1
|
Chen G, Chen L, Wang H, Zhang J, Sun X, Chen X, Fan J, Jia Z, Huang Y. 1H NMR-Based Metabolomic Profiling and Comparison of Human Milk Across Different Lactation Stages in Secretors and Non-Secretors: A Study of Chinese Lactating Women. J Nutr 2024:S0022-3166(24)01127-1. [PMID: 39491676 DOI: 10.1016/j.tjnut.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) and other milk-derived metabolites are crucial for infant health, influencing gut microbiota and overall development. OBJECTIVE This study aims to uncover insights into the variations of HMOs and non-HMO metabolites based on secretor (Se) status, lactation time, mode of delivery, and infant sex. METHODS An exploratory cross-sectional study was designed to compare the levels of HMOs and non-HMOs metabolites in milk samples from 129 lactating Chinese women within 1 year postpartum. Nuclear magnetic resonance analysis was employed for the identification and quantification of the metabolites. The metabolites measured were grouped into sugars, free amino acids, fatty acids, and metabolites related to energy metabolism. The influence of delivery mode and infant sex on milk metabolite composition were explored. RESULTS Uniform Manifold Approximation and Projection (UMAP) analysis of HMOs profiles revealed distinct clustering based on Se status, with significant differences in 2'-FL and 3-FL levels observed between Se+ and Se- groups. A decreasing trend for 2'-FL and 6-'SL levels, along with an increase in 3-FL levels, was observed with increasing lactating period within 12 months postpartum. Non-HMOs metabolite analysis indicated that Se status only affected glutamate levels. An increase in glutamine levels was observed 3-9 months postpartum. A continuous increase in o-phosphocholine levels was noted in 12 months postpartum, along with reductions in citrate and sn-glycero-phosphocholine levels. Delivery mode and infant sex did not affect both HMOs and non-HMOs levels. CONCLUSIONS Metabolomic analysis of human milk reveals significant variation of HMOs, but not in non-HMOs, based on Se status. Changes in certain HMOs and non-HMOs levels were also observed over the one year of lactation. Understanding how these metabolites change over time may influence recommendations for maternal diet, supplementation, and the timing of breastfeeding to ensure optimal nutrient delivery to the infant.
Collapse
Affiliation(s)
- Guixia Chen
- Department of Child Healthcare, Women and Children's Hospital, School of Medicine, Xiamen University/Xiamen Maternal and Child Healthcare Hospital, Xiamen, China.
| | - Lifeng Chen
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Huiya Wang
- Department of Child Healthcare, Women and Children's Hospital, School of Medicine, Xiamen University/Xiamen Maternal and Child Healthcare Hospital, Xiamen, China
| | - Jiyong Zhang
- Department of Child Healthcare, Women and Children's Hospital, School of Medicine, Xiamen University/Xiamen Maternal and Child Healthcare Hospital, Xiamen, China
| | - Xiaoling Sun
- Department of Child Healthcare, Women and Children's Hospital, School of Medicine, Xiamen University/Xiamen Maternal and Child Healthcare Hospital, Xiamen, China
| | - Xiaoxin Chen
- Cardiovascular Research Institute, University of California, San Francisco, 94158, USA
| | - Jianxia Fan
- Department of Child Healthcare, Women and Children's Hospital, School of Medicine, Xiamen University/Xiamen Maternal and Child Healthcare Hospital, Xiamen, China
| | - Zhiwei Jia
- Department of Child Healthcare, Women and Children's Hospital, School of Medicine, Xiamen University/Xiamen Maternal and Child Healthcare Hospital, Xiamen, China
| | - Yinying Huang
- Nursing Department, Women and Children's Hospital, School of Medicine, Xiamen
| |
Collapse
|
2
|
Khan MZ, Chen W, Wang X, Liang H, Wei L, Huang B, Kou X, Liu X, Zhang Z, Chai W, Khan A, Peng Y, Wang C. A review of genetic resources and trends of omics applications in donkey research: focus on China. Front Vet Sci 2024; 11:1366128. [PMID: 39464628 PMCID: PMC11502298 DOI: 10.3389/fvets.2024.1366128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024] Open
Abstract
Omics methodologies, such as genomics, transcriptomics, proteomics, metabolomics, lipidomics and microbiomics, have revolutionized biological research by allowing comprehensive molecular analysis in livestock animals. However, despite being widely used in various animal species, research on donkeys has been notably scarce. China, renowned for its rich history in donkey husbandry, plays a pivotal role in their conservation and utilization. China boasts 24 distinct donkey breeds, necessitating conservation efforts, especially for smaller breeds facing extinction threats. So far, omics approaches have been employed in studies of donkey milk and meat, shedding light on their composition and quality. Similarly, omics methods have been utilized to explore the molecular basis associated with donkey growth, meat production, and quality traits. Omics analysis has also unraveled the critical role of donkey microbiota in health and nutrition, with gut microbiome studies revealing associations with factors such as pregnancy, age, transportation stress, and altitude. Furthermore, omics applications have addressed donkey health issues, including infectious diseases and reproductive problems. In addition, these applications have also provided insights into the improvement of donkey reproductive efficiency research. In conclusion, omics methodologies are essential for advancing knowledge about donkeys, their genetic diversity, and their applications across various domains. However, omics research in donkeys is still in its infancy, and there is a need for continued research to enhance donkey breeding, production, and welfare in China and beyond.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Lin Wei
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Dige MS, Gurao A, Singh LP, Chitkara M, Singh MK, Dass G, Verma AK, Pundir RK, Kataria RS. Transcriptomic analysis reveals molecular insights into lactation dynamics in Jakhrana goat mammary gland. BMC Genomics 2024; 25:874. [PMID: 39294565 PMCID: PMC11409665 DOI: 10.1186/s12864-024-10744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Goat milk is gaining popularity as a superior alternative to bovine milk due to its closer resemblance to human milk. Understanding the molecular processes underlying lactation is crucial for improving milk quality and production in goats. However, the genetic mechanisms governing lactation in goats, particularly in indigenous breeds like the Jakhrana, remain largely unexplored. RESULTS In this study, we performed a comprehensive transcriptomic analysis of Jakhrana goat mammary glands during early and late lactation stages. We isolated milk somatic cells and conducted RNA sequencing, followed by transcript quantification and mapping against the ARS1.2 Capra hircus reference assembly. Our analysis identified differentially expressed genes (DEGs) and commonly expressed genes (CEGs) across the lactation phases. Early lactation showed enrichment of genes encoding antimicrobial peptides and lubrication proteins, while late lactation exhibited heightened expression of genes encoding major milk proteins. Additionally, DEG analysis revealed upregulation of pivotal genes, such as the ABC transporter gene MRP4, implicated in modulating milk composition and quality. CONCLUSION Our findings provide insights into the genetic mechanisms underlying lactation dynamics in the Jakhrana goat. Understanding these mechanisms could help in improving milk production and quality in goats, benefiting both the dairy industry and consumers.
Collapse
Affiliation(s)
- Mahesh Shivanand Dige
- Division of Animal Genetic Resources, ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.
| | - Ankita Gurao
- Division of Animal Genetic Resources, ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Lalit Pratap Singh
- Division of Animal Genetic Resources, ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- Division of Animal Biotechnology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Meenakshi Chitkara
- Division of Animal Genetic Resources, ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- Division of Animal Biotechnology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Manoj Kumar Singh
- Division of Animal Genetics and Breeding, ICAR - Central Institute for Research on Goats, Makhdoom, Uttar Pradesh, India
| | - Gopal Dass
- Division of Animal Genetics and Breeding, ICAR - Central Institute for Research on Goats, Makhdoom, Uttar Pradesh, India
| | - Arun Kumar Verma
- Division of Animal Genetics and Breeding, ICAR - Central Institute for Research on Goats, Makhdoom, Uttar Pradesh, India
- Animal Nutrition, Management and Product Technology Division, ICAR, ICAR- Central Institute for Research on Goats, Makhdoom, Uttar Pradesh, India
| | - Rakesh Kumar Pundir
- Division of Animal Genetic Resources, ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Ranjit Singh Kataria
- Division of Animal Genetic Resources, ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| |
Collapse
|
4
|
Zhang J, Wei L, Miao J, Yu Y, Yu N, Hu Q, Chen H, Chen Y. Authenticity identification of animal species in characteristic milk by integration of shotgun proteomics and scheduled multiple reaction monitoring (MRM) based on tandem mass spectrometry. Food Chem 2024; 436:137736. [PMID: 37863000 DOI: 10.1016/j.foodchem.2023.137736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Milk is one of the oldest natural dairies with high value, which has different species including cow, camel, donkey, goat, sheep, buffalo, yak and et al. However, economically motivated adulteration of non-cow milk with cheaper cow milk occurs frequently. To develop a high-throughput approach for milk species authentication, integration of shotgun proteomics and scheduled multiple reaction monitoring (MRM) was developed. In total, 37 specific peptides were screened as unique to different species. Specific peptides processing stability was investigated under different treatment (heat, pressure, fermentation). Subsequently, four quantitative ion pairs of peptides from cow milk and six quantitative ion pairs of peptides from six non-cow milks were selected for the adulteration quantitative analysis. The method is capable of detection adulteration in the range of 1%-100%, and the quantitative recoveries ranged from 91.07% to 111.75%. The results suggested that combination of shotgun proteomics and MRM had potential for the milk species authentication.
Collapse
Affiliation(s)
- Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Liyang Wei
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Jinliang Miao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Yue Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China; School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - He Chen
- Institute of Quality Standard & Testing Technology for Agro-products, Xinjiang Academy of Agricultural Sciences, 830091, PR China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China.
| |
Collapse
|
5
|
Zhang Y, Ye Y, Guo J, Wang M, Li X, Ren Y, Zhu W, Yu K. Effects of 2'-fucosyllactose on the composition and metabolic activity of intestinal microbiota from piglets after in vitro fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1553-1563. [PMID: 37815100 DOI: 10.1002/jsfa.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND As indigestible carbohydrates, milk oligosaccharides possess various benefits for newborns, mainly through intestinal microbiota, among which 2'-fucosyllactose (2'-FL) is the most predominant milk oligosaccharide. However, knowledge about the fermentative characteristics of 2'-FL in the gut remains limited, especially in the small intestine. The aim of this study is to explore the differential fermentability of 2'-FL by the small and large intestinal microbiota of piglets using fructo-oligosaccharide (FOS) and lactose as controls in an in vitro batch fermentation experiment. During fermentation, microbial composition was characterized along with gas production and short-chain fatty acid production. RESULTS 2'-Fucosyllactose showed differential fermentability in jejunal and colonic fermentation. Compared with the colon, 2'-FL produced less gas in the jejunum than in the FOS and lactose groups (P < 0.05). Meanwhile, 2'-FL exhibited a different influence on the microbial composition and metabolism in the jejunum and colon compared with FOS and lactose. In the jejunum, compared with the FOS and lactose groups, the 2'-FL group showed a higher abundance of Bacteroides, Prevotella, and Blautia, but a lower abundance of Streptococcus and Lactobacillus (P < 0.05), with a higher level of propionate and a lower level of lactate during fermentation (P < 0.05). In the colon, compared with the FOS and lactose groups, 2'-FL increased the abundance of Blautia, Faecalibacterium, and Lachnospiraceae FCS020, but decreased the abundance of Prevotella_9, Succinivibrio, and Megasphaera (P < 0.05) with an increase in acetate production (P < 0.05). CONCLUSION Overall, the results suggested that the small intestinal microbiota had the potential to ferment milk oligosaccharides. Meanwhile, in comparison with FOS and lactose, 2'-FL selectively stimulated the growth of propionate-producing bacteria in the jejunum and acetate-producing bacteria in the colon. These results demonstrated the differences in fermentation properties of 2'-FL by small and large intestinal microbiota and provided new evidence for the application of 2'-FL in optimizing gut microbiota. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanan Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yanxin Ye
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Jiaqing Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Mengting Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yuting Ren
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Lian X, Zhang W, He-Yang J, Zhou X. Human milk oligosaccharide disialyllacto-n-tetraose protects human intestinal epithelium integrity and permeability against mast cell chymase-induced disruption by stabilizing ZO-1/FAK/P38 pathway of intestinal epithelial cell. Immunopharmacol Immunotoxicol 2022:1-10. [PMID: 36537314 DOI: 10.1080/08923973.2022.2160730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Inflammatory bowel disease (IBD) is a chronic gut disease with intestinal-epithelium disruption. Mast cell (MC) has been discussed in IBD studies, but its subset MCTC (chymase/tryptase) and MC-chymase have not been well-explored extensively. Human-milk-oligosaccharide-Disialyllacto-N-Tetraose (DSLNT) was reported as an effective strategy to protect infants against IBD with unclear mechanism. OBJECTIVE This study was to examine the distribution of chymase-positive mast cells in the intestinal-epithelium-tissue of IBD infants, to explore the MC-chymase function on intestinal-epithelium, and to investigate the influences of DSLNT against MC-chymase-induced disruptions. MATERIALS AND METHODS The intestinal-biopsies (surgical-waste) of the infants with IBD or with intestinal-atresia (non-IBD) were paraffin-embedded for immunohistochemistry. In-situ intestinal-tissue model and in-vitro human-intestinal-epithelial-cell (Caco-2) model were established with or without the treatments of MC-chymase (50mU/mL), DSLNT (600 µM) and DSLNT + MC-chymase respectively. The tissue morphology analysis, cell proliferation assay, cell-gap-closure assessment, fluorescence-immunocytochemistry, western blot, trans-epithelial-electrical-resistance, cell-cycle and statistical analysis were applied. RESULTS There was an increased number of MCTC subset around the inflamed intestinal area in-vivo; MC-chymase caused intestinal-epithelial-barrier damage in-situ, decreased trans-epithelial-electrical-resistance of caco-2 cell monolayer in-vitro; while DSLNT protected epithelium against MC-chymase induced disruptions. MC-chymase reduced cell-viability, proliferation and migration, altered cell-cycle, down-regulated ZO-1, FAK, and P38 expressions, while DSLNT protected cells by impairing MC-chymase-induced interruptions. DSLNT can rescue ZO-1, FAK and P38 expressions and restore epithelial-cell integrity and cell cycle. CONCLUSIONS Chymase-positive MCs are involved in IBD progress. MC-chymase disrupts intracellular ZO-1/FAK/P38 signal pathway and cell-cell/cell-matrix contacts, while DSLNT protects intestinal-epithelium against MC-chymase to maintain the intestinal epithelium integrity.
Collapse
Affiliation(s)
- Xuejiao Lian
- The School of Pharmacy, Changzhou University, Jiangsu, China
| | - Wenting Zhang
- The School of Pharmacy, Changzhou University, Jiangsu, China.,Department of Pharmacy, Changzhou Children's Hospital, Changzhou, China
| | - Jingqiu He-Yang
- The School of Pharmacy, Changzhou University, Jiangsu, China
| | - Xiaoying Zhou
- The School of Pharmacy, Changzhou University, Jiangsu, China
| |
Collapse
|
7
|
Overgaard Poulsen K, Astono J, Jakobsen RR, Uldbjerg N, Fuglsang J, Nielsen DS, Sundekilde UK. Influence of maternal body mass index on human milk composition and associations to infant metabolism and gut colonisation: MAINHEALTH - a study protocol for an observational birth cohort. BMJ Open 2022; 12:e059552. [PMID: 36323479 PMCID: PMC9639067 DOI: 10.1136/bmjopen-2021-059552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Human milk provides all macronutrients for growth, bioactive compounds, micro-organisms and immunological components, which potentially interacts with and primes infant growth and, development, immune responses and the gut microbiota of the new-born. Infants with an overweight mother are more likely to become overweight later in life and overweight has been related to the gut microbiome. Therefore, it is important to investigate the mother-milk-infant triad as a biological system and if the maternal weight status influences the human milk composition, infant metabolism and gut microbiome. METHODS AND ANALYSIS This study aims to include 200 mother-infant dyads stratified into one of three body mass index (BMI) categories based on mother's prepregnancy BMI. Multiomics analyses include metabolomics, proteomics, glycomics and microbiomics methods, aiming to characterise human milk from the mothers and further relate the composition to infant gut microbiota and its metabolic impact in the infant. Infant gut microbiota is analysed using 16S sequencing of faeces samples. Nuclear magnetic resonance and mass spectrometry are used for the remaining omics analysis. We investigate whether maternal pre-pregnancy BMI results in a distinct human milk composition that potentially affects the initial priming of the infant's gut environment and metabolism early in life. ETHICS AND DISSEMINATION The Central Denmark Region Committees on Health Research Ethics has approved the protocol (J-nr. 1-10-72-296-18). All participants have before inclusion signed informed consent and deputy informed consent in accordance with the Declaration of Helsinki II. Results will be disseminated to health professionals including paediatricians, research community, nutritional policymakers, industry and finally the public. The scientific community will be informed via peer-reviewed publications and presentations at scientific conferences, the industry will be invited for meetings, and the public will be informed via reports in science magazines and the general press. Data cleared for personal data, will be deposited at public data repositories. TRIAL REGISTRATION NUMBER Danish regional committee of the Central Jutland Region, journal number: 1-10-72-296-18, version 6.Danish Data Protection Agency, journal number: 2016-051-000001, 1304. CLINICALTRIALS gov, identifier: NCT05111990.
Collapse
Affiliation(s)
- Katrine Overgaard Poulsen
- Department of Food Science, Aarhus University, Aarhus N, Denmark
- Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Julie Astono
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | | | - Niels Uldbjerg
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Jens Fuglsang
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | | | | |
Collapse
|
8
|
Advancement of omics techniques for chemical profile analysis and authentication of milk. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Human Milk Oligosaccharides: A Comprehensive Review towards Metabolomics. CHILDREN-BASEL 2021; 8:children8090804. [PMID: 34572236 PMCID: PMC8465502 DOI: 10.3390/children8090804] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
Human milk oligosaccharides (HMOs) are the third most represented component in breast milk. They serve not only as prebiotics but they exert a protective role against some significant neonatal pathologies such as necrotizing enterocolitis. Furthermore, they can program the immune system and consequently reduce allergies and autoimmune diseases’ incidence. HMOs also play a crucial role in brain development and in the gut barrier’s maturation. Moreover, the maternal genetic factors influencing different HMO patterns and their modulation by the interaction and the competition between active enzymes have been widely investigated in the literature, but there are few studies concerning the role of other factors such as maternal health, nutrition, and environmental influence. In this context, metabolomics, one of the newest “omics” sciences that provides a snapshot of the metabolites present in bio-fluids, such as breast milk, could be useful to investigate the HMO content in human milk. The authors performed a review, from 2012 to the beginning of 2021, concerning the application of metabolomics to investigate the HMOs, by using Pubmed, Researchgate and Scopus as source databases. Through this technology, it is possible to know in real-time whether a mother produces a specific oligosaccharide, keeping into consideration that there are other modifiable and unmodifiable factors that influence HMO production from a qualitative and a quantitative point of view. Although further studies are needed to provide clinical substantiation, in the future, thanks to metabolomics, this could be possible by using a dipstick and adding the eventual missing oligosaccharide to the breast milk or formula in order to give the best and the most personalized nutritional regimen for each newborn, adjusting to different necessities.
Collapse
|
10
|
La Nasa J, Modugno F, Degano I. Liquid chromatography and mass spectrometry for the analysis of acylglycerols in art and archeology. MASS SPECTROMETRY REVIEWS 2021; 40:381-407. [PMID: 32643188 DOI: 10.1002/mas.21644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Lipid characterization in art and archeology, together with the study of lipid degradation processes, is an important research area in heritage science. Lipid-based materials have been used as food since ancient times, but also employed as illuminants and as ingredients in cosmetic, ritual, and pharmaceutical preparations. Both animal and plant lipids have also been processed to produce materials used in art and crafts, such as paint binders, varnishes, waterproofing agents, and coatings. Identifying the origin of the lipid materials is challenging when they are found in association with artistic historical objects. This is due to the inherent complex composition of lipids, their widespread occurrence, and the chemical alterations induced by ageing. The most common approach for lipid characterization in heritage objects entails profiling fatty acids by gas chromatography/mass spectrometry after saponification or transesterification. New developments in high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) for the characterization of acylglycerols, together with more efficient sample treatments, have fostered the introduction of liquid chromatography for characterizing the lipid profile in heritage objects. This review reports the latest developments and applications of HPLC-MS for the characterization of lipid materials in the field of heritage science. We describe the various approaches for sample pretreatment and highlight the advantages and limitations of HPLC-MS in the analysis of paint and archeological samples. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| |
Collapse
|
11
|
Kong C, Faas MM, de Vos P, Akkerman R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct 2021; 11:9445-9467. [PMID: 33150902 DOI: 10.1039/d0fo01700k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human milk (HM) is the gold standard for the nutrition of infants. An important component of HM is human milk oligosaccharides (hMOs), which play an important role in gut microbiota colonization and gut immune barrier establishment, and thereby contribute to the maturation of the immune system in early life. Guiding these processes is important as disturbances have life-long health effects and can lead to the development of allergic diseases. Unfortunately, not all infants can be exclusively fed with HM. These infants are routinely fed with infant formulas that contain hMO analogs and other non-digestible carbohydrates (NDCs) to mimic the effects of hMOs. Currently, the hMO analogs 2'-fucosyllactose (2'-FL), galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), and pectins are added to infant formulas; however, these NDCs cannot mimic all hMO functions and therefore new NDCs and NDC mixtures need to become available for specific groups of neonates like preterm and disease-prone neonates. In this review, we discuss human data on the beneficial effects of infant formula supplements such as the specific hMO analog 2'-FL and NDCs as well as their mechanism of effects like stimulation of microbiota development, maturation of different parts of the gut immune barrier and anti-pathogenic effects. Insights into the structure-specific mechanisms by which hMOs and NDCs exert their beneficial functions might contribute to the development of new tailored NDCs and NDC mixtures. We also describe the needs for new in vitro systems that can be used for research on hMOs and NDCs. The current data suggest that "tailored infant formulas" for infants of different ages and healthy statuses are needed to ensure a healthy development of the microbiota and the gut immune system of infants.
Collapse
Affiliation(s)
- Chunli Kong
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
12
|
Saben JL, Sims CR, Abraham A, Bode L, Andres A. Human Milk Oligosaccharide Concentrations and Infant Intakes Are Associated with Maternal Overweight and Obesity and Predict Infant Growth. Nutrients 2021; 13:nu13020446. [PMID: 33572881 PMCID: PMC7911788 DOI: 10.3390/nu13020446] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are bioactive molecules playing a critical role in infant health. We aimed to quantify the composition of HMOs of women with normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), or obesity (30.0–60.0 kg/m2) and determine the effect of HMO intake on infant growth. Human milk (HM) samples collected at 2 months (2 M; n = 194) postpartum were analyzed for HMO concentrations via high-performance liquid chromatography. Infant HM intake, anthropometrics and body composition were assessed at 2 M and 6 M postpartum. Linear regressions and linear mixed-effects models were conducted examining the relationships between maternal BMI and HMO composition and HMO intake and infant growth over the first 6 M, respectively. Maternal obesity was associated with lower concentrations of several fucosylated and sialylated HMOs and infants born to women with obesity had lower intakes of these HMOs. Maternal BMI was positively associated with lacto-N-neotetraose, 3-fucosyllactose, 3-sialyllactose and 6-sialyllactose and negatively associated with disialyllacto-N-tetraose, disialyllacto-N-hexaose, fucodisialyllacto-N-hexaose and total acidic HMOs concentrations at 2 M. Infant intakes of 3-fucosyllactose, 3-sialyllactose, 6-sialyllactose, disialyllacto-N-tetraose, disialyllacto-N-hexaose, and total acidic HMOs were positively associated with infant growth over the first 6 M of life. Maternal obesity is associated with changes in HMO concentrations that are associated with infant adiposity.
Collapse
Affiliation(s)
- Jessica L. Saben
- J.L.S. Scientific Consulting, L.L.C., Thornton, CO 80229, USA;
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Clark R. Sims
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ann Abraham
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-364-3301
| |
Collapse
|
13
|
Li C, Zhu J, Shi H, Luo J, Zhao W, Shi H, Xu H, Wang H, Loor JJ. Comprehensive Transcriptome Profiling of Dairy Goat Mammary Gland Identifies Genes and Networks Crucial for Lactation and Fatty Acid Metabolism. Front Genet 2020; 11:878. [PMID: 33101357 PMCID: PMC7545057 DOI: 10.3389/fgene.2020.00878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/17/2020] [Indexed: 11/17/2022] Open
Abstract
Milk fatty acids secreted by the mammary gland are one of the most important determinants of the nutritional value of goat milk. Unlike cow milk, limited data are available on the transcriptome-wide changes across stages of lactation in dairy goats. In this study, goat mammary gland tissue collected at peak lactation, cessation of milking, and involution were analyzed with digital gene expression (DGE) sequencing to generate longitudinal transcript profiles. A total of 51,299 unigenes were identified and further annotated to 12,763 genes, of which 9,131 were differentially expressed across various stages of lactation. Most abundant genes and differentially expressed genes (DEGs) were functionally classified through clusters of euKaryotic Orthologous Groups (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A total of 16 possible expression patterns were uncovered, and 13 genes were deemed novel candidates for regulation of lactation in the goat: POLG, SPTA1, KLC, GIT2, COPS3, PDP, CD31, USP16/29/37, TLL1, NCAPH, ABI2, DNAJC4, and MAPK8IP3. In addition, PLA2, CPT1, PLD, GGA, SRPRB, and AP4S1 are proposed as novel and promising candidates regulating mammary fatty acid metabolism. “Butirosin and neomycin biosynthesis” and “Glyoxylate and dicarboxylate metabolism” were the most impacted pathways, and revealed novel metabolic alterations in lipid metabolism as lactation progressed. Overall, the present study provides new insights into the synthesis and metabolism of fatty acids and lipid species in the mammary gland along with more detailed information on molecular regulation of lactogenesis. The major findings will benefit efforts to further improve milk quality in dairy goats.
Collapse
Affiliation(s)
- Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jiangjiang Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Hengbo Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Wangsheng Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Huaiping Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Huifen Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
14
|
Functional milk proteome analysis of genetically diverse goats from different agro climatic regions. J Proteomics 2020; 227:103916. [PMID: 32711164 DOI: 10.1016/j.jprot.2020.103916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022]
Abstract
Goat milk, a choice of substitution to mother's milk for its composition, fulfils nutritional requirement of infants, pregnant mothers and older people. The present study was carried out to unravel the milk proteome profiles from geographically and genetically diverse goat breeds by gel based 2DE and nLC-MS/MS. A total of 1307 functional proteins comprising casein and other low abundance proteins were identified. Gene annotations revealed that the majority of the proteins were involved in binding function, catalytic activity and structural molecules and localised in nucleus and membrane. The distinguished proteins were involved in 144 KEGG pathways in information processing, metabolism, cellular process, organismal systems and diseases. The large number of proteins and peptides including bioactive peptides were reported from goat milk from diverse agro-climatic regions of India indicating their significant potential for human health applications. SIGNIFICANCE: Goat milk in India is used in various Ayurvedic formulations to treat a number of ailments and allergies as well as for nutraceutical formulations. The study identifies milk protein variants both at protein and DNA level and subsequent identification of proteins by 2DE and nLC-MS/MS resulting in a proteome comprising of 1307 proteins. The specific proteins and peptides having significant role in immune regulation, disease pathways, cellular growth and metabolism have been identified. The results contribute to goat milk protein and peptide database which is very limited. We identified proteins for specific functional categories and associated them with different pathways for studying functional diversity of goat milk proteins. The proteins and peptides identified can be used for multiple human health application.
Collapse
|
15
|
Whitfield KC, Shahab-Ferdows S, Kroeun H, Sophonneary P, Green TJ, Allen LH, Hampel D. Macro- and Micronutrients in Milk from Healthy Cambodian Mothers: Status and Interrelations. J Nutr 2020; 150:1461-1469. [PMID: 32211800 PMCID: PMC7269724 DOI: 10.1093/jn/nxaa070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Except for low thiamin content, little is known about vitamins or macronutrients in milk from Cambodian mothers, and associations among milk nutrients. OBJECTIVES We measured fat-soluble vitamins (FSVs) and water-soluble vitamins (WSVs), and macronutrients, and explored internutrient associations in milk from Cambodian mothers. METHODS Milk from women (aged 18-45 y, 3-27 wk postpartum, n = 68) who participated in a thiamin-fortification trial were analyzed for vitamins B-2 (riboflavin, FAD), B-3 (nicotinamide), B-5, B-6 (pyridoxal, pyridoxine), B-7, B-12, A, E [α-tocopherol and γ-tocopherol (γ-TPH)], carotenoids, carbohydrate (CHO), fat, and protein. Milk vitamin B-1 [thiamin, thiamin monophosphate (TMP), thiamin pyrophosphate (TPP)] was previously assessed for fortification effects. Milk nutrient concentrations were compared with the Adequate Intake (AI) values for infants aged 0-6 mo. Pearson correlation was used to examine internutrient associations after excluding nutrients affected by fortification. RESULTS Fortification increased thiamin and B-1 and decreased γ-TPH. Less than 40% of milk samples met the AIs for all vitamins, and 10 samples did not reach any AI values for the analyzed nutrients. CHO, fat, and energy values were met in 1.5-11.8%, and protein in 48.5%, of the samples. Whereas fat, protein, and energy were related (all r < 0.5; P < 0.001) and associated with FSVs and WSVs, CHO correlated only with some WSVs. TPP was not correlated with B-1 vitamers, but with other WSVs (r = 0.28-0.58; P < 0.019). All FSVs, except α-carotene, were correlated with each other (r = 0.42-0.98; P < 0.002). TPP, FAD, B-2, and B-3 were associated with almost all FSVs (r = 0.24-0.63; P < 0.044). CONCLUSIONS Cambodian women might not provide sufficient nutrients to their exclusively breastfeeding infants. Besides thiamin, all other vitamins measured were much lower than the AI. There were many strong correlations among macronutrients and vitamins; the extent to which these are explained by maternal diet, milk volume, maternal physiology, or genetics requires additional exploration.
Collapse
Affiliation(s)
- Kyly C Whitfield
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
- Food, Nutrition, and Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Setareh Shahab-Ferdows
- USDA/ARS Western Human Nutrition Research Center, University of California, Davis, CA, USA
| | - Hou Kroeun
- Helen Keller International Cambodia, Phnom Penh, Cambodia
| | - Prak Sophonneary
- National Nutrition Programme, Maternal and Child Health Centre, Ministry of Health, Phnom Penh, Cambodia
| | - Timothy J Green
- Food, Nutrition, and Health, University of British Columbia, Vancouver, British Columbia, Canada
- Women and Kids Theme, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- Discipline of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Lindsay H Allen
- USDA/ARS Western Human Nutrition Research Center, University of California, Davis, CA, USA
- Department of Nutrition, University of California, Davis, CA, USA
| | - Daniela Hampel
- USDA/ARS Western Human Nutrition Research Center, University of California, Davis, CA, USA
- Department of Nutrition, University of California, Davis, CA, USA
| |
Collapse
|
16
|
Lu Y, Jin W, Yang Y, Jia Y, Sun L, Liu J, Wang L, Zhang F, Ge W, Wang J, Huang L, Wang Z. Online LC-UV-ESI-MS/MS Comparative Analysis of Changes in Goat Colostrum N/ O-Glycopatterns at Different Parities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2174-2182. [PMID: 31985220 DOI: 10.1021/acs.jafc.9b07075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Goat milk oligosaccharides are complex carbohydrates with a variety of biological functions. Free oligosaccharides from goat milk show more similarity to human milk than cow milk. At present, changes in goat milk glycoconjugates at different parities remain poorly studied. Herein, we qualitatively and quantitatively compared the goat milk glycoprotein N/O-glycome at different parities using a stable isotope labeling followed by electrospray ionization mass spectrometry and online hydrophilic interaction chromatography. N-Glycans were mainly fucosylated and nonfucosylated nonsialylated, and both fucosylation and sialylation gradually increased with parity, amounting (at the third parity) to 1.25 times and 3.3 times those of the first parity, respectively. O-Glycans were mostly nonfucosylated and nonsialylated, and sialylation increased with increasing parity, and Neu5Ac-sialylated was up to 9 times higher in the third parity than in the first parity, whereas Neu5Gc-sialylated was 5.5 times higher. This study provides a reference for exploring an alternative milk source closest to human milk and for the development of humanized formula milk.
Collapse
Affiliation(s)
- Yu Lu
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Wanjun Jin
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Yuerong Yang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Yue Jia
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Lujia Sun
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Jie Liu
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Langhong Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| | - Fuxing Zhang
- College of Food Engineering and Nutritional Science , Shaanxi Normal University , Xi'an 710119 , China
| | - Wupeng Ge
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Jiansheng Wang
- Shaanxi Hongxing Meiling Dairy Co., Ltd. , Fuping 711700 , China
| | - Linjuan Huang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| | - Zhongfu Wang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| |
Collapse
|
17
|
Bhat SA, Ahmad SM, Ibeagha-Awemu EM, Mobashir M, Dar MA, Mumtaz PT, Shah RA, Dar TA, Shabir N, Bhat HF, Ganai NA. Comparative milk proteome analysis of Kashmiri and Jersey cattle identifies differential expression of key proteins involved in immune system regulation and milk quality. BMC Genomics 2020; 21:161. [PMID: 32059637 PMCID: PMC7023774 DOI: 10.1186/s12864-020-6574-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exploration of the bioactive components of bovine milk has gained global interest due to their potential applications in human nutrition and health promotion. Despite advances in proteomics profiling, limited studies have been carried out to fully characterize the bovine milk proteome. This study explored the milk proteome of Jersey and Kashmiri cattle at day 90 of lactation using high-resolution mass spectrometry based quantitative proteomics nano-scale LC-MS/Q-TOF technique. Data are available via ProteomeXchange with identifier PXD017412. RESULTS Proteins from whey were fractionated by precipitation into high and low abundant proteins. A total of 81 high-abundant and 99 low-abundant proteins were significantly differentially expressed between Kashmiri and Jersey cattle, clearly differentiating the two breeds at the proteome level. Among the top differentiating proteins, the Kashmiri cattle milk proteome was characterised by increased concentrations of immune-related proteins (apelin, acid glycoprotein, CD14 antigen), neonatal developmental protein (probetacellulin), xenobiotic metabolising enzyme (flavin monooxygenase 3 (FMO3), GLYCAM1 and HSP90AA1 (chaperone) while the Jersey milk proteome presented higher concentrations of enzyme modulators (SERPINA1, RAC1, serine peptidase inhibitor) and hydrolases (LTF, LPL, CYM, PNLIPRP2). Pathway analysis in Kashmiri cattle revealed enrichment of key pathways involved in the regulation of mammary gland development like Wnt signalling pathway, EGF receptor signalling pathway and FGF signalling pathway while a pathway (T-cell activation pathway) associated with immune system regulation was significantly enriched in Jersey cattle. Most importantly, the high-abundant FMO3 enzyme with an observed 17-fold higher expression in Kashmiri cattle milk seems to be a characteristic feature of the breed. The presence of this (FMO3) bioactive peptide/enzyme in Kashmiri cattle could be economically advantageous for milk products from Kashmiri cattle. CONCLUSION In conclusion, this is the first study to provide insights not only into the milk proteome differences between Kashmiri and Jersey cattle but also provides potential directions for application of specific milk proteins from Kashmiri cattle in special milk preparations like infant formula.
Collapse
Affiliation(s)
- Shakil A. Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Syed M. Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec Canada
| | - Mohammad Mobashir
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Novels väg 16, 17165 Solna, Stockholm, Sweden
| | - Mashooq A. Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Peerzada T. Mumtaz
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Riaz A. Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Tanveer A. Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J & K India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Nazir A. Ganai
- Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| |
Collapse
|
18
|
Piersigilli F, Van Grambezen B, Hocq C, Danhaive O. Nutrients and Microbiota in Lung Diseases of Prematurity: The Placenta-Gut-Lung Triangle. Nutrients 2020; 12:E469. [PMID: 32069822 PMCID: PMC7071142 DOI: 10.3390/nu12020469] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiorespiratory function is not only the foremost determinant of life after premature birth, but also a major factor of long-term outcomes. However, the path from placental disconnection to nutritional autonomy is enduring and challenging for the preterm infant and, at each step, will have profound influences on respiratory physiology and disease. Fluid and energy intake, specific nutrients such as amino-acids, lipids and vitamins, and their ways of administration -parenteral or enteral-have direct implications on lung tissue composition and cellular functions, thus affect lung development and homeostasis and contributing to acute and chronic respiratory disorders. In addition, metabolomic signatures have recently emerged as biomarkers of bronchopulmonary dysplasia and other neonatal diseases, suggesting a profound implication of specific metabolites such as amino-acids, acylcarnitine and fatty acids in lung injury and repair, inflammation and immune modulation. Recent advances have highlighted the profound influence of the microbiome on many short- and long-term outcomes in the preterm infant. Lung and intestinal microbiomes are deeply intricated, and nutrition plays a prominent role in their establishment and regulation. There is an emerging evidence that human milk prevents bronchopulmonary dysplasia in premature infants, potentially through microbiome composition and/or inflammation modulation. Restoring antibiotic therapy-mediated microbiome disruption is another potentially beneficial action of human milk, which can be in part emulated by pre- and probiotics and supplements. This review will explore the many facets of the gut-lung axis and its pathophysiology in acute and chronic respiratory disorders of the prematurely born infant, and explore established and innovative nutritional approaches for prevention and treatment.
Collapse
Affiliation(s)
- Fiammetta Piersigilli
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels 1200, Belgium; (F.P.); (B.V.G.); (C.H.)
| | - Bénédicte Van Grambezen
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels 1200, Belgium; (F.P.); (B.V.G.); (C.H.)
| | - Catheline Hocq
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels 1200, Belgium; (F.P.); (B.V.G.); (C.H.)
| | - Olivier Danhaive
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels 1200, Belgium; (F.P.); (B.V.G.); (C.H.)
- Department of Pediatrics, Benioff Children’s Hospital, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
|
20
|
Use of Proteomics in the Study of Mastitis in Ewes. Pathogens 2019; 8:pathogens8030134. [PMID: 31470519 PMCID: PMC6789612 DOI: 10.3390/pathogens8030134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
The objective of this review is to describe the usage and applicability of proteomics technologies in the study of mastitis in ewes. In ewes, proteomics technologies have been employed for furthering knowledge in mastitis caused by various agents (Staphylococcus aureus, Staphylococcus chromogenes, Mannheimia haemolytica, Streptococcus uberis, Mycoplasma agalactiae). Studies have focused on improving knowledge regarding pathogenesis of the infections and identifying biomarkers for its diagnosis. Findings have revealed that ewes with mastitis mount a defence response, controlled by many proteins and over various mechanisms and pathways, which are interdependent at various points. Many proteins can participate in this process. Moreover, as the result of proteomics studies, cathelicidins and serum amyloid A have been identified as proteins that can be used as biomarkers for improved diagnosis of the disease. In the long term, proteomics will contribute to improvements in the elucidation of the pathogenesis of mastitis. Further in-depth investigations into the various proteomes and application of new methodological strategies in experimental and clinical studies will provide information about mastitis processes, which will be of benefit in controlling the disease. Improvement of diagnostic techniques, establishment of prognostic tools and development of vaccines are key areas for targeted research.
Collapse
|
21
|
Ma L, McJarrow P, Jan Mohamed HJB, Liu X, Welman A, Fong BY. Lactational changes in the human milk oligosaccharide concentration in Chinese and Malaysian mothers' milk. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Afshari R, Pillidge CJ, Dias DA, Osborn AM, Gill H. Cheesomics: the future pathway to understanding cheese flavour and quality. Crit Rev Food Sci Nutr 2018; 60:33-47. [DOI: 10.1080/10408398.2018.1512471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roya Afshari
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Daniel A. Dias
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - A. Mark Osborn
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
23
|
de la Torre Gomez C, Goreham RV, Bech Serra JJ, Nann T, Kussmann M. "Exosomics"-A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Front Genet 2018; 9:92. [PMID: 29636770 PMCID: PMC5881086 DOI: 10.3389/fgene.2018.00092] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Exosomes are biomolecular nanostructures released from cells. They carry specific biomolecular information and are mainly researched for their exquisite properties as a biomarker source and delivery system. We introduce exosomes in the context of other extracellular vesicles, describe their biophysical isolation and characterisation and discuss their biochemical profiling. Motivated by our interest in early-life nutrition and health, and corresponding studies enrolling lactating mothers and their infants, we zoom into exosomes derived from human breast milk. We argue that these should be more extensively studied at proteomic and micronutrient profiling level, because breast milk exosomes provide a more specific window into breast milk quality from an immunological (proteomics) and nutritional (micronutrient) perspective. Such enhanced breast milk exosome profiling would thereby complement and enrich the more classical whole breast milk analysis and is expected to deliver more functional insights than the rather descriptive analysis of human milk, or larger fractions thereof, such as milk fat globule membrane. We substantiate our arguments by a bioinformatic analysis of two published proteomic data sets of human breast milk exosomes.
Collapse
Affiliation(s)
| | - Renee V. Goreham
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | - Joan J. Bech Serra
- Proteomics Unit, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Thomas Nann
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | - Martin Kussmann
- Liggins Institute, University of Auckland, Auckland, New Zealand
- National Science Challenge “High-Value Nutrition”, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Bardanzellu F, Fanos V, Reali A. "Omics" in Human Colostrum and Mature Milk: Looking to Old Data with New Eyes. Nutrients 2017; 9:E843. [PMID: 28783113 PMCID: PMC5579636 DOI: 10.3390/nu9080843] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
Human Milk (HM) is the best source for newborn nutrition until at least six months; it exerts anti-inflammatory and anti-infective functions, promotes immune system formation and supports organ development. Breastfeeding could also protect from obesity, diabetes and cardiovascular disease. Furthermore, human colostrum (HC) presents a peculiar role in newborn support as a protective effect against allergic and chronic diseases, in addition to long-term metabolic benefits. In this review, we discuss the recent literature regarding "omics" technologies and growth factors (GF) in HC and the effects of pasteurization on its composition. Our aim was to provide new evidence in terms of transcriptomics, proteomics, metabolomics, and microbiomics, also in relation to maternal metabolic diseases and/or fetal anomalies and to underline the functions of GF. Since HC results are so precious, particularly for the vulnerable pre-terms category, we also discuss the importance of HM pasteurization to ensure donated HC even to neonates whose mothers are unable to provide. To the best of our knowledge, this is the first review analyzing in detail the molecular pattern, microbiota, bioactive factors, and dynamic profile of HC, finding clinical correlations of such mediators with their possible in vivo effects and with the consequent impact on neonatal outcomes.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| | - Alessandra Reali
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| |
Collapse
|
25
|
Yang M, Cao X, Wu R, Liu B, Ye W, Yue X, Wu J. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS. Int J Food Sci Nutr 2017; 68:671-681. [PMID: 28276902 DOI: 10.1080/09637486.2017.1279129] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.
Collapse
Affiliation(s)
- Mei Yang
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Xueyan Cao
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Rina Wu
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Biao Liu
- b Inner Mongolia Yili Industrial Group Company Limited , Hohhot , PR China
| | - Wenhui Ye
- b Inner Mongolia Yili Industrial Group Company Limited , Hohhot , PR China
| | - Xiqing Yue
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Junrui Wu
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| |
Collapse
|
26
|
Zhang L, van Dijk ADJ, Hettinga K. An interactomics overview of the human and bovine milk proteome over lactation. Proteome Sci 2017; 15:1. [PMID: 28149201 PMCID: PMC5267443 DOI: 10.1186/s12953-016-0110-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023] Open
Abstract
Background Milk is the most important food for growth and development of the neonate, because of its nutrient composition and presence of many bioactive proteins. Differences between human and bovine milk in low abundant proteins have not been extensively studied. To better understand the differences between human and bovine milk, the qualitative and quantitative differences in the milk proteome as well as their changes over lactation were compared using both label-free and labelled proteomics techniques. These datasets were analysed and compared, to better understand the role of milk proteins in development of the newborn. Methods Human and bovine milk samples were prepared by using filter-aided sample preparation (FASP) combined with dimethyl labelling and analysed by nano LC LTQ-Orbitrap XL mass spectrometry. Results The human and bovine milk proteome show similarities with regard to the distribution over biological functions, especially the dominant presence of enzymes, transport and immune-related proteins. At a quantitative level, the human and bovine milk proteome differed not only between species but also over lactation within species. Dominant enzymes that differed between species were those assisting in nutrient digestion, with bile salt-activated lipase being abundant in human milk and pancreatic ribonuclease being abundant in bovine milk. As lactation advances, immune-related proteins decreased slower in human milk compared to bovine milk. Notwithstanding these quantitative differences, analysis of human and bovine co-expression networks and protein-protein interaction networks indicated that a subset of milk proteins displayed highly similar interactions in each of the different networks, which may be related to the general importance of milk in nutrition and healthy development of the newborn. Conclusions Our findings promote a better understanding of the differences and similarities in dynamics of human and bovine milk proteins, thereby also providing guidance for further improvement of infant formula. Electronic supplementary material The online version of this article (doi:10.1186/s12953-016-0110-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Zhang
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University, Postbox 8129, 6700EV Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Biometris, Wageningen University and Research Centre, P.O. Box 16, 6700 AA Wageningen, The Netherlands.,Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.,Bioscience, cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University, Postbox 8129, 6700EV Wageningen, The Netherlands
| |
Collapse
|
27
|
Polyphemus, Odysseus and the ovine milk proteome. J Proteomics 2017; 152:58-74. [DOI: 10.1016/j.jprot.2016.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
|
28
|
Characterization of donkey milk and metabolite profile comparison with human milk and formula milk. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.07.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Yang Y, Zheng N, Wang W, Zhao X, Zhang Y, Han R, Ma L, Zhao S, Li S, Guo T, Zang C, Wang J. N-glycosylation proteomic characterization and cross-species comparison of milk fat globule membrane proteins from mammals. Proteomics 2016; 16:2792-2800. [PMID: 27539975 DOI: 10.1002/pmic.201500361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 04/09/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022]
Abstract
Glycosylation of proteins has been implicated in various biological functions and has received much attention; however, glycoprotein components and inter-species complexity have not yet been elucidated fully in milk proteins. N-linked glycosylation sites and glycoproteins in milk fat globule membrane (MFGM) fractions were investigated by combining N-glycosylated peptides enrichment and high-accuracy Q Exactive identification, to map the N-glycoproteome profiles in Holstein and Jersey cows, buffaloes, yaks, goats, camels, horses, and humans. A total of 399 N-glycoproteins with 677 glycosylation sites were identified in the MFGM fractions of the studied mammals. Most glycosylation sites in humans were classified as known and those in the other studied mammals as unknown, according to Swiss-Prot annotations. Functionally, most of the identified glycoproteins were associated with the 'response to stimulus' GO category. N-glycosylated protein components of MFGM fractions from Holstein and Jersey cows, buffaloes, yaks, and goats were more similar to each other compared with those of camels, horses and human. The findings increased the number of known N-glycosylation sites in the milk from dairy animal species, revealed the complexity of the MFGM glycoproteome, and provided useful information to further explore the mechanism of MFGM glycoproteins biosynthesis among the studied mammals.
Collapse
Affiliation(s)
- Yongxin Yang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Nan Zheng
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyu Wang
- The High School affiliated to Renmin University of China, Beijing, China
| | - Xiaowei Zhao
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yangdong Zhang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongwei Han
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Ma
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Songli Li
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tongjun Guo
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiang Zang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
30
|
Singh M, Kumar A, Srivastava G, Deepak D, Singh M. Isolation, structure elucidation and DFT study on two novel oligosaccharides from yak milk. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.03.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Tunick MH, Van Hekken DL. Dairy Products and Health: Recent Insights. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9381-9388. [PMID: 25394286 DOI: 10.1021/jf5042454] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Milk, cheese, yogurt, and other dairy products have long been known to provide good nutrition. Major healthful contributors to the diets of many people include the protein, minerals, vitamins, and fatty acids present in milk. Recent studies have shown that consumption of dairy products appears to be beneficial in muscle building, lowering blood pressure and low-density lipoprotein cholesterol, and preventing tooth decay, diabetes, cancer, and obesity. Additional benefits might be provided by organic milk and by probiotic microorganisms using milk products as a vehicle. New research on dairy products and nutrition will improve our understanding of the connections between these products, the bioactive compounds in them, and their effects on the human body.
Collapse
Affiliation(s)
- Michael H Tunick
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, United States
| | - Diane L Van Hekken
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, United States
| |
Collapse
|
32
|
Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry. J Chromatogr A 2015; 1428:143-53. [PMID: 26427327 DOI: 10.1016/j.chroma.2015.09.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 01/09/2023]
Abstract
A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2-0.6min) and good symmetry (As: 0.8-1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40°C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315mgL(-1) for neutral oligosaccharides and from 83 to 251mgL(-1) for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO.
Collapse
|
33
|
Wickramasinghe S, Pacheco AR, Lemay DG, Mills DA. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol 2015; 15:172. [PMID: 26303932 PMCID: PMC4548914 DOI: 10.1186/s12866-015-0508-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/13/2015] [Indexed: 12/15/2022] Open
Abstract
Background Breastfed human infants are predominantly colonized by bifidobacteria that thrive on human milk oligosaccharides (HMO). Two predominant species of bifidobacteria in infant feces are Bifidobacterium breve (B. breve) and Bifidobacterium longum subsp. infantis (B. infantis), both of which include avid HMO-consumer strains. Our laboratory has previously shown that B. infantis, when grown on HMO, increases adhesion to intestinal cells and increases the expression of the anti-inflammatory cytokine interleukin-10. The purpose of the current study was to investigate the effects of carbon source—glucose, lactose, or HMO—on the ability of B. breve and B. infantis to adhere to and affect the transcription of intestinal epithelial cells on a genome-wide basis. Results HMO-grown B. infantis had higher percent binding to Caco-2 cell monolayers compared to B. infantis grown on glucose or lactose. B. breve had low adhesive ability regardless of carbon source. Despite differential binding ability, both HMO-grown strains significantly differentially affected the Caco-2 transcriptome compared to their glucose or lactose grown controls. HMO-grown B. breve and B. infantis both downregulated genes in Caco-2 cells associated with chemokine activity. Conclusion The choice of carbon source affects the interaction of bifidobacteria with intestinal epithelial cells. HMO-grown bifidobacteria reduce markers of inflammation, compared to glucose or lactose-grown bifidobacteria. In the future, the design of preventative or therapeutic probiotic supplements may need to include appropriately chosen prebiotics. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0508-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saumya Wickramasinghe
- Department of Basic Veterinary Sciences, University of Peradeniya, Peradeniya, 20400, Sri Lanka. .,Foods for Health Institute University of California, Davis, Davis, CA, 95616, USA. .,Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA.
| | - Alline R Pacheco
- Foods for Health Institute University of California, Davis, Davis, CA, 95616, USA. .,Department of Food Science and Technology, University of California, Davis, Davis, CA, 95616, USA. .,Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA.
| | - Danielle G Lemay
- Foods for Health Institute University of California, Davis, Davis, CA, 95616, USA. .,Genome Center, University of California, Davis, Davis, CA, 95616, USA.
| | - David A Mills
- Foods for Health Institute University of California, Davis, Davis, CA, 95616, USA. .,Department of Food Science and Technology, University of California, Davis, Davis, CA, 95616, USA. .,Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
34
|
Zhang L, Boeren S, Hageman JA, van Hooijdonk T, Vervoort J, Hettinga K. Perspective on calf and mammary gland development through changes in the bovine milk proteome over a complete lactation. J Dairy Sci 2015; 98:5362-73. [DOI: 10.3168/jds.2015-9342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/26/2015] [Indexed: 12/31/2022]
|
35
|
Sachleben JR, Yi R, Volden PA, Conzen SD. Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by ¹H NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2014; 59:161-73. [PMID: 24831341 PMCID: PMC4479961 DOI: 10.1007/s10858-014-9836-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/02/2014] [Indexed: 06/03/2023]
Abstract
Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR technique, aliphatic chain length by isotropic mixing, to address this problem. Using a selective total correlation spectroscopy technique to excite and transfer magnetization from a resolved resonance, we demonstrate that the time dependence of this transfer to another resolved site depends linearly on the number of aliphatic carbons separating the two sites. This technique is applied to complex natural mixtures allowing the identification and quantification of the constituent fatty acids. The method has been applied to whole adipocytes demonstrating that it will be of great use in studies of whole tissues.
Collapse
Affiliation(s)
- Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA,
| | | | | | | |
Collapse
|
36
|
Hirahatake KM, Slavin JL, Maki KC, Adams SH. Associations between dairy foods, diabetes, and metabolic health: potential mechanisms and future directions. Metabolism 2014; 63:618-27. [PMID: 24636056 PMCID: PMC5367265 DOI: 10.1016/j.metabol.2014.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 12/14/2022]
Abstract
Epidemiological evidence supports an inverse relationship between adequate intake of dairy foods and susceptibility to type 2 diabetes (T2D). The biological mechanisms responsible for this association remain to be established. This review provides a current perspective on proposed mechanisms that may underlie these effects, and highlights how randomized clinical trials can be applied to investigate these relationships. Results from epidemiological studies generally support that consumption of milk and dairy products is associated with a lower incidence of T2D or improvements in glucose homeostasis indices, and studies of animal and cell models support a positive effect of dairy-rich diets or components on metabolic and inflammation factors relevant to T2D and insulin resistance. Emerging evidence indicates that dairy components that alter mitochondrial function (e.g., leucine actions on silent information regulator transcript 1 (SIRT1)-associated pathways), promote gut microbial population shifts, or influence inflammation and cardiovascular function (e.g., Ca-regulated peptides calcitonin gene-related peptide [CGRP] or calcitonin) should be considered as possible mechanistic factors linking dairy intake with lower risk for T2D. The possibility that dairy-derived trans-palmitoleic acid (tC16:1) has metabolic bioactivities has also been proposed. Pre-clinical and clinical studies focusing specifically on these parameters are needed to validate hypotheses regarding the potential roles of dairy products and their components on the determinants of glucose tolerance, particularly insulin sensitivity, pancreatic endocrine function, and inflammation in individuals at-risk for T2D development. Such experiments would complement epidemiological studies and add to the evidence base for recommendations regarding consumption of dairy products and their individual components.
Collapse
Affiliation(s)
- Kristin M Hirahatake
- Obesity & Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, CA
| | - Joanne L Slavin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | | | - Sean H Adams
- Obesity & Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, CA; Department of Nutrition, University of California, Davis, CA.
| |
Collapse
|
37
|
|
38
|
Minkiewicz P, Miciński J, Darewicz M, Bucholska J. Biological and Chemical Databases for Research into the Composition of Animal Source Foods. FOOD REVIEWS INTERNATIONAL 2013. [DOI: 10.1080/87559129.2013.818011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Alzahrani E, Welham K. Preconcentration of milk proteins using octadecylated monolithic silica microchip. Anal Chim Acta 2013; 798:40-7. [DOI: 10.1016/j.aca.2013.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
40
|
Tholey A, Treitz C, Kussmann M, Bendixen E, Schrimpf SP, Hengartner MO. Model Organisms Proteomics-From Holobionts to Human Nutrition. Proteomics 2013; 13:2537-41. [DOI: 10.1002/pmic.201370144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Tholey
- Division of Systematic Proteome Research; Institute for Experimental Medicine; Christian-Albrechts-Universität zu Kiel; Kiel; Germany
| | - Christian Treitz
- Division of Systematic Proteome Research; Institute for Experimental Medicine; Christian-Albrechts-Universität zu Kiel; Kiel; Germany
| | | | - Emöke Bendixen
- Department of Molecular Biology and Genetics; Laboratory of Proteomics and Mass spectrometry; Aarhus University; Arhus; Denmark
| | - Sabine P. Schrimpf
- Institute of Molecular Life Sciences; University of Zurich; Zurich; Switzerland
| | | |
Collapse
|
41
|
Agrawal GK, Timperio AM, Zolla L, Bansal V, Shukla R, Rakwal R. Biomarker discovery and applications for foods and beverages: proteomics to nanoproteomics. J Proteomics 2013; 93:74-92. [PMID: 23619387 DOI: 10.1016/j.jprot.2013.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/17/2013] [Accepted: 04/01/2013] [Indexed: 12/18/2022]
Abstract
Foods and beverages have been at the heart of our society for centuries, sustaining humankind - health, life, and the pleasures that go with it. The more we grow and develop as a civilization, the more we feel the need to know about the food we eat and beverages we drink. Moreover, with an ever increasing demand for food due to the growing human population food security remains a major concern. Food safety is another growing concern as the consumers prefer varied foods and beverages that are not only traded nationally but also globally. The 21st century science and technology is at a new high, especially in the field of biological sciences. The availability of genome sequences and associated high-throughput sensitive technologies means that foods are being analyzed at various levels. For example and in particular, high-throughput omics approaches are being applied to develop suitable biomarkers for foods and beverages and their applications in addressing quality, technology, authenticity, and safety issues. Proteomics are one of those technologies that are increasingly being utilized to profile expressed proteins in different foods and beverages. Acquired knowledge and protein information have now been translated to address safety of foods and beverages. Very recently, the power of proteomic technology has been integrated with another highly sensitive and miniaturized technology called nanotechnology, yielding a new term nanoproteomics. Nanoproteomics offer a real-time multiplexed analysis performed in a miniaturized assay, with low-sample consumption and high sensitivity. To name a few, nanomaterials - quantum dots, gold nanoparticles, carbon nanotubes, and nanowires - have demonstrated potential to overcome the challenges of sensitivity faced by proteomics for biomarker detection, discovery, and application. In this review, we will discuss the importance of biomarker discovery and applications for foods and beverages, the contribution of proteomic technology in this process, and a shift towards nanoproteomics to suitably address associated issues. This article is part of a Special Issue entitled: Translational plant proteomics.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal.
| | | | | | | | | | | |
Collapse
|
42
|
van Leeuwen SS, Schoemaker RJW, Timmer CJAM, Kamerling JP, Dijkhuizen L. N- and o-glycosylation of a commercial bovine whey protein product. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:12553-12564. [PMID: 23194161 DOI: 10.1021/jf304000b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine whey protein products are used as a base ingredient in infant formulas to optimize the amino acid pattern to a more human-like composition. Although the protein composition of bovine milk has been studied in detail, glycosylation details of commercial whey protein products are missing. To this end, both the N- and O-glycans of such a protein concentrate were sequentially released, the N-glycans enzymatically and the O-glycans chemically (reducing and nonreducing conditions). For the structural analysis of the N- and O-glycans a combination of MALDI-TOF-MS, one-dimensional (1)H NMR spectroscopy, Wisteria floribunda agglutinin affinity chromatography, HPAEC-PAD profiling, and HPLC-FD profiling (2-aminobenzamide derivatives), together with exoglycosidase treatments, were used. A mixture of over 60 N-glycans and 10 O-glycans was characterized, giving a detailed insight into the glycosylation of a bovine whey protein product, Deminal 90, which is applied as an ingredient for infant formulas.
Collapse
Affiliation(s)
- Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen , Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Yeung M. ADSA Foundation Scholar Award: Trends in culture-independent methods for assessing dairy food quality and safety: Emerging metagenomic tools. J Dairy Sci 2012; 95:6831-42. [DOI: 10.3168/jds.2012-5677] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/19/2012] [Indexed: 01/13/2023]
|
44
|
Ferreira CR, Pirro V, Eberlin LS, Hallett JE, Cooks RG. Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 2012; 404:2915-26. [DOI: 10.1007/s00216-012-6426-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 08/26/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
|
45
|
Di Stefano V, Avellone G, Bongiorno D, Cunsolo V, Muccilli V, Sforza S, Dossena A, Drahos L, Vékey K. Applications of liquid chromatography–mass spectrometry for food analysis. J Chromatogr A 2012; 1259:74-85. [DOI: 10.1016/j.chroma.2012.04.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 12/31/2022]
|
46
|
Abstract
Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food.
Collapse
Affiliation(s)
- Reuven Rasooly
- Unit of Foodborne Contaminants, Agricultural Research Service, United States Department of Agriculture, Albany, California 94710, USA.
| | | | | |
Collapse
|
47
|
Roncada P, Piras C, Soggiu A, Turk R, Urbani A, Bonizzi L. Farm animal milk proteomics. J Proteomics 2012; 75:4259-74. [PMID: 22641156 DOI: 10.1016/j.jprot.2012.05.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 12/28/2022]
Abstract
Milk is one of the most important nutrients for humans during lifetime. Farm animal milk in all its products like cheese and other fermentation and transformation products is a widespread nutrient for the entire life of humans. Proteins are key molecules of the milk functional component repertoire and their investigation represents a major challenge. Proteins in milk, such as caseins, contribute to the formation of micelles that are different from species to species in dimension and casein-type composition; they are an integral part of the MFGM (Milk Fat Globule Membrane) that has being exhaustively studied in recent years. Milk proteins can act as enzymes or have an antimicrobial activity; they could act as hormones and, last but not least, they have a latent physiological activity encoded in their primary structure that turns active when the protein is cleaved by fermentation or digestion processes. In this review we report the last progress in proteomics, peptidomics and bioinformatics. These new approaches allow us to better characterize the milk proteome of farm animal species, to highlight specific PTMs, the peptidomic profile and even to predict the potential nutraceutical properties of the analyzed proteins.
Collapse
Affiliation(s)
- Paola Roncada
- Istituto Sperimentale Italiano L. Spallanzani, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
KUCHTA ANNAM, KELLY PHILIPM, STANTON CATHERINE, DEVERY ROSALEENA. Milk fat globule membrane - a source of polar lipids for colon health? A review. INT J DAIRY TECHNOL 2012. [DOI: 10.1111/j.1471-0307.2011.00759.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Wickramasinghe S, Rincon G, Islas-Trejo A, Medrano JF. Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics 2012; 13:45. [PMID: 22276848 PMCID: PMC3285075 DOI: 10.1186/1471-2164-13-45] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/25/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cow milk is a complex bioactive fluid consumed by humans beyond infancy. Even though the chemical and physical properties of cow milk are well characterized, very limited research has been done on characterizing the milk transcriptome. This study performs a comprehensive expression profiling of genes expressed in milk somatic cells of transition (day 15), peak (day 90) and late (day 250) lactation Holstein cows by RNA sequencing. Milk samples were collected from Holstein cows at 15, 90 and 250 days of lactation, and RNA was extracted from the pelleted milk cells. Gene expression analysis was conducted by Illumina RNA sequencing. Sequence reads were assembled and analyzed in CLC Genomics Workbench. Gene Ontology (GO) and pathway analysis were performed using the Blast2GO program and GeneGo application of MetaCore program. RESULTS A total of 16,892 genes were expressed in transition lactation, 19,094 genes were expressed in peak lactation and 18,070 genes were expressed in late lactation. Regardless of the lactation stage approximately 9,000 genes showed ubiquitous expression. Genes encoding caseins, whey proteins and enzymes in lactose synthesis pathway showed higher expression in early lactation. The majority of genes in the fat metabolism pathway had high expression in transition and peak lactation milk. Most of the genes encoding for endogenous proteases and enzymes in ubiquitin-proteasome pathway showed higher expression along the course of lactation. CONCLUSIONS This is the first study to describe the comprehensive bovine milk transcriptome in Holstein cows. The results revealed that 69% of NCBI Btau 4.0 annotated genes are expressed in bovine milk somatic cells. Most of the genes were ubiquitously expressed in all three stages of lactation. However, a fraction of the milk transcriptome has genes devoted to specific functions unique to the lactation stage. This indicates the ability of milk somatic cells to adapt to different molecular functions according to the biological need of the animal. This study provides a valuable insight into the biology of lactation in the cow, as well as many avenues for future research on the bovine lactome.
Collapse
|
50
|
Chou CJ, Affolter M, Kussmann M. A Nutrigenomics View of Protein Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:51-74. [DOI: 10.1016/b978-0-12-398397-8.00003-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|