1
|
Li L, Liang Y, Liu Y, Sun Z, Liu Y, Yuan Z, Fu C. Transcriptome analyses reveal photosynthesis-related genes involved in photosynthetic regulation under low temperature stress in Lavandula angustifolia Mill. FRONTIERS IN PLANT SCIENCE 2023; 14:1268666. [PMID: 38107014 PMCID: PMC10722586 DOI: 10.3389/fpls.2023.1268666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023]
Abstract
In order to reveal the mechanisms of photosynthetic regulation of Lavandula angustifolia Mill. under low temperature stress, photosynthesis-related genes were screened and the molecular mechanism were analyzed for this species growing in Harbin, northeast of China. RNA-seq technique and photosynthetic physiology measurement were performed under 20°C, 10°C, and 0°C in this study. The results showed that the observing modified rectangular hyperbola mode could accurately reflect the light-response processes under low temperature stress and the low temperature reduced the light energy utilization of L. angustifolia. The stomatal conductance decreased with the temperature dropping, which was associated with the up-regulation of LaBAM1s, LaMPK4-1 and LaMMK2. The up-regulation of LaMPK4-1 and LaMMK2 was beneficial for ROS scavenging. The improvement of cold resistance in L. angustifolia was related to the up-regulated expression of LaFBA and LaOMTs and down-regulated expression of LaGAPAs, LaGOX, and LaTKL1s with the temperature decreasing. The up-expression of LaPSY at 10°C than it at 20°C could protect the photosynthetic organs from oxidative damage. Moreover, the photosynthetic rates at 10°C and 0°C were close to the measured values, which was related to the interactions of RCA with SBPase and Rubisco with SBPase. These findings could provide a theoretical reference for further exploring the cold tolerance mechanism of L. angustifolia, as an important aromatic plant resource, and promoting its cultivation and distribution in the northeast of China.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Yuchen Liang
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Yinan Liu
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Zeyi Sun
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Yuning Liu
- College of Science and Technology, Harbin Normal University, Harbin, China
| | - Zening Yuan
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
| | - Chang Fu
- College of Science and Technology, Harbin Normal University, Harbin, China
| |
Collapse
|
2
|
Wang YJ, Wu LL, Sun MH, Li Z, Tan XF, Li JA. Transcriptomic and metabolomic insights on the molecular mechanisms of flower buds in responses to cold stress in two Camellia oleifera cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1126660. [PMID: 36968351 PMCID: PMC10037702 DOI: 10.3389/fpls.2023.1126660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The Camellia oleifera (C. oleifera) cultivars 'Huashuo' (HS) and 'Huaxin' (HX) are new high-yielding and economically valuable cultivars that frequently encounter prolonged cold weather during the flowering period, resulting in decreased yields and quality. The flower buds of HS sometimes fail to open or open incompletely under cold stress, whereas the flower buds of HX exhibit delayed opening but the flowers and fruits rarely drop. METHODS In this study, flower buds at the same development stage of two C. oleifera cultivars were used as test materials for a combination of physiological, transcriptomic and metabolomic analyses, to unravel the different cold regulatory mechanisms between two cultivars of C. oleifera. RESULTS AND DISCUSSION Key differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) involved in sugar metabolism, phenylpropanoid biosynthesis, and hormone signal transduction were significantly higher in HX than in HS, which is consistent with phenotypic observations from a previous study. The results indicate that the flower buds of HX are less affected by long-term cold stress than those of HS, and that cold resistance in C. oleifera cultivars varies among tissues or organs.This study will provide a basis for molecular markers and molecular breeding of C. oleifera.
Collapse
Affiliation(s)
- Ya-Jun Wang
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
- Camellia Oil Tree Research Institute of Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| | - Ling-Li Wu
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
- Camellia Oil Tree Research Institute of Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| | - Min-hong Sun
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
| | - Ze Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
- Camellia Oil Tree Research Institute of Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| | - Xiao-Feng Tan
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
- Camellia Oil Tree Research Institute of Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| | - Jian-An Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
- Camellia Oil Tree Research Institute of Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| |
Collapse
|
3
|
Integrative Comparative Assessment of Cold Acclimation in Evergreen and Deciduous Iris Species. Antioxidants (Basel) 2022; 11:antiox11050977. [PMID: 35624841 PMCID: PMC9137773 DOI: 10.3390/antiox11050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cold acclimation (CA) is a strategy which plants have evolved to increase freezing tolerance. Global climate change could obstruct CA and raise the probability of winter injury, especially for evergreens. Hence, understanding the regulatory mechanism of CA is crucial to improve freezing tolerance in evergreen plants. A comparative study on a pair of closely related evergreen and deciduous iris species in response to cold through CA was conducive to uncovering and complementing the knowledge of CA. We investigated morphological, physiological and biochemical changes, as well as the expression of associated genes in the functional leaves of both iris species from natural CA to deacclimation. Briefly, fast and strong CA in the evergreen iris might cause early expressions of BAM1, NCED3, GPX6, etc., which leads to strong enzyme activity of starch degradation, abscisic acid biosynthesis and reactive oxygen species scavenging. Additionally, genes belonging to the antioxidant system were mainly induced during deacclimation. These results suggest that interspecies differences in the leaf freezing tolerance of irises are associated with the rate and degree of CA, which activates multiple signaling networks with complex interactions and induces the transcription of cold-responsive genes. Moreover, the ICE–CBF–COR signaling cascade may integrate and initiate diverse cold-responsive pathways during CA of the evergreen iris. The findings of this study provide valuable insight to further research on CA mechanisms and implicate genes which could support breeding strategies in herbaceous perennials under climate changes.
Collapse
|
4
|
Zeng Z, Zhang S, Li W, Chen B, Li W. Gene-coexpression network analysis identifies specific modules and hub genes related to cold stress in rice. BMC Genomics 2022; 23:251. [PMID: 35365095 PMCID: PMC8974213 DOI: 10.1186/s12864-022-08438-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background When plants are subjected to cold stress, they undergo a series of molecular and physiological changes to protect themselves from injury. Indica cultivars can usually withstand only mild cold stress in a relatively short period. Hormone-mediated defence response plays an important role in cold stress. Weighted gene co-expression network analysis (WGCNA) is a very useful tool for studying the correlation between genes, identifying modules with high phenotype correlation, and identifying Hub genes in different modules. Many studies have elucidated the molecular mechanisms of cold tolerance in different plants, but little information about the recovery process after cold stress is available. Results To understand the molecular mechanism of cold tolerance in rice, we performed comprehensive transcriptome analyses during cold treatment and recovery stage in two cultivars of near-isogenic lines (9311 and DC907). Twelve transcriptomes in two rice cultivars were determined. A total of 2509 new genes were predicted by fragment splicing and assembly, and 7506 differentially expressed genes were identified by pairwise comparison. A total of 26 modules were obtained by expression-network analysis, 12 of which were highly correlated with cold stress or recovery treatment. We further identified candidate Hub genes associated with specific modules and analysed their regulatory relationships based on coexpression data. Results showed that various plant-hormone regulatory genes acted together to protect plants from physiological damage under short-term low-temperature stress. We speculated that this may be common in rice. Under long-term cold stress, rice improved the tolerance to low-temperature stress by promoting autophagy, sugar synthesis, and metabolism. Conclusion Through WGCNA analysis at the transcriptome level, we provided a potential regulatory mechanism for the cold stress and recovery of rice cultivars and identified candidate central genes. Our findings provided an important reference for the future cultivation of rice strains with good tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08438-3.
Collapse
Affiliation(s)
- Zhichi Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Sichen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wenyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China. .,College of Agriculture, Guangxi University, Nanning, China.
| | - Wenlan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China. .,College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
5
|
Paul A, Chatterjee A, Subrahmanya S, Shen G, Mishra N. NHX Gene Family in Camellia sinensis: In-silico Genome-Wide Identification, Expression Profiles, and Regulatory Network Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:777884. [PMID: 34987532 PMCID: PMC8720784 DOI: 10.3389/fpls.2021.777884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Salt stress affects the plant growth and productivity worldwide and NHX is one of those genes that are well known to improve salt tolerance in transgenic plants. It is well characterized in several plants, such as Arabidopsis thaliana and cotton; however, not much is known about NHXs in tea plant. In the present study, NHX genes of tea were obtained through a genome-wide search using A. thaliana as reference genome. Out of the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes were localized in the endoplasmic reticulum (ER; CsNHX8) and plasma membrane (PM; CsNHX9), respectively. Furthermore, phylogenetic relationships along with structural analysis which includes gene structure, location, and protein-conserved motifs and domains were systematically examined and further, predictions were validated by the expression analysis. The dN/dS values show that the majority of tea NHX genes is subjected to strong purifying selection under the course of evolution. Also, functional interaction was carried out in Camellia sinensis based on the orthologous genes in A. thaliana. The expression profiles linked to various stress treatments revealed wide involvement of NHX genes from tea in response to various abiotic factors. This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the NHX regulatory network in C. sinensis.
Collapse
Affiliation(s)
| | | | | | - Guoxin Shen
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Neelam Mishra
- Department of Botany, St. Joseph’s College Autonomous, Bangalore, India
| |
Collapse
|
6
|
Tong W, Li R, Huang J, Zhao H, Ge R, Wu Q, Mallano AI, Wang Y, Li F, Deng W, Li Y, Xia E. Divergent DNA methylation contributes to duplicated gene evolution and chilling response in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1312-1327. [PMID: 33730390 DOI: 10.1111/tpj.15237] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruopei Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Huijuan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruoheng Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ali I Mallano
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
7
|
Liu L, Wang Z, Su Y, Wang T. Population transcriptomic sequencing reveals allopatric divergence and local adaptation in Pseudotaxus chienii (Taxaceae). BMC Genomics 2021; 22:388. [PMID: 34039278 PMCID: PMC8157689 DOI: 10.1186/s12864-021-07682-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Elucidating the effects of geography and selection on genetic variation is critical for understanding the relative importance of adaptation in driving differentiation and identifying the environmental factors underlying its occurrence. Adaptive genetic variation is common in tree species, especially widely distributed long-lived species. Pseudotaxus chienii can occupy diverse habitats with environmental heterogeneity and thus provides an ideal material for investigating the process of population adaptive evolution. Here, we characterize genetic and expression variation patterns and investigate adaptive genetic variation in P. chienii populations. RESULTS We generated population transcriptome data and identified 13,545 single nucleotide polymorphisms (SNPs) in 5037 unigenes across 108 individuals from 10 populations. We observed lower nucleotide diversity (π = 0.000701) among the 10 populations than observed in other gymnosperms. Significant negative correlations between expression diversity and nucleotide diversity in eight populations suggest that when the species adapts to the surrounding environment, gene expression and nucleotide diversity have a reciprocal relationship. Genetic structure analyses indicated that each distribution region contains a distinct genetic group, with high genetic differentiation among them due to geographical isolation and local adaptation. We used FST outlier, redundancy analysis, and latent factor mixed model methods to detect molecular signatures of local adaptation. We identified 244 associations between 164 outlier SNPs and 17 environmental variables. The mean temperature of the coldest quarter, soil Fe and Cu contents, precipitation of the driest month, and altitude were identified as the most important determinants of adaptive genetic variation. Most candidate unigenes with outlier signatures were related to abiotic and biotic stress responses, and the monoterpenoid biosynthesis and ubiquitin-mediated proteolysis KEGG pathways were significantly enriched in certain populations and deserve further attention in other long-lived trees. CONCLUSIONS Despite the strong population structure in P. chienii, genomic data revealed signatures of divergent selection associated with environmental variables. Our research provides SNPs, candidate unigenes, and biological pathways related to environmental variables to facilitate elucidation of the genetic variation in P. chienii in relation to environmental adaptation. Our study provides a promising tool for population genomic analyses and insights into the molecular basis of local adaptation.
Collapse
Affiliation(s)
- Li Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, Guangdong, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Frey FP, Pitz M, Schön CC, Hochholdinger F. Transcriptomic diversity in seedling roots of European flint maize in response to cold. BMC Genomics 2020; 21:300. [PMID: 32293268 PMCID: PMC7158136 DOI: 10.1186/s12864-020-6682-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Low temperatures decrease the capacity for biomass production and lead to growth retardation up to irreversible cellular damage in modern maize cultivars. European flint landraces are an untapped genetic resource for genes and alleles conferring cold tolerance which they acquired during their adaptation to the agroecological conditions in Europe. RESULTS Based on a phenotyping experiment of 276 doubled haploid lines derived from the European flint landrace "Petkuser Ferdinand Rot" diverging for cold tolerance, we selected 21 of these lines for an RNA-seq experiment. The different genotypes showed highly variable transcriptomic responses to cold. We identified 148, 3254 and 563 genes differentially expressed with respect to cold treatment, cold tolerance and growth rate at cold, respectively. Gene ontology (GO) term enrichment demonstrated that the detoxification of reactive oxygen species is associated with cold tolerance, whereas amino acids might play a crucial role as antioxidant precursors and signaling molecules. CONCLUSION Doubled haploids representing a European maize flint landrace display genotype-specific transcriptome patterns associated with cold response, cold tolerance and seedling growth rate at cold. Identification of cold regulated genes in European flint germplasm, could be a starting point for introgressing such alleles in modern breeding material for maize improvement.
Collapse
Affiliation(s)
- Felix P. Frey
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Marion Pitz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Chris-Carolin Schön
- Department of Plant Breeding, Technische Universität München, Freising, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Tian T, Qiao G, Wen Z, Deng B, Qiu Z, Hong Y, Wen X. Comparative transcriptome analysis reveals the molecular regulation underlying the adaptive mechanism of cherry (Cerasus pseudocerasus Lindl.) to shelter covering. BMC PLANT BIOLOGY 2020; 20:27. [PMID: 31952478 PMCID: PMC6967096 DOI: 10.1186/s12870-019-2224-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Rain-shelter covering is widely applied during cherry fruit development in subtropical monsoon climates with the aim of decreasing the dropping and cracking of fruit caused by excessive rainfall. Under rain-shelter covering, the characteristics of the leaves and fruit of the cherry plant may adapt to the changes in the microclimate. However, the molecular mechanism underlying such adaptation remains unclear, although clarifying it may be helpful for improving the yield and quality of cherry under rain-shelter covering. RESULTS To better understand the regulation and adaptive mechanism of cherry under rain-shelter covering, 38,621 and 3584 differentially expressed genes were identified with a combination of Illumina HiSeq and single-molecule real-time sequencing in leaves and fruits, respectively, at three developmental stages. Among these, key genes, such as those encoding photosynthetic-antenna proteins (Lhca and Lhcb) and photosynthetic electron transporters (PsbP, PsbR, PsbY, and PetF), were up-regulated following the application of rain-shelter covering, leading to increased efficiency of light utilization. The mRNA levels of genes involved in carbon fixation, namely, rbcL and rbcS, were clearly increased compared with those under shelter-free conditions, resulting in improved CO2 utilization. Furthermore, the transcription levels of genes involved in chlorophyll (hemA, hemN, and chlH) and carotenoid synthesis (crtB, PDS, crtISO, and lcyB) in the sheltered leaves peaked earlier than those in the unsheltered leaves, thereby promoting organic matter accumulation in leaves. Remarkably, the expression levels of key genes involved in the metabolic pathways of phenylpropanoid (PAL, C4H, and 4CL) and flavonoid (CHS, CHI, F3'H, DFR, and ANS) in the sheltered fruits were also up-regulated earlier than of those in the unsheltered fruits, conducive to an increase in anthocyanin content in the fruits. CONCLUSIONS According to the physiological indicators and transcriptional expression levels of the related genes, the adaptive regulation mechanism of cherry plants was systematically revealed. These findings can help understand the effect of rain-shelter covering on Chinese cherry cultivation in rainy regions.
Collapse
Affiliation(s)
- Tian Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
- Institute for Forest Resources & Environment of Guizhou/ College of Forestry, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Bin Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Zhilang Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Yi Hong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
- Institute for Forest Resources & Environment of Guizhou/ College of Forestry, Guizhou University, Guiyang, 550025 People’s Republic of China
| |
Collapse
|
10
|
Li FD, Tong W, Xia EH, Wei CL. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species. BMC Bioinformatics 2019; 20:553. [PMID: 31694521 PMCID: PMC6836513 DOI: 10.1186/s12859-019-3166-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Tea is the oldest and among the world’s most popular non-alcoholic beverages, which has important economic, health and cultural values. Tea is commonly produced from the leaves of tea plants (Camellia sinensis), which belong to the genus Camellia of family Theaceae. In the last decade, many studies have generated the transcriptomes of tea plants at different developmental stages or under abiotic and/or biotic stresses to investigate the genetic basis of secondary metabolites that determine tea quality. However, these results exhibited large differences, particularly in the total number of reconstructed transcripts and the quality of the assembled transcriptomes. These differences largely result from limited knowledge regarding the optimized sequencing depth and assembler for transcriptome assembly of structurally complex plant species genomes. Results We employed different amounts of RNA-sequencing data, ranging from 4 to 84 Gb, to assemble the tea plant transcriptome using five well-known and representative transcript assemblers. Although the total number of assembled transcripts increased with increasing sequencing data, the proportion of unassembled transcripts became saturated as revealed by plant BUSCO datasets. Among the five representative assemblers, the Bridger package shows the best performance in both assembly completeness and accuracy as evaluated by the BUSCO datasets and genome alignment. In addition, we showed that Bridger and BinPacker harbored the shortest runtimes followed by SOAPdenovo and Trans-ABySS. Conclusions The present study compares the performance of five representative transcript assemblers and investigates the key factors that affect the assembly quality of the transcriptome of the tea plants. This study will be of significance in helping the tea research community obtain better sequencing and assembly of tea plant transcriptomes under conditions of interest and may thus help to answer major biological questions currently facing the tea industry.
Collapse
Affiliation(s)
- Fang-Dong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.,School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Shi Y, Cai Z, Li D, Lu J, Ye J, Liang Y, Zheng X. Effect of Freezing on Photosystem II and Assessment of Freezing Tolerance of Tea Cultivar. PLANTS 2019; 8:plants8100434. [PMID: 31652528 PMCID: PMC6843692 DOI: 10.3390/plants8100434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/23/2022]
Abstract
Freezing tolerant tea cultivars are urgently needed. The tea cultivars with highly freezing tolerance showed resistance to freezing stress induced photoinhibition. Freezing sensitivity index (H) of 47 tea clonal cultivars was investigated after severe freezing winter in 2016. To develop instrumental methods for freezing tolerance selection, the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm) and leaf color indicator a on the Hunter color scale were determined on control group (non-frozen) and frozen group (being frozen at −15 °C for 2 h and then stood at 20 °C for 5 h) of the cultivars. When the two indicators were expressed as the ratios (RFv/Fm and Ra) of frozen group to control group, linear regression of the freezing sensitivity index (H) upon the RFv/Fm and Ra produced significant relationship respectively, i.e., H = 60.31 − 50.09 RFv/Fm (p < 0.01) and H = 30.03 − 10.82 Ra (p < 0.01). Expression of gene psbA encoding D1 protein and gene psbD encoding D2 protein in PSII showed that the frezzing tolerant tea cultivars maintained a high expression level of psbA after freezing stress, which is considered to be beneficial to de novo synthesis of D1 protein and sustaining PSII activity. These findings can provide instrumental tools for assessing freezing tolerance of tea cultivars in tea breeding program.
Collapse
Affiliation(s)
- Yunlong Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Zhuoyu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Da Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jianliang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yuerong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xinqiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Ma Q, Zhou Q, Chen C, Cui Q, Zhao Y, Wang K, Arkorful E, Chen X, Sun K, Li X. Isolation and expression analysis of CsCML genes in response to abiotic stresses in the tea plant (Camellia sinensis). Sci Rep 2019; 9:8211. [PMID: 31160625 PMCID: PMC6547691 DOI: 10.1038/s41598-019-44681-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Calmodulin-like (CML) proteins are a class of important Ca2+ sensors in plants, which play vital roles in regulating plant growth and development and response to abiotic stress. Tea plant (Camellia sinensis L.) is the most popular non-alcoholic economic beverage crop around the world. However, the potential functions of CMLs in either tea plants growth or in the response to environmental stresses are still unclear. In the present study, five CsCML genes (CsCML16, CsCML18-1, CsCML18-2, CsCML38, and CsCML42) were isolated from tea plant, and functionally characterized. The CsCML genes showed diverse expression patterns in leaves, roots, old stems, immature stems and flowers of tea plants. To investigate the expression changes of the genes under various abiotic stresses and ABA treatment, time-course experiments were also performed, the results indicated that the expression levels of CsCML16, 18-2 and 42 were significantly induced under low temperature and salt condition, while CsCML38 was induced distinctly under drought stress and ABA treatment. Overall, CsCML genes showed diverse function in tea plant under various stimuli. These results will increase our knowledge of the significance of CsCML genes in tea plant in response to abiotic stresses and hormone treatments.
Collapse
Affiliation(s)
| | - Qiongqiong Zhou
- Tea Research Institute, Nanjing Agricultural University, No. 1 Weigang avenue, Nanjing, 210095, China
| | - Canmei Chen
- Tea Research Institute, Nanjing Agricultural University, No. 1 Weigang avenue, Nanjing, 210095, China
| | - Qiaoyun Cui
- Tea Research Institute, Nanjing Agricultural University, No. 1 Weigang avenue, Nanjing, 210095, China
| | - Yuxin Zhao
- Tea Research Institute, Nanjing Agricultural University, No. 1 Weigang avenue, Nanjing, 210095, China
| | - Kun Wang
- Tea Research Institute, Nanjing Agricultural University, No. 1 Weigang avenue, Nanjing, 210095, China
| | - Emmanuel Arkorful
- Tea Research Institute, Nanjing Agricultural University, No. 1 Weigang avenue, Nanjing, 210095, China
| | - Xuan Chen
- Tea Research Institute, Nanjing Agricultural University, No. 1 Weigang avenue, Nanjing, 210095, China
| | - Kang Sun
- Tea Research Institute, Nanjing Agricultural University, No. 1 Weigang avenue, Nanjing, 210095, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, No. 1 Weigang avenue, Nanjing, 210095, China.
| |
Collapse
|
13
|
Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ. The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants (Basel) 2019; 8:E94. [PMID: 30965652 PMCID: PMC6523806 DOI: 10.3390/antiox8040094] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
Water deficiency compromises plant performance and yield in many habitats and in agriculture. In addition to survival of the acute drought stress period which depends on plant-genotype-specific characteristics, stress intensity and duration, also the speed and efficiency of recovery determine plant performance. Drought-induced deregulation of metabolism enhances generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which in turn affect the redox regulatory state of the cell. Strong correlative and analytical evidence assigns a major role in drought tolerance to the redox regulatory and antioxidant system. This review compiles current knowledge on the response and function of superoxide, hydrogen peroxide and nitric oxide under drought stress in various species and drought stress regimes. The meta-analysis of reported changes in transcript and protein amounts, and activities of components of the antioxidant and redox network support the tentative conclusion that drought tolerance is more tightly linked to up-regulated ascorbate-dependent antioxidant activity than to the response of the thiol-redox regulatory network. The significance of the antioxidant system in surviving severe phases of dehydration is further supported by the strong antioxidant system usually encountered in resurrection plants.
Collapse
Affiliation(s)
- Miriam Laxa
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, North Rhine Westphalia, Germany.
| | - Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, North Rhine Westphalia, Germany.
| | - Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, North Rhine Westphalia, Germany.
| | - Kamel Chibani
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, North Rhine Westphalia, Germany.
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, North Rhine Westphalia, Germany.
| |
Collapse
|
14
|
Transcriptome Analysis Reveals Key Cold-Stress-Responsive Genes in Winter Rapeseed ( Brassica rapa L.). Int J Mol Sci 2019; 20:ijms20051071. [PMID: 30832221 PMCID: PMC6429191 DOI: 10.3390/ijms20051071] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
Low ambient air temperature limits the growth and selection of crops in cold regions, and cold tolerance is a survival strategy for overwintering plants in cold winters. Studies of differences in transcriptional levels of winter rapeseed (Brassica rapa L.) under cold stress can improve our understanding of transcript-mediated cold stress responses. In this study, two winter rapeseed varieties, Longyou-7 (cold-tolerant) and Lenox (cold-sensitive), were used to reveal morphological, physiological, and transcriptome levels after 24 h of cold stress, and 24 h at room temperature, to identify the mechanism of tolerance to cold stress. Compared to Lenox, Longyou-7 has a shorter growth period and greater belowground mass, and exhibits stronger physiological activity after cold stress. Subsequently, more complete genomic annotation was obtained by sequencing. A total of 10,251 and 10,972 differentially expressed genes (DEG) were identified in Longyou-7 and Lenox, respectively. Six terms closely related to cold stress were found by the Gene Ontology (GO) function annotation. Some of these terms had greater upregulated expression in Longyou-7, and the expression of these genes was verified by qRT-PCR. Most of these DEGs are involved in phenylpropanoid biosynthesis, plant hormone signal transduction, ribosome biogenesis, MAPK signaling pathway, basal transcription factors, and photosynthesis. Analysis of the genes involved in the peroxisome pathway revealed that Longyou-7 and Lenox may have different metabolic patterns. Some transcription factors may play an important role in winter rapeseed tolerance to cold stress, and Longyou-7 is slightly slower than Lenox. Our results provide a transcriptome database and candidate genes for further study of winter rapeseed cold stress.
Collapse
|
15
|
De Novo Transcriptome Analysis of Dalbergia odorifera and Transferability of SSR Markers Developed from the Transcriptome. FORESTS 2019. [DOI: 10.3390/f10020098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dalbergia odorifera T. Chen (Fabaceae), indigenous to Hainan Island, is a precious rosewood (Hainan hualimu) in China. However, only limited genomic information is available which has resulted in a lack of molecular markers, limiting the development and utilization of the germplasm resources. In this study, we aim to enrich genomic information of D. odorifera, and develop a series of transferable simple sequence repeat (SSR) markers for Dalbergia species. Therefore, we performed transcriptome sequencing for D. odorifera by pooling leaf tissues from three trees. A dataset of 138,516,418 reads was identified and assembled into 115,292 unigenes. Moreover, 35,774 simple sequence repeats (SSRs) were identified as potential SSR markers. A set of 19 SSR markers was successfully transferred across species of Dalbergia odorifera T. Chen, Dalbergia tonkinensis Prain, and Dalbergia cochinchinensis Pierre ex Laness. In total, 112 alleles (3–13 alleles/locus) were presented among 60 Dalbergia trees, and polymorphic information content ranged from 0.38 to 0.75. The mean observed and mean expected heterozygosity was 0.34 and 0.40 in D. odorifera, 0.27 and 0.32 in D. tonkinensis, and 0.29 and 0.33 in D. cochinchinensis, respectively. The cluster analysis classified these 60 trees into three major groups according to the three Dalbergia species based on the genetic similarity coefficients, indicating these newly developed transferable markers can be used to explore the relationships among Dalbergia species and assist genetic research. All these unigenes and SSR markers will be useful for breeding programs in the future.
Collapse
|