1
|
Albqmi M, Selim S, Bouqellah NA, Alnusaire TS, Almuhayawi MS, Al Jaouni SK, Hussein S, Warrad M, Al-Sanea MM, Abdelgawad MA, Mostafa EM, Aldilami M, Ahmed ES, AbdElgawad H. Improving plant adaptation to soil antimony contamination: the synergistic contribution of arbuscular mycorrhizal fungus and olive mill waste. BMC PLANT BIOLOGY 2024; 24:364. [PMID: 38702592 PMCID: PMC11069298 DOI: 10.1186/s12870-024-05044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.
Collapse
Affiliation(s)
- Mha Albqmi
- Department of Chemistry, College of Science, Jouf University, Sakaka, 72341, Saudi Arabia.
- Olive Research Center, Jouf University, Sakaka, Saudi Arabia.
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72341, Saudi Arabia.
| | - Nahla Alsayd Bouqellah
- Science College, Biology Department, Taibah University, Almadina, Almunawwarah, 42317-8599, Saudi Arabia
| | - Taghreed S Alnusaire
- Department of Biology, College of Science, Jouf University, Sakaka, 72341, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Qurayyat, Saudi Arabia
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, 72341, Sakaka, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, 72341, Sakaka, Saudi Arabia
| | - Ehab M Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, 72341, Sakaka, Saudi Arabia
| | - Mohammad Aldilami
- Science College, Biology Department, Taibah University, Almadina, Almunawwarah, 42317-8599, Saudi Arabia
| | - Enas S Ahmed
- Biology Department, College of Sciences, Majmaah University, 11952, Zulfi, Saudi Arabia
- Botany and Microbiology Department, Faculty of Sciences, Beni Suef University, Beni Suef, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Sciences, Beni Suef University, Beni Suef, Egypt
| |
Collapse
|
2
|
Zhang N, Ali S, Huang Q, Yang C, Ali B, Chen W, Zhang K, Ali S, Ulhassan Z, Zhou W. Seed pretreatment with brassinosteroids stimulates sunflower immunity against parasitic weed (Orobanche cumana) infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14324. [PMID: 38705866 DOI: 10.1111/ppl.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024]
Abstract
Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.
Collapse
Affiliation(s)
- Na Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Skhawat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Chong Yang
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Pakistan
| | - Weiqi Chen
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Kangni Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Ahmed N, Zhang B, Deng L, Bozdar B, Li J, Chachar S, Chachar Z, Jahan I, Talpur A, Gishkori MS, Hayat F, Tu P. Advancing horizons in vegetable cultivation: a journey from ageold practices to high-tech greenhouse cultivation-a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1357153. [PMID: 38685958 PMCID: PMC11057267 DOI: 10.3389/fpls.2024.1357153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Vegetable cultivation stands as a pivotal element in the agricultural transformation illustrating a complex interplay between technological advancements, evolving environmental perspectives, and the growing global demand for food. This comprehensive review delves into the broad spectrum of developments in modern vegetable cultivation practices. Rooted in historical traditions, our exploration commences with conventional cultivation methods and traces the progression toward contemporary practices emphasizing the critical shifts that have refined techniques and outcomes. A significant focus is placed on the evolution of seed selection and quality assessment methods underlining the growing importance of seed treatments in enhancing both germination and plant growth. Transitioning from seeds to the soil, we investigate the transformative journey from traditional soil-based cultivation to the adoption of soilless cultures and the utilization of sustainable substrates like biochar and coir. The review also examines modern environmental controls highlighting the use of advanced greenhouse technologies and artificial intelligence in optimizing plant growth conditions. We underscore the increasing sophistication in water management strategies from advanced irrigation systems to intelligent moisture sensing. Additionally, this paper discusses the intricate aspects of precision fertilization, integrated pest management, and the expanding influence of plant growth regulators in vegetable cultivation. A special segment is dedicated to technological innovations, such as the integration of drones, robots, and state-of-the-art digital monitoring systems, in the cultivation process. While acknowledging these advancements, the review also realistically addresses the challenges and economic considerations involved in adopting cutting-edge technologies. In summary, this review not only provides a comprehensive guide to the current state of vegetable cultivation but also serves as a forward-looking reference emphasizing the critical role of continuous research and the anticipation of future developments in this field.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Itrat Jahan
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Afifa Talpur
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | | | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Madany MMY, AbdElgawad H, Galilah DA, Khalil AMA, Saleh AM. Elevated CO 2 Can Improve the Tolerance of Avena sativa to Cope with Zirconium Pollution by Enhancing ROS Homeostasis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3792. [PMID: 38005689 PMCID: PMC10674191 DOI: 10.3390/plants12223792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023]
Abstract
Zirconium (Zr) is one of the toxic metals that are heavily incorporated into the ecosystem due to intensive human activities. Their accumulation in the ecosystem disrupts the food chain, causing undesired alterations. Despite Zr's phytotoxicity, its impact on plant growth and redox status remains unclear, particularly if combined with elevated CO2 (eCO2). Therefore, a greenhouse pot experiment was conducted to test the hypothesis that eCO2 can alleviate the phytotoxic impact of Zr upon oat (Avena sativa) plants by enhancing their growth and redox homeostasis. A complete randomized block experimental design (CRBD) was applied to test our hypothesis. Generally, contamination with Zr strikingly diminished the biomass and photosynthetic efficiency of oat plants. Accordingly, contamination with Zr triggered remarkable oxidative damage in oat plants, with concomitant alteration in the antioxidant defense system of oat plants. Contrarily, elevated levels of CO2 (eCO2) significantly mitigated the adverse effect of Zr upon both fresh and dry weights as well as the photosynthesis of oat plants. The improved photosynthesis consequently quenched the oxidative damage caused by Zr by reducing the levels of both H2O2 and MDA. Moreover, eCO2 augmented the total antioxidant capacity with the concomitant accumulation of molecular antioxidants (e.g., polyphenols, flavonoids). In addition, eCO2 not only improved the activities of antioxidant enzymes such as peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT) but also boosted the ASC/GSH metabolic pool that plays a pivotal role in regulating redox homeostasis in plant cells. In this regard, our research offers a novel perspective by delving into the previously unexplored realm of the alleviative effects of eCO2. It sheds light on how eCO2 distinctively mitigates oxidative stress induced by Zr, achieving this by orchestrating adjustments to the redox balance within oat plants.
Collapse
Affiliation(s)
- Mahmoud M. Y. Madany
- Biology Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41411, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Doaa A. Galilah
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. A. Khalil
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, Yanbu El-Bahr 46423, Saudi Arabia
| | - Ahmed M. Saleh
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, Yanbu El-Bahr 46423, Saudi Arabia
| |
Collapse
|
5
|
Hernández-Carranza P, Avila-Sosa R, Vera-López O, Navarro-Cruz AR, Ruíz-Espinosa H, Ruiz-López II, Ochoa-Velasco CE. Uncovering the Role of Hormones in Enhancing Antioxidant Defense Systems in Stressed Tomato ( Solanum lycopersicum) Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3648. [PMID: 37896111 PMCID: PMC10610232 DOI: 10.3390/plants12203648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023]
Abstract
Tomato is one of the most important fruits worldwide. It is widely consumed due to its sensory and nutritional attributes. However, like many other industrial crops, it is affected by biotic and abiotic stress factors, reducing its metabolic and physiological processes. Tomato plants possess different mechanisms of stress responses in which hormones have a pivotal role. They are responsible for a complex signaling network, where the antioxidant system (enzymatic and non-enzymatic antioxidants) is crucial for avoiding the excessive damage caused by stress factors. In this sense, it seems that hormones such as ethylene, auxins, brassinosteroids, and salicylic, jasmonic, abscisic, and gibberellic acids, play important roles in increasing antioxidant system and reducing oxidative damage caused by different stressors. Although several studies have been conducted on the stress factors, hormones, and primary metabolites of tomato plants, the effect of endogenous and/or exogenous hormones on the secondary metabolism is still poorly studied, which is paramount for tomato growing management and secondary metabolites production. Thus, this review offers an updated overview of both endogenous biosynthesis and exogenous hormone application in the antioxidant system of tomato plants as a response to biotic and abiotic stress factors.
Collapse
Affiliation(s)
- Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Raúl Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Obdulia Vera-López
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Addí R. Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Héctor Ruíz-Espinosa
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (H.R.-E.); (I.I.R.-L.)
| | - Irving I. Ruiz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (H.R.-E.); (I.I.R.-L.)
| | - Carlos E. Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| |
Collapse
|
6
|
Alsiary WA, AbdElgawad H, Madany MMY. How could actinobacteria augment the growth and redox homeostasis in barley plants grown in TiO 2NPs-contaminated soils? A growth and biochemical study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107943. [PMID: 37651952 DOI: 10.1016/j.plaphy.2023.107943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
The increases in titanium dioxide nanoparticles (TiO2-NPs) released into the environment have raised concerns about their toxicity. However, their phytotoxic impact on plants is not well studied. Therefore, this study aimed at a deeper understanding of the TiO2-NPs phytotoxic impact on barley (Hordeum vulgare) growth and stress defense. We also hypothesized that soil inoculation with bioactive Rhodospirillum sp. JY3 strain can be applied as a biological fertilizer to alleviate TiO2-NPs phytotoxicity. At TiO2-NPs phytotoxicity level, photosynthesis was significantly retarded (∼50% reduction) in TiO2-NPs treated-barley plants which accordingly affect the biomass of barley plants. This retardation was accompanied by a remarkable induction of oxidative damage (H2O2, lipid peroxidation) with a concomitant reduction in the antioxidant defense metabolism. At a glance, Rhodospirillum sp. JY3 ameliorated the reduction in growth by enhancing the photosynthetic efficiency in contaminated barley plants. Moreover, Rhodospirillum sp. JY3 inoculation reduced the oxidative damage induced by TiO2-NPs via quenching H2O2 production and lipid peroxidation. Regarding the antioxidant defense arsenal, Rhodospirillum sp. JY3 enhanced both enzymatic (e.g. peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), …. etc.) and non-enzymatic (glutathione (GSH), ascorbate (ASC), polyphenols, flavonoids, tocopherols) antioxidants in shoots and to a greater extent roots of barley plants. Moreover, the inoculation significantly enhanced the heavy metal-detoxifying metabolites (eg. phytochelatins, glutaredoxin, thioredoxin, peroxiredoxin) as well as metal-detoxifying enzymes in barley shoots and more apparently in roots of TiO2-NPs stressed plants. Furthermore, there was an organ-specific response to TiO2-NPs and Rhodospirillum sp. JY3. To this end, this study shed light, for the first time, on the molecular bases underlie TiO2-NPs stress mitigating impact of Rhodospirillum sp. JY3 and it introduced Rhodospirillum sp. JY3 as a promising eco-friendly tool in managing environmental risks to maintain agricultural sustainability.
Collapse
Affiliation(s)
- Waleed A Alsiary
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21441, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62511, Egypt
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
7
|
Halawani RF, Aloufi FA. Galaxolide-contaminated soil and tolerance strategies in soybean plants using biofertilization and selenium nanoparticle supplementation. FRONTIERS IN PLANT SCIENCE 2023; 14:1221780. [PMID: 37692435 PMCID: PMC10484750 DOI: 10.3389/fpls.2023.1221780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The current study aimed to address the response of soybean (Glycine max) plants to biofertilization and selenium supplementation treatments under galaxolide contamination of soil. In this regard, a pot experiment was carried out where the soybean plants were treated with the plant growth-promoting Actinobacteria (Actinobacterium sp.) as a biofertilizer (PGPB treatment) and/or selenium nanoparticles (Se treatment; 25 mg L-1) under two non-polluted and galaxolide-polluted soils (250 mg galaxolide per kg of soil) to assess the modifications in some plant physiological and biochemical traits. Although higher accumulation of oxidative biomarkers, including hydrogen peroxide (+180%), malondialdehyde (+163%), and protein oxidation (+125%), indicating oxidative stress in galaxolide-contaminated plants, an apparent decline in their contents was observed in response to biofertilization/supplementation treatments in contaminated soil, especially. It was mainly related to the higher detoxification of ROS in PGPB- and Se-treated plants under galaxolide-induced oxidative stress, in which the direct ROS-scavenging enzymes (+44 -179%), enzymatic (+34 - 293%) and non-enzymatic (+35 - 98%) components of the ascorbate-glutathione pathway, and antioxidant molecules (+38 - 370%) were more activated than in control plants. In addition, a higher accumulation of detoxification activity markers, including phytochelatins (+32%) and metallothioneins (+79%), were found in the combined treatments (PGPB+Se) under galaxolide contamination. Moreover, combined treatment with PGPB and Se ameliorated the levels of chlorophyll a content (+58%), stomatal conductance (+57%), the maximum efficiency of photosystem II (PSII) (+36%), and photorespiratory metabolism (including +99% in glycolate oxidase and +54% in hydroxypyruvate reductase activity) in leaves under galaxolide contamination, which resulted in higher photosynthesis capacity (+36%) and biomass production (+74%) in galaxolide-stressed plants as compared to control group. In conclusion, the application of beneficial Actinobacteria and selenium nanoparticles as biofertilization/supplementation is expected to be useful for improving plant toleration and adaptation against galaxolide contamination.
Collapse
Affiliation(s)
- Riyadh F. Halawani
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
8
|
Madnay MMY, Obaid WA, Selim S, Mohamed Reyad A, Alsherif EA, Korany SM, Abdel-Mawgoud M, AbdElgawad H. Rhodospirillum sp. JY3: An innovative tool to mitigate the phytotoxic impact of galaxolide on wheat ( Triticum aestivum) and faba bean ( Vicia faba) plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1037474. [PMID: 36466263 PMCID: PMC9710512 DOI: 10.3389/fpls.2022.1037474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
To date, several studies have considered the phytotoxic impact of cosmetics and personal care products on crop plants. Nonetheless, data are scarce about the toxic impact of galaxolide [hexahydro-hexamethyl cyclopentabenzopyran (HHCB)] on the growth, physiology, and biochemistry of plants from different functional groups. To this end, the impact of HHCB on biomass, photosynthetic efficiency, antioxidant production, and detoxification metabolism of grass (wheat) and legume (faba bean) plants has been investigated. On the other hand, plant growth-promoting bacteria (PGPB) can be effectively applied to reduce HHCB phytotoxicity. HHCB significantly reduced the biomass accumulation and the photosynthetic machinery of both crops, but to more extent for wheat. This growth reduction was concomitant with induced oxidative damage and decreased antioxidant defense system. To mitigate HHCB toxicity, a bioactive strain of diazotrophic plant growth-promoting Rhodospirillum sp. JY3 was isolated from heavy metal-contaminated soil in Jazan, Kingdom of Saudi Arabia, and applied to both crops. Overall, Rhodospirillum mitigated HHCB-induced stress by differently modulating the oxidative burst [malondialdehyde (MDA), hydrogen peroxide (H2O2), and protein oxidation] in both wheat and faba beans. This alleviation was coincident with improvement in plant biomass and photosynthetic efficiency, particularly in wheat crops. Considering the antioxidant defense system, JY3 augmented the antioxidants in both wheat and faba beans and the detoxification metabolism under HHCB stress conditions. More interestingly, inoculation with JY3 further enhanced the tolerance level of both wheat and faba beans against contamination with HHCB via quenching the lignin metabolism. Overall, this study advanced our understanding of the physiological and biochemical mechanisms underlying HHCB stress and mitigating its impact using Rhodospirillum sp. JY3, which may strikingly reduce the environmental risks on agriculture sustainability.
Collapse
Affiliation(s)
- Mahmoud M. Y. Madnay
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia
| | - Wael A. Obaid
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed Mohamed Reyad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni‒Suef, Egypt
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Emad A. Alsherif
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni‒Suef, Egypt
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Riyadh, Saudi Arabia
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni‒Suef, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Kanjevac M, Jakovljević D, Todorović M, Stanković M, Ćurčić S, Bojović B. Improvement of Germination and Early Growth of Radish ( Raphanus sativus L.) through Modulation of Seed Metabolic Processes. PLANTS (BASEL, SWITZERLAND) 2022; 11:757. [PMID: 35336639 PMCID: PMC8949023 DOI: 10.3390/plants11060757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Radish (Raphanus sativus L.) is a vegetable cultivated worldwide because of its large succulent hypocotyls. The priming method initiates metabolic processes at early stages and regulates the metabolic events in seed necessary for germination. This research was conducted to examine the influence of various priming treatments on physiological performance (germination, growth, lipid peroxidation, primary and secondary metabolism) and antioxidant activity of radish seedlings. On the basis of germination and growth characteristics, vigor index, and relative water content in leaves, it was confirmed that priming treatments with 0.01% ascorbic acid (AA) and 1% KNO3 improves the initial stages of radish development. Furthermore, the efficiency of AA as a priming agent was confirmed through the reduction of malondialdehyde (MDA) level compared to unprimed seedlings. On the other hand, hormopriming with indole-3-acetic acid (IAA) significantly increased the concentration of photosynthetic pigments and total soluble leaf proteins compared to non-primed seedlings. The highest content of total phenolic compounds, including flavonoids, were obtained after hormopriming with 1 mM IAA and halopriming with 1% MgSO4. On the basis of the percentage of inhibition of DPPH radicals, it was confirmed that treatments with IAA and AA can improve the antioxidant activity of radish seedlings. This study provides useful information regarding the possibilities of pregerminative metabolic modulation through the seed priming for the biochemical and physiological improvement of radish, and this topic should be further investigated in order to determine the potential use of AA and IAA as suitable priming agents in radish commercial production.
Collapse
Affiliation(s)
- Milica Kanjevac
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragana Jakovljević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Todorović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milan Stanković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Svetlana Ćurčić
- Department of Natural Sciences, Faculty of Education, University of Kragujevac, 35000 Jagodina, Serbia
| | - Biljana Bojović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
10
|
Shabbaj II, AbdElgawad H, Balkhyour MA, Tammar A, Madany MMY. Elevated CO2 Differentially Mitigated Oxidative Stress Induced by Indium Oxide Nanoparticles in Young and Old Leaves of C3 and C4 Crops. Antioxidants (Basel) 2022; 11:antiox11020308. [PMID: 35204191 PMCID: PMC8868301 DOI: 10.3390/antiox11020308] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 01/24/2023] Open
Abstract
Soil contamination with indium (In) oxide nanoparticles (In2O3-NPs) threatens plant growth and development. However, their toxicity in plants under ambient (aCO2) and elevated (eCO2) conditions is scarcely studied. To this end, this study was conducted to investigate In2O3-NPs toxicity in the young and old leaves of C3 (barley) and C4 (maize) plants and to understand the mechanisms underlying the stress mitigating impact of eCO2. Treatment of C3 and C4 plants with In2O3-NPs significantly reduced growth and photosynthesis, induced oxidative damage (H2O2, lipid peroxidation), and impaired P and Fe homeostasis, particularly in the young leaves of C4 plants. On the other hand, this phytotoxic hazard was mitigated by eCO2 which improved both C3 and C4 growth, decreased In accumulation and increased phosphorus (P) and iron (Fe) uptake, particularly in the young leaves of C4 plants. Moreover, the improved photosynthesis by eCO2 accordingly enhanced carbon availability under the challenge of In2O3-NPs that were directed to the elevated production of metabolites involved in antioxidant and detoxification systems. Our physiological and biochemical analyses implicated the role of the antioxidant defenses, including superoxide dismutase (SOD) in stress mitigation under eCO2. This was validated by studying the effect of In2O3-stress on a transgenic maize line (TG) constitutively overexpressing the AtFeSOD gene and its wild type (WT). Although it did not alter In accumulation, the TG plants showed improved growth and photosynthesis and reduced oxidative damage. Overall, this work demonstrated that C3 was more sensitive to In2O3-NPs stress; however, C4 plants were more responsive to eCO2. Moreover, it demonstrated the role of SOD in determining the hazardous effect of In2O3-NPs.
Collapse
Affiliation(s)
- Ibrahim I. Shabbaj
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21441, Saudi Arabia; (I.I.S.); (M.A.B.); (A.T.)
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Mansour A. Balkhyour
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21441, Saudi Arabia; (I.I.S.); (M.A.B.); (A.T.)
| | - Abdurazag Tammar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21441, Saudi Arabia; (I.I.S.); (M.A.B.); (A.T.)
| | - Mahmoud M. Y. Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41411, Saudi Arabia
- Correspondence:
| |
Collapse
|
11
|
Shabbaj II, AbdElgawad H, Tammar A, Alsiary WA, Madany MMY. Future climate CO 2 can harness ROS homeostasis and improve cell wall fortification to alleviate the hazardous effect of Phelipanche infection in pea seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1131-1141. [PMID: 34328871 DOI: 10.1016/j.plaphy.2021.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Parasitic weeds such as Phelipanche aegyptiaca pose one of the most significant environmental constraints to cropping systems worldwide. The influence of P. aegyptiaca upon host plants is well studied, nevertheless, how future climate CO2 (eCO2) can affect P. aegyptiaca parasite-host interactions is not yet investigated. Considering the protective effect of eCO2, we studied its ability to mitigate the severity of P. aegyptiaca infection in pea plants (Pisum sativum). Our results revealed that Phelipanche infection strikingly reduced pea growth and photosynthesis. Moreover, infection with Phelipanche greatly burst the oxidative damage in pea plants by elevating photorespiration and NADPH oxidase activity. Contradictory, eCO2 extremely quenched the severity of P. aegyptiaca infection by diminishing the number and biomass of P. aegyptiaca tubercles. Additionally, eCO2 considerably mitigated the physiological and biochemical alterations exerted by Phelipanche upon pea seedlings. Within the physiological range, eCO2 augmented photosynthesis, that consequentially affected carbohydrate metabolism. Moreover, eCO2 highly mitigated the infection menace via quenching ROS overaccumulation which, sequentially reduced oxidative damage in infected pea plants. More interestingly, eCO2 improved cell wall fortification by enhancing lignin accumulation that considers the first line of defense against parasite penetration. Overall, this study concluded that pea plants grown in an atmosphere enriched with CO2 can efficiently cope with P. aegyptiaca infection via reducing Phelipanche tubercles, modulating ROS homeostasis, and enhancing cell wall fortification.
Collapse
Affiliation(s)
- Ibrahim I Shabbaj
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21441, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Abdurazag Tammar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21441, Saudi Arabia
| | - Waleed A Alsiary
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21441, Saudi Arabia
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|