1
|
Al-Obaidi JR, Jamaludin AA, Rahman NA, Ahmad-Kamil EI. How plants respond to heavy metal contamination: a narrative review of proteomic studies and phytoremediation applications. PLANTA 2024; 259:103. [PMID: 38551683 DOI: 10.1007/s00425-024-04378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
MAIN CONCLUSION Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.
Collapse
Affiliation(s)
- Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Azi Azeyanty Jamaludin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
- Center of Biodiversity and Conservation, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Norafizah Abdul Rahman
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences (AGLS), Science South Building, Lincoln University, Lincoln, 7608, Canterbury, New Zealand
| | - E I Ahmad-Kamil
- Malaysian Nature Society (MNS), JKR 641, Jalan Kelantan, Bukit Persekutuan, 50480, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Niu L, Li C, Wang W, Zhang J, Scali M, Li W, Liu H, Tai F, Hu X, Wu X. Cadmium tolerance and hyperaccumulation in plants - A proteomic perspective of phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114882. [PMID: 37037105 DOI: 10.1016/j.ecoenv.2023.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is a major environmental pollutant and poses a risk of transfer into the food chain through contaminated plants. Mechanisms underlying Cd tolerance and hyperaccumulation in plants are not fully understood. Proteomics-based approaches facilitate an in-depth understanding of plant responses to Cd stress at the systemic level by identifying Cd-inducible differentially abundant proteins (DAPs). In this review, we summarize studies related to proteomic changes associated with Cd-tolerance mechanisms in Cd-tolerant crops and Cd-hyperaccumulating plants, especially the similarities and differences across plant species. The enhanced DAPs identified through proteomic studies can be potential targets for developing Cd-hyperaccumulators to remediate Cd-contaminated environments and Cd-tolerant crops with low Cd content in the edible organs. This is of great significance for ensuring the food security of an exponentially growing global population. Finally, we discuss the methodological drawbacks in current proteomic studies and propose that better protocols and advanced techniques should be utilized to further strengthen the reliability and applicability of future Cd-stress-related studies in plants. This review provides insights into the improvement of phytoremediation efficiency and an in-depth study of the molecular mechanisms of Cd enrichment in plants.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunyang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE, Pacheco-Aguilar JR, Alatorre-Cobos F, Hernández-Morales A. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3743-3764. [PMID: 35022877 DOI: 10.1007/s10653-021-01179-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/05/2021] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plant physiology and development. This review discusses Cd effects on auxin biosynthesis and homeostasis, and the strategies for restoring plant growth based on exogenous auxin application. First, the two well-characterized auxin biosynthesis pathways in plants are described, as well as the effect of exogenous auxin application on plant growth. Then, review describes the impacts of Cd on the content, biosynthesis, conjugation, and oxidation of endogenous auxins, which are related to a decrease in root development, photosynthesis, and biomass production. Finally, compelling evidence of the beneficial effects of auxin-producing rhizobacteria in plants exposed to Cd is showed, focusing on photosynthesis, oxidative stress, and production of antioxidant compounds and osmolytes that counteract Cd toxicity, favoring plant growth and improve phytoremediation efficiency. Expanding our understanding of the positive effects of exogenous auxins application and the interactions between bacteria and plants growing in Cd-polluted environments will allow us to propose phytoremediation strategies for restoring environments contaminated with this metal.
Collapse
Affiliation(s)
- Gisela Adelina Rolón-Cárdenas
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Ruth Elena Soria-Guerra
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
| | | | | | - Alejandro Hernández-Morales
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México.
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México.
| |
Collapse
|
4
|
Fayazipour D, Deckert J, Akbari G, Soltani E, Chmielowska-Bąk J. Mitochondria Specific Antioxidant, MitoTEMPO, Modulates Cd Uptake and Oxidative Response of Soybean Seedlings. Antioxidants (Basel) 2022; 11:2099. [PMID: 36358472 PMCID: PMC9686940 DOI: 10.3390/antiox11112099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Numerous reports find that Cd induces formation of reactive oxygen species (ROS) in plants. However, a general ROS pool is usually studied, without distinction of their production site. In the present study, we applied a mitochondria-specific antioxidant, MitoTEMPO, to elucidate the role of mitochondria-derived ROS in the response of soybean seedlings to short-term (48 h) Cd stress. The obtained results showed that Cd caused a reduction in root length and fresh weight and increase in the level of superoxide anion, hydrogen peroxide, markers of lipid peroxidation (thiobarbituric reactive substances, TBARS) and markers of RNA oxidation (8-hydroxyguanosine, 8-OHG) in seedling roots. Application of MitoTEMPO affected Cd uptake in a dose-dependent manner and diminished the Cd-dependent induction of superoxide anion and lipid peroxidation.
Collapse
Affiliation(s)
- Dalir Fayazipour
- Department of Agronomy and Plant Breeding Sciences, College of Aboureihan, University of Tehran, Tehran P.O. Box 3391653775, Iran
| | - Joanna Deckert
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, 61-712 Poznań, Poland
| | - Gholamali Akbari
- Department of Agronomy and Plant Breeding Sciences, College of Aboureihan, University of Tehran, Tehran P.O. Box 3391653775, Iran
| | - Elias Soltani
- Department of Agronomy and Plant Breeding Sciences, College of Aboureihan, University of Tehran, Tehran P.O. Box 3391653775, Iran
| | - Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, 61-712 Poznań, Poland
| |
Collapse
|
5
|
Sex-Specific Physiological Responses of Populus cathayana to Uranium Stress. FORESTS 2022. [DOI: 10.3390/f13071123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Attention is increasingly being paid to the contamination of soil by the radioactive element uranium (U). Phytoremediation of contaminated soil by economically advantageous and environment-protective plants shows considerable potential for addressing this problem. Populus cathayana is a species with high heavy-metal tolerance, economic value, and notable potential for phytoremediation. Plant-sex-related differences can lead to differences in vegetative growth and tolerance to various stressors. As such, in this study, we designed a pot experiment to analyze the responses of male and female trees of P. cathayana to 50 mg kg−1 U stress in contaminated soil for 3 months. We studied the U uptake and distribution, photosynthesis, chlorophyll fluorescence, active oxygen species, and antioxidant enzymes of P. cathayana. The results showed that the photosynthetic activity and chlorophyll fluorescence of male and female trees were similar, and U stress mainly affected the nonstomatal factors and photosystem II during photosynthesis. Regarding the physiological and biochemical processes, male and female trees showed different defense strategies: male trees had higher peroxidase (POD), H2O2, and soluble sugars, but lower malondialdehyde (MDA), superoxide dismutase (SOD), and soluble proteins. Under U stress, the active oxygen produced by male trees could be cleared by antioxidant enzymes, preventing damage to the cell membrane. Male trees accumulated a higher U concentration in their roots than female trees, whereas the transportation of U from roots to leaves in male trees was lower than that in female trees. Therefore, our results suggested that male trees have a higher tolerance capacity and greater ability to remediate U-polluted soil than female trees. Future phytoremediation studies should consider the differences between plant sexes in the tolerance to U-contaminated land.
Collapse
|
6
|
Gao L, Cai M, Zeng L, Zhang Q, Zhu H, Gu X, Peng C. Adaptation of the Invasive Plant ( Sphagneticola trilobata L. Pruski) to a High Cadmium Environment by Hybridizing With Native Relatives. FRONTIERS IN PLANT SCIENCE 2022; 13:905577. [PMID: 35845659 PMCID: PMC9277564 DOI: 10.3389/fpls.2022.905577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Invasive species can evolve rapidly in the invasion areas to adapt to new habitats. Sphagneticola trilobata L. Pruski, an invasive species, was studied for its tolerance to cadmium (Cd) in the soil and compared with its natural hybrid. From the perspective of photosynthetic physiology, antioxidant characteristics, and leaf hormone levels, the differences between the leaves of the two species before and after Cd treatment were compared. The results showed that the hybrid had stronger tolerance to Cd stress than invasive species. After Cd stress, the indexes of gas-exchange [net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr)] of the hybrid was higher than invasive species, while the content of non-enzymatic antioxidants (flavonoids and total phenols) and antioxidant enzyme activities [peroxidase (POD) and superoxide dismutase (SOD)] was lower in hybrid than in invasive species. The changes in the content of plant hormones [auxin (IAA) and abscisic acid (ABA)] under Cd stress showed that hybrid can still maintain growth and prevent leaf senescence. Furthermore, the differences in gene expression between hybrid and invasive species in photosynthetic physiology, the antioxidant capacity of leaves, and endogenous hormone (IAA and ABA) synthesis pathway also showed that hybrid has stronger Cd tolerance than invasive species. This suggests that invasive species will realize the invasion through hybridization with the native relatives to overcome the stress from environmental factors. The study implied that hybridization between invasive species and native relatives is an important way for invasive species to spread in a wider and new environment that invasive species have not experienced in the area of origin.
Collapse
Affiliation(s)
- Lei Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Minling Cai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lingda Zeng
- College of Life Science, Huizhou University, Huizhou, China
| | - Qilei Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haoqiang Zhu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqian Gu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Changlian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Phytochemical analysis reveals an antioxidant defense response in Lonicera japonica to cadmium-induced oxidative stress. Sci Rep 2022; 12:6840. [PMID: 35477983 PMCID: PMC9046209 DOI: 10.1038/s41598-022-10912-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Cadmium (Cd), though potentially beneficial at lower levels to some plant species, at higher levels is a toxic metal that is detrimental to plant growth and development. Cd is also a carcinogen to humans and other contaminated plant consumers, affecting the kidneys and reducing bone strength. In this study we investigated responses of growth, chlorophyll content, reactive oxygen species levels, and antioxidant responses to Cd in honeysuckle leaves (Lonicera japonica Thunb.), a potential Cd hyperaccumulator. Results indicated that plant height, dry weight, leaf area, and chlorophyll content increased when honeysuckle was exposed to 10 mg kg-1 or 30 mg kg-1 Cd (low concentration). However, in response to 150 mg kg-1 or 200 mg kg-1 Cd (high concentration) these growth parameters and chlorophyll content significantly decreased relative to untreated control plant groups. Higher levels of superoxide radical (O2·-) and hydrogen peroxide (H2O2) were observed in high concentration Cd groups. The activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase were enhanced with exposure to increasing levels of Cd. Additionally, the Ascorbate-Glutathione (AsA-GSH) cycle was activated for the removal of H2O2 in honeysuckle in response to elevated Cd. The Pearson correlation analysis, a redundancy analysis, and a permutation test indicated that proline and APX were dominant antioxidants for removing O2·- and H2O2. The antioxidants GSH and non-protein thiols (NPTs) also increased as the concentration of Cd increased.
Collapse
|
8
|
Xin J, Zhao C, Li Y, Ma S, Tian R. Transcriptional, secondary metabolic, and antioxidative investigations elucidate the rapid response mechanism of Pontederia cordata to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113236. [PMID: 35093809 DOI: 10.1016/j.ecoenv.2022.113236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Pontederia cordata is previously demonstrated a cadmium (Cd) tolerant plant, and also a candidate for the phytoremediation of heavy-metal-contaminated wetlands. A hydroponic experiment was used to investigate variations in photosynthetic gas exchange parameters, antioxidative activities, chlorophyll and secondary metabolite contents, and transcriptome in leaves of the plant exposed to 0.44 mM Cd2+ for 0 h, 24 h, and 48 h. Under Cd2+ exposure for 24 h, the plant presented a favorable photosynthesis by maintaining relatively higher antioxidant activity. Cd2+ exposure for 48 h accelerated membrane peroxidation, declined photosynthetic pigment content, and increased polyphenol oxidase activity, thus interfering with photosynthesis. The phenylpropane pathway served as a chemical rather than physical defense against Cd2+ in the plant leaves. A total of 20,998, 4743, and 4413 differentially expressed genes (DEGs) were identified in the groups of 0 h vs 24 h, 0 h vs 48 h, and 24 h vs 48 h, respectively. The primary metabolic pathways of the DEGs were mainly enriched in nitrogen metabolism, starch and sucrose metabolism, fructose and mannose metabolism, as well as pentose-phosphate pathway, contributing to a stable cell structure and function. Flavonoid biosynthesis directly or indirectly played an antioxidative role against Cd2+ in the leaves. Forty-nine transcription factor (TF) families were identified, and 8 TF families were shared among the three groups. The present study provides a theoretical foundation for investigating tolerance mechanisms of wetland plants to Cd stress in terms of secondary metabolism and transcriptional regulation.
Collapse
Affiliation(s)
- Jianpan Xin
- Colledge of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chu Zhao
- Colledge of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yan Li
- Colledge of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Sisi Ma
- Colledge of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Runan Tian
- Colledge of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
9
|
Parmar S, Sharma VK, Li T, Tang W, Li H. Fungal Seed Endophyte FZT214 Improves Dysphania ambrosioides Cd Tolerance Throughout Different Developmental Stages. Front Microbiol 2022; 12:783475. [PMID: 35058903 PMCID: PMC8764135 DOI: 10.3389/fmicb.2021.783475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Phytoremediation is a promising remediation method of heavy metal (HM)-contaminated soils. However, lower HM tolerance of metal accumulator inhibits its practical application and effects. The current study was aimed to illustrate the role of fungal seed endophyte (FZT214) in improving Dysphania ambrosioides Cd tolerance during different developmental stages under various Cd stresses (5, 15, 30 mg kg-1) by pot experiments. The results showed that FZT214 significantly (p < 0.05) improved the host plant's growth at the flowering and fruiting stage in most of the treatment, while at the growing stage the increase was less (p > 0.05). The seed yield was also improved (p < 0.05) in the FZT214-inoculated plants (E+) and induced early flowering was observed. Moreover, the inoculation also positively affected total chlorophyll content, antioxidant process, and lipid peroxidation in most of the treatments throughout three developmental stages. Not all but in most cases, IAA and GA were more in E+ plants while JA was more in the E- plants (non-inoculated plants) during three developmental stages. The results suggested that the colonization of FZT214 to the D. ambrosioides might trigger multiple and comprehensive protective strategies against Cd stress, which mainly include activation of the dilution effects, induced biochemical changes to overcome damage from Cd toxicity, and alteration of the endogenous phytohormones. FZT214 can find competent application in the future to improve the growth of other crop plants.
Collapse
Affiliation(s)
- Shobhika Parmar
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Vijay K. Sharma
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Wenting Tang
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
10
|
Manna I, Sahoo S, Bandyopadhyay M. Effect of Engineered Nickel Oxide Nanoparticle on Reactive Oxygen Species-Nitric Oxide Interplay in the Roots of Allium cepa L. FRONTIERS IN PLANT SCIENCE 2021; 12:586509. [PMID: 33633755 PMCID: PMC7901573 DOI: 10.3389/fpls.2021.586509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 06/01/2023]
Abstract
Scientists anxiously follow instances of heavy metals augmenting in the environment and undergoing bioaccumulation and trace their biomagnification across food webs, wary of their potent toxicity on biological entities. Engineered nanoparticles supplement natural pools of respective heavy metals and can mimic their effects, exerting toxicity at higher concentrations. Thus, a thorough understanding of the underlying mechanism of this precarious interaction is mandatory. Most urban and industrial environments contain considerable quantities of nickel oxide nanoparticles. These in excess can cause considerable damage to plant metabolism through a significant increase in cellular reactive oxygen species and perturbation of its cross-talk with the reactive nitrogen species. In the present work, the authors have demonstrated how the intrusion of nickel oxide nanoparticles (NiO-NP) affected the exposed roots of Allium cepa: starting with disruption of cell membranes, before being interiorized within cell organelles, effectively disrupting cellular homeostasis and survival. A major shift in the reactive oxygen species (ROS) and nitric oxide (NO) equanimity was also observed, unleashing major altercations in several crucial biochemical profiles. Altered antioxidant contents and upregulation of stress-responsive genes, namely, Catalase, Ascorbate peroxidase, Superoxide dismutase, and Rubisco activase, showing on average 50-250% rise across NiO-NP concentrations tested, also entailed increased cellular hydrogen peroxide contents, with tandem rise in cellular NO. Increased NO content was evinced from altered concentrations of nitric oxide synthase and nitrate reductase, along with NADPH oxidase, when compared with the negative control. Though initially showing a dose-dependent concomitant rise, a significant decrease of NO was observed at higher concentrations of NiO-NP, while cellular ROS continued to increase. Modified K/Na ratios, with increased proline concentrations and GABA contents, all hallmarks of cellular stress, correlated with ROS-NO perturbations. Detailed studies showed that NiO-NP concentration had a significant role in inducing toxicity, perturbing the fine balance of ROS-NO, which turned lethal for the cell at higher dosages of the ENP precipitating in the accumulation of stress markers and an inevitable shutdown of cellular mechanisms.
Collapse
Affiliation(s)
- Indrani Manna
- Department of Botany, CAS, University of Calcutta, Kolkata, India
| | - Saikat Sahoo
- Department of Botany, Krishna Chandra College, Hetampur, India
| | | |
Collapse
|
11
|
Quan M, Liu X, Xiao L, Chen P, Song F, Lu W, Song Y, Zhang D. Transcriptome analysis and association mapping reveal the genetic regulatory network response to cadmium stress in Populus tomentosa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:576-591. [PMID: 32937662 DOI: 10.1093/jxb/eraa434] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Long non-coding RNAs (lncRNAs) play essential roles in plant abiotic stress responses, but the response of lncRNA-mediated genetic networks to cadmium (Cd) treatment remain elusive in trees, the promising candidates for phytoremediation of Cd contamination. We identified 172 Cd-responsive lncRNAs and 295 differentially expressed target genes in the leaves of Cd-treated Populus tomentosa. Functional annotation revealed that these lncRNAs were involved in various processes, including photosynthesis, hormone regulation, and phenylalanine metabolism. Association studies identified 78 significant associations, representing 14 Cd-responsive lncRNAs and 28 target genes for photosynthetic and leaf physiological traits. Epistasis uncovered 83 pairwise interactions among these traits, revealing Cd-responsive lncRNA-mediated genetic networks for photosynthesis and leaf physiology in P. tomentosa. We focused on the roles of two Cd-responsive lncRNA-gene pairs, MSTRG.22608.1-PtoMYB73 and MSTRG.5634.1-PtoMYB27, in Cd tolerance of Populus, and detected insertions/deletions within lncRNAs as polymorphisms driving target gene expression. Genotype analysis of lncRNAs and heterologous overexpression of PtoMYB73 and PtoMYB27 in Arabidopsis indicated their effects on enhancing Cd tolerance, photosynthetic rate, and leaf growth, and the potential interaction mechanisms of PtoMYB73 with abiotic stresses. Our study identifies the genetic basis for the response of Populus to Cd treatment, facilitating genetic improvement of Cd tolerance in trees.
Collapse
Affiliation(s)
- Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Panfei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fangyuan Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Lebrun M, De Zio E, Miard F, Scippa GS, Renzone G, Scaloni A, Bourgerie S, Morabito D, Trupiano D. Amending an As/Pb contaminated soil with biochar, compost and iron grit: effect on Salix viminalis growth, root proteome profiles and metal(loid) accumulation indexes. CHEMOSPHERE 2020; 244:125397. [PMID: 31812046 DOI: 10.1016/j.chemosphere.2019.125397] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/13/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
There is currently a large amount of research being done into the phytoremediation of polluted soils. Plant installation in contaminated soils may require the application of soil amendments, such as biochar, compost and/or iron grit, which can improve the soil conditions and reduce the metal (loid) phytoavailability and mobility. The beneficial effects of these amendments on soil properties, plant growth and metal (loid) accumulation ability have already been described, although their effect on the plants response machinery has been poorly studied. This study aimed to assess the effect of these amendments on Salix viminalis growth and metal (loid) accumulation, as well as elucidating associated molecular mechanisms. The results showed that the amendment applications improved plant growth by three fold, except for the biochar plus iron combination. It also revealed that metal (loid)s were not effectively translocated from the roots to the shoots (translocation factors <1), their bioaccumulation peaked in the roots, and increased in the presence of iron-based amendments. Corresponding proteomic profiles revealed 34 protein spots differentially represented and suggested that plants counteracted metal (loid)-induced oxidative stress after the addition of biochar and/or compost by eliciting proper defense and signaling pathways, and by redirecting the metabolic fluxes towards primary and secondary metabolism. However, they did highlight the occurrence of oxidative stress markers when the biochar plus iron amendment was applied, which could be both the cause and result of protein degradation impairment.
Collapse
Affiliation(s)
- Manhattan Lebrun
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, IS, Italy; LBLGC-EA 1207, INRA USC1328, Orléans University, Rue de Chartres, BP 6759, 45067, Orléans Cedex, France
| | - Elena De Zio
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, IS, Italy
| | - Florie Miard
- LBLGC-EA 1207, INRA USC1328, Orléans University, Rue de Chartres, BP 6759, 45067, Orléans Cedex, France
| | - Gabriella S Scippa
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, IS, Italy
| | - Giovanni Renzone
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Napoli, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Napoli, Italy
| | - Sylvain Bourgerie
- LBLGC-EA 1207, INRA USC1328, Orléans University, Rue de Chartres, BP 6759, 45067, Orléans Cedex, France
| | - Domenico Morabito
- LBLGC-EA 1207, INRA USC1328, Orléans University, Rue de Chartres, BP 6759, 45067, Orléans Cedex, France
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, IS, Italy.
| |
Collapse
|
13
|
Zhao C, Zhang L, Zhang X, Xu Y, Wei Z, Sun B, Liang M, Li H, Hu F, Xu L. Regulation of endogenous phytohormones alters the fluoranthene content in Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:935-943. [PMID: 31726575 DOI: 10.1016/j.scitotenv.2019.06.384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Phytohormones are crucial endogenous modulators that regulate and integrate plant growth and responses to various environmental pollutants, including the uptake of pollutants into the plant. However, possible links between endogenous phytohormone pathways and pollutant accumulation are unclear. Here we describe the fluoranthene uptake, plant growth, and superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST) activities in relation to different endogenous phytohormones and different levels in Arabidopsis thaliana. Three phytohormone inhibitors-N-1-naphthyl-phthalamic acid (NPA), daminozide (DZ), and silver nitrate (SN)-were used to regulate endogenous auxin, gibberellin, and ethylene levels, respectively. Fluoranthene inhibited plant growth and root proliferation while increasing GST and SOD activity. The three inhibitors reduced fluoranthene levels in Arabidopsis by either affecting plant growth or modulating antioxidant enzyme activity. NPA reduced plant growth and increased CAT activity. SN promoted plant growth and increased POD and CAT activity, whereas DZ increased POD activity.
Collapse
Affiliation(s)
- Chenyu Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Lihao Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xuhui Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yuanzhou Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhimin Wei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Bin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingxiang Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China.
| |
Collapse
|
14
|
Xu S, Li B, Li P, He X, Chen W, Yan K, Li Y, Wang Y. Soil high Cd exacerbates the adverse impact of elevated O 3 on Populus alba 'Berolinensis' L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:35-42. [PMID: 30818258 DOI: 10.1016/j.ecoenv.2019.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
Pollution with both heavy metal and ground-level ozone (O3) has been steadily increasing, especially in the cities with heavy industry. Little information is known about their combined impacts on urban tree. This study was aimed at characterizing the interactive effects of soil cadmium (Cd) addition and O3 fumigation on visible injury and growth, photosynthesis, oxidative stress, antioxidant enzyme activities, abscisic acid (ABA) content and bioaccumulation of Cd in one-year-old Populus alba 'Berolinensis' saplings by using open top chambers in Shenyang city with developed heavy industry, Northeast China. In this study, poplar saplings were grown in the pots containing soil with different concentrations of Cd (0, 100 and 500 mg kg-1) under ambient air (40 µg L-1) and elevated O3 (120 µg L-1). The results showed that EO and its combination with high Cd (500 mg kg-1) induced significant foliar injury symptoms, decreased root weight (by 41.6%) and total biomass (by 17.4%), inhibited net photosynthetic rate and stomatal conductance, and increased malondialdehyde and ABA contents after 4 weeks of O3 exposure. Elevated O3 exacerbated the accumulation of Cd in leaves and stems of poplar plants grown in the pots with high Cd-polluted soil. Our results also indicated that high Cd pollution in soil increased the susceptibility of plants to O3 and exacerbated the adverse impact of elevated O3 on physiological metabolisms of poplar species, which implied that it was very necessary to take into consideration for O3-tolerance of tree species during phytoremediation of Cd-polluted soil in heavy industrial areas.
Collapse
Affiliation(s)
- Sheng Xu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Bo Li
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Pin Li
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xingyuan He
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Wei Chen
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Kun Yan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yan Li
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Yijing Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| |
Collapse
|
15
|
Mishra B, Chand S, Singh Sangwan N. ROS management is mediated by ascorbate-glutathione-α-tocopherol triad in co-ordination with secondary metabolic pathway under cadmium stress in Withania somnifera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:620-629. [PMID: 31035173 DOI: 10.1016/j.plaphy.2019.03.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Being static, plants are frequently exposed to various essential and non-essential heavy metals from the surroundings. This exposure results in considerable ROS generation leading to oxidative stress, the primary response of the plants under heavy metal stress. Withania somnifera is a reputed Indian medicinal plant in Ayurveda, having various pharmacological activities due to the presence of withanolides. The present study deals with the understanding endurance of oxidative stress caused by heavy metal exposure and its management through antioxidant partners in synchronization with secondary metabolites in W. somnifera. The quantitative assessment of enzymatic/non-enzymatic antioxidants revealed significant participation of ascorbate-glutathione-α-tocopherol triad in ROS management. Higher activities of glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) resulted in glutathione and ascorbate accumulation. In addition, superoxide dismutase (SOD), glutathione peroxidase (GPX) and peroxidase (POD) were contributed considerably in ROS homeostasis maintenance. In-situ localization and assays related to ROS generation/scavenging revealed key management of ROS status under Cd stress. Higher antioxidative and reducing power activity attributed to the tolerance capability to the plant. Increased expression of withanolide biosynthetic pathway genes such as WsHMGR, WsDXS, WsDXR and WsCAS correlated with enhanced withanolides. The present study indicated the crucial role of the ascorbate-glutathione-α-tocopherol triad in co-ordination with withanolide biosynthesis in affording the oxidative stress, possibly through a cross-talk between the antioxidant machinery and secondary metabolite biosynthesis. The knowledge may be useful in providing the guidelines for developing abiotic stress resistance in plants using conventional and molecular approaches.
Collapse
Affiliation(s)
- Bhawana Mishra
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), AcSIR Campus, CSIR-Human Resource Development Centre Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad, 201002, U.P., India
| | - Sukhmal Chand
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Neelam Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India; Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
16
|
Lomaglio T, Hattab-Hambli N, Miard F, Lebrun M, Nandillon R, Trupiano D, Scippa GS, Gauthier A, Motelica-Heino M, Bourgerie S, Morabito D. Cd, Pb, and Zn mobility and (bio)availability in contaminated soils from a former smelting site amended with biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25744-25756. [PMID: 28730365 DOI: 10.1007/s11356-017-9521-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
Biochar is a potential candidate for the remediation of metal(loid)-contaminated soils. However, the mechanisms of contaminant-biochar retention and release depend on the amount of soil contaminants and physicochemical characteristics, as well as the durability of the biochar contaminant complex, which may be related to the pyrolysis process parameters. The objective of the present study was to evaluate, in a former contaminated smelting site, the impact of two doses of wood biochar (2 and 5% w/w) on metal immobilization and/or phytoavailability and their effectiveness in promoting plant growth in mesocosm experiments. Different soil mixtures were investigated. The main physicochemical parameters and the Cd, Pb, and Zn contents were determined in soil and in soil pore water. Additionally, the growth, dry weight, and metal concentrations were analyzed in the different dwarf bean plant (Phaseolus vulgaris L.) organs tested. Results showed that the addition of biochar at two doses (2 and 5%) improved soil conditions by increasing soil pH, electrical conductivity, and water holding capacity. Furthermore, the application of biochar (5%) to metal-contaminated soil reduced Cd, Pb, and Zn mobility and availability, and hence their accumulation in the different P. vulgaris L. organs. In conclusion, the data clearly demonstrated that biochar application can be effectively used for Cd, Pb, and Zn immobilization, thereby reducing their bioavailability and phytotoxicity.
Collapse
Affiliation(s)
- Tonia Lomaglio
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
- Department of Bioscienze and Territorio, Contrada fonte Lappone, University of Molise, 86090, Isernia, Italy
| | - Nour Hattab-Hambli
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
| | - Florie Miard
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
| | - Manhattan Lebrun
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
- Department of Bioscienze and Territorio, Contrada fonte Lappone, University of Molise, 86090, Isernia, Italy
| | - Romain Nandillon
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
- Campus Géosciences ISTO, UMR 7327 and CNRS/University of Orléans, 45071, Orléans CEDEX 2, France
| | - Dalila Trupiano
- Department of Bioscienze and Territorio, Contrada fonte Lappone, University of Molise, 86090, Isernia, Italy
| | - Gabriella Stefania Scippa
- Department of Bioscienze and Territorio, Contrada fonte Lappone, University of Molise, 86090, Isernia, Italy
| | - Arnaud Gauthier
- LGCgE, University of Lille 1, 59655, Villeneuve d'Ascq, France
| | - Mikael Motelica-Heino
- Campus Géosciences ISTO, UMR 7327 and CNRS/University of Orléans, 45071, Orléans CEDEX 2, France
| | - Sylvain Bourgerie
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
| | - Domenico Morabito
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France.
| |
Collapse
|
17
|
Growth Responses and Photosynthetic Indices of Bamboo Plant ( Indocalamus latifolius) under Heavy Metal Stress. ScientificWorldJournal 2018; 2018:1219364. [PMID: 30111987 PMCID: PMC6077520 DOI: 10.1155/2018/1219364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/08/2018] [Indexed: 11/24/2022] Open
Abstract
Investigating factors involved in the alleviation of the toxic effects of heavy metals (HMs) on plants is regarded as one of the important research concerns in the environmental field. The southern regions of China are severely impacted by human-induced heavy metal (HM) contamination, which poses an impediment to growth and productivity of bamboo (Indocalamus latifolius) plants. This necessitates the investigation of the effects of HMs on growth and physiological properties of bamboo. Therefore, the aim of the study was to evaluate some gas exchange and growth parameters in two-year-old bamboo species under HMs stress. A greenhouse-based experiment was conducted at Nanjing Forestry University, where the bamboo plant was treated with three HMs (Cu, Pb, and Zn) at four different concentrations (0, 500, 1000, and 2000 mg kg-1). The results illustrated that excessive HMs (1000 and 2000 mg kg−1) triggered a decline in a number of photosynthetic-related indices including the rate of photosynthesis (μmol CO2 m−2 s−1), intercellular CO2 concentration (μmol CO2 mol−1), conductance to H2O (mol H2O m−2 s−1), and net assimilation as well as transpiration. Morphological indices were also depressed as a result of the adverse influence of HMs, leading to decreased shoot length (10 to 73%) and reduced number of emerged plants (6 to 57%). Also, the results indicated that Pb had the greatest harmful impact on the growth indices.
Collapse
|
18
|
Szuba A, Lorenc-Plucińska G. Field proteomics of Populus alba grown in a heavily modified environment - An example of a tannery waste landfill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1557-1571. [PMID: 28712470 DOI: 10.1016/j.scitotenv.2017.06.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 05/19/2023]
Abstract
Tannery waste is highly toxic and dangerous to living organisms because of the high heavy metal content, especially chromium [Cr(III)]. This study analysed the proteomic response of the Populus alba L. clone 'Villafranca' grown for 4years on a tannery waste landfill. In this extremely hostile environment, the plants struggled with continuous stress, which inhibited growth by 54%, with a 67% decrease in tree height and diameter at breast height compared to those of the forest reference plot, respectively. The leaves and roots of the tannery landfill-grown plants produced strong proteomic stress signals for protection against reactive oxygen species (ROS) and repair to ROS-damaged proteins and DNA as well as signals for protection of the photosynthetic apparatus. The content of HSP80 was also high. However, primary metabolic pathways were generally unaffected, and signals of increased protein protection, but not turnover, were found, indicating mechanisms of adaptation to long-term stress conditions present at the landfill. A proteomic tool, two-dimensional electrophoresis coupled with tandem mass spectrometry, was successfully applied in this environmental in situ study of distant plots (280km apart).
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | | |
Collapse
|
19
|
Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY. Responses of Plant Proteins to Heavy Metal Stress-A Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1492. [PMID: 28928754 PMCID: PMC5591867 DOI: 10.3389/fpls.2017.01492] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 05/17/2023]
Abstract
Plants respond to environmental pollutants such as heavy metal(s) by triggering the expression of genes that encode proteins involved in stress response. Toxic metal ions profoundly affect the cellular protein homeostasis by interfering with the folding process and aggregation of nascent or non-native proteins leading to decreased cell viability. However, plants possess a range of ubiquitous cellular surveillance systems that enable them to efficiently detoxify heavy metals toward enhanced tolerance to metal stress. As proteins constitute the major workhorses of living cells, the chelation of metal ions in cytosol with phytochelatins and metallothioneins followed by compartmentalization of metals in the vacuoles as well as the repair of stress-damaged proteins or removal and degradation of proteins that fail to achieve their native conformations are critical for plant tolerance to heavy metal stress. In this review, we provide a broad overview of recent advances in cellular protein research with regards to heavy metal tolerance in plants. We also discuss how plants maintain functional and healthy proteomes for survival under such capricious surroundings.
Collapse
Affiliation(s)
- Md. Kamrul Hasan
- Department of Horticulture, Zhejiang UniversityHangzhou, China
- Department of Agricultural Chemistry, Sylhet Agricultural UniversitySylhet, Bangladesh
| | - Yuan Cheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | | | - Xian-Yao Chu
- Zhejiang Institute of Geological Survey, Geological Research Center for Agricultural Applications, China Geological SurveyBeijing, China
| | | | - Zhen-Yu Qi
- Agricultural Experiment Station, Zhejiang UniversityHangzhou, China
| |
Collapse
|
20
|
Vankova R, Landa P, Podlipna R, Dobrev PI, Prerostova S, Langhansova L, Gaudinova A, Motkova K, Knirsch V, Vanek T. ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:535-542. [PMID: 28360003 DOI: 10.1016/j.scitotenv.2017.03.160] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 05/09/2023]
Abstract
At present, nanoparticles have been more and more used in a wide range of areas. However, very little is known about the mechanisms of their impact on plants, as both positive and negative effects have been reported. As plant interactions with the environment are mediated by plant hormones, complex phytohormone analysis has been performed in order to characterize the effect of ZnO nanoparticles (mean size 30nm, concentration range 0.16-100mgL-1) on Arabidopsis thaliana plants. Taking into account that plant hormones exhibit high tissue-specificity as well as an intensive cross-talk in the regulation of growth and development as well as defense, plant responses were followed by determination of the content of five main phytohormones (cytokinins, auxins, abscisic acid, salicylic acid and jasmonic acid) in apices, leaves and roots. Increasing nanoparticle concentration was associated with gradually suppressed biosynthesis of the growth promoting hormones cytokinins and auxins in shoot apical meristems (apices). In contrast, cis-zeatin, a cytokinin associated with stress responses, was elevated by 280% and 590% upon exposure to nanoparticle concentrations 20 and 100mgL-1, respectively, in roots. Higher ZnO nanoparticle doses resulted in up-regulation of the stress hormone abscisic acid, mainly in apices and leaves. In case of salicylic acid, stimulation was found in leaves and roots. The other stress hormone jasmonic acid (as well as its active metabolite jasmonate isoleucine) was suppressed at the presence of nanoparticles. The earliest response to nanoparticles, associated with down-regulation of growth as well as of cytokinins and auxins, was observed in apices. At higher dose, up-regulation of abscisic acid, was detected. This increase, together with elevation of the other stress hormone - salicylic acid, indicates that plants sense nanoparticles as severe stress. Gradual accumulation of cis-zeatin in roots may contribute to relatively higher stress resistance of this tissue.
Collapse
Affiliation(s)
- Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Premysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Radka Podlipna
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Prague 6, Czech Republic; Department of Experimental Biology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague 2, Czech Republic
| | - Lenka Langhansova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Katerina Motkova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Tomas Vanek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| |
Collapse
|
21
|
Xu D, Yuan H, Tong Y, Zhao L, Qiu L, Guo W, Shen C, Liu H, Yan D, Zheng B. Comparative Proteomic Analysis of the Graft Unions in Hickory ( Carya cathayensis) Provides Insights into Response Mechanisms to Grafting Process. FRONTIERS IN PLANT SCIENCE 2017; 8:676. [PMID: 28496455 PMCID: PMC5406401 DOI: 10.3389/fpls.2017.00676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 04/12/2017] [Indexed: 05/18/2023]
Abstract
Hickory (Carya cathayensis), a tree with high nutritional and economic value, is widely cultivated in China. Grafting greatly reduces the juvenile phase length and makes the large scale cultivation of hickory possible. To reveal the response mechanisms of this species to grafting, we employed a proteomics-based approach to identify differentially expressed proteins in the graft unions during the grafting process. Our study identified 3723 proteins, of which 2518 were quantified. A total of 710 differentially expressed proteins (DEPs) were quantified and these were involved in various molecular functional and biological processes. Among these DEPs, 341 were up-regulated and 369 were down-regulated at 7 days after grafting compared with the control. Four auxin-related proteins were down-regulated, which was in agreement with the transcription levels of their encoding genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the 'Flavonoid biosynthesis' pathway and 'starch and sucrose metabolism' were both significantly up-regulated. Interestingly, five flavonoid biosynthesis-related proteins, a flavanone 3-hyfroxylase, a cinnamate 4-hydroxylase, a dihydroflavonol-4-reductase, a chalcone synthase, and a chalcone isomerase, were significantly up-regulated. Further experiments verified a significant increase in the total flavonoid contents in scions, which suggests that graft union formation may activate flavonoid biosynthesis to increase the content of a series of downstream secondary metabolites. This comprehensive analysis provides fundamental information on the candidate proteins and secondary metabolism pathways involved in the grafting process for hickory.
Collapse
Affiliation(s)
- Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Yafei Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Liang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Lingling Qiu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Wenbin Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Hongjia Liu
- Crop and Nuclear Technology Institute, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
- *Correspondence: Bingsong Zheng, Daoliang Yan,
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
- *Correspondence: Bingsong Zheng, Daoliang Yan,
| |
Collapse
|
22
|
Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 241:73-137. [PMID: 27300014 DOI: 10.1007/398_2016_8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This review summarizes the findings of the most recent studies, published from 2000 to 2016, which focus on the biogeochemical behavior of Cd in soil-plant systems and its impact on the ecosystem. For animals and people not subjected to a Cd-contaminated environment, consumption of Cd contaminated food (vegetables, cereals, pulses and legumes) is the main source of Cd exposure. As Cd does not have any known biological function, and can further cause serious deleterious effects both in plants and mammalian consumers, cycling of Cd within the soil-plant system is of high global relevance.The main source of Cd in soil is that which originates as emissions from various industrial processes. Within soil, Cd occurs in various chemical forms which differ greatly with respect to their lability and phytoavailability. Cadmium has a high phytoaccumulation index because of its low adsorption coefficient and high soil-plant mobility and thereby may enter the food chain. Plant uptake of Cd is believed to occur mainly via roots by specific and non-specific transporters of essential nutrients, as no Cd-specific transporter has yet been identified. Within plants, Cd causes phytotoxicity by decreasing nutrient uptake, inhibiting photosynthesis, plant growth and respiration, inducing lipid peroxidation and altering the antioxidant system and functioning of membranes. Plants tackle Cd toxicity via different defense strategies such as decreased Cd uptake or sequestration into vacuoles. In addition, various antioxidants combat Cd-induced overproduction of ROS. Other mechanisms involve the induction of phytochelatins, glutathione and salicylic acid.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès-Toulouse II, 5 Allée Antonio Machado, 31058, Toulouse Cedex 9, France
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Southern Cross GeoScience, Southern Cross University, Lismore, 2480, NSW, Australia
| | | |
Collapse
|
23
|
RETRACTED ARTICLE: Cadmium permeates through calcium channels and activates transcriptomic complexity in wheat roots in response to cadmium stress. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0488-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Luo ZB, He J, Polle A, Rennenberg H. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 2016; 34:1131-1148. [DOI: 10.1016/j.biotechadv.2016.07.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
|
25
|
Mustafa G, Komatsu S. Toxicity of heavy metals and metal-containing nanoparticles on plants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:932-44. [PMID: 26940747 DOI: 10.1016/j.bbapap.2016.02.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/13/2016] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
26
|
Yue R, Lu C, Qi J, Han X, Yan S, Guo S, Liu L, Fu X, Chen N, Yin H, Chi H, Tie S. Transcriptome Analysis of Cadmium-Treated Roots in Maize (Zea mays L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1298. [PMID: 27630647 PMCID: PMC5006096 DOI: 10.3389/fpls.2016.01298] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/15/2016] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) is a heavy metal and is highly toxic to all plant species. However, the underlying molecular mechanism controlling the effects of auxin on the Cd stress response in maize is largely unknown. In this study, the transcriptome produced by maize 'Zheng 58' root responses to Cd stress was sequenced using Illumina sequencing technology. In our study, six RNA-seq libraries yielded a total of 244 million clean short reads and 30.37 Gb of sequence data. A total of 6342 differentially expressed genes (DEGs) were grouped into 908 Gene Ontology (GO) categories and 198 Kyoto Encyclopedia of Genes and Genomes terms. GO term enrichment analysis indicated that various auxin signaling pathway-related GO terms were significantly enriched in DEGs. Comparison of the transcript abundances for auxin biosynthesis, transport, and downstream response genes revealed a universal expression response under Cd treatment. Furthermore, our data showed that free indole-3-acetic acid (IAA) levels were significantly reduced; but IAA oxidase activity was up-regulated after Cd treatment in maize roots. The analysis of Cd activity in maize roots under different Cd and auxin conditions confirmed that auxin affected Cd accumulation in maize seedlings. These results will improve our understanding of the complex molecular mechanisms underlying the response to Cd stress in maize roots.
Collapse
Affiliation(s)
- Runqing Yue
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Caixia Lu
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Jianshuang Qi
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Xiaohua Han
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Shufeng Yan
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Shulei Guo
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Lu Liu
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Xiaolei Fu
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Nana Chen
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Haiyan Yin
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Haifeng Chi
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Shuanggui Tie
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
- *Correspondence: Shuanggui Tie,
| |
Collapse
|