1
|
Shabir R, Li Y, Megharaj M, Chen C. Biopolymer as an additive for effective biochar-based rhizobial inoculant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169263. [PMID: 38092216 DOI: 10.1016/j.scitotenv.2023.169263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Biochar is an efficient and inexpensive carrier for bacteria that stimulate plant development and growth. In this study, different biopolymer additives (cellulose, xanthan gum, chitin and tryptone) were tested with different addition ratios (1:0.1, 1:0.5 and 1:1) on further enhancing biochar capacity for supporting the growth and activity of Bradyrhizobium japonicum (CB1809). We utilized pine wood biochar (PWBC) pyrolyzed at 400 °C as the base inoculum carrier. The shelf life and survival rate of CB1809 were counted using the colony-forming unit (CFU) method for up to 120 days. Peat served as a standard reference material against which all treatments were compared. Subsequent experiments evaluated the ability of carrier inoculants to promote Glycine max L. (soybean) plant growth and nodulation under different watering regimes, i.e., 55 % water holding capacity (WHC) (D0), 30 % WHC (D1) and, 15 % WHC (D2) using sandy loam soil. Results revealed that among different additives; xanthan gum with 1:0.5 to PWBC [PWBC-xanthan gum(1:0.5)] was observed as a superior formulation in supporting rhizobial shelf life and survival rate of CB1809. In pot experiments, plants with PWBC-xanthan gum(1:0.5) formulation showed significant increase in various physiological characteristics (nitrogenase activity, chlorophyll pigments, membrane stability index, and relative water content), root architecture (root surface area, root average diameter, root volume, root tips, root forks and root crossings), and plant growth attributes (shoot/root dry biomass, shoot/root length, and number of nodules). Additionally, a reduced enrichment of isotopic signatures (δ13C, δ15N) was observed in plants treated with PWBC-xanthan gum(1:0.5), less enrichment of δ15N indicates an inverse link to nodulation and nitrogenase activity, while lower δ13C values indicates effective water use efficiency by plants during drought stress. These results suggest that biopolymers supplementation of the PWBC is useful in promoting shelf life or survival rate of CB1809.
Collapse
Affiliation(s)
- Rahat Shabir
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yantao Li
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mallavarapu Megharaj
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Chengrong Chen
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
2
|
Wang S, Han Y, Jia Y, Chen Z, Wang G. Addressing the Relationship between Leaf Nitrogen and Carbon Isotope Discrimination from the Three Levels of Community, Population and Individual. PLANTS (BASEL, SWITZERLAND) 2023; 12:1551. [PMID: 37050177 PMCID: PMC10097192 DOI: 10.3390/plants12071551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The carbon, nitrogen and water cycles of terrestrial ecosystems are important biogeochemical cycles. Addressing the relationship of leaf nitrogen (N) and carbon isotope discrimination (Δ) will enhance the understanding of the links between these three cycles in plant leaves because Δ can reflect time-integrated leaf-level water-use efficiency (WUE) over the period when the leaf material is produced. Previous studies have paid considerable attention to the relationship. However, these studies have not effectively eliminated the interference of environmental factors, inter-species, and inter-individual differences in this relationship, so new research is necessary. To minimize these interferences, the present work explored the relationship at the three levels of community, population, and plant individual. Three patterns of positive, negative and no relationship were observed across communities, populations, and individuals, which is dependent on environmental conditions, species, and plant individuals. The results strongly suggested that there is no general pattern for the relationship between leaf N and Δ. Furthermore, the results indicated that there is often no coupling between leaf-level long-term WUE and leaf N in the metabolic process of carbon, N and water in leaves. The main reason for the lack of this relationship is that most plants do not invest large amounts of nitrogen into photosynthesis. In addition, the present study also observed that, for most plant species, leaf N was not related to photosynthetic rate, and that variations in photosynthetic rates are mainly driven by stomatal conductance.
Collapse
Affiliation(s)
- Shuhan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Department of Biotechonology, College of Biotechonology and Pharmceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaowen Han
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yufu Jia
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Zixun Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Castillo B, Acuña E, Sánchez A, Cornejo P, Salazar O, Tapia Y. Phytostabilization of trace elements and 13C isotope composition of Atriplex atacamensis Phil. cultivated in mine tailings treated with organic amendments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:354. [PMID: 36729333 DOI: 10.1007/s10661-023-10973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Mining generates large quantities of mineral processing wastes that are typically stored in mine tailings (MT) ponds. Long-term exposure of the surrounding areas to the material from the tailings ponds has been reported to have adverse effects on both human health and the environment. The purpose of this study was to evaluate the ability of Atriplex atacamensis Phil. to phytostabilize metals (Cu, Fe, Mn, and Zn) and sulfur (S) when grown directly on mine tailings with and without compost (C) and humic substance (HS). The stress status of A. atacamensis Phil. was also evaluated through the 13C isotopic composition of bulk leaves. A 120-day greenhouse experiment was conducted and three treatments were evaluated: (i) MT without any amendments (control), (ii) MT + C (dose: 89 ton ha-1), and (iii) MT + HS (0.72 ton ha-1). Mine tailings material exhibited low salinity, alkaline pH, high extractable S-SO4 concentrations, and low fertility; total Fe, Mn, and Zn concentrations were within the reference range for mine tailings, but total Cu concentrations were high at 1860 ± 236 mg kg-1. The HS had higher pH, EC, CEC, and available concentrations of N, P, and K than compost, while S-SO4 concentrations were similar in both amendments. 13C NMR analysis showed that the HS contained more alkyl, aromatic, and phenolic groups, while the compost was dominated by O-alkyl and carboxyl groups. At the end of the experiment, the MT + C treatment achieved a significant decrease in Cu, Fe, and Mn concentrations in the roots and aboveground parts of A. atacamensis Phil. and an increase in Zn values in both tissues. Both amendments increased the sulfur content in the aboveground parts, while metal concentrations under the HS treatment proved similar to control. Furthermore, the δ13CV-PDB values obtained in this study indicate that the organic amendments did not cause additional physiological stress to the plants compared to the MT treatment. Overall, A. atacamensis Phil. was shown to have the ability to phytostabilize metals and sulfur, making it a potential candidate species for in situ evaluation of the phytostabilization process on mine tailings.
Collapse
Affiliation(s)
- Benjamín Castillo
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808, Santiago, Chile
| | - Edouard Acuña
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Andrea Sánchez
- Departamento de Producción Agrícola, Universidad de Chile, Santiago, 8820808, Chile
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260-000, Quillota, Chile
| | - Osvaldo Salazar
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808, Santiago, Chile
| | - Yasna Tapia
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808, Santiago, Chile.
| |
Collapse
|
4
|
Wang Z, Liu J, Wang Y, Agathokleous E, Hamoud YA, Qiu R, Hong C, Tian M, Shaghaleh H, Guo X. Relationships between stable isotope natural abundances (δ 13C and δ 15N) and water use efficiency in rice under alternate wetting and drying irrigation in soils with high clay contents. FRONTIERS IN PLANT SCIENCE 2022; 13:1077152. [PMID: 36531393 PMCID: PMC9756853 DOI: 10.3389/fpls.2022.1077152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Natural abundance of the stable isotope (δ13C and δ15N) in plants is widely used to indicate water use efficiency (WUE). However, soil water and texture properties may affect this relationship, which remains largely elusive. Therefore, the purpose of this study was to evaluate δ13C as affected by different combinations of alternate wetting and drying irrigation (AWD) with varied soil clay contents in different organs and whole plant and assess the feasibility of using δ13C and δ15N as a physiological indicator of whole-plant water use efficiency (WUEwhole-plant). Three AWD regimes, I100 (30 mm flooded when soil reached 100% saturation), I90 (30 mm flooded when reached 90% saturation) and I70 (30 mm flooded when reached 70% saturation) and three soil clay contents, 40% (S40), 50% (S50), and 60% (S60), were included. Observed variations in WUEwhole-plant did not conform to theoretical expectations of the organs δ13C (δ13Corgans) of plant biomass based on pooled data from all treatments. However, a positive relationship between δ13Cleaf and WUEET (dry biomass/evapotranspiration) was observed under I90 regime, whereas there were no significant relationships between δ13Corgans and WUEET under I100 or I70 regimes. Under I100, weak relationships between δ13Corgans and WUEET could be explained by (i) variation in C allocation patterns under different clay content, and (ii) relatively higher rate of panicle water loss, which was independent of stomatal regulation and photosynthesis. Under I70, weak relationships between δ13Corgans and WUEET could be ascribed to (i) bigger cracks induced by water-limited irrigation regime and high clay content soil, and (ii) damage caused by severe drought. In addition, a negative relationship was observed between WUEwhole-plant and shoot δ15N (δ15Nshoot) across the three irrigation treatments, indicating that WUEwhole-plant is tightly associated with N metabolism and N isotope discrimination in rice. Therefore, δ13C should be used cautiously as an indicator of rice WUEwhole-plant at different AWD regimes with high clay content, whereas δ15N could be considered an effective indicator of WUEwhole-plant.
Collapse
Affiliation(s)
- Zhenchang Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, China
| | - Jinjing Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, China
| | - Yaosheng Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Department of Soil and Land Reclamation, Aleppo University, Aleppo, Syria
| | - Rangjian Qiu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Cheng Hong
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, China
| | - Minghao Tian
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, China
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing, China
| | - Xiangping Guo
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, China
| |
Collapse
|
5
|
Snyder KA, Robinson SA, Schmidt S, Hultine KR. Stable isotope approaches and opportunities for improving plant conservation. CONSERVATION PHYSIOLOGY 2022; 10:coac056. [PMID: 35966756 PMCID: PMC9367551 DOI: 10.1093/conphys/coac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/15/2021] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Successful conservation of threatened species and ecosystems in a rapidly changing world requires scientifically sound decision-making tools that are readily accessible to conservation practitioners. Physiological applications that examine how plants and animals interact with their environment are now widely used when planning, implementing and monitoring conservation. Among these tools, stable-isotope physiology is a potentially powerful, yet under-utilized cornerstone of current and future conservation efforts of threatened and endangered plants. We review the underlying concepts and theory of stable-isotope physiology and describe how stable-isotope applications can support plant conservation. We focus on stable isotopes of carbon, hydrogen, oxygen and nitrogen to address plant ecophysiological responses to changing environmental conditions across temporal scales from hours to centuries. We review examples from a broad range of plant taxa, life forms and habitats and provide specific examples where stable-isotope analysis can directly improve conservation, in part by helping identify resilient, locally adapted genotypes or populations. Our review aims to provide a guide for practitioners to easily access and evaluate the information that can be derived from stable-isotope signatures, their limitations and how stable isotopes can improve conservation efforts.
Collapse
Affiliation(s)
- Keirith A Snyder
- Corresponding author: USDA Agricultural Research Service, Great Basin Rangelands Research Unit, Reno,
920 Valley Road, NV 89512, USA.
| | - Sharon A Robinson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Securing Antarctica’s Environmental Future, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, Building 62, Brisbane Queensland 4075, Australia
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 Galvin Parkway, Phoenix, AZ 85008, USA
| |
Collapse
|
6
|
de Souza Mateus N, Oliveira Ferreira EV, Florentino AL, Vicente Ferraz A, Domec JC, Jordan-Meille L, Bendassolli JA, Moraes Gonçalves JL, Lavres J. Potassium supply modulates Eucalyptus leaf water-status under PEG-induced osmotic stress: integrating leaf gas exchange, carbon and nitrogen isotopic composition and plant growth. TREE PHYSIOLOGY 2022; 42:59-70. [PMID: 34302172 DOI: 10.1093/treephys/tpab095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to quantify the effect of potassium (K) supply on osmotic adjustment and drought avoidance mechanisms of Eucalyptus seedlings growing under short-term water stress. The effects of K supply on plant growth, nutritional status, leaf gas exchange parameters, leaf water potential (Ψw), leaf area (LA), stomatal density (SD), leaf carbon (C) and nitrogen (N) isotopic compositions (δ13C and δ15N ‰) and leaf C/N ratio under polyethylene glycol (PEG)-induced water deficit were measured. Under both control (non-PEG) and osmotic stress (+PEG) conditions, K supply increased plant growth, boosting dry matter yield with decreased C/N leaf ratio and δ15N ‰ values. The +PEG significantly reduced LA, plant growth, dry matter yield, Ψw, number of stomata per plant and leaf gas exchange, relative to non-PEG condition. Potassium supply alleviated osmotic-induced alterations in Eucalyptus seedlings by better regulating leaf development as well as SD, thus improving the rate of leaf gas exchange parameters, mesophyll conductance to CO2 (lower δ13C ‰ values) and water use efficiency (WUE). Consequently, K-supplied plants under drought better acclimated to osmotic stress than K-deficient plants, which in turn induced lower CO2 assimilation and dry matter yield, as well as higher leaf δ13C ‰ and δ15N ‰ values. In conclusion, management practices should seek to optimize K-nutrition to improve WUE, photosynthesis-related parameters and plant growth under water deficit conditions.
Collapse
Affiliation(s)
- Nikolas de Souza Mateus
- Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo 13400-970, Brazil
| | | | | | | | | | | | | | | | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo 13400-970, Brazil
| |
Collapse
|
7
|
Changes in precipitation and atmospheric N deposition affect the correlation between N, P and K but not the coupling of water-element in Haloxylon ammodendron. PLoS One 2021; 16:e0258927. [PMID: 34679096 PMCID: PMC8535465 DOI: 10.1371/journal.pone.0258927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022] Open
Abstract
Global changes in precipitation and atmospheric N deposition affect the geochemical cycle of the element and its hydrological cycle in the ecosystem. It may also affect the relationship between plant water use efficiency (WUE) and nutrients, as well as the relationship between plant nutrients. Desert ecosystems are vulnerable to global changes. Haloxylon ammodendron is the dominant species in the Asian desert. Revealing the variations in these relationships in H. ammodendron with precipitation and N deposition will enhance our understanding of the responses of plants to global change in terms of trade-off strategies of nutrient absorption, water and element geochemical cycles in desert ecosystems. Thus, we conducted field experiments with different amounts of water and N. This study showed that WUE of H. ammodendron was not correlated with nitrogen content (N), phosphorus content (P), and potassium content (K) when water and N supply were varied (p > 0.05 for WUE vs. N, P, and K), suggesting lack of coupling between water use and nutrient economics. This result was associated with the lack of correlation between plant nutrients and gas exchang in H. ammodendron. However, water addition, N addition and the interaction between both of them all played a role in the correlation between plant N, P and K owing to their different responses to water and N supplies. This indicates that global changes in precipitation and N deposition will affect N, P and K geochemical cycles in the Asian deserts dominated by H. ammodendron, and drive changes in the relationships between plant nutrients, resulting in changes in the trade-off strategy of plant absorption of N, P, and K.
Collapse
|
8
|
Mateus NS, Florentino AL, Oliveira JB, Santos EF, Gaziola SA, Rossi ML, Linhares FS, Bendassolli JA, Azevedo RA, Lavres J. Leaf 13C and 15N composition shedding light on easing drought stress through partial K substitution by Na in eucalyptus species. Sci Rep 2021; 11:20158. [PMID: 34635753 PMCID: PMC8505639 DOI: 10.1038/s41598-021-99710-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed to investigate the partial K-replacement by Na supply to alleviate drought-induced stress in Eucalyptus species. Plant growth, leaf gas exchange parameters, water relations, oxidative stress (H2O2 and MDA content), chlorophyll concentration, carbon (C) and nitrogen (N) isotopic leaf composition (δ13C and δ15N) were analyzed. Drought tolerant E. urophylla and E. camaldulensis showed positive responses to the partial K substitution by Na, with similar dry mass yields, stomatal density and total stomatal pore area relative to the well K-supplied plants under both water conditions, suggesting that 50% of the K requirements is pressing for physiological functions that is poorly substituted by Na. Furthermore, E. urophylla and E. camaldulensis up-regulated leaf gas exchanges, leading to enhanced long-term water use efficiency (WUEL). Moreover, the partial K substitution by Na had no effects on plants H2O2, MDA, δ13C and δ15N, confirming that Na, to a certain extent, can effectively replace K in plants metabolism. Otherwise, the drought-sensitive E. saligna species was negatively affected by partial K replacement by Na, decreasing plants dry mass, even with up-regulated leaf gas exchange parameters. The exclusive Na-supplied plants showed K-deficient symptoms and lower growth, WUEL, and δ13C, besides higher Na accumulation, δ15N, H2O2 and MDA content.
Collapse
Affiliation(s)
- Nikolas Souza Mateus
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil.
| | | | - Jessica Bezerra Oliveira
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - Elcio Ferreira Santos
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | | | - Monica Lanzoni Rossi
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - Francisco Scaglia Linhares
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - José Albertino Bendassolli
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - Ricardo Antunes Azevedo
- College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, 13418-900, Brazil
| | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil.
| |
Collapse
|
9
|
Bhusal N, Lee M, Lee H, Adhikari A, Han AR, Han A, Kim HS. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146466. [PMID: 33744562 DOI: 10.1016/j.scitotenv.2021.146466] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 05/27/2023]
Abstract
The frequency and severity of drought are expected to increase due to climate change; therefore, selection of tree species for afforestation should consider drought resistance of the species for maximum survival and conservation of natural habitats. In this study, three soil moisture regimes: control (100% precipitation), mild drought (40% reduction in precipitation), and severe drought (80% reduction in precipitation) were applied to six gymnosperm and five angiosperm species for two consecutive years. We quantified the drought resistance index based on the root collar diameter and assessed the correlation between species drought resistance and other morphological, physiological, and biochemical traits by regression analysis. The prolonged drought stress altered the morphological, physiological, and biochemical traits, but the responses were species-specific. The species with high drought resistance had high leaf mass per area (LMA), photosynthetic rate (Pn), and midday leaf water potential (ΨMD), and low carbon isotopic discrimination (δ13C), flavonoid and polyphenol content, superoxide dismutase and DPPH radical scavenging activity. The highly drought-resistant species had a relatively less decrease in leaf size, Pn, and predawn leaf water potential (ΨPD), and less increase in δ13C, abscisic acid and sucrose content, and LMA compared to the control. The interannual variation in drought resistance (∆Rd) was positively correlated with the species hydroscopic slope (isohydric and anisohydric). Korean pine was highly resistant, sawtooth oak, hinoki cypress, East Asian white birch, East Asian ash, and mono maple were highly susceptible, and Korean red pine, Japanese larch, Sargent cherry, needle fir, and black pine were moderate in drought resistance under long-term drought. These findings will help species selection for afforestation programs and establishment of sustainable forests, especially of drought-tolerant species, under increased frequency and intensity of spring and summer droughts.
Collapse
Affiliation(s)
- Narayan Bhusal
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsu Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Hojin Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul 08826, Republic of Korea
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ah Reum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun 33657, Republic of Korea
| | - Areum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun 33657, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul 08826, Republic of Korea; National Center for Agro Meteorology, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Li T, Sun J, Fu Z. Halophytes Differ in Their Adaptation to Soil Environment in the Yellow River Delta: Effects of Water Source, Soil Depth, and Nutrient Stoichiometry. FRONTIERS IN PLANT SCIENCE 2021; 12:675921. [PMID: 34140965 PMCID: PMC8204056 DOI: 10.3389/fpls.2021.675921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The Yellow River Delta is water, salt, and nutrient limited and hence the growth of plants depend on the surrounding factors. Understanding the water, salt, and stoichiometry of plants and soil systems from the perspective of different halophytes is useful for exploring their survival strategies. Thus, a comprehensive investigation of water, salt, and stoichiometry characteristics in different halophytes and soil systems was carried out in this area. Results showed that the oxygen isotopes (δ18O) of three halophytes were significantly different (P < 0.05). Phragmites communis primarily used rainwater and soil water, while Suaeda salsa and Limonium bicolor mainly used soil water. The contributions of rainwater to three halophytes (P. communis, S. salsa, and L. bicolor) were 50.9, 9.1, and 18.5%, respectively. The carbon isotope (δ13C) analysis showed that P. communis had the highest water use efficiency, followed by S. salsa and L. bicolor. Na+ content in the aboveground and underground parts of different halophytes was all followed an order of S. salsa > L. bicolor > P. communis. C content and N:P in leaves of P. communis and N content of leaves in L. bicolor were significantly positively correlated with Na+. Redundancy analysis (RDA) between plants and each soil layer showed that there were different correlation patterns in the three halophytes. P. communis primarily used rainwater and soil water with low salt content in 60-80 cm, while the significant correlation indexes of C:N:P stoichiometry between plant and soil were mainly in a 20-40 cm soil layer. In S. salsa, the soil layer with the highest contribution of soil water and the closest correlation with the C:N:P stoichiometry of leaves were both in 10-20 cm layers, while L. bicolor were mainly in 40-80 cm soil layers. So, the sources of soil water and nutrient of P. communis were located in different soil layers, while there were spatial consistencies of soils in water and nutrient utilization of S. salsa and L. bicolor. These results are beneficial to a comprehensive understanding of the adaptability of halophytes in the Yellow River Delta.
Collapse
Affiliation(s)
- Tian Li
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Jingkuan Sun
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Zhanyong Fu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| |
Collapse
|
11
|
Cao X, Shen Q, Liu L, Cheng J. Relationships of growth, stable carbon isotope composition and anatomical properties of leaf and xylem in seven mulberry cultivars: a hint towards drought tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:287-297. [PMID: 31677322 DOI: 10.1111/plb.13067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The fast growth of mulberry depends on high water consumption, but considerable variations in drought tolerance exist across different cultivars. Physiological and anatomical mechanisms are important to plant survival under drought. However, few research efforts have been made to reveal the relationships of these two aspects in relation to drought tolerance. In this study, growth rates, leaf functional physiology and anatomical characteristics of leaf and xylem of 1-year-old saplings of seven mulberry cultivars at a common garden were compared. Their relationships were also explored. Growth, leaf physiology and anatomy were significantly different among the tested cultivars. Foliar stable carbon isotope composition (δ13 C) was negatively correlated with growth rates, and closely related to several leaf and xylem anatomical traits. Particularly, leaf thickness, predicted hydraulic conductivity and vessel element length jointly contributed 77% of the variability in δ13 C. Cultivar Wupu had small stomata, intermediate leaf thickness, the smallest hydraulically weighted vessel diameter and highest vessel number, and higher δ13 C; Yunguo1 had high abaxial stomatal density, low specific leaf area, moderate hydraulic conductivity and δ13 C; these are beneficial features to reduce leaf water loss and drought-induced xylem embolism in arid areas. Cultivar Liaolu11 had contrasting physiological and anatomical traits compared with the previous two cultivars, suggesting that it might be sensitive to drought. Our findings indicate that growth and δ13 C are closely associated with both leaf and xylem anatomical characteristics in mulberry, which provides fundamental information to assist evaluation of drought tolerance in mulberry cultivars and in other woody trees.
Collapse
Affiliation(s)
- X Cao
- Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Q Shen
- Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - L Liu
- Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - J Cheng
- Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
12
|
Gouveia CSS, Ganança JFT, Slaski J, Lebot V, Pinheiro de Carvalho MÂA. Variation of carbon and isotope natural abundances (δ 15N and δ 13C) of whole-plant sweet potato (Ipomoea batatas L.) subjected to prolonged water stress. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153052. [PMID: 31689580 DOI: 10.1016/j.jplph.2019.153052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Sweet potato (Ipomoea batatas L.) is an important crop in the world, cultivated in temperate climates under low inputs. Drought changes the plant biomass allocation, together with the carbon and nitrogen isotopic composition (δ13C and δ15N), whose changes are faintly known in sweet potato crops. Here, we show the biomass allocation of eight sweet potato accessions submitted to drought during 3 months, using the δ13C, δ15N, carbon isotope discrimination (Δ13C), total carbon (TC) and water use efficiency (WUE) traits. The tolerant accessions had improved WUE, with higher TPB and TC. Storage roots and shoots had a heavier δ13C content under drought stress, with greater 13C fixation in roots. The Δ13C did not show a significant association with WUE. The δ15N values indicated a generalised N reallocation between whole-plant organs under drought, as a physiological integrator of response to environmental stress. This information can aid the selection of traits to be used in sweet potato breeding programs, to adapt this crop to climate change.
Collapse
Affiliation(s)
- Carla S S Gouveia
- ISOPlexis Genebank, University of Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - José F T Ganança
- ISOPlexis Genebank, University of Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal
| | - Jan Slaski
- ISOPlexis Genebank, University of Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal; Ecosystems and Plant Sciences, InnoTech Alberta, PO Bag 4000, Hwy 16A & 75 Street, Vegreville, Alberta, Canada
| | | | | |
Collapse
|