associated postharvest physiology in papaya.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
- *Correspondence: Kaidong Liu
| | - Jinxiang Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture UniversityGuangzhou, China
- College of Agriculture and Root Biology Center, South China Agricultural UniversityGuangzhou, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Jundi Zhong
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Shaoxian Feng
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Yaoliang Pan
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
- Changchun Yuan
| |
Collapse
|
44
|
Chen Y, Liu ZJ, Liu J, Liu LK, Zhang ES, Li WL. Inhibition of metastasis and invasion of ovarian cancer cells by crude polysaccharides from rosa roxburghii tratt in vitro. Asian Pac J Cancer Prev 2015; 15:10351-4. [PMID: 25556474 DOI: 10.7314/apjcp.2014.15.23.10351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rosa Roxburghii Tratt is a promising wild fruit crop in Southwest China. Its extracts have been used as traditional Chinese medicine, which benefit immune responses and cure various health disorders. However, whether Rosa Roxburghii Tratt polysaccharides could inhibit metastasis and invasion of ovarian cancer cells remains unknown. MATERIALS AND METHODS Effects of crude polysaccharides from Rosa Roxburghii Tratt on the viability of ovarian cancer A2780 cells were detected by MTT assay. Ovarian carcinoma cell migration and invasion after exposure to Rosa Roxburghii Tratt polysaccharides were quantified by wound healing and Transwell assays, respectively. Western blotting was applied to assess protein levels of MMP-9. RESULTS The results indicated that Rosa Roxburghii Tratt polysaccharides significantly reduced wound closure rate of A2780 cells, inhibited their migration and invasion, and suppressed the expression of MMP-9. CONCLUSIONS Our findings indicated that Rosa Roxburghii Tratt polysaccharides have potential for develop as anti-metastatic cancer drug preparations for ovarian cancer patients.
Collapse
Affiliation(s)
- Yang Chen
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, China E-mail :
| | | | | | | | | | | |
Collapse
|
45
|
Ye J, Hu T, Yang C, Li H, Yang M, Ijaz R, Ye Z, Zhang Y. Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis. PLoS One 2015; 10:e0130885. [PMID: 26133783 PMCID: PMC4489915 DOI: 10.1371/journal.pone.0130885] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Tomato (Solanum lycopersicum) serves as a research model for fruit development; however, while it is an important dietary source of antioxidant nutrients, the transcriptional regulation of genes that determine nutrient levels remains poorly understood. Here, the transcriptomes of fruit at seven developmental stages (7, 14, 21, 28, 35, 42 and 49 days after flowering) from two tomato cultivars (Ailsa Craig and HG6-61) were evaluated using the Illumina sequencing platform. A total of 26,397 genes, which were expressed in at least one developmental stage, were detected in the two cultivars, and the expression patterns of those genes could be divided into 20 groups using a K-mean cluster analysis. Gene Ontology term enrichment analysis indicated that genes involved in RNA regulation, secondary metabolism, hormone metabolism and cell wall metabolism were the most highly differentially expressed genes during fruit development and ripening. A co-expression analysis revealed several transcription factors whose expression patterns correlated with those of genes associated with ascorbic acid, carotenoid and flavonoid biosynthesis. This transcriptional correlation was confirmed by agroinfiltration mediated transient expression, which showed that most of the enzymatic genes in the ascorbic acid biosynthesis were regulated by the overexpression of each of the three transcription factors that were tested. The metabolic dynamics of ascorbic acid, carotenoid and flavonoid were investigated during fruit development and ripening, and some selected transcription factors showed transcriptional correlation with the accumulation of ascorbic acid, carotenoid and flavonoid. This transcriptome study provides insight into the regulatory mechanism of fruit development and presents candidate transcription factors involved in secondary metabolism.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tixu Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Congmei Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Mingze Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Raina Ijaz
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|