1
|
Súnico V, Piunti I, Bhattacharjee M, Mezzetti B, Caballero JL, Muñoz-Blanco J, Ricci A, Sabbadini S. Overview on Current Selectable Marker Systems and Novel Marker Free Approaches in Fruit Tree Genetic Engineering. Int J Mol Sci 2024; 25:11902. [PMID: 39595971 PMCID: PMC11594270 DOI: 10.3390/ijms252211902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Selectable marker genes are useful for recognizing which cells have integrated specific sequences in their genome after genetic transformation processes. They are especially important for fruit trees genetic transformation to individuate putatively genetically modified events, because most of the protocols used to genetic engineer these species are often unsuccessful or with low efficiency. Traditional selectable marker genes, mainly of bacterial origin, confer antibiotics/herbicides-resistance or metabolic advantages to transformed cells. Genes that allow the visual recognition of engineered tissues without using any selective agent, such as morphogenic regulators and reporter genes, are also used as selection tools to in vitro identify genetically modified regenerated lines. As final step, genetic engineered plants should be tested in field conditions, where selectable marker genes are no longer necessary, and strongly unpopular especially for the commercial development of the new products. Thus, different approaches, mainly based on the use of site-specific recombinases and/or editing nucleases, are being now used to recover marker-free fruit crops. This review describes and comments the most used and suitable selection tools of interest, particularly for fruit tree genetic engineering. Lastly, a spotlight highlights the biosafety aspects related to the use of selectable marker genes exploited for fruit species genetic engineering.
Collapse
Affiliation(s)
- Victoria Súnico
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Irene Piunti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - Mamta Bhattacharjee
- DBT-NECAB, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - José L. Caballero
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Juan Muñoz-Blanco
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Angela Ricci
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - Silvia Sabbadini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| |
Collapse
|
2
|
Maciag T, Kozieł E, Otulak-Kozieł K, Jafra S, Czajkowski R. Looking for Resistance to Soft Rot Disease of Potatoes Facing Environmental Hypoxia. Int J Mol Sci 2024; 25:3757. [PMID: 38612570 PMCID: PMC11011919 DOI: 10.3390/ijms25073757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| |
Collapse
|
3
|
Vazquez‐Vilar M, Fernandez‐del‐Carmen A, Garcia‐Carpintero V, Drapal M, Presa S, Ricci D, Diretto G, Rambla JL, Fernandez‐Muñoz R, Espinosa‐Ruiz A, Fraser PD, Martin C, Granell A, Orzaez D. Dually biofortified cisgenic tomatoes with increased flavonoids and branched-chain amino acids content. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2683-2697. [PMID: 37749961 PMCID: PMC10651156 DOI: 10.1111/pbi.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023]
Abstract
Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.
Collapse
Affiliation(s)
- Marta Vazquez‐Vilar
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Asun Fernandez‐del‐Carmen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Victor Garcia‐Carpintero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | | | - Silvia Presa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Dorotea Ricci
- Biotechnology LaboratoryItalian Agency for New Technologies, Energy and Sustainable Development (ENEA)RomeItaly
| | - Gianfranco Diretto
- Biotechnology LaboratoryItalian Agency for New Technologies, Energy and Sustainable Development (ENEA)RomeItaly
| | - José Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
- Department of Biology, Biochemistry and Natural SciencesUniversitat Jaume ICastellón de la PlanaSpain
| | - Rafael Fernandez‐Muñoz
- Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Instituto de Hortofruticultura Subtropical y Mediterránea La MayoraUniversidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - Ana Espinosa‐Ruiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | | | | | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| |
Collapse
|
4
|
Ogawa T, Kato K, Asuka H, Sugioka Y, Mochizuki T, Nishiuchi T, Miyahara T, Kodama H, Ohta D. Multi-omics Analyses of Non-GM Tomato Scion Engrafted on GM Rootstocks. Food Saf (Tokyo) 2023; 11:41-53. [PMID: 37745161 PMCID: PMC10514396 DOI: 10.14252/foodsafetyfscj.d-23-00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Grafting has been widely applied in agricultural production in order to utilize agriculturally valuable traits. The use of genetically modified (GM) plants for grafting with non-GM crops will soon be implemented to generate chimeric plants (transgrafting)*, and the non-GM edible portions thus obtained could fall outside of the current legal regulations. A number of metabolites and macromolecules are reciprocally exchanged between scion and rootstock, affecting the crop properties as food. Accordingly, the potential risks associated with grafting, particularly those related to transgrafting with GM plants, should be carefully evaluated based on scientific evidence. In this study, we prepared a hetero-transgraft line composed of non-GM tomato scion and GM-tobacco rootstock expressing firefly luciferase. We also prepared a homograft line (both rootstock and scion are from non-GM tomato) and a heterograft line (non-GM tobacco rootstock and non-GM tomato scion). The non-GM tomato fruits were harvested from these grafted lines and subjected to comprehensive characterization by multi-omics analysis. Proteomic analysis detected tobacco-derived proteins from both heterograft and hetero-transgraft lines, suggesting protein transfer from the tobacco rootstock to the tomato fruits. No allergenicity information is available for these two tobacco-derived proteins. The transcript levels of the genes encoding two allergenic tomato intrinsic proteins (Sola l 4.0101 and Sola l 4.0201) decreased in the heterograft and hetero-transgraft lines. Several differences were observed in the metabolic profiles, including α-tomatine and nicotine. The accumulation of tobacco-derived nicotine in the tomato fruits of both heterograft and hetero-transgraft lines indicated that the transfer of unfavorable metabolites from rootstock to scion should be assessed as a food safety concern. Further investigations are needed to clarify whether variable environmental conditions and growth periods may influence the qualities of the non-GM edible parts produced by such transgrafted plants.
Collapse
Affiliation(s)
- Takumi Ogawa
- Graduate School of Agriculture, Osaka Metropolitan University,
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kanae Kato
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Harue Asuka
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yumi Sugioka
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tomofumi Mochizuki
- Graduate School of Agriculture, Osaka Metropolitan University,
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takumi Nishiuchi
- Division of Life Science, Graduate School of Natural Science and
Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
- Division of Integrated Omics Research, Bioscience Core Facility,
Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1
Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Taira Miyahara
- Graduate School of Horticulture, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiroaki Kodama
- Graduate School of Horticulture, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Daisaku Ohta
- Graduate School of Agriculture, Osaka Metropolitan University,
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
5
|
Sestili S, Prohens J, Ficcadenti N, Beleggia R. Editorial: Sustainable horticulture: from omic sciences to new breeding techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1257469. [PMID: 37621883 PMCID: PMC10446478 DOI: 10.3389/fpls.2023.1257469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Affiliation(s)
- Sara Sestili
- Council for Agricultural Research and Economics (CREA) Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto (AP), Italy
| | - Jaime Prohens
- Instituto de Conservacion y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Nadia Ficcadenti
- Council for Agricultural Research and Economics (CREA) Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto (AP), Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) Research Center for Cereals and Industrial Crops, Foggia (FG), Italy
| |
Collapse
|
6
|
Zhang F, Neik TX, Thomas WJW, Batley J. CRISPR-Based Genome Editing Tools: An Accelerator in Crop Breeding for a Changing Future. Int J Mol Sci 2023; 24:8623. [PMID: 37239967 PMCID: PMC10218198 DOI: 10.3390/ijms24108623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Genome editing is an important strategy to maintain global food security and achieve sustainable agricultural development. Among all genome editing tools, CRISPR-Cas is currently the most prevalent and offers the most promise. In this review, we summarize the development of CRISPR-Cas systems, outline their classification and distinctive features, delineate their natural mechanisms in plant genome editing and exemplify the applications in plant research. Both classical and recently discovered CRISPR-Cas systems are included, detailing the class, type, structures and functions of each. We conclude by highlighting the challenges that come with CRISPR-Cas and offer suggestions on how to tackle them. We believe the gene editing toolbox will be greatly enriched, providing new avenues for a more efficient and precise breeding of climate-resilient crops.
Collapse
Affiliation(s)
- Fangning Zhang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ting Xiang Neik
- School of Biosciences, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | - William J. W. Thomas
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
7
|
de Lange J, Nalley LL, Yang W, Shew A, de Steur H. The future of CRISPR gene editing according to plant scientists. iScience 2022; 25:105012. [PMID: 36093047 PMCID: PMC9460836 DOI: 10.1016/j.isci.2022.105012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
This study surveyed 669 plant scientists globally to elicit how (which outcomes of gene editing), where (which continent) and what (which crops) are most likely to benefit from CRISPR research and if there is a consensus about specific barriers to commercial adoption in agriculture. Further, we disaggregated public and private plant scientists to see if there was heterogeneity in their views of the future of CRISPR research. Our findings suggest that maize and soybeans are anticipated to benefit the most from CRISPR technology with fungus and virus resistance the most common vehicle for its implementation. Across the board, plant scientists viewed consumer perception/knowledge gap to be the most impeding barrier of CRISPR adoption. Although CRISPR has been hailed as a technology that can help alleviate food insecurity and improve agricultural sustainability, our study has shown that plant scientists believe there are some large concerns about the consumer perceptions of CRISPR.
Collapse
Affiliation(s)
- Job de Lange
- Department of Agricultural Economics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lawton Lanier Nalley
- Department of Agricultural Economics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wei Yang
- Department of Agricultural Economics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aaron Shew
- Department of Agricultural Economics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Hans de Steur
- Department of Agricultural Economics, University of Gent, Gent, Belgium
| |
Collapse
|
8
|
Gould F, Amasino RM, Brossard D, Buell CR, Dixon RA, Falck-Zepeda JB, Gallo MA, Giller KE, Glenna LL, Griffin T, Magraw D, Mallory-Smith C, Pixley KV, Ransom EP, Stelly DM, Stewart CN. Toward product-based regulation of crops. Science 2022; 377:1051-1053. [PMID: 36048940 DOI: 10.1126/science.abo3034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current process-based approaches to regulation are no longer fit for purpose.
Collapse
Affiliation(s)
- Fred Gould
- The list of author affiliations is available in the supplementary materials
| | - Richard M Amasino
- The list of author affiliations is available in the supplementary materials
| | - Dominique Brossard
- The list of author affiliations is available in the supplementary materials
| | - C Robin Buell
- The list of author affiliations is available in the supplementary materials
| | - Richard A Dixon
- The list of author affiliations is available in the supplementary materials
| | | | - Michael A Gallo
- The list of author affiliations is available in the supplementary materials
| | - Ken E Giller
- The list of author affiliations is available in the supplementary materials
| | - Leland L Glenna
- The list of author affiliations is available in the supplementary materials
| | - Timothy Griffin
- The list of author affiliations is available in the supplementary materials
| | - Daniel Magraw
- The list of author affiliations is available in the supplementary materials
| | | | - Kevin V Pixley
- The list of author affiliations is available in the supplementary materials
| | - Elizabeth P Ransom
- The list of author affiliations is available in the supplementary materials
| | - David M Stelly
- The list of author affiliations is available in the supplementary materials
| | - C Neal Stewart
- The list of author affiliations is available in the supplementary materials
| |
Collapse
|
9
|
Van Vu T, Das S, Hensel G, Kim JY. Genome editing and beyond: what does it mean for the future of plant breeding? PLANTA 2022; 255:130. [PMID: 35587292 PMCID: PMC9120101 DOI: 10.1007/s00425-022-03906-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
10
|
Exploring Consumers’ Attitudes towards Food Products Derived by New Plant Breeding Techniques. SUSTAINABILITY 2022. [DOI: 10.3390/su14105995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New plant breeding techniques (NPBTs) are seen as promising and innovative tools to achieve food security and food safety. Biotechnological innovations have great potential to address sustainable food development, and they are expected in the near future to play a critical role in feeding a growing population without exerting added pressure on the environment. There is, however, a considerable debate as to how these new techniques should be regulated and whether some or all of them should fall within the scope of EU legislation on genetically modified organisms (GMOs), despite the product obtained being free from genes foreign to the species. In the EU, the adoption of these methods does not rely only on the scientific community but requires social acceptance and a political process that leads to an improved regulatory framework. In this paper, we present the results of an online survey carried out in Italy with 700 randomly selected participants on consumer attitudes towards food obtained by NPBTs. By applying the decision tree machine learning algorithm J48 to our dataset, we identified significant attributes to predict the main drivers of purchasing such products. A classification model accuracy assessment has also been developed to evaluate the overall performance of the classifier. The result of the model highlighted the role of consumers’ self-perceived knowledge and their trust in the European approval process for NPBT, as well as the need for a detailed label. Our findings may support decision makers and underpin the development of NPBT products in the market.
Collapse
|
11
|
Perez-Fons L, Drapal M, Nogueira M, Berry HM, Almeida J, Enfissi EM, Fraser PD. Metabolomic approaches for the characterization of carotenoid metabolic engineering in planta. Methods Enzymol 2022; 670:155-178. [DOI: 10.1016/bs.mie.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Duan K, Zhao YJ, Li ZY, Zou XH, Yang J, Guo CL, Chen SY, Yang XR, Gao QH. A Strategy for the Production and Molecular Validation of Agrobacterium-Mediated Intragenic Octoploid Strawberry. PLANTS 2021; 10:plants10112229. [PMID: 34834592 PMCID: PMC8622968 DOI: 10.3390/plants10112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022]
Abstract
Intragenesis is an all-native engineering technology for crop improvement. Using an intragenic strategy to bring genes from wild species to cultivated strawberry could expand the genetic variability. A robust regeneration protocol was developed for the strawberry cv. ‘Shanghai Angel’ by optimizing the dose of Thidiazuron and identifying the most suitable explants. The expression cassette was assembled with all DNA fragments from F. vesca, harboring a sugar transporter gene FvSTP8 driven by a fruit-specific FvKnox promoter. Transformed strawberry was developed through an Agrobacterium-mediated strategy without any selectable markers. Other than PCR selection, probe-based duplex droplet digital PCR (ddPCR) was performed to determine the T-DNA insert. Four independent transformed shoots were obtained with a maximum of 5.3% efficiency. Two lines were confirmed to be chimeras, while the other two were complete transformants with six and 11 copies of the intragene, respectively. The presence of a vector backbone beyond the T-DNA in these transformants indicated that intragenic strawberries were not obtained. The current work optimized the procedures for producing transformed strawberry without antibiotic selection, and accurately determined the insertion copies by ddPCR in the strawberry genome for the first time. These strategies might be promising for the engineering of ‘Shanghai Angel’ and other cultivars to improve agronomic traits.
Collapse
Affiliation(s)
- Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
- Correspondence: (K.D.); (Q.-H.G.)
| | - Ying-Jie Zhao
- Lanzhou New Area Academy of Modern Agricultural Sciences, Lanzhou 730300, China;
| | - Zi-Yi Li
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Xiao-Hua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
| | - Jing Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
| | - Cheng-Lin Guo
- Hangzhou Woosen Biotechnology Co., Ltd., Hangzhou 310012, China;
| | - Si-Yu Chen
- College of Food Science, Shanghai Ocean University, Shanghai 201306, China;
| | - Xiu-Rong Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
- Correspondence: (K.D.); (Q.-H.G.)
| |
Collapse
|
13
|
Abdullah-Zawawi MR, Ahmad-Nizammuddin NF, Govender N, Harun S, Mohd-Assaad N, Mohamed-Hussein ZA. Comparative genome-wide analysis of WRKY, MADS-box and MYB transcription factor families in Arabidopsis and rice. Sci Rep 2021; 11:19678. [PMID: 34608238 PMCID: PMC8490385 DOI: 10.1038/s41598-021-99206-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/21/2021] [Indexed: 01/25/2023] Open
Abstract
Transcription factors (TFs) form the major class of regulatory genes and play key roles in multiple plant stress responses. In most eukaryotic plants, transcription factor (TF) families (WRKY, MADS-box and MYB) activate unique cellular-level abiotic and biotic stress-responsive strategies, which are considered as key determinants for defense and developmental processes. Arabidopsis and rice are two important representative model systems for dicot and monocot plants, respectively. A comprehensive comparative study on 101 OsWRKY, 34 OsMADS box and 122 OsMYB genes (rice genome) and, 71 AtWRKY, 66 AtMADS box and 144 AtMYB genes (Arabidopsis genome) showed various relationships among TFs across species. The phylogenetic analysis clustered WRKY, MADS-box and MYB TF family members into 10, 7 and 14 clades, respectively. All clades in WRKY and MYB TF families and almost half of the total number of clades in the MADS-box TF family are shared between both species. Chromosomal and gene structure analysis showed that the Arabidopsis-rice orthologous TF gene pairs were unevenly localized within their chromosomes whilst the distribution of exon–intron gene structure and motif conservation indicated plausible functional similarity in both species. The abiotic and biotic stress-responsive cis-regulatory element type and distribution patterns in the promoter regions of Arabidopsis and rice WRKY, MADS-box and MYB orthologous gene pairs provide better knowledge on their role as conserved regulators in both species. Co-expression network analysis showed the correlation between WRKY, MADs-box and MYB genes in each independent rice and Arabidopsis network indicating their role in stress responsiveness and developmental processes.
Collapse
Affiliation(s)
| | - Nur-Farhana Ahmad-Nizammuddin
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nisha Govender
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Sarahani Harun
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Norfarhan Mohd-Assaad
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
14
|
Drapal M, Enfissi EMA, Fraser PD. Metabolic changes in leaves of N. tabacum and N. benthamiana during plant development. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153486. [PMID: 34388688 DOI: 10.1016/j.jplph.2021.153486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Dwindling fossil fuel reserves and poor environmental credentials of chemical synthesis means, new renewable sources for the production and manufacture of valuable chemicals and pharmaceuticals are required. Presently, tobacco is an underutilised non-food crop with the potential to act as a biofactory. In this study, metabolite profiling across vegetative development has been carried out to provide a quantitative baseline of metabolites, their formation and interaction. Two tobacco platforms have been used, Nicotiana benthamiana and Nicotiana tabacum. Our data generated has provided the quantitative and qualitative baseline levels for exploitable pathways and metabolites, across two complementary Nicotiana species. N. benthamiana is the chassis of choice for transient expression. The metabolite data obtained for N. benthamiana highlighted that before flower emergence, the increased central carbon metabolism and high amino acid levels are available for the biosynthesis of endogenous or heterologous metabolites. In the future, engineering pathways or biocatalysts into N. benthamiana could add value to the process presently used to produce low volume, high cost pharmaceuticals. Similar outputs were obtained for N. tabacum, which has the advantage of providing a large biomass and hence, high product yield. These data provide an insight into the metabolite pools available in tobacco for future exploitation by emerging New Plant Breeding Techniques.
Collapse
Affiliation(s)
- Margit Drapal
- Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Eugenia M A Enfissi
- Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.
| |
Collapse
|