1
|
Atabay M, Inci F, Saylan Y. Computational studies for the development of extracellular vesicle-based biosensors. Biosens Bioelectron 2025; 277:117275. [PMID: 39999607 DOI: 10.1016/j.bios.2025.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Cancer affects millions of people, and early detection and efficient treatment are two strong levers to hurdle this disease. Recent studies on exosomes, a subset of extracellular vesicles, have deliberately shown the potential to function as a biomarker or treatment tool, thereby attracting the attention of researchers who work on developing biosensors. Due to the ability of computational methods to predict of the behavior of biomolecules, the combination of experimental and computational methods would enhance the analytical performance of the biosensor, including sensitivity, accuracy, and specificity, even detecting such vesicles from bodily fluids. In this regard, the role of computational methods such as molecular docking, molecular dynamics simulation, and density functional theory is overviewed in the development of biosensors. This review highlights the investigations and studies that have been reported using these methods to design exosome-based biosensors. This review concludes with the role of the quantum mechanics/molecular mechanics method in the investigation of chemical processes of biomolecular systems and the deficiencies in using this approach to develop exosome-based biosensors. In addition, the artificial intelligence theory is explained briefly to show its importance in the study of these biosensors.
Collapse
Affiliation(s)
- Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Garg V, Mukesh M, Kumar U, Kumar D, Amarjeet, Mahajan R, Kataria RS, Kumari P, Sodhi M. Characterization of metabolite profiles in milk derived exosomes from indicus, crossbred and taurine cows by proton nuclear magnetic resonance analysis. Food Chem 2025; 473:143015. [PMID: 39889637 DOI: 10.1016/j.foodchem.2025.143015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
This study presents metabolome profiling of milk-derived exosomes (MDE) from cows of different genetic origins that is Sahiwal (Bos indicus), Holstein Friesian (Bos taurus) and Karan Fries (crossbred: cross of Bos indicus and Bos taurus) using 1H NMR spectroscopy. Diverse arrays of 41 metabolites were identified in all MDE groups. Comparative profiling across the three MDE groups revealed 16 metabolites to be differentially abundant (p < 0.01; log 2(FC) > 1; VIP >1) and all of these were enriched in SW-MDE. On pairwise comparison, 19 metabolites showed differential abundance (p < 0.01) between SW-HF and 10 each in SW-KF and KF-HF MDE. All the metabolites except citrate and lactose exhibited abundance in SW-MDE followed by KF and HF-MDE. Most of the metabolites (alanine, leucine, isoleucine, valine, phenylalanine, O-acetyl carnitine and 3-hydroxybutyrate) enriched in SW-MDE have positive health attributes and are involved in key metabolic pathways associated with energy production, growth, intestinal proliferation, and immune regulation. The differential quantification highlighted the source specific metabolome of MDE and also the advantageous nutritional and therapeutic potential of indicus cow milk derived exosomes.
Collapse
Affiliation(s)
- Vidhi Garg
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, India; Kurukshetra University, Kurukshetra, Haryana, India
| | - Manishi Mukesh
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Umesh Kumar
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Dinesh Kumar
- Centre of BioMedical Research, Lucknow, Uttar Pradesh, India
| | - Amarjeet
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Ritu Mahajan
- Kurukshetra University, Kurukshetra, Haryana, India
| | - Ranjit S Kataria
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Parvesh Kumari
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Monika Sodhi
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| |
Collapse
|
3
|
Niland S, Eble JA. Decoding the MMP14 integrin link: Key player in the secretome landscape. Matrix Biol 2025; 136:36-51. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
4
|
René CA, Parks RJ. Extracellular vesicles efficiently deliver survival motor neuron protein to cells in culture. Sci Rep 2025; 15:5674. [PMID: 39955442 PMCID: PMC11830090 DOI: 10.1038/s41598-025-90083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Spinal Muscular Atrophy (SMA) is a genetic neuromuscular disorder caused by homozygous mutation or deletion of the survival motor neuron 1 (SMN1) gene, leading to a low quantity of SMN protein in cells. This depletion of SMN protein preferentially leads to death of motor neurons and, consequently, muscle atrophy, in addition to defects in many other peripheral tissues. SMN protein is naturally loaded into extracellular vesicles (EVs), which are sub-micron-sized, membrane-bound particles released from all cell types. The innate ability of EVs to deliver cargo to recipient cells has caused these vesicles to gain interest as therapeutic delivery vehicles. In this study, we show that adenovirus-mediated overexpression of SMN protein in HepG2 cells leads to the release of EVs loaded with high levels of SMN protein into conditioned medium. Application of this medium to recipient cells in tissue culture led to uptake of the SMN protein, which subsequently transited to the nucleus and co-localized with Gemin2 protein, forming nuclear gem-like structures similar to the native SMN protein. Overall, this work demonstrates that SMN protein can be delivered to cells through EVs, which holds promise as a potential therapy for patients with SMA.
Collapse
Affiliation(s)
- Charlotte A René
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, K1Y 4E9, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, K1Y 4E9, Canada.
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
5
|
Sun X, Wan J, Zhang Y, Shen Y, Tang Y, Yin Y, Chamley LW, Zhao M, Chen Q. Placental extracellular vesicles induce ovarian tumour cell death in an ex vivo explant model: Possible therapeutic potential. Placenta 2025; 160:20-28. [PMID: 39752926 DOI: 10.1016/j.placenta.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025]
Abstract
INTRODUCTION Placental extracellular vesicles (EVs), lipid-enclosed particles released from the placenta, can facilitate intercellular communication and are classified as micro- or nano-EVs depending on size. Placental EVs contain molecules associated with cell proliferation and death. In this study, we investigated whether treating human ovarian tumour explants with placental EVs could induce ovarian tumour cell death. METHODS Human ovarian tumours were collected. After directly treating human ovarian tumour explants with placental EVs, cellular necrosis was observed in ovarian tumour explants by HE stains. Cell death-associated miRNAs were measured. RESULTS Expression of apoptosis and senescence-associated proteins, including NF-κβ and γ H2AX, were significantly increased, while proliferation-associated proteins were significantly reduced in the explants after exposure to placental EVs. Furthermore, miRNA-519a-5p, miRNA-512-3p and miRNA-143-3p, which were reported to promote ovarian cancer cell apoptosis or inhibition of ovarian cancer cell growth, were significantly increased, and the target genes of miRNA-519a-5p and miRNA-512-3p were significantly reduced in the explants after exposure to placental EVs. Transfection of SK-OV-3 ovarian cancer cells with a mimic of miRNA-519a-5p or miRNA-143-3p reduced the viability of these cells. DISCUSSION Our study demonstrated that placental EVs could induce necrosis in ovarian tumour explants. Increased levels of apoptosis and senescence-associated proteins and miRNAs could contribute to this change in ovarian tumour cell phenotype after exposure to placental EVs.
Collapse
Affiliation(s)
- Xinyi Sun
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Jiayi Wan
- Department of Pathology, Wuxi No 2 People's Hospital, Nanjing Medical University, China
| | - Yi Zhang
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Ye Shen
- Department of Family Planning, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yunhui Tang
- Department of Family Planning, The Hospital of Obstetrics & Gynaecology, Fudan University, China
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lawrence W Chamley
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Min Zhao
- Department of Gynaecological Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Qi Chen
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand.
| |
Collapse
|
6
|
Ma X, Peng L, Zhu X, Chu T, Yang C, Zhou B, Sun X, Gao T, Zhang M, Chen P, Chen H. Isolation, identification, and challenges of extracellular vesicles: emerging players in clinical applications. Apoptosis 2025; 30:422-445. [PMID: 39522104 DOI: 10.1007/s10495-024-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) serve as critical mediators of intercellular communication, encompassing exosomes, microvesicles, and apoptotic vesicles that play significant roles in diverse physiological and pathological contexts. Numerous studies have demonstrated that EVs derived from mesenchymal stem cells (MSC-EVs) play a pivotal role in facilitating tissue and organ repair, alleviating inflammation and apoptosis, enhancing the proliferation of endogenous stem cells within tissues and organs, and modulating immune function-these functions have been extensively utilized in clinical applications. The precise classification, isolation, and identification of MSC-EVs are essential for their clinical applications. This article provides a comprehensive overview of the biological properties of EVs, emphasizing both their advantages and limitations in isolation and identification methodologies. Additionally, we summarize the protein markers associated with MSC-EVs, emphasizing their significance in the treatment of various diseases. Finally, this article addresses the current challenges and dilemmas in developing clinical applications for MSC-EVs, aiming to offer valuable insights for future research.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Lanwei Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaohui Zhu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianqi Chu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Changcheng Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Bohao Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiangwei Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianya Gao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Mengqi Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China.
| |
Collapse
|
7
|
Pons WF, Marcus RK. Isolation of Urinary Extracellular Vesicles (EVs) via Hydrophobic Interaction Chromatography Using a Nylon-6 Capillary-Channeled Polymer (C-CP) Fiber Column. J Sep Sci 2025; 48:e70093. [PMID: 39933961 DOI: 10.1002/jssc.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025]
Abstract
Exosomes, a subset of extracellular vesicles (EVs) ranging in size from 30 to 150 nm, are of significant interest for biomedical applications such as diagnostic testing and therapeutics delivery. Biofluids, including urine, blood, and saliva, contain exosomes that carry biomarkers reflective of their host cells. However, isolation of EVs is often a challenge due to their size range, low density, and high hydrophobicity. Isolations can involve long separation times (ultracentrifugation) or result in impure eluates (size exclusion chromatography, polymer-based precipitation). As an alternative to these methods, this study evaluates the first use of nylon-6 capillary-channeled polymer (C-CP) fiber columns to separate EVs from human urine via a step-gradient hydrophobic interaction chromatography method. Different from previous efforts using polyester fiber columns for EV separations, nylon-6 shows potential for increased isolation efficiency, including somewhat higher column loading capacity and more gentle EV elution solvent strength. The efficacy of this approach to EV separation has been determined by scanning electron and transmission microscopy, nanoparticle flow cytometry (NanoFCM), and Bradford protein assays. Electron microscopy showed isolated vesicles of the expected morphology. Nanoparticle flow cytometry determined particle densities of eluates yielding up to 5 × 108 particles mL-1, a typical distribution of vesicle sizes in the eluate (60-100 nm), and immunoconfirmation using fluorescent anti-CD81 antibodies. Bradford assays confirmed that protein concentrations in the EV eluate were significantly reduced (approx. sevenfold) from raw urine. Overall, this approach provides a low-cost and time-efficient (< 20 min) column separation to yield urinary EVs of the high purities required for downstream applications, including diagnostic testing and therapeutics.
Collapse
Affiliation(s)
- William F Pons
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
8
|
Wang J, Luo Q, Gu T, An F, Zhou Y, Min Y, Zhang R, Jiang Y. Serum-Derived Exosomal TBX2-AS1 Exacerbates COPD by Altering the M1/M2 Ratio of Macrophages through Regulating the miR-423-5p/miR-23b-3p Axis. Immunol Invest 2025; 54:271-295. [PMID: 39589066 DOI: 10.1080/08820139.2024.2434692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
OBJECTIVE To investigate the mechanism of serum exosomes in chronic obstructive pulmonary disease (COPD), especially the effect of lncRNA TBX2-AS1 on macrophage polarization. METHODS Screen differentially expressed genes through bioinformatics analysis, detect the expression of related molecules in clinical samples and cell experiments, construct a mouse model and conduct functional rescue experiments, using various experimental techniques such as RT - qPCR, Western Blot, flow cytometry, ELISA, and luciferase reporter assay. RESULTS TBX2-AS1 is highly expressed in the serum and serum exosomes of COPD patients, and it can promote macrophage M1 polarization and inhibit M2 polarization; it exerts its role by negatively regulating the miR-423-5p/miR-23b - 3p axis, where miR-423-5p inhibits CELSR2 expression to prevent M1 polarization, and miR-23b-3p inhibits NEK6 expression to promote M2 polarization; in vivo experiments, down-regulation of CELSR2/NEK6 can reverse the promoting effect of COPD serum exosomes on lung injury and inflammation. CONCLUSION COPD serum exosomes deliver TBX2-AS1 to macrophages, regulate the miR-423-5p-CELSR2/miR-23b-3p-NEK6 pathway, affect macrophage polarization, and exacerbate the progression of COPD, providing new directions and potential targets for the diagnosis and treatment of COPD.
Collapse
Affiliation(s)
- JinHai Wang
- Department of Emergency, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qing Luo
- Department of Internal Medicine, People's Hospital of Hainan Tibetan Autonomous Prefecture, Qinghai, Hainan Tibetan Autonomous Prefecture, China
| | - TiJun Gu
- Department of Emergency, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - FenQin An
- Department of Emergency, People's Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, China
| | - YunZheng Zhou
- Department of Emergency, People's Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, China
| | - YePing Min
- Department of Emergency, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - RuiRen Zhang
- Department of Emergency, People's Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, China
| | - YiMing Jiang
- Department of Emergency, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
- Department of Emergency, People's Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, China
| |
Collapse
|
9
|
Wang L, Zhou S, Ruan Y, Wu X, Zhang X, Li Y, Ying D, Lu Y, Tian Y, Cheng G, Zhang J, Lv K, Zhou X. Hypoxia-Challenged Pancreatic Adenocarcinoma Cell-Derived Exosomal circR3HCC1L Drives Tumor Growth Via Upregulating PKM2 Through Sequestering miR-873-5p. Mol Biotechnol 2025; 67:762-777. [PMID: 38526683 DOI: 10.1007/s12033-024-01091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 03/27/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a fatal disease with poor survival. Increasing evidence show that hypoxia-induced exosomes are associated with cancer progression. Here, we aimed to investigate the function of hsa_circ_0007678 (circR3HCC1L) and hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD progression. Through the exoRBase 2.0 database, we screened for a circular RNA circR3HCC1L related to PAAD. Changes of circR3HCC1L in PAAD samples and cells were analyzed with real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, migration, invasion were analyzed by colony formation, cell counting, and transwell assays. Measurements of glucose uptake and lactate production were done using corresponding kits. Several protein levels were detected by western blotting. The regulation mechanism of circR3HCC1L was verified by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Exosomes were separated by differential ultracentrifugation. Animal experiments were used to verify the function of hypoxia-derived exosomal circR3HCC1L. CircR3HCC1L was upregulated in PAAD samples and hypoxic PAAD cells. Knockdown of circR3HCC1L decreased hypoxia-driven PAAD cell proliferation, migration, invasion, and glycolysis. Hypoxic PAAD cell-derived exosomes had higher levels of circR3HCC1L, hypoxic PAAD cell-derived exosomal circR3HCC1L promoted normoxic cancer cell malignant transformation and glycolysis in vitro and xenograft tumor growth in mouse models in vivo. Mechanistically, circR3HCC1L regulated pyruvate kinase M2 (PKM2) expression via sponging miR-873-5p. Also, PKM2 overexpression or miR-873-5p silencing offset circR3HCC1L knockdown-mediated effects on hypoxia-challenged PAAD cell malignant transformation and glycolysis. Hypoxic PAAD cell-derived exosomal circR3HCC1L facilitated PAAD progression through the miR-873-5p/PKM2 axis, highlighting the contribution of hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD.
Collapse
Affiliation(s)
- Luoluo Wang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Shuping Zhou
- Ningbo College of Health Sciences, No.51, Xuefu Road, Yinzhou District, Ningbo, 315040, Zhejiang, China.
| | - Yi Ruan
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Xiang Wu
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
- Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Xueming Zhang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yi Li
- College of Computer Science and Artificial Intelligence Wenzhou University, Wenzhou, 325000, Zhejiang, China
| | - Dongjian Ying
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yeting Lu
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yuan Tian
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Gong Cheng
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Jing Zhang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Kaiji Lv
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Xinhua Zhou
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
10
|
Premathilaka C, Kodithuwakku S, Midekessa G, Godakumara K, Reshi QUA, Andronowska A, Orro T, Fazeli A. Bovine Faecal Extracellular Vesicles: A novel non-invasive tool for understanding gut physiology and pathophysiology in calves. J Dairy Sci 2025:S0022-0302(25)00059-1. [PMID: 39892598 DOI: 10.3168/jds.2024-25920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025]
Abstract
Dairy calf gut health is linked with the development and future production. Fecal extracellular vesicles (fEVs) have emerged as a non-invasive tool in elucidating gut physiology and pathophysiology. Being a complex matrix, enrichment of extracellular vesicles (EVs) from ruminant/pre-ruminant feces is difficult. Nevertheless, if enriched, they have great potential as a gut health diagnostic and monitoring tool in dairy calves. Therefore, this study aimed to devise a protocol to enrich and characterize fEVs from pre-weaned calves. We developed a fEV enrichment method by combination of differential centrifugation and double size exclusion chromatography and then characterized the fEVs from the healthy calves. The study also assessed sample storage conditions, and the results indicated that storing pre-processed fecal samples at -80°C effectively preserves EVs without introducing additional nanoparticles. Finally, fEVs from 10 d old healthy and Cryptosporidium spp. positive calves were enriched and a comparative analysis of fEV characteristics between the 2 groups was performed. Characterization results on EVs specific protein biomarkers, size profile, total protein content, zeta potential, and morphology clearly established the enrichment of fEVs with the developed protocol. Cryptosporidium spp. positive and negative calves fEV analysis revealed a significant decrease in average nanoparticle size and AU:zeta potential values in AU:Cryptosporidium spp. infected calves. Furthermore, the enriched fEV carried protein and nucleic acid cargo which could be further analyzed for other biomarkers to predict the gut physiology and pathophysiology of calves. In conclusion, our study has successfully optimized a protocol to enrich high purity grade EVs from calf feces and displayed potential diagnostic application as a non-invasive tool.
Collapse
Affiliation(s)
- Chanaka Premathilaka
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia; Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Getnet Midekessa
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia; Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia; Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Toomas Orro
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia; Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia; Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK.
| |
Collapse
|
11
|
Sel FA, Oğuz FS. Cancer and Secretomes: HLA-G and Cancer Puzzle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 39841384 DOI: 10.1007/5584_2024_843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Among the mechanisms, cancer cells develop to elude immune system, immune regulation and the use of molecules that play important roles in immune escape stand out. One of these molecules, the human leukocyte antigen G (HLA-G), plays an important role in the maintenance of immune tolerance and contributes to the progression of cancer by exerting an immunosuppressive effect. By creating an immunosuppressive field in the microscopic environment of the tumor, the aberrant expression of HLA-G facilitates the evading of cancer cells from the immune system and contributes to the progression of the disease. It is important to study how HLA-Gs interact with secretome components, especially at the level of specific components, to develop treatment strategies that prevent cancer cells evading the immune system. Cancer cells may be recognized and targeted by the immune system by reducing the inhibitory effect of HLA-G on immune cells and by neutralizing tumor-promoting components of the secretome. This review focuses on the interaction of specific cancer cell secretomes and HLA-G. Here we also investigate the role of this interaction in tumor immune escape strategies.
Collapse
Affiliation(s)
- Figen Abatay Sel
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Fatma Savran Oğuz
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Niu Z, Cui M, Fu Y, Zhou L, Wang J, Lei Y, Fan X, Wang Q, Yang J. A bibliometric analysis of exosomes in aging from 2007 to 2023. Front Med (Lausanne) 2025; 11:1488536. [PMID: 39911664 PMCID: PMC11794001 DOI: 10.3389/fmed.2024.1488536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 02/07/2025] Open
Abstract
Background Aging is the primary factor contributing to the development of aging-related diseases. As research on exosomes continues to advance, its relationship with aging and aging-related diseases has become a hot topic This article analyzes the research hotspots of exosomes in aging and aging-related diseases, aiming to fill the gap in bibliometric research in this field and help researchers better understand the current status and future trends of both fundamental and clinical research in this field. Methods The articles were retrieved and exported from WoSCC on December 18, 2023. The visual analysis of countries and regions, institutions, authors, references, and keywords in exosomes of aging was conducted using VOSviewer 1.6.18, CiteSpace 6.2.R7, and Bibliometrix. Results The bibliometric analysis included 1628 articles. China and the United States emerged as the top two leading countries in this field. A total of 2,321 research institutions from 78 countries and regions were primarily led by China and the United States. Both Kapogiannis D and Goetzl E were active authors in this field. Thery C, Valadi H, and Raposo G were the important promoters in this field. Thery C proposed the method of differential centrifugation and density gradient centrifugation to extract exosomes. Valadi H discovered cells could send RNA-messages to each other by loading them into exosome-vesicles. The journal with the highest number of articles was International Journal of Molecular Sciences, while PLoS One was the most frequently cited journal. The keyword analysis revealed that future research on exosomes in aging will possibly focus on "inflammation, cellular senescence, angiogenesis, insulin resistance, and Alzheimer's disease." Conclusion We identified the research trends of exosomes in the field of aging through this bibliometric analysis. The present study provides valuable new perspectives on the history and current status of exosomes in the field of aging and aging-related diseases, and also offering guidance for future research directions.
Collapse
Affiliation(s)
- Zenghui Niu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meiyu Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingkun Fu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingfeng Zhou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yan Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinrong Fan
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiang Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Saadeldin IM, Pavani KC, Gnagnarelli J, Ehab S, Assiri AM, Van Soom A. Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead. Stem Cell Rev Rep 2025:10.1007/s12015-025-10844-5. [PMID: 39841368 DOI: 10.1007/s12015-025-10844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity. Studies reveal that EVs can traverse the zona pellucida, transferring molecular signals that enhance blastocyst formation and support embryo-maternal crosstalk. EVs have emerged as non-invasive biomarkers for embryo quality, with their cargo providing insights into genetic integrity and developmental competence. Advances in isolation and characterization techniques have identified specific microRNA (miRNAs) and transcription factors within EVs, offering potential for use in preimplantation genetic screening (PGS) and sex determination. Moreover, EV-mediated interactions with the maternal environment are critical for successful implantation, as they modulate gene expression and immune responses in endometrial and oviductal cells. Despite these advancements, challenges persist, including the standardization of EV isolation methods and the low yield of EVs DNA from spent culture media. Future research should aim to refine analytical techniques, explore EV-miRNA profiling, and investigate the mechanisms underlying EV-mediated signaling. By addressing these gaps, EVs could revolutionize embryo selection and reproductive technologies, offering new strategies to improve outcomes in assisted reproduction and animal breeding.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia.
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia.
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, Gent, 9000, Belgium
| | - Juri Gnagnarelli
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - Seif Ehab
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Abdullah M Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium
| |
Collapse
|
14
|
Shen X, Wang L, Guo Y, Wang C, Yan W, Qu J. Dynamic Monitoring of Organelle Interactions in Living Cells via Two-Color Digitally Enhanced Stimulated Emission Depletion Super-resolution Microscopy. J Phys Chem Lett 2025; 16:596-603. [PMID: 39772647 DOI: 10.1021/acs.jpclett.4c03326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
One of the most significant advances in stimulated emission depletion (STED) super-resolution microscopy is its capacity for dynamic super-resolution imaging of living cells, including the long-term tracking of interactions between various cells or organelles. Consequently, the multicolor STED plays a pivotal role in biological research. Despite the emergence of numerous fluorescent probes characterized by low toxicity, high stability, high brightness, and exceptional specificity, enabling dynamic imaging of living cells with multicolor STED, practical implementation of multicolor STED for live-cell imaging is influenced by several factors. These factors include the power and wavelength of the STED beam, the duration of imaging, the size of the imaging area, and the complexity of sample preparation. Presently, a major limitation of multicolor STED is the requirement for high STED power, which hinders the monitoring of interactions between different cells or organelles due to the associated irreversible optical damage. To address this issue, this paper emphasizes research findings based on the digitally enhanced STED (DE-STED) technique. This method overcomes the aforementioned challenge by utilizing low STED laser power to achieve prolonged two-color STED super-resolution imaging of living cells, effectively mitigating phototoxic effects and enhancing the capacity to observe intracellular dynamics. With a depletion laser power of less than 1 mW, we achieved a resolution of about 87 nm, close to that achievable with conventional high-power STED technology.
Collapse
Affiliation(s)
- Xiaochun Shen
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen 518060, P. R. China
| | - Luwei Wang
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen 518060, P. R. China
| | - Yong Guo
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen 518060, P. R. China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, P. R. China
| | - Wei Yan
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
15
|
Deng Q, Yao X, Fang S, Sun Y, Liu L, Li C, Li G, Guo Y, Liu J. Mast cell-mediated microRNA functioning in immune regulation and disease pathophysiology. Clin Exp Med 2025; 25:38. [PMID: 39812911 PMCID: PMC11735496 DOI: 10.1007/s10238-024-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation. In addition to their role in allergic inflammation, MCs are components of the tumor microenvironment (TME). MicroRNAs (miRNAs) are small RNA molecules that do not encode proteins, but regulate post-transcriptional gene expression by binding to the 3' non-coding regions of mRNAs. This plays a crucial role in the function of MC, including the key processes of MC proliferation, maturation, apoptosis, and activation. It has been demonstrated that miRNAs are also present in extracellular vesicles (EVs) secreted by MCs. EVs derived from MCs mediate intercellular communication by carrying miRNAs, affecting various diseases including allergic diseases, intestinal disorders, neuroinflammation, and tumors. These findings provide important insights into the therapeutic mechanisms and targets of miRNAs in MCs that affect diseases. This review discusses the relevance of miRNA production by MCs in regulating their own activity and the effect of miRNAs putatively produced by other cells in the control of MC activity and their participation in selected pathologies.
Collapse
Affiliation(s)
- Qiuping Deng
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Xiuju Yao
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Siyun Fang
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Chao Li
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Guangquan Li
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| | - Jinbo Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
16
|
Bridi A, Sangalli JR, Nociti RP, Dos Santos AC, Alves L, Bastos NM, Ferronato GDÁ, Rosa PMDS, Fiorenza MF, Pugliesi G, Meirelles FV, Chiaratti MR, da Silveira JC, Perecin F. Small extracellular vesicles derived from the crosstalk between early embryos and the endometrium potentially mediate corpus luteum function†. Biol Reprod 2025; 112:54-69. [PMID: 39388257 DOI: 10.1093/biolre/ioae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 10/08/2024] [Indexed: 10/15/2024] Open
Abstract
The first interactions among the embryo, endometrium, and corpus luteum are essential for pregnancy success. Small extracellular vesicles (sEVs) are part of these interactions. We previously demonstrated that small extracellular vesicles from in vivo- or in vitro-produced bovine embryos contain different miRNA cargos. Herein we show: (1) the presence and origin (in vivo or in vitro) of the blastocyst differentially reprograms endometrial transcriptional profiles; (2) the endometrial explant (EE) cultured with in vivo or in vitro embryos release small extracellular vesicles with different miRNA contents, and (3) the luteal explant (CLE) exposed to these small extracellular vesicles have distinct mRNA and miRNA profiles. To elucidate this, the endometrial explant were cultured in the presence or absence of a single Day-7 in vivo (EE-artificial insemination; EE-AI) or in vitro (EE-in vitro fertilization; EE-IVF) embryo. After of culture we found, in the endometrial explant, 45 and 211 differentially expressed genes associated with embryo presence and origin, respectively. Small extracellular vesicles were recovered from the conditioned media (CM) in which endometrial explant and embryos were co-cultured. Four miRNAs were differentially expressed between small extracellular vesicles from CC-EE-AI and CC-EE-IVF. Luteal explants exposed in culture to these small extracellular vesicles showed 1360 transcripts and 15 miRNAs differentially expressed. The differentially expressed genes associated with embryo presence and origin, modulating cells' proliferation, and survival. These results demonstrate that in vivo- or in vitro-produced bovine embryos induce molecular alterations in the endometrium; and that the embryo and endometrium release small extracellular vesicles capable of modifying the messenger RNA (mRNA) and miRNA profile in the corpus luteum. Therefore, the small extracellular vesicles-mediated embryo-endometrium-corpus luteum interactions possibly regulate the corpus luteum viability to ensure pregnancy success.
Collapse
Affiliation(s)
- Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Ricardo Perecin Nociti
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Angélica Camargo Dos Santos
- Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, Brazil
| | - Luana Alves
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Natália Marins Bastos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Giuliana de Ávila Ferronato
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Paola Maria da Silva Rosa
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Mariani Farias Fiorenza
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| |
Collapse
|
17
|
Liu M, Teng T. Exosomes: new targets for understanding axon guidance in the developing central nervous system. Front Cell Dev Biol 2025; 12:1510862. [PMID: 39850798 PMCID: PMC11754257 DOI: 10.3389/fcell.2024.1510862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied. However, the interaction between exosomes and axon guidance molecules is poorly understood. This review summarizes the relationship between exosomes and canonical and non-canonical guidance cues and hypothesizes a possible model for exosomes mediating axon guidance between cells. The roles of exosomes in axon outgrowth, regeneration, and neurodevelopmental disorders are also reviewed, to discuss exosome-guidance interactions as potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Teng Teng
- Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- Department of Histology and Embryology, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
18
|
Zheng B, Wang X, Guo M, Tzeng CM. Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles. Cell Transplant 2025; 34:9636897241297623. [PMID: 39874070 PMCID: PMC11775985 DOI: 10.1177/09636897241297623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 01/30/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs). The EVs contain much DNA, messenger RNA (mRNA), microRNA, and protein components, which can exert intracellular communication to target cells. In clinical applications, the MSC-EVs have been widely used in tissue repair and immune disorder diseases. However, there are serval issues need to be considered such as how to accomplish the large-scale production of EVs and how to verify the exact mechanism of EVs. In this review, we summarize the current progress of MSC-EVs and discuss the challenges and future of MSC-EVs.
Collapse
Affiliation(s)
- Bingyi Zheng
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xueting Wang
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Meizhai Guo
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chi-Meng Tzeng
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Nashtahosseini Z, Nejatollahi M, Fazilat A, Zarif Fakoor E, Emamvirdizadeh A, Bahadori K, Hadian NS, Valilo M. The crosstalk between exosomal miRNA and ferroptosis: A narrative review. Biol Cell 2025; 117:e2400077. [PMID: 39853758 DOI: 10.1111/boc.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron. Exosomes are membrane-bound vesicles with a size of about 30 to 150 nm, contain various cellular components, including DNA, RNA, microRNAs (miRNAs), lipids, and proteins, which are genetically similar to their cells of origin. Exosomes are found in all bodily fluids, including blood, saliva, and urine. Cells often release exosomes after their fusion with the cell membrane. They play an important role in immune regulation and cell-cell communication. miRNAs, which are noncoding RNAs with a length of about 18 to 24 nucleotides, are involved in regulating gene expression after transcription. Emerging data suggests that exosomal miRNAs are implicated in various pathophysiological mechanisms of cells, including metastasis, drug resistance, and cell death. In addition, functional studies have indicated that exosomal miRNAs can play a key role in the modulation of cell death by regulating ferroptosis. Therefore, in this review, given the importance of exosomal miRNAs in ferroptosis, we decided to elucidate the relationship between exosomal miRNAs and ferroptosis in various diseases.
Collapse
Affiliation(s)
| | - Masoumeh Nejatollahi
- Research center for high school students, Education System Zanjan Province, Zanjan, Iran
| | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | | | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kamran Bahadori
- Health center of Bahar, Hamadan University of Medical Science& Health Services, Hamadan, Iran
| | | | - Mohammad Valilo
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Xia R, Li M, Huang B. A new strategy for drug delivery systems in oral diseases using stem cell-derived extracellular vesicles: review and new perspectives. Postgrad Med J 2024:qgae187. [PMID: 39722492 DOI: 10.1093/postmj/qgae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Extracellular vesicles (EVs) are membrane vesicles derived from cells and serve as an endogenous mechanism for intercellular communication. Since the discovery of their capacity to effectively transfer biological information, their potential as drug delivery vehicles has garnered significant scientific interest. Particularly, EVs derived from mesenchymal cells (MSC-EVs) have emerged as a highly promising method for drug delivery. They can transport bioactive molecules, such as nucleic acids, lipids, and proteins, and possess the ability to modulate immune responses, transmit information, and target specific cells. EVs offer several advantages over conventional drug delivery systems, including their capacity to traverse natural barriers, inherent cell targeting capabilities, and stability in circulation. Compared to their parent cells, EVs exhibit low immunogenicity, ease of storage and transport, and a reduced risk of tumorigenesis. The diagnosis and treatment of oral diseases often involve invasive measures, and MSC-EVs have demonstrated initial efficacy in oral disease treatment. This review explores the application of MSC-EVs in maxillofacial tissue regeneration, periodontitis, temporomandibular joint osteoarthritis, Sjögren's Syndrome, oral cancer, and other oral diseases. Additionally, it outlines potential future directions for the development of MSC-EVs. This review aims to provide a comprehensive understanding of MSC-EVs in oral disease treatment and to stimulate interest in their applications for targeted drug delivery.
Collapse
Affiliation(s)
- Ruyang Xia
- State Key Laboratory of Oral Diseases and National Center of Stomatology and General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases and National Center of Stomatology and General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Huang
- State Key Laboratory of Oral Diseases and National Center of Stomatology and General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Jiang J, Lin F, Wu W, Zhang Z, Zhang C, Qin D, Xu Z. Exosomal long non-coding RNAs in lung cancer: A review. Medicine (Baltimore) 2024; 103:e38492. [PMID: 39705424 DOI: 10.1097/md.0000000000038492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Lung cancer is one of the most threatening malignancies among the different kinds of tumors. The incidence and mortality rate are increasing especially in male. Advances in diagnosis and treatment have been achieve in recent years. However, the lung tumor cells also developing chemo- and radio-resistance. Novel approaches and new treatments are stilled needed to develop for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) original exosomes were proved different expression in lung tumor, which mediate multiple biological processes and is responsible for tumor proliferation and metastasis. In this review, we focus on the emerging roles of both lncRNAs and exosomal lncRNAs in lung cancer and their roles on angiogenesis, metastasis, diagnosis, drug resistance, and immune regulation of lung cancer. Exosome lncRNAs were proved to serve as regulatory factors for gene expression, mediating intercellular communication, and participating in the occurrence and development of various diseases. In addition, exosomes lnc RNA has advantages on the early diagnosis of lung cancer, tumor cell metastasis, drug resistance, and immune regulation. Exosome lncRNAs an provide some unique ideas on how to improve the efficiency of diagnosis and treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Jingyuan Jiang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Hu C, Wang L. Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 2024; 15:474. [PMID: 39696473 DOI: 10.1186/s13287-024-04087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown a great potential role in treating liver injury. MSCs can promote liver regeneration by differentiating into hepatocytes, and can also secrete exosomes to participate in the repair of liver injury. Increasing evidence has shown that mesenchymal stem cell-derived exosomes (MSC-EXOs) play an important role in treating liver injury. In this review, the biogenesis and function of exosomes and the characteristics of MSC-EXOs were analyzed based on recent research results. MSC-EXOs are significant in liver injuries such as liver fibrosis, liver failure, hepatocellular carcinoma, oxidative stress, and lipid steatosis, and participate in the process of liver regeneration.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
23
|
Piccarducci R, Germelli L, Falleni A, Luisotti L, Masciulli B, Signore G, Migone C, Fabiano A, Bizzarri R, Piras AM, Giacomelli C, Marchetti L, Martini C. GFP Farnesylation as a Suitable Strategy for Selectively Tagging Exosomes. ACS APPLIED BIO MATERIALS 2024; 7:8305-8318. [PMID: 39632747 DOI: 10.1021/acsabm.4c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) constituting fully biological, cell-derived nanovesicles with great potential in cell-to-cell communication and drug delivery applications. The current gold standard for EV labeling and tracking is represented by fluorescent lipophilic dyes which, however, importantly lack selectivity, due to their unconditional affinity for lipids. Herein, an alternative EV fluorescent labeling approach is in-depth evaluated, by taking advantage of green fluorescent protein (GFP) farnesylation (GFP-f), a post-translational modification to directly anchor GFP to the EV membrane. The performance of GFP-f is analyzed, in terms of selectivity and efficiency, in several typical EV experimental setups such as delivery in recipient cells, surface engineering, and cargo loading. First, the capability of GFP and GFP-f to label exosomes was compared, showing significantly higher GFP protein levels and fluorescence intensity in GFP-f- than in GFP-labeled exosomes, highlighting the advantage of directly anchoring the GFP to the EV cell membrane. Then, the GFP-f tag was further compared to Vybrant DiD lipophilic dye labeling in exosome uptake studies, by capturing EV intracellular fluorescence in a time- and concentration-dependent manner. The internalization assay revealed a particular ability of GFP-f to monitor the uptake of tagged exosomes into recipient cells, with a significant peak of intensity reached 12 h after administration by GFP-f but not Vybrant-labeled EVs. Finally, the GFP-f labeling capability was challenged in the presence of a surface modification of exosomes and after transfection for siRNA loading. Results showed that both procedures can influence GFP-f performance compared to naïve GFP-f exosomes, although fluorescence is importantly maintained in both cases. Overall, these data provide direct insight into the advantages and limitations of GFP-f as a tagging protein for selectively and accurately tracking the exosome route from isolation to uptake in recipient cells, also in the context of EV bioengineering applications.
Collapse
Affiliation(s)
| | | | - Alessandra Falleni
- Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Benedetta Masciulli
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giovanni Signore
- Department of Biology, University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa, 56126 Pisa, Italy
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa, 56126 Pisa, Italy
| | - Ranieri Bizzarri
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa, 56126 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56126 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa, 56126 Pisa, Italy
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa, 56126 Pisa, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
24
|
Lei Y, Shu D, Xia J, Zhang T, Wei H. Extracellular nicotinamide phosphoribosyltransferase visfatin activates JAK2-STAT3 pathway in cancer-associated fibroblasts to promote colorectal cancer metastasis. Genes Genomics 2024:10.1007/s13258-024-01596-6. [PMID: 39643827 DOI: 10.1007/s13258-024-01596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Metastasis is one of the major challenges in the treatment of colorectal cancer (CRC), during which cancer-associated fibroblasts (CAFs) in the tumor microenvironment are critically involved. OBJECTIVE In this study, we aim to explore the regulatory role of extracellular nicotinamide phosphoribosyltransferase Visfatin and its impact on CRC metastasis. METHODS To examine the effect of visfatin on CAFs, human CRC tissue-derived CAFs were exposed to visfatin, and the expression of inflammatory factors, activation of JAK-STAT pathway and production of ROS in CAFs were assessed. To examine the effect of visfatin-treated CAFs on CRC metastasis, human CRC cell line SW480 or SW620 were cultured with the conditioned medium derived from visfatin-treated CAFs, and the invasion and migration ability of SW480 or SW620 cells were evaluated by transwell migration and matrigel invasion assays. RESULTS Our previous study found that visfatin, a secreted form of nicotinamide phosphoribosyltransferase that governs the rate-limiting step of NAD synthesis, promoted CRC metastasis. However, little is known about the effect of visfatin on CAFs. The conditioned medium derived from visfatin- treated CAFs promotes the migratory and invasive capability of CRC cells, and enhance lung metastasis in mouse model. Visfatin treatment stimulated the expression of a couple of inflammatory factors in CAFs, which was mediated by visfatin-induced activation of JAK- STAT pathway and accumulation of ROS. Inhibition of JAK-STAT pathway or neutralization of cellular ROS attenuated visfatin-mediated migration and invasion of CRC cells. CONCLUSIONS The present work highlights a critical role of visfatin in the crosstalk between CRC cells and CAFs, which moonlight as a non-metabolic extracellular signal molecule to hijacks JAK-STAT pathway in CAFs to promote CRC metastasis.
Collapse
Affiliation(s)
- Yun Lei
- Pathological Diagnosis Center, Zhoushan Hospital of Zhejiang Province, Zhejiang, China
| | - Dan Shu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Jianyu Xia
- School of Basic Medical Science, Chengdu Medical College, Chengdu, China
| | - Tao Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
| | - He Wei
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
| |
Collapse
|
25
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
26
|
Patel SA, Park S, Zhu D, Torr EE, Dureke AG, McIntyre A, Muzyka N, Severson J, Skop AR. Extracellular vesicles, including large translating vesicles called midbody remnants, are released during the cell cycle. Mol Biol Cell 2024; 35:ar155. [PMID: 39535882 PMCID: PMC11656471 DOI: 10.1091/mbc.e23-10-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in cell-cell communication, but the biogenesis of large EVs has remained elusive. Here, we show that the biogenesis of large EVs (>800 nm-2 µm) occurs predominantly through the completion of successful cytokinesis, and the majority of large EVs are midbody remnants (MBRs) with translation activity, and the unique marker MKLP1. Blocking the cell cycle or cytokinesis, genetically or chemically, significantly decreases MBRs and large (800 nm-2 µm), medium (500-800 nm), and small (<300 nm) EVs, suggesting that proliferative cells can also generate all sizes of EVs. The canonical EV markers including CD9, CD63, CD81 localize to the spindle midzone, midbody, and MBRs, suggesting that these markers are not specific for detecting EVs exclusively. Importantly, all commonly used EV isolation methods isolate MBRs, confounding previous EV research. Last, isolated MBRs maintain translation activity regardless of the isolation method. We propose a model for the biogenesis of EVs throughout the cell cycle and suggest that some large EVs are primarily generated from mitotic cells. The discovery of MBRs as a unique class of large, translating EVs has implications for using them as cancer diagnostic markers and for engineering them for therapeutic cargo delivery during mitosis.
Collapse
Affiliation(s)
- Smit A. Patel
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Sungjin Park
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Dantong Zhu
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | | | | | - Nadiya Muzyka
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | - Ahna R. Skop
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| |
Collapse
|
27
|
Zheng M, Chavda VP, Vaghela DA, Bezbaruah R, Gogoi NR, Patel K, Kulkarni M, Shen B, Singla RK. Plant-derived exosomes in therapeutic nanomedicine, paving the path toward precision medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156087. [PMID: 39388922 DOI: 10.1016/j.phymed.2024.156087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Plant-derived exosomes (PDEs), are nanoscale vesicles secreted by multivesicular bodies, play pivotal roles in critical biological processes, including gene regulation, cell communication, and immune defense against pathogens. Recognized for their potential health-promoting properties, PDEs are emerging as innovative components in functional nutrition, poised to enhance dietary health benefits. PURPOSE To describe the efficacy of PDEs in nanoform and their application as precision therapy in many disorders. STUDY DESIGN The design of this review was carried out in PICO format using randomized clinical trials and research articles based on in vivo and in vitro studies. METHODS All the relevant clinical and research studies conducted on plant-derived nanovesicle application and efficacy were included, as retrieved from PubMed and Cochrane, after using specific search terms. This review was performed to determine PDEs' efficacy as nanomedicine and precision therapy. Sub-group analysis and primary data were included to determine the relationship with PDEs. RESULT PDEs are extracted from plant materials using sophisticated techniques like precipitation, size exclusion, immunoaffinity capture, and ultracentrifugation, encapsulating vital molecules such as lipids, proteins, and predominantly microRNAs. Although their nutritional impact may be minimal in small quantities, the broader application of PDEs in biomedicine, particularly as vehicles for drug delivery, underscores their significance. They offer a promising strategy to improve the bioavailability and efficacy of therapeutic agents carrying nano-bioactive substances that exhibit anti-inflammatory, antioxidant, cardioprotective, and anti-cancer activities. CONCLUSION PDEs enhance the therapeutic potency of plant-derived phytochemicals, supporting their use in disease prevention and therapy. This comprehensive review explores the multifaceted aspects of PDEs, including their isolation methods, biochemical composition, health implications, and potential to advance medical and nutritional interventions.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M College of Pharmacy, Ahmedabad 380009, Gujrat, India.
| | - Dixa A Vaghela
- Pharmacy section, L.M College of Pharmacy Ahmedabad 380009, Gujrat, India
| | - Rajashri Bezbaruah
- Department of Pharmacology, Dibrugarh University, Dibrugarh 786004, Assam
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India
| | - Mangesh Kulkarni
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India; Department of Pharmaceutics, Gandhinagar Institute of Pharmacy, Gandhinagar University, Moti Bhoyan, Khatraj-Kalol Road 382721, Gujarat, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
28
|
Wang L, Zhang J, Sun A, Yin Y, Shen Y, Zhang D, Chen Q, Zhao M. Placental extracellular vesicles promoted cervical tumour tissue undergoing death. Placenta 2024; 158:223-230. [PMID: 39504594 DOI: 10.1016/j.placenta.2024.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Cervical cancer is a leading cause of death in developing countries. Although the placenta is a tumor-like organ, the placental development, including invasive function, is well controlled. One mechanism is that extracellular vesicles (EVs) released from the placenta contribute to this regulation. Placental EVs carry functional proteins and regulatory RNAs. Our previous study reported that placental EVs inhibited ovarian cancer growth in vitro and in vivo. METHODS Whether the inhibitory effect induced by placental EVs also applies to cervical cancer, a non-endocrine-related cancer, in this study, we first co-cultured the cervical tumour tissues with placental explants. RESULTS Co-culturing cervical tumour tissues (n = 7) with placental explants showed necrotic signs and increased levels of senescence-associated proteins and death-associated miRNAs, including miRNA-143-3p, miRNA-519a-5p and miRNA-199a-3p in tumour tissues. Additionally, treatment of HeLa cells with placental EVs reduced the viability of HeLa cells and inhibited the ability of invasion and migration of HeLa cells. Increased levels of senescence-associated proteins and reduced levels of proliferative proteins may contribute to the inhibitory effects in HeLa cells. DISCUSSION placental EVs are involved in regulating placental development, and the delivery of cargo significantly impacts the functions of target cells. This study found that factors released from placental explants, likely placental EVs, had anti-tumour effects on the cervical tumour by inhibiting cervical cancer cell viability, invasion, and migration. Cargo in placental EVs, such as cellular death-associated miRNAs, may contribute to the inhibitory effects on cervical tumour.
Collapse
Affiliation(s)
- Lin Wang
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jinqiu Zhang
- Department of Pathology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Angang Sun
- Department of Pathology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ye Shen
- Department of Family Planning, Wuxi Maternity and Child Care Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dengxin Zhang
- Department of Anesthesia, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qi Chen
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Min Zhao
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
29
|
Kumrah R, Jindal AK, Rawat A, Singh S. Proteomics approach for biomarker discovery in Kawasaki disease. Expert Rev Clin Immunol 2024; 20:1449-1460. [PMID: 39041312 DOI: 10.1080/1744666x.2024.2383236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Kawasaki disease (KD) is a medium vessel vasculitis mainly affecting children below the age of 5. KD is the leading cause of acquired heart disease in developed countries. Diagnosis of KD is clinical, and there are no pathognomonic laboratory tests to confirm the diagnosis. There is a paucity of studies that have utilized proteomic approach for biomarker discovery in KD. Identification of these biomarkers may be helpful for early and more effective diagnosis and may aid in the treatment of KD. AREA COVERED The present review focuses on studies that have utilized the proteomic approach in the identification of biomarkers in patients with KD. We have divided these biomarkers into three different categories: the biomarkers used for (a) assessment of risk of KD; (b) assessment of risk of coronary artery aneurysms; and (c) assessment of treatment resistance. EXPERT OPINION Efforts to improve the clinical and diagnostic evaluation of KD have focused on general markers of inflammation that are not specific for KD. Identification of a proteomic-based biomarker can reliably and specifically differentiate KD from other diseases and could help in the prompt diagnosis. Comprehensive analysis of the serum proteome of patients with KD may be helpful in identifying candidate protein biomarkers.
Collapse
Affiliation(s)
- Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
30
|
Zhang Z, Zhang J, Chen H, Han C, Chen Y, Zhan X, Liu Y. The shell formation mechanism of Turbo argyrostomus based on ultrastructure and transcriptome analysis. Gene 2024; 927:148747. [PMID: 38972557 DOI: 10.1016/j.gene.2024.148747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The gold inner shell of Turbo argyrostomus is an important morphological classification characteristic in Gastropoda. However, the gene sets responsible for shell formation in gastropods remain poorly explored. In this study, we investigated the microstructure using scanning electron microscopy (SEM), hematoxylin-eosin (HE) and Alcian blue staining-periodic acid-Schiff (AB-PAS) staining. The SEM results illustrated that the T. argyrostomus shell exhibited a special "sandwich" microstructure. The results of histological observation demonstrated two major cell types: adipocytes and mucin cells. A total of 318 differentially expressed genes were identified between edge mantle and central mantle, among which whey acidic protein, N66, and nacre-like proteins, and Lam G and EGF domains may be related to shell microstructure. 22.39% - 25.20% of the mucin genes had biomineralization related domains, which supported for the relationship between mucins and shell formation. Moreover, this study revealed energy distribution differences between the edge mantle and central mantle. These results provide insights for further understanding of the biomineralization mechanism in Gastropoda.
Collapse
Affiliation(s)
- Zhijie Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiayi Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hengda Chen
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Changqing Han
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yi Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; School of Ecology, Hainan University, Haikou 570228, China
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Yibing Liu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
31
|
Wang HD, Lv CL, Feng L, Guo JX, Zhao SY, Jiang P. The role of autophagy in brain health and disease: Insights into exosome and autophagy interactions. Heliyon 2024; 10:e38959. [PMID: 39524893 PMCID: PMC11546156 DOI: 10.1016/j.heliyon.2024.e38959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Effective management of cellular components is essential for maintaining brain health, and studies have identified several crucial biological processes in the brain. Among these, autophagy and the role of exosomes in cellular communication are critical for brain health and disease. The interaction between autophagy and exosomes in the nervous system, as well as their contributions to brain damage, have garnered significant attention. This review summarizes that exosomes and their cargoes have been implicated in the autophagy process in the pathophysiology of nervous system diseases. Furthermore, the onset and progression of neurological disorders may be affected by autophagy regulation of the secretion and release of exosomes. These findings may provide new insights into the potential mechanism by which autophagy mediates different exosome secretion and release, as well as the valuable biomedical applications of exosomes in the prevention and treatment of various brain diseases by targeting autophagy.
Collapse
Affiliation(s)
- Hai-Dong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/Nanjing Medical University Kangda College First Affiliated Hospital/The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Chao-Liang Lv
- Department of Spine Surgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jin-Xiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Shi-Yuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
32
|
Jiang F, Zhao H, Zhang P, Bi Y, Zhang H, Sun S, Yao Y, Zhu X, Yang F, Liu Y, Xu S, Yu T, Xiao X. Challenges in tendon-bone healing: emphasizing inflammatory modulation mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 15:1485876. [PMID: 39568806 PMCID: PMC11576169 DOI: 10.3389/fendo.2024.1485876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Tendons are fibrous connective tissues that transmit force from muscles to bones. Despite their ability to withstand various loads, tendons are susceptible to significant damage. The healing process of tendons and ligaments connected to bone surfaces after injury presents a clinical challenge due to the intricate structure, composition, cellular populations, and mechanics of the interface. Inflammation plays a pivotal role in tendon healing, creating an inflammatory microenvironment through cytokines and immune cells that aid in debris clearance, tendon cell proliferation, and collagen fiber formation. However, uncontrolled inflammation can lead to tissue damage, and adhesions, and impede proper tendon healing, culminating in scar tissue formation. Therefore, precise regulation of inflammation is crucial. This review offers insights into the impact of inflammation on tendon-bone healing and its underlying mechanisms. Understanding the inflammatory microenvironment, cellular interactions, and extracellular matrix dynamics is essential for promoting optimal healing of tendon-bone injuries. The roles of fibroblasts, inflammatory cytokines, chemokines, and growth factors in promoting healing, inhibiting scar formation, and facilitating tissue regeneration are discussed, highlighting the necessity of balancing the suppression of detrimental inflammatory responses with the promotion of beneficial aspects to enhance tendon healing outcomes. Additionally, the review explores the significant implications and translational potential of targeted inflammatory modulation therapies in refining strategies for tendon-bone healing treatments.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Po Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haoyun Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yizhi Yao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuesai Zhu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fenghua Yang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yang Liu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sicong Xu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
33
|
Li M, Li Y, Liu Q, Jiang M, He Y, Liao X, Tao L, Meng J. Exosomal miR-552-3p isolated from BALF of patients with silicosis induces fibroblast activation. Toxicol Lett 2024; 401:55-70. [PMID: 39245427 DOI: 10.1016/j.toxlet.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Silica particles can cause silicosis, a disease characterized by diffuse fibrosis of the lungs. Various signaling pathways composed of different types of cells and cytokines are involved in the development of silicosis. Exosomes have become a research hotspot recently. However, the role of exosomal microRNA (miRNA) in silicosis remains unclear. METHODS In this study, we generated exosomal miRNA sequences from exosomes isolated from bronchoalveolar lavage fluid (BALF) of silicosis patients and the control group by high-throughput sequencing. Functional annotation and analysis of miRNA identified key target miRNAs. Levels of target miRNAs were analyzed in patient and animal samples and cells. Effects of increased miRNA were assessed through protein levels in target signaling pathways in cells treated with silica, miRNA mimics, and inhibitors. RESULTS Our study identified 40 up-regulated and 70 down-regulated miRNAs, with miR-552-3p and its putative target gene Caveolin 1 (CAV1) as targets for further research. We found that the levels of exosomal miR-552-3p increased in silicosis patients' BALF samples, silicosis model mice, and A549 cells exposed to silica. Inhibition of miR-552-3p suppressed the expression of fibrosis markers. The increased miR-552-3p leads to the up-regulation of fibronectin and α-smooth muscle actin (α-SMA) and the suppression of caveolin 1 in fibroblast cells. Mitogen-activated protein kinase (MAPK) signaling pathways are activated in cells treated with silica and miR-552-3p mimics. CONCLUSIONS These results help to understand exosomal miRNA-mediated intercellular communication and its key role in fibroblast activation and silicosis.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Ying Li
- The Second Department of Occupational Diseases, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, Hunan, China
| | - Qingxiang Liu
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mao Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Yijun He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China.
| |
Collapse
|
34
|
Ruhi MK, Rickard BP, Overchuk M, Sinawang PD, Stanley E, Mansi M, Sierra RG, Hayes B, Tan X, Akin D, Chen B, Demirci U, Rizvi I. PpIX-enabled fluorescence-based detection and photodynamic priming of platinum-resistant ovarian cancer cells under fluid shear stress. Photochem Photobiol 2024; 100:1603-1621. [PMID: 39189505 DOI: 10.1111/php.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 08/28/2024]
Abstract
Over 75% percent of ovarian cancer patients are diagnosed with advanced-stage disease characterized by unresectable intraperitoneal dissemination and the presence of ascites, or excessive fluid build-up within the abdomen. Conventional treatments include cytoreductive surgery followed by multi-line platinum and taxane chemotherapy regimens. Despite an initial response to treatment, over 75% of patients with advanced-stage ovarian cancer will relapse and succumb to platinum-resistant disease. Recent evidence suggests that fluid shear stress (FSS), which results from the movement of fluid such as ascites, induces epithelial-to-mesenchymal transition and confers resistance to carboplatin in ovarian cancer cells. This study demonstrates, for the first time, that FSS-induced platinum resistance correlates with increased cellular protoporphyrin IX (PpIX), the penultimate downstream product of heme biosynthesis, the production of which can be enhanced using the clinically approved pro-drug aminolevulinic acid (ALA). These data suggest that, with further investigation, PpIX could serve as a fluorescence-based biomarker of FSS-induced platinum resistance. Additionally, this study investigates the efficacy of PpIX-enabled photodynamic therapy (PDT) and the secretion of extracellular vesicles under static and FSS conditions in Caov-3 and NIH:OVCAR-3 cells, two representative cell lines for high-grade serous ovarian carcinoma (HGSOC), the most lethal form of the disease. FSS induces resistance to ALA-PpIX-mediated PDT, along with a significant increase in the number of EVs. Finally, the ability of PpIX-mediated photodynamic priming (PDP) to enhance carboplatin efficacy under FSS conditions is quantified. These preliminary findings in monolayer cultures necessitate additional studies to determine the feasibility of PpIX as a fluorescence-based indicator, and mediator of PDP, to target chemoresistance in the context of FSS.
Collapse
Affiliation(s)
- Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Brittany P Rickard
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Prima Dewi Sinawang
- Department of Chemical Engineering, School of Engineering, Stanford University, Stanford, California, USA
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Elizabeth Stanley
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, Chapel Hill, North Carolina, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
35
|
Uotani K, Fujiwara T, Ueda K, Yoshida A, Iwata S, Morita T, Kiyono M, Kunisada T, Takeda K, Hasei J, Yoshioka Y, Ochiya T, Ozaki T. Identification of ENO-1 positive extracellular vesicles as a circulating biomarker for monitoring of Ewing sarcoma. Cancer Sci 2024; 115:3660-3671. [PMID: 39307979 PMCID: PMC11531948 DOI: 10.1111/cas.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 11/05/2024] Open
Abstract
The lack of circulating biomarkers for tumor monitoring is a major problem in Ewing sarcoma management. The development of methods for accurate tumor monitoring is required, considering the high recurrence rate of drug-resistant Ewing sarcoma. Here, we describe a sensitive analytical technique for tumor monitoring of Ewing sarcoma by detecting circulating extracellular vesicles secreted from Ewing sarcoma cells. Proteomic analysis of Ewing sarcoma cell-derived extracellular vesicles identified 564 proteins prominently observed in extracellular vesicles from three Ewing sarcoma cell lines. Among these, CD99, SLC1A5, and ENO-1 were identified on extracellular vesicles purified from sera of patients with Ewing sarcoma before treatment but not on extracellular vesicles from those after treatment and healthy individuals. Notably, not only Ewing sarcoma-derived extracellular vesicles but also Ewing sarcoma cells demonstrated proteomic expression of CD99 and ENO-1 on their surface membranes. ENO-1+CD63+ extracellular vesicle detection was reduced after tumor resection while both CD99+CD63+ and ENO-1+CD63+ extracellular vesicles were detected in serum from Ewing sarcoma-bearing mice. Finally, the accuracy of liquid biopsy targeting these candidates was assessed using extracellular vesicles from the sera of patients with Ewing sarcoma. Elevated ENO-1+CD81+ extracellular vesicles in the serum of patients before treatments distinguished patients with Ewing sarcoma from healthy individuals with an area under the curve value of 0.92 (P < 0.001) and reflected the tumor burden in patients with Ewing sarcoma during multidisciplinary treatments. Collectively, circulating ENO-1+CD81+ extracellular vesicle detection could represent a novel tool for tumor monitoring of Ewing sarcoma.
Collapse
Affiliation(s)
- Koji Uotani
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Tomohiro Fujiwara
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Center of Innovative MedicineOkayama University HospitalOkayamaJapan
| | - Koji Ueda
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Aki Yoshida
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Shintaro Iwata
- Department of Musculoskeletal OncologyNational Cancer Center HospitalTokyoJapan
| | - Takuya Morita
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Masahiro Kiyono
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal ReconstructionOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Ken Takeda
- Department of Intelligent Orthopedic SystemOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Joe Hasei
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular MedicineInstitute of Medical Science, Tokyo Medical UniversityTokyoJapan
| | - Takahiro Ochiya
- Department of Molecular and Cellular MedicineInstitute of Medical Science, Tokyo Medical UniversityTokyoJapan
| | - Toshifumi Ozaki
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
36
|
Bates M, Mohamed BM, Lewis F, O'Toole S, O'Leary JJ. Biomarkers in high grade serous ovarian cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189224. [PMID: 39581234 DOI: 10.1016/j.bbcan.2024.189224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
High-grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer. HGSC patients typically present with advanced disease, which is often resistant to chemotherapy and recurs despite initial responses to therapy, resulting in the poor prognosis associated with this disease. There is a need to utilise biomarkers to manage the various aspects of HGSC patient care. In this review we discuss the current state of biomarkers in HGSC, focusing on the various available immunohistochemical (IHC) and blood-based biomarkers, which have been examined for their diagnostic, prognostic and theranostic potential in HGSC. These include various routine clinical IHC biomarkers such as p53, WT1, keratins, PAX8, Ki67 and p16 and clinical blood-borne markers and algorithms such as CA125, HE4, ROMA, RMI, ROCA, and others. We also discuss various components of the liquid biopsy as well as a number of novel IHC biomarkers and non-routine blood-borne biomarkers, which have been examined in various ovarian cancer studies. We also discuss the future of ovarian cancer biomarker research and highlight some of the challenges currently facing the field.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Faye Lewis
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
37
|
Fu H, Chen Y, Fu Q, Lv Q, Zhang J, Yang Y, Tan P, Wang X, Yang Y, Wu Z. From conventional to cutting-edge: Exosomes revolutionizing nano-drug delivery systems. CHEMICAL ENGINEERING JOURNAL 2024; 500:156685. [DOI: 10.1016/j.cej.2024.156685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Tylden ES, Delgado AB, Lukic M, Moi L, Busund LTR, Pedersen MI, Lombardi AP, Olsen KS. Roles of miR-20a-5p in breast cancer based on the clinical and multi-omic (CAMO) cohort and in vitro studies. Sci Rep 2024; 14:25022. [PMID: 39443510 PMCID: PMC11499649 DOI: 10.1038/s41598-024-75557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
MicroRNAs are involved in breast cancer development and progression, holding potential as biomarkers and therapeutic targets or tools. The roles of miR-20a-5p, a member of the oncogenic miR-17-92 cluster, remain poorly understood in the context of breast cancer. In this study, we elucidate the role of miR-20a-5p in breast cancer by examining its associations with breast cancer risk factors and clinicopathological features, and its functional roles in vitro. Tissue microarrays from 313 CAMO cohort breast cancer surgical specimens were constructed, in situ hybridization was performed and miR-20a-5p expression was semiquantitatively scored in tumor stromal fibroblasts, and in the cytoplasm and nuclei of cancer cells. In vitro analysis of the effect of miR-20a-5p transfection on proliferation, migration and invasion was performed in three breast cancer cell lines. High stromal miR-20a-5p was associated with higher Ki67 expression, and higher odds of relapse, compared to low expression. Compared to postmenopausal women, women who were premenopausal at diagnosis had higher odds of high stromal and cytoplasmic miR-20a-5p expression. Cytoplasmic miR-20a-5p was significantly associated with tumor grade. In tumors with high cytoplasmic miR-20a-5p expression compared to low expression, there was a tendency towards having a basal-like subtype and high Ki67. In contrast, high nuclear miR-20a-5p in cancer cells was associated with smaller tumor size and lower odds of lymph node metastasis, compared to low nuclear expression. Transfection with miR-20a-5p in breast cancer cell lines led to increased migration and invasion in vitro. While the majority of our results point towards an oncogenic role, some of our findings indicate that the associations of miR-20a-5p with breast cancer related risk factors and outcomes may vary based on tissue- and subcellular location. Larger studies are needed to validate our findings and further investigate the clinical utility of miR-20a-5p.
Collapse
Affiliation(s)
- Eline Sol Tylden
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - André Berli Delgado
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Marko Lukic
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Line Moi
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Lill-Tove Rasmussen Busund
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Mona Irene Pedersen
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Ana Paola Lombardi
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway.
| |
Collapse
|
39
|
Rodríguez-Mera IB, Rojas-Hernández S, Barrón-Graciano KA, Carrasco-Yépez MM. Analysis of virulence factors in extracellular vesicles secreted by Naegleria fowleri. Parasitol Res 2024; 123:357. [PMID: 39432113 PMCID: PMC11493829 DOI: 10.1007/s00436-024-08378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Naegleria fowleri is the etiological agent of primary amebic meningoencephalitis (PAM), a rapidly progressive acute and fulminant infection that affects the central nervous system, particularly of children and young adults, which has a mortality rate greater than 95%, and its symptomatologic similarity with other meningitis caused by virus or bacteria makes it difficult to make a quick and timely diagnosis that prevents the progression of the infection. It is necessary to know the antigenic determinants as well as the pathogenicity mechanisms of this amoeba to implement strategies that allow for better antiamoebic therapeutic and diagnostic targets that directly impact the health sector. Therefore, the aim of this work was to analyze some virulence factors as part of extracellular vesicle (EV) cargo secreted by N. fowleri. The EV secretion to the extracellular medium was evaluated in trophozoites fixed and incubated with anti-N. fowleri antibody while molecular identification of EV cargo was performed by SDS-PAGE, Western blot, and RT-PCR. Our results showed that N. fowleri secretes a wide variety of vesicle sizes ranging from 0.2 to > 2 μm, and these EVs were recognized by antibodies anti-Naegleropore B, anti-19 kDa polypeptide band, anti-membrane protein Mp2CL5, anti-protease cathepsin B, and anti-actin. Furthermore, these vesicles were localized in the trophozoites cytoplasm or secreted into the extracellular medium. Specifically in relation to small vesicles, our purified exosomes were recognized by CD63 and Hsp70 markers, along with the previously mentioned proteins. RT-PCR analysis was made through the isolation of EVs from N. fowleri trophozoite culture by concentration, filtration, and ultracentrifugation. Interestingly, we obtained PCR products for Nfa1, NPB, Mp2CL5, and CatB genes as part of exosomes cargo. This suggests that the molecules identified in this work could play an important role in communication as well as in infectious processes caused by this amoeba. Therefore, the study and characterization of the pathogenicity mechanisms, as well as the virulence factors released by N. fowleri remains a key point to provide valuable information for the development of therapeutic treatments, vaccine design, or biomarkers for a timely diagnosis against infections caused by protozoa.
Collapse
Affiliation(s)
- Itzel Berenice Rodríguez-Mera
- Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Laboratorio de Microbiología Ambiental, Estado de México, Tlalnepantla de Baz, Mexico
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular y de Mucosas, Instituto Politécnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico.
| | - Karla Alejandra Barrón-Graciano
- Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Laboratorio de Microbiología Ambiental, Estado de México, Tlalnepantla de Baz, Mexico
| | - María Maricela Carrasco-Yépez
- Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Laboratorio de Microbiología Ambiental, Estado de México, Tlalnepantla de Baz, Mexico.
| |
Collapse
|
40
|
Zhang Y, Lu L, Li Y, Liu H, Zhou W, Zhang L. Response Surface Methodology Optimization of Exosome-like Nanovesicles Extraction from Lycium ruthenicum Murray and Their Inhibitory Effects on Aβ-Induced Apoptosis and Oxidative Stress in HT22 Cells. Foods 2024; 13:3328. [PMID: 39456390 PMCID: PMC11507227 DOI: 10.3390/foods13203328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Exosome-like nanovesicles (ELNs) derived from plants are nanoscale vesicles isolated from edible plant sources. Lycium ruthenicum Murray (LRM) has garnered growing attention for its dietary value and therapeutic benefits. In this study, a PEG6000-based method was developed to isolate LRM-ELNs. Response surface methodology (RSM) was used to optimize the extraction conditions to obtain the optimal extraction efficiency. When PEG6000 concentration was at 11.93%, relative centrifugal force was 9720 g, and incubation time was 21.12 h, the maximum LRM-ELN yield was 4.24 g/kg. This optimization process yielded LRM-ELNs with a particle size of 114.1 nm and a surface charge of -6.36 mV. Additionally, LRM-ELNs mitigated Aβ-induced apoptosis in HT22 cells by enhancing mitochondrial membrane potential (MMP), lowering the Bax/Bcl-2 ratio, and reducing Cleaved Caspase-3 expression. Furthermore, LRM-ELNs alleviated Aβ-induced oxidative stress in HT22 cells by promoting the nuclear translocation of Nrf2 and upregulating the expression of HO-1 and NQO1. These findings indicate that LRM-ELNs exert protective effects against Aβ-induced damage in HT22 cells and may be considered as a potential dietary supplement for Alzheimer's disease prevention.
Collapse
Affiliation(s)
- Yadan Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.)
| | - Ling Lu
- Hunan No. 1 Health Agriculture Development Co., Ltd., Changsha 411499, China
| | - Yuting Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.)
| | - Huifan Liu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhua Zhou
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.)
| | - Lin Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.)
| |
Collapse
|
41
|
Wu D, Zhou B, Hong L, Cen H, Wang L, Ma Y, Gong H. Trophoblast cell-derived extracellular vesicles regulate the polarization of decidual macrophages by carrying miR-141-3p in the pathogenesis of preeclampsia. Sci Rep 2024; 14:24529. [PMID: 39424901 PMCID: PMC11489854 DOI: 10.1038/s41598-024-76563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Dysregulation of macrophage polarization can prevent the invasion of trophoblast cells and further limit spiral artery remodeling in preeclampsia (PE). However, its mechanism is obscure. HTR8-/Svneo cells were cultured under normoxic or hypoxic conditions and extracellular vesicles (EVs) in the culture supernatants were extracted. Next, the cells were incubated with those EVs to investigate their effects on trophoblasts. A co-culture system consisting of HTR8-/Svneo cells and macrophages was used to reveal how the trophoblast-derived EVs affected the macrophage subtype. Finally, a PE mouse model and miR-141-3p knockout mice were used to verify the function of miR-141-3p in PE. Hypoxia induced abnormal increases in the levels of miR-141-3p in HTR8-/Svneo cells and EVs. EVs from hypoxia-treated HTR8-/Svneo cells could downregulate PTEN, a potential target of miR-141-3p, and inhibit trophoblast mitophagy and invasion. However, HTR8-/Svneo cells transfected with an miR-141-3p inhibitor could attenuate the influence of EVs. In an HTR8-/Svneo cell plus macrophage co-culture system, hypoxia-pretreated cells promoted the transformation of macrophages into the M1-phenotye, and HTR8-/Svneo invasion was inhibited by the macrophages. MiR-141 from EVs could target and downregulate dual specificity phosphatase 1 (DUSP1) expression in macrophages, induce formation of the M1 macrophage phenotype in THP-1 cells, downregulate DUSP1 expression, and upregulate TAB2/TAK1 signaling. These results were also demonstrated in normal pregnant mice and PE pregnant mice. A hypoxic environment could upregulate miR-141 expression in the EVs of HTR8-/Svneo cells, and THP-1-derived macrophages could uptake EVs releasing miR-141 to downregulate DUSP1 expression and induce the formation of M1 macrophages, which can lead to the development of PE.
Collapse
Affiliation(s)
- Dongcai Wu
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Zhou
- Hainan Medical University, Haikou, China
| | - Lan Hong
- Department of Gynecology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hui Cen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ling Wang
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research & Hainan Provincial Clinical Research Center for Thalassemia & Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Humin Gong
- Department of Obstetrics, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.
| |
Collapse
|
42
|
Liu J, Verweij FJ, van Niel G, Galli T, Danglot L, Bun P. ExoJ - a Fiji/ImageJ2 plugin for automated spatiotemporal detection and analysis of exocytosis. J Cell Sci 2024; 137:jcs261938. [PMID: 39219469 DOI: 10.1242/jcs.261938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Exocytosis is a dynamic physiological process that enables the release of biomolecules to the surrounding environment via the fusion of membrane compartments to the plasma membrane. Understanding its mechanisms is crucial, as defects can compromise essential biological functions. The development of pH-sensitive optical reporters alongside fluorescence microscopy enables the assessment of individual vesicle exocytosis events at the cellular level. Manual annotation represents, however, a time-consuming task that is prone to selection biases and human operational errors. Here, we introduce ExoJ, an automated plugin based on Fiji/ImageJ2 software. ExoJ identifies user-defined genuine populations of exocytosis events, recording quantitative features including intensity, apparent size and duration. We designed ExoJ to be fully user-configurable, making it suitable for studying distinct forms of vesicle exocytosis regardless of the imaging quality. Our plugin demonstrates its capabilities by showcasing distinct exocytic dynamics among tetraspanins and vesicular SNARE protein reporters. Assessment of performance on synthetic data shows that ExoJ is a robust tool that is capable of correctly identifying exocytosis events independently of signal-to-noise ratio conditions. We propose ExoJ as a standard solution for future comparative and quantitative studies of exocytosis.
Collapse
Affiliation(s)
- Junjun Liu
- Jinan Central Hospital affiliated to Shandong First Medical University, Jinan 250013, China
| | | | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Endosomal dynamics in neuropathies, 75014 Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
| | - Thierry Galli
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France
| | - Lydia Danglot
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, 75014 Paris, France
| | - Philippe Bun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, 75014 Paris, France
| |
Collapse
|
43
|
Firouzabadi SR, Mohammadi I, Ghafourian K, Mofidi SA, Firouzabadi SR, Hashemi SM, Tehrani FR, Jafarabady K. Mesenchymal stem cell-derived extracellular vesicles therapy for primary ovarian insufficiency: a systematic review and meta-analysis of pre-clinical studies. J Ovarian Res 2024; 17:200. [PMID: 39402602 PMCID: PMC11472498 DOI: 10.1186/s13048-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) manifests with hormonal imbalances, menstrual irregularities, follicle loss, and infertility. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are emerging as a promising treatment for POI. This systematic review aims to assess the effects of MSC-EVs on follicle number, hormonal profile, and fertility in POI animal models. METHODS A systematic search of PubMed, Scopus, and Web of Science databases up to December 14th, 2023 was conducted. Two reviewers independently conducted screening, risk of bias assessment, and data extraction. Meta-analysis was performed to analyze treatment versus control outcomes using a random effects model. Publication bias was assessed using Egger's regression test and sensitivity analysis was assessed using the leave-one-out method. Subgroup analyses and meta-regressions were conducted based on EV source, induction model, type of animal, study quality, administration route, administration frequency and route, and dose. RESULTS a total of 29 studies were included. MSC-EVs treatment significantly increased total follicle count (SMD, (95CI), p-value; 3.56, (0.91, 6.21), < 0.001), including primordial (SMD, (95CI), p-value; 2.86, (1.60, 4.12), < 0.001), primary (SMD, (95CI), p-value; 3.17, (2.28, 4.06), < 0.001), mature (SMD, (95CI), p-value; 2.26, (1.02, 3.50), < 0.001), and antral follicles (SMD, (95CI), p-value; 2.44, (1.21, 3.67), < 0.001). Administration frequency and route did not affect this outcome, but EV source affected primordial, primary, secondary and antral follicle count. Additionally, MSC-EVs treatment elevated anti-müllerian hormone (SMD, (95CI); 3.36, (2.14, 4.58)) and estradiol (SMD, (95CI); 3.19, (2.20, 4.17)) levels while reducing follicle stimulating hormone levels (SMD, (95CI); -2.68, (-4.42, -0.94)). Unlike EV source, which had a significant impact on all three hormones, administration frequency, route, and EV dose did not affect this outcome. Moreover, treatment increased offspring number (SMD, (95CI); 3.70, (2.17, 5.23)) and pregnancy odds (OR, (95CI); 10.25, (4.29, 24.46)) compared to controls. Publication bias and a high level of heterogeneity was evident in all analyses, except for the analysis of the pregnancy odds. However, sensitivity analysis indicated that all of the analyses were stable. CONCLUSION MSC-EVs therapy shows promise for POI treatment, potentially facilitating clinical translation. However, Further research is warranted to optimize methodology and assess side effects.
Collapse
Affiliation(s)
| | - Ida Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Ghafourian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mofidi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
44
|
Pierce C, Suryoraharjo K, Robertson IH, Su X, Hatchett DB, Shin A, Adams KN, Berthier E, Thongpang S, Ogata A, Theberge AB, Sohn LL. CandyCollect: An Open-Microfluidic Device for the Direct Capture and Enumeration of Salivary-Extracellular Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617508. [PMID: 39463934 PMCID: PMC11507796 DOI: 10.1101/2024.10.09.617508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Extracellular Vesicles (EVs) are membrane-derived vesicles shed by cells into the extracellular space that play key roles in intercellular communication and other biological processes. As membrane-bound cargos of nucleic acids and other proteins that are abundantly found in virtually every biofluid including blood, urine, and saliva, EVs are widely regarded as promising biomarkers for disease detection. While it is an increasingly promising biofluid from which to isolate EVs, saliva poses challenges due its complexity and heterogeneity-cells, debris, and other proteins can inhibit the isolation of EVs by traditional platforms. Here, we employ the CandyCollect, a lollipop-inspired sampling device with open microfluidic channels, as a non-invasive and patient-friendly alternative for the capture of salivary EVs. The CandyCollect simplifies sample preparation by effectively pre-concentrating EVs on the device surface before EVs are eluted off of the CandyCollect, labeled with cholesterol-tagged oligonucleotides, and subsequently detected by qPCR with primers specific for the tagged oligos to enumerate the relative number of EVs. We demonstrate that downstream EV cargo analysis can be performed using Simoa. Overall, the CandyCollect ushers a new method to capture, enumerate, and analyze salivary EVs.
Collapse
|
45
|
Di Paolo V, Paolini A, Galardi A, Gasparini P, De Cecco L, Colletti M, Lampis S, Raieli S, De Stefanis C, Miele E, Russo I, Di Ruscio V, Casanova M, Alaggio R, Masotti A, Milano GM, Locatelli F, Di Giannatale A. Plasma-derived extracellular vesicles miR-335-5p as potential diagnostic biomarkers for fusion-positive rhabdomyosarcoma. J Exp Clin Cancer Res 2024; 43:282. [PMID: 39385294 PMCID: PMC11463097 DOI: 10.1186/s13046-024-03197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma, with embryonal (ERMS) and alveolar (ARMS) representing the two most common histological subtypes. ARMS shows poor prognosis, being often metastatic at diagnosis. Thus, the discovery of novel biomarkers predictive of tumor aggressiveness represents one of the most important challenges to overcome and may help the development of tailored therapies. In the last years, miRNAs carried in extracellular vesicles (EVs), small vesicles of endocytic origin, have emerged as ideal candidate biomarkers due to their stability in plasma and their tissue specificity. METHODS EVs miRNAs were isolated from plasma of 21 patients affected by RMS and 13 healthy childrens (HC). We performed a miRNA profile using the Serum/Plasma Focus microRNA PCR panels (Qiagen), and RT-qPCR for validation analysis. Statistically significant (p < 0.05) miRNAs were obtained by ANOVA test. RESULTS We identified nine EVs miRNAs (miR-483-5p, miR-132-3p, miR-766-3p, miR-454-3p miR-197-3p, miR-335-3p, miR-17-5p, miR-486-5p and miR-484) highly upregulated in RMS patients compared to HCs. Interestingly, 4 miRNAs (miR-335-5p, miR-17-5p, miR-486-5p and miR-484) were significantly upregulated in ARMS samples compared to ERMS. In the validation analysis performed in a larger group of patients only three miRNAs (miR-483-5p, miR-335-5p and miR-484) were differentially significantly expressed in RMS patients compared to HC. Among these, mir-335-5p was significant also when compared ARMS to ERMS patients. MiR-335-5p was upregulated in RMS tumor tissues respect to normal tissues (p = 0.00202) and upregulated significantly between ARMS and ERMS (p = 0.04). Furthermore, the miRNA expression correlated with the Intergroup Rhabdomyosarcoma Study (IRS) grouping system, (p = 0.0234), and survival (OS, p = 0.044; PFS, p = 0.025). By performing in situ hybridization, we observed that miR-335-5p signal was exclusively in the cytoplasm of cancer cells. CONCLUSION We identified miR-335-5p as significantly upregulated in plasma derived EVs and tumor tissue of patients affected by ARMS. Its expression correlates to stage and survival in patients. Future studies are needed to validate miR-335-5p as prognostic biomarker and to deeply elucidate its biological role.
Collapse
Affiliation(s)
- Virginia Di Paolo
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Paolini
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Galardi
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Marta Colletti
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Lampis
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Evelina Miele
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ida Russo
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Di Ruscio
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Rita Alaggio
- Pathology Unit and Predictive Molecular Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Masotti
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Giuseppe Maria Milano
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
46
|
Kim G, Seo M, Xu J, Park J, Gim S, Chun H. Large-Area Silicon Nitride Nanosieve for Enhanced Diffusion-Based Exosome Isolation. SMALL METHODS 2024; 8:e2301624. [PMID: 38801014 DOI: 10.1002/smtd.202301624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Nanoporous membranes have a variety of applications, one of which is the size-selective separation of nanoparticles. In drug delivery, nanoporous membranes are becoming increasingly important for the isolation of exosomes, which are bio-nanoparticles. However, the low pore density and thickness of commercial membranes limit their efficiency. There have been many attempts to fabricate sub-micrometer thin membranes, but the limited surface area has restricted their practicality. In this study, large-area silicon nitride nanosieves for enhanced diffusion-based isolation of exosomes are presented. Notably, these nanosieves are scaled to sizes of up to 4-inch-wafers, a significant achievement in overcoming the fabrication challenges associated with such expansive areas. The method employs a 200 nm porous sieve (38.2% porosity) for exosome separation and a 50 nm sieve (10.7% porosity) for soluble protein removal. These 300 nm thick nanosieves outperform conventional polycarbonate membranes by being 50 times thinner, thereby increasing nanoparticle permeability. The method enables a 90% recovery rate of intact exosomes from human serum and a purity ratio of 3 × 107 particles/µg protein, 4.6 times higher than ultracentrifugation methods. The throughput of the method is up to 15 mL by increasing the size of the nanosieve, making it an ideal solution for large-scale exosome production for therapeutic purposes.
Collapse
Affiliation(s)
- Gijung Kim
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Mingyu Seo
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Jiaxin Xu
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Jinhyeok Park
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Sangjun Gim
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| |
Collapse
|
47
|
Carciero L, Di Giuseppe G, Di Piazza E, Parand E, Soldovieri L, Ciccarelli G, Brunetti M, Gasbarrini A, Nista EC, Pani G, Pontecorvi A, Giaccari A, Mezza T. The interplay of extracellular vesicles in the pathogenesis of metabolic impairment and type 2 diabetes. Diabetes Res Clin Pract 2024; 216:111837. [PMID: 39173679 DOI: 10.1016/j.diabres.2024.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The pathogenesis of type 2 diabetes (T2D) involves dysfunction in multiple organs, including the liver, muscle, adipose tissue, and pancreas, leading to insulin resistance and β cell failure. Recent studies highlight the significant role of extracellular vesicles (EVs) in mediating inter-organ communication in T2D. This review investigates the role of EVs, focusing on their presence and biological significance in human plasma and tissues affected by T2D. We explore specific EV cargo, such as miRNAs and proteins, which affect insulin signaling and glucose metabolism, emphasizing their potential as biomarkers. By highlighting the diagnostic and therapeutic potential of EVs, we aim to provide new insights into their role in early detection, disease monitoring, and innovative treatment strategies for T2D.
Collapse
Affiliation(s)
- Lorenzo Carciero
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Di Piazza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erfan Parand
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Soldovieri
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gea Ciccarelli
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Brunetti
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Enrico C Nista
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovambattista Pani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Mezza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
48
|
Zhang Y, Zhang X, Kai T, Zhang L, Li A. Lycium ruthenicum Murray derived exosome-like nanovesicles inhibit Aβ-induced apoptosis in PC12 cells via MAPK and PI3K/AKT signaling pathways. Int J Biol Macromol 2024; 277:134309. [PMID: 39089544 DOI: 10.1016/j.ijbiomac.2024.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Plant-derived exosome-like nanovesicles (ELNs) are nano-sized vesicles extracted from edible plants. Lycium ruthenicum Murray (LRM) has been gaining increasing attention due to its nutritional and medicinal value, but the ELNs in LRM has not been reported. In this study, LRM-ELNs were obtained, and the proteins, lipids, microRNAs (miRNAs) and active components in LRM tissues and LRM-ELNs was analyzed by LC-MS/MS, LC-MS, high-throughput sequencing techniques, and physical and chemical analysis. LRM-ELNs can be uptaken by PC12 cells through macropinocytosis and caveolin-mediated endocytosis primarily. Transcriptomic and western blot experiments indicate that LRM-ELNs can inhibit Aβ-induced apoptosis in PC12 cells through the MAPK and PI3K/AKT signaling pathways, with miRNAs playing a crucial role. These results indicate that LRM-ELNs have the protection effect on PC12 cells and can be considered as dietary supplements for alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yadan Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoyu Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| | - Lin Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Anping Li
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
49
|
Yahyavi Y, Kheradi N, Karimi A, Ebrahimi-Kalan A, Ramezani F, Yousefi S, Teymouri Nobari S, Sadrekarimi H, Nouri M, Edalati M. Novel Advances in Cell-Free Therapy for Premature Ovarian Failure (POF): A Comprehensive Review. Adv Pharm Bull 2024; 14:543-557. [PMID: 39494249 PMCID: PMC11530876 DOI: 10.34172/apb.2024.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Premature ovarian failure (POF), is a condition characterized by the early decline of ovulation function. POF is a complex disorder that can be caused by various factors, and the idiopathic form represents a significant proportion of POF patients. Hormone replacement therapy (HRT) is currently considered the first-line treatment for POF. This review aims to provide a comprehensive overview of recent advancements in platelet-rich plasma (PRP), in vitro activation (IVA), stem cell therapy, exosome therapy, microRNAs, and mitochondrial targeting therapies as a promising cell-free therapeutic approach in reproductive medicine. PLT-Exos, a new generation of cells, has been used to treat POF for more than a decade and has been shown to attenuate oocyte morphology and promote the differentiation of theca cells through the upregulation of PI3K/Akt and Bcl2, as well as the downregulation of the Smad and Bax signaling pathways. This review summarizes the current state of the art in the field of PLT-Exos and discusses the advantages and limitations of their potential clinical applications.
Collapse
Affiliation(s)
- Yahya Yahyavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Kheradi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Yousefi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Teymouri Nobari
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hourieh Sadrekarimi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Zhu Q, Liao Y, Liao Z, Ye G, Shan C, Huang H. Compact bone mesenchymal stem cells-derived paracrine mediators for cell-free therapy in sepsis. Biochem Biophys Res Commun 2024; 727:150313. [PMID: 38954981 DOI: 10.1016/j.bbrc.2024.150313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Sepsis, a life-threatening condition resulting in multiple organ dysfunction, is characterized by a dysregulated immune response to infection. Current treatment options are limited, leading to unsatisfactory outcomes for septic patients. Here, we present a series of studies utilizing compact bone mesenchymal stem cells (CB-MSCs) and their derived paracrine mediators, especially exosome (CB-MSCs-Exo), to treat mice with cecal ligation and puncture-induced sepsis. Our results demonstrate that CB-MSCs treatment significantly improves the survival rate of septic mice by mitigating excessive inflammatory response and attenuating sepsis-induced organ injuries. Furthermore, CB-MSCs-conditioned medium, CB-MSCs secretome (CB-MSCs-Sec), and CB-MSCs-Exo exhibit potent anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage (RAW264.7). Intriguingly, intravenous administration of CB-MSCs-Exo confers superior protection against inflammation and organ damage in septic mice compared to CB-MSCs in certain aspects. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomic analysis, we identify a range of characterized proteins derived from the paracrine activity of CB-MSCs, involved in critical biological processes such as immunomodulation and apoptosis. Our findings highlight that the paracrine products of CB-MSCs could serve as a promising cell-free therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuansong Liao
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Guogen Ye
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ce Shan
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|