1
|
Siddique YH, Naz F, Rahul, Varshney H, Idrisi M, Shahid M. Effect of donepezil hydrochloride on the transgenic Drosophila expressing human Aβ-42. Int J Neurosci 2024; 134:1293-1308. [PMID: 37733478 DOI: 10.1080/00207454.2023.2262109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/03/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
AIM In the present study, the effect of donepezil hydrochloride was studied on the transgenic Drosophila expressing human amyloid beta-42 in the neurons. METHODS Donepezil hydrochloride at final concentration of 0.1, 1 and 10 mM was mixed in the diet and the flies expressing human amyloid beta-42 under Upstream Activation Sequence control (Alzheimer Disease [AD] flies) were allowed to feed on it for 30 days. RESULTS The AD flies exposed to various doses of Donepezil hydrochloride showed a dose dependent significant delay in the loss of climbing ability, increase in activity, reduction in the oxidative stress and apoptotic markers. A significant improvement was also observed in cognitive parameters. A dose dependent significant reduction in the activity of acetylcholinesterase was also observed. The docking studies suggest the positive interaction between donepezil, amyloid beta-42 and acetylcholinesterase. The results obtained from immunohistochemistry also showed a dose dependent significant reduction in the amyloid beta-42 aggregates. CONCLUSION The results suggest that donepezil hydrochloride is potent enough to reduce the AD symptoms being mimicked in transgenic flies.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mantasha Idrisi
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, India
| | - M Shahid
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Banerjee C, Tripathy D, Kumar D, Chakraborty J. Monoamine oxidase and neurodegeneration: Mechanisms, inhibitors and natural compounds for therapeutic intervention. Neurochem Int 2024; 179:105831. [PMID: 39128624 DOI: 10.1016/j.neuint.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Mammalian flavoenzyme Monoamine oxidase (MAO) resides on the outer mitochondrial membrane (OMM) and it is involved in the metabolism of different monoamine neurotransmitters in brain. During MAO mediated oxidative deamination of relevant substrates, H2O2 is released as a catalytic by-product, thus serving as a major source of reactive oxygen species (ROS). Under normal conditions, MAO mediated ROS is reported to propel the functioning of mitochondrial electron transport chain and phasic dopamine release. However, due to its localization onto mitochondria, sudden elevation in its enzymatic activity could directly impact the form and function of the organelle. For instance, in the case of Parkinson's disease (PD) patients who are on l-dopa therapy, the enzyme could be a concurrent source of extensive ROS production in the presence of uncontrolled substrate (dopamine) availability, thus further impacting the health of surviving neurons. It is worth mentioning that the expression of the enzyme in different brain compartments increases with age. Moreover, the involvement of MAO in the progression of neurological disorders such as PD, Alzheimer's disease and depression has been extensively studied in recent times. Although the usage of available synthetic MAO inhibitors has been instrumental in managing these conditions, the associated complications have raised significant concerns lately. Natural products have served as a major source of lead molecules in modern-day drug discovery; however, there is still no FDA-approved MAO inhibitor which is derived from natural sources. In this review, we have provided a comprehensive overview of MAO and how the enzyme system is involved in the pathogenesis of different age-associated neuropathologic conditions. We further discussed the applications and drawbacks of the long-term usage of presently available synthetic MAO inhibitors. Additionally, we have highlighted the prospect and worth of natural product derived molecules in addressing MAO associated complications.
Collapse
Affiliation(s)
- Chayan Banerjee
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasmita Tripathy
- Department of Zoology, Netaji Nagar College for Women, Kolkata, 700092, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India.
| | - Joy Chakraborty
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
3
|
de Sousa DMB, Poupardin R, Villeda SA, Schroer AB, Fröhlich T, Frey V, Staffen W, Mrowetz H, Altendorfer B, Unger MS, Iglseder B, Paulweber B, Trinka E, Cadamuro J, Drerup M, Schallmoser K, Aigner L, Kniewallner KM. The platelet transcriptome and proteome in Alzheimer's disease and aging: an exploratory cross-sectional study. Front Mol Biosci 2023; 10:1196083. [PMID: 37457829 PMCID: PMC10348715 DOI: 10.3389/fmolb.2023.1196083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Alzheimer's disease (AD) and aging are associated with platelet hyperactivity. However, the mechanisms underlying abnormal platelet function in AD and aging are yet poorly understood. Methods: To explore the molecular profile of AD and aged platelets, we investigated platelet activation (i.e., CD62P expression), proteome and transcriptome in AD patients, non-demented elderly, and young individuals as controls. Results: AD, aged and young individuals showed similar levels of platelet activation based on CD62P expression. However, AD and aged individuals had a proteomic signature suggestive of increased platelet activation compared with young controls. Transcriptomic profiling suggested the dysregulation of proteolytic machinery involved in regulating platelet function, particularly the ubiquitin-proteasome system in AD and autophagy in aging. The functional implication of these transcriptomic alterations remains unclear and requires further investigation. Discussion: Our data strengthen the evidence of enhanced platelet activation in aging and provide a first glimpse of the platelet transcriptomic changes occurring in AD.
Collapse
Affiliation(s)
- Diana M. Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Saul A. Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Adam B. Schroer
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Frey
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Staffen
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Michael S. Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Iglseder
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine, St. Johanns University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Salzburg, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, University Hospital SALK, Salzburg, Austria
| | - Martin Drerup
- Department of Urology, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Schallmoser
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kathrin M. Kniewallner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
4
|
Sharma P, Singh M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer's disease: A review with structural aspects. Life Sci 2023; 320:121568. [PMID: 36925061 DOI: 10.1016/j.lfs.2023.121568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder with progressive dementia and cognitive impairment. AD poses severe health challenge in elderly people and become one of the leading causes of death worldwide. It possesses complex pathophysiology with several hypotheses (cholinergic hypothesis, amyloid hypothesis, tau hypothesis, oxidative stress, mitochondrial dysfunction etc.). Several attempts have been made for the management of multifactorial AD. Acetylcholinesterase is the only target has been widely explored in the management of AD to the date. The current review set forth the chalcone based natural, semi-synthetic and synthetic compounds in the search of potential anti-Alzheimer's agents. The main highlights of current review emphasizes on chalcone target different enzymes and pathways like Acetylcholinesterase, β-secretase (BACE1), tau proteins, MAO, free radicals, Advanced glycation end Products (AGEs) etc. and their structure activity relationships contributing in the inhibition of above mentioned various targets of AD.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
5
|
Babić Leko M, Nikolac Perković M, Nedić Erjavec G, Klepac N, Švob Štrac DK, Borovečki F, Pivac N, Hof PR, Šimić G. Association of the MAOB rs1799836 Single Nucleotide Polymorphism and APOE ɛ4 Allele in Alzheimer's Disease. Curr Alzheimer Res 2021; 18:585-594. [PMID: 34533445 DOI: 10.2174/1567205018666210917162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/01/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The dopaminergic system is functionally compromised in Alzheimer's dis-ease (AD). The activity of monoamine oxidase B (MAOB), the enzyme involved in the degradation of dopamine, is increased during AD. Also, increased expression of MAOB occurs in the post-mortem hippocampus and neocortex of patients with AD. The MAOB rs1799836 polymorphism modulates MAOB transcription, consequently influencing protein translation and MAOB activity. We recently showed that cerebrospinal fluid levels of amyloid β1-42 are decreased in patients carry- ing the A allele in MAOB rs1799836 polymorphism. OBJECTIVE The present study compares MAOB rs1799836 polymorphism and APOE, the only con- firmed genetic risk factor for sporadic AD. METHOD We included 253 participants, 127 of whom had AD, 57 had mild cognitive impairment, 11 were healthy controls, and 58 suffered from other primary causes of dementia. MAOB and APOE polymorphisms were determined using TaqMan SNP Genotyping Assays. RESULTS We observed that the frequency of APOE ɛ4/ɛ4 homozygotes and APOE ɛ4 carriers is sig- nificantly increased among patients carrying the AA MAOB rs1799836 genotype. CONCLUSION These results indicate that the MAOB rs1799836 polymorphism is a potential genetic biomarker of AD and a potential target for the treatment of decreased dopaminergic transmission and cognitive deterioration in AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | | | | | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Department of Molecular Medicine, Institute Ruđer Bošković, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
6
|
Silva-Adaya D, Garza-Lombó C, Gonsebatt ME. Xenobiotic transport and metabolism in the human brain. Neurotoxicology 2021; 86:125-138. [PMID: 34371026 DOI: 10.1016/j.neuro.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Organisms have metabolic pathways responsible for eliminating endogenous and exogenous toxicants. Generally, we associate the liver par excellence as the organ in charge of detoxifying the body; however, this process occurs in all tissues, including the brain. Due to the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), the Central Nervous System (CNS) is considered a partially isolated organ, but similar to other organs, the CNS possess xenobiotic transporters and metabolic pathways associated with the elimination of xenobiotic agents. In this review, we describe the different systems related to the detoxification of xenobiotics in the CNS, providing examples in which their association with neurodegenerative processes is suspected. The CNS detoxifying systems include carrier-mediated, active efflux and receptor-mediated transport, and detoxifying systems that include phase I and phase II enzymes, as well as those enzymes in charge of neutralizing compounds such as electrophilic agents, reactive oxygen species (ROS), and free radicals, which are products of the bioactivation of xenobiotics. Moreover, we discuss the differential expression of these systems in different regions of the CNS, showing the different detoxifying needs and the composition of each region in terms of the cell type, neurotransmitter content, and the accumulation of xenobiotics and/or reactive compounds.
Collapse
Affiliation(s)
- Daniela Silva-Adaya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico; Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Carla Garza-Lombó
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB, Indianapolis, IN, 46202, USA
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
7
|
Babić Leko M, Nikolac Perković M, Klepac N, Švob Štrac D, Borovečki F, Pivac N, Hof PR, Šimić G. Relationships of Cerebrospinal Fluid Alzheimer's Disease Biomarkers and COMT, DBH, and MAOB Single Nucleotide Polymorphisms. J Alzheimers Dis 2021; 73:135-145. [PMID: 31771069 PMCID: PMC7029364 DOI: 10.3233/jad-190991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The noradrenergic and dopaminergic systems are affected in Alzheimer’s disease (AD). Polymorphisms in genes encoding enzymes and proteins that are components of these systems can affect products of transcription and translation and lead to altered enzymatic activity and alterations in overall dopamine and noradrenaline levels. Catechol-O-methyltransferase (COMT) and monoamine oxidase B (MAOB) are the enzymes that regulate degradation of dopamine, while dopamine β-hydroxylase (DBH) is involved in synthesis of noradrenaline. COMT Val158Met (rs4680), DBH rs1611115 (also called –1021C/T or –970C/T), and MAOB rs1799836 (also called A644G) polymorphisms have been previously associated with AD. We assessed whether these polymorphisms are associated with cerebrospinal fluid (CSF) AD biomarkers including total tau (t-tau), phosphorylated tau proteins (p-tau181, p-tau199, and p-tau231), amyloid-β42 (Aβ42), and visinin-like protein 1 (VILIP-1) to test possible relationships of specific genotypes and pathological levels of CSF AD biomarkers. The study included 233 subjects: 115 AD, 53 mild cognitive impairment, 54 subjects with other primary causes of dementia, and 11 healthy controls. Significant decrease in Aβ42 levels was found in patients with GG compared to AG COMT Val158Met genotype, while t-tau and p-tau181 levels were increased in patients with AA compared to AG COMT Val158Met genotype. Aβ42 levels were also decreased in carriers of A allele in MAO-B rs1799836 polymorphism, while p-tau181 levels were increased in carriers of T allele in DBH rs1611115 polymorphism. These results indicate that COMT Val158Met, DBH rs1611115, and MAOB rs1799836 polymorphisms deserve further investigation as genetic markers of AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | | | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Department of Molecular Medicine, Institute Ruđer Bošković, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
8
|
Santin Y, Resta J, Parini A, Mialet-Perez J. Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Ageing Res Rev 2021; 66:101256. [PMID: 33434685 DOI: 10.1016/j.arr.2021.101256] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
Population aging is one of the most significant social changes of the twenty-first century. This increase in longevity is associated with a higher prevalence of chronic diseases, further rising healthcare costs. At the molecular level, cellular senescence has been identified as a major process in age-associated diseases, as accumulation of senescent cells with aging leads to progressive organ dysfunction. Of particular importance, mitochondrial oxidative stress and consequent organelle alterations have been pointed out as key players in the aging process, by both inducing and maintaining cellular senescence. Monoamine oxidases (MAOs), a class of enzymes that catalyze the degradation of catecholamines and biogenic amines, have been increasingly recognized as major producers of mitochondrial ROS. Although well-known in the brain, evidence showing that MAOs are also expressed in a variety of peripheral organs stimulated a growing interest in the extra-cerebral roles of these enzymes. Besides, the fact that MAO-A and/or MAO-B are frequently upregulated in aged or dysfunctional organs has uncovered new perspectives on their roles in pathological aging. In this review, we will give an overview of the major results on the regulation and function of MAOs in aging and age-related diseases, paying a special attention to the mechanisms linked to the increased degradation of MAO substrates or related to MAO-dependent ROS formation.
Collapse
Affiliation(s)
- Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jessica Resta
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jeanne Mialet-Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.
| |
Collapse
|
9
|
Cremer SE, Catalfamo JL, Goggs R, Seemann SE, Kristensen AT, Szklanna PB, Maguire PB, Brooks MB. The canine activated platelet secretome (CAPS): A translational model of thrombin-evoked platelet activation response. Res Pract Thromb Haemost 2021; 5:55-68. [PMID: 33537530 PMCID: PMC7845059 DOI: 10.1002/rth2.12450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Domestic dogs represent a translational animal model to study naturally occurring human disease. Proteomics has emerged as a promising tool for characterizing human platelet pathophysiology; thus a detailed characterization of the core canine activated platelet secretome (CAPS) will enhance utilization of the canine model. The objectives of this study were development of a robust, high throughput, label-free approach for proteomic identification and quantification of the canine platelet (i) thrombin releasate proteins, and (ii) the protein subgroup that constitutes CAPS. METHODS Platelets were isolated from 10 healthy dogs and stimulated with 50 nmol/L of γ-thrombin or saline. Proteins were in-solution trypsin-digested and analyzed by nano-liquid chromatography-tandem spectrometry. Core releasate proteins were defined as those present in 10 of 10 dogs, and CAPS defined as releasate proteins with a significantly higher abundance in stimulated versus saline controls (corrected P < .05). RESULTS A total of 2865 proteins were identified; 1126 releasate proteins were present in all dogs, 650 were defined as CAPS. Among the differences from human platelets were a canine lack of platelet factor 4 and vascular endothelial growth factor C, and a 10- to 20-fold lower concentration of proteins such as haptoglobin, alpha-2 macroglobulin, von Willebrand factor, and amyloid-beta A4. Twenty-eight CAPS proteins, including cytokines, adhesion molecules, granule proteins, and calcium regulatory proteins have not previously been attributed to human platelets. CONCLUSIONS CAPS proteins represent a robust characterization of a large animal platelet secretome and a novel tool to model platelet physiology, pathophysiology, and to identify translational biomarkers of platelet-mediated disease.
Collapse
Affiliation(s)
- Signe E. Cremer
- Department of Veterinary Clinical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| | - James L. Catalfamo
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| | - Robert Goggs
- Department of Clinical SciencesCornell UniversityIthacaNYUSA
| | - Stefan E. Seemann
- Department of Veterinary and Animal SciencesCenter for Non‐coding RNA in Technology and HealthUniversity of CopenhagenCopenhagenDenmark
| | | | - Paulina B. Szklanna
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Patricia B. Maguire
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Marjory B. Brooks
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| |
Collapse
|
10
|
Beyond Haemostasis and Thrombosis: Platelets in Depression and Its Co-Morbidities. Int J Mol Sci 2020; 21:ijms21228817. [PMID: 33233416 PMCID: PMC7700239 DOI: 10.3390/ijms21228817] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Alongside their function in primary haemostasis and thrombo-inflammation, platelets are increasingly considered a bridge between mental, immunological and coagulation-related disorders. This review focuses on the link between platelets and the pathophysiology of major depressive disorder (MDD) and its most frequent comorbidities. Platelet- and neuron-shared proteins involved in MDD are functionally described. Platelet-related studies performed in the context of MDD, cardiovascular disease, and major neurodegenerative, neuropsychiatric and neurodevelopmental disorders are transversally presented from an epidemiological, genetic and functional point of view. To provide a complete scenario, we report the analysis of original data on the epidemiological link between platelets and depression symptoms suggesting moderating and interactive effects of sex on this association. Epidemiological and genetic studies discussed suggest that blood platelets might also be relevant biomarkers of MDD prediction and occurrence in the context of MDD comorbidities. Finally, this review has the ambition to formulate some directives and perspectives for future research on this topic.
Collapse
|
11
|
Leiter O, Walker TL. Platelets in Neurodegenerative Conditions-Friend or Foe? Front Immunol 2020; 11:747. [PMID: 32431701 PMCID: PMC7214916 DOI: 10.3389/fimmu.2020.00747] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
It is now apparent that platelet function is more diverse than originally thought, shifting the view of platelets from blood cells involved in hemostasis and wound healing to major contributors to numerous regulatory processes across different tissues. Given their intriguing ability to store, produce and release distinct subsets of bioactive molecules, including intercellular signaling molecules and neurotransmitters, platelets may play an important role in orchestrating healthy brain function. Conversely, a number of neurodegenerative conditions have recently been associated with platelet dysfunction, further highlighting the tissue-independent role of these cells. In this review we summarize the requirements for platelet-neural cell communication with a focus on neurodegenerative diseases, and discuss the therapeutic potential of healthy platelets and the proteins which they release to counteract these conditions.
Collapse
Affiliation(s)
- Odette Leiter
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tara L Walker
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Akingbade OES, Gibson C, Kalaria RN, Mukaetova-Ladinska EB. Platelets: Peripheral Biomarkers of Dementia? J Alzheimers Dis 2019; 63:1235-1259. [PMID: 29843245 DOI: 10.3233/jad-180181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dementia continues to be the most burdening neurocognitive disorder, having a negative impact on the lives of millions. The search for biomarkers to improve the clinical diagnosis of dementia is ongoing, with the focus on effective use of readily accessible peripheral markers. In this review, we concentrate on platelets as biomarkers of dementia and analyze their potential as easily-accessible clinical biomarkers for various subtypes of dementia. Current platelet protein biomarkers that have been investigated for their clinical utility in the diagnosis of dementia, in particular Alzheimer's disease, include amyloid-β protein precursor (AβPP), the AβPP secretases (BACE1 and ADAM10), α-synuclein, tau protein, serotonin, cholesterol, phospholipases, clusterin, IgG, surface receptors, MAO-B, and coated platelets. Few of them, i.e., platelet tau, AβPP (particularly with regards to coated platelets) and secreted ADAM10 and BACE1 show the most promise to be taken forward into clinical setting to diagnose dementia. Aside from protein biomarkers, changes in factors such as mean platelet volume have the potential to play a very specific role in both the dementia diagnosis and prognosis. This review raises a number of research questions for consideration before application of the above biomarkers to routine clinical setting. It is without doubt that there is a need for more clarification on the effects of dementia on platelet morphology and protein content before these changes can be clinically applied as dementia biomarkers and explored further in differentiating distinct dementia subtypes.
Collapse
Affiliation(s)
- Oluwatomi E S Akingbade
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.,School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Claire Gibson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Elizabeta B Mukaetova-Ladinska
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.,Evington Centre, Leicester General Hospital, Leicester, UK
| |
Collapse
|
13
|
Quartey MO, Nyarko JNK, Pennington PR, Heistad RM, Klassen PC, Baker GB, Mousseau DD. Alzheimer Disease and Selected Risk Factors Disrupt a Co-regulation of Monoamine Oxidase-A/B in the Hippocampus, but Not in the Cortex. Front Neurosci 2018; 12:419. [PMID: 29997470 PMCID: PMC6029266 DOI: 10.3389/fnins.2018.00419] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Monoamine oxidase-A (MAO-A) and MAO-B have both been implicated in the pathology of Alzheimer disease (AD). We examined 60 autopsied control and AD donor brain samples to determine how well MAO function aligned with two major risk factors for AD, namely sex and APOE ε4 status. MAO-A activity was increased in AD cortical, but not hippocampal, samples. In contrast, MAO-B activity was increased in both regions (with a strong input from female donors) whether sample means were compared based on: (a) diagnosis alone; (b) diagnosis-by-APOE ε4 status (i.e., carriers vs. non-carriers of the ε4 allele); or (c) APOE ε4 status alone (i.e., ignoring ‘diagnosis’ as a variable). Sample means strictly based on the donor’s sex did not reveal any difference in either MAO-A or MAO-B activity. Unexpectedly, we found that cortical MAO-A and MAO-B activities were highly correlated in both males and females (if focussing strictly on the donor’s sex), while in the hippocampus, any correlation was lost in female samples. Stratifying for sex-by-APOE ε4 status revealed a strong correlation between cortical MAO-A and MAO-B activities in both non-carriers and carriers of the allele, but any correlation in hippocampal samples was lost in carriers of the allele. A diagnosis of AD disrupted the correlation between MAO-A and MAO-B activities in the hippocampus, but not the cortex. We observed a novel region-dependent co-regulation of MAO-A and MAO-B mRNAs (but not proteins), while a lack of correlation between MAO activities and the respective proteins corroborated previous reports. Overexpression of human APOE4 increased MAO activity (but not mRNA/protein) in C6 and in HT-22 cell cultures. We identified a novel co-regulation of MAO-A and MAO-B activities that is spared from any influence of risk factors for AD or AD itself in the cortex, but vulnerable to these same factors in the hippocampus. Sex- and region-dependent abilities to buffer influences on brain MAO activities could have significant bearing on ambiguous outcomes when monoaminergic systems are targeted in clinical populations.
Collapse
Affiliation(s)
- Maa O Quartey
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer N K Nyarko
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul R Pennington
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ryan M Heistad
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paula C Klassen
- The Pharmacology-Physiology Honours Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada.,The Pharmacology-Physiology Honours Program, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Nave S, Doody RS, Boada M, Grimmer T, Savola JM, Delmar P, Pauly-Evers M, Nikolcheva T, Czech C, Borroni E, Ricci B, Dukart J, Mannino M, Carey T, Moran E, Gilaberte I, Muelhardt NM, Gerlach I, Santarelli L, Ostrowitzki S, Fontoura P. Sembragiline in Moderate Alzheimer's Disease: Results of a Randomized, Double-Blind, Placebo-Controlled Phase II Trial (MAyflOwer RoAD). J Alzheimers Dis 2018; 58:1217-1228. [PMID: 28550255 PMCID: PMC5523913 DOI: 10.3233/jad-161309] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Sembragiline is a potent, selective, long-acting, and reversible MAO-B inhibitor developed as a potential treatment for Alzheimer’s disease (AD). Objective: To evaluate the safety, tolerability, and efficacy of sembragiline in patients with moderate AD. Methods: In this Phase II study (NCT01677754), 542 patients with moderate dementia (MMSE 13–20) on background acetylcholinesterase inhibitors with/without memantine were randomized (1:1:1) to sembragiline 1 mg, 5 mg, or placebo once daily orally for 52 weeks. Results: No differences between treated groups and placebo in adverse events or in study completion. The primary endpoint, change from baseline in ADAS-Cog11, was not met. At Week 52, the difference between sembragiline and placebo in ADAS-Cog11 change from baseline was – 0.15 (p = 0.865) and 0.90 (p = 0.312) for 1 and 5 mg groups, respectively. Relative to placebo at Week 52 (but not at prior assessment times), the 1 mg and 5 mg sembragiline groups showed differences in ADCS-ADL of 2.64 (p = 0.051) and 1.89 (p = 0.160), respectively. A treatment effect in neuropsychiatric symptoms (as assessed by the difference between sembragiline and placebo on BEHAVE-AD-FW) was also seen at Week 52 only: – 2.80 (p = 0.014; 1 mg) and – 2.64 (p = 0.019; 5 mg), respectively. A post hoc subgroup analysis revealed greater treatment effects on behavior and functioning in patients with more severe baseline behavioral symptoms (above the median). Conclusions: This study showed that sembragiline was well-tolerated in patients with moderate AD. The study missed its primary and secondary endpoints. Post hoc analyses suggested potential effect on neuropsychiatric symptoms and functioning in more behaviorally impaired study population at baseline.
Collapse
Affiliation(s)
- Stephane Nave
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Rachelle S Doody
- Department of Neurology, Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, TX, USA
| | - Mercè Boada
- Memory Clinic ofFundació ACE, Institut Catalá de Neurociències Aplicades, Barcelona, Spain
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Juha-Matti Savola
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Paul Delmar
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Meike Pauly-Evers
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Tania Nikolcheva
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Christian Czech
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Edilio Borroni
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Benedicte Ricci
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Juergen Dukart
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Marie Mannino
- RocheSafety Risk Management, Licensing & Early Development, RocheInnovation Center, NY, USA
| | - Tracie Carey
- Roche Product Development, Roche Innovation Center, NY, USA
| | - Emma Moran
- Roche Products Limited, Roche Innovation Center Welwyn, Welwyn Garden City, UK
| | - Inma Gilaberte
- Roche Products Limited, Roche Innovation Center Welwyn, Welwyn Garden City, UK
| | - Nicoletta Milani Muelhardt
- Roche Product Development Neuroscience, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Switzerland
| | - Irene Gerlach
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Luca Santarelli
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Susanne Ostrowitzki
- Genentech Inc., Product Development Neuroscience, South San Francisco, CA, USA
| | - Paulo Fontoura
- Roche Product Development Neuroscience, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Switzerland
| |
Collapse
|
15
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A and B monoamine oxidases distinctly modulate signal transduction pathway and gene expression to regulate brain function and survival of neurons. J Neural Transm (Vienna) 2017; 125:1635-1650. [DOI: 10.1007/s00702-017-1832-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/18/2017] [Indexed: 02/01/2023]
|
16
|
Reumiller CM, Schmidt GJ, Dhrami I, Umlauf E, Rappold E, Zellner M. Gender-related increase of tropomyosin-1 abundance in platelets of Alzheimer's disease and mild cognitive impairment patients. J Proteomics 2017; 178:73-81. [PMID: 29278785 DOI: 10.1016/j.jprot.2017.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/13/2023]
Abstract
The incidence of Alzheimer's disease (AD) is higher in elderly women than in men. The molecular background of this gender-related risk, however, is largely unknown. In a previous proteomics study, we identified significantly elevated levels of monoamine oxidase-B and tropomyosin-1 in AD patients, together with significant changes of the genetic AD risk factors apolipoprotein E4 (APOE4) and glutathione S-transferase omega 1 (GSTO1), in platelets - a promising source for AD blood biomarkers. The present study aimed to investigate the gender-specificity as well as the disease-stage dependency of these biomarkers in AD patients and those with mild cognitive impairment (MCI). Tropomyosin-1 and monoamine oxidase-B protein levels were quantified by 2-D DIGE and 1-D Western blotting. Here, for the first time, we revealed a significant increase of 38&39kDa tropomyosin-1 protein levels in female but not male AD (+56%; p=0.008) and MCI patients (+46%; p=0.041) measured by 1-D WB. In contrast, levels of monoamine oxidase-B were, independently of gender, elevated in AD patients (+52%; p=0.009) but unaltered in MCI compared to control subjects. Moreover, we confirmed that APOE4-positive females are at a higher risk (OR=18.7; p=9.7E-09) of developing AD compared to APOE4-positive males (OR=6.5; p=5.9E-04). No gender-related effects were observed for GSTO1. SIGNIFICANCE Platelet tropomyosin-1 constitutes a gender-related and stage-dependent protein in cognitive impairment. In contrast, platelet monoamine oxidase-B, frequently described to be increased in platelets and brains of AD patients, shows a gender-independent but stage-related increase since it is unaltered in MCI subjects. A blood biomarker test for this preceding stage of AD that considers gender-specificity is not yet available. The newly described AD-related platelet protein profiles might refine and facilitate routine diagnosis and enable early as well as tailored interventions.
Collapse
Affiliation(s)
- Christina Maria Reumiller
- Center of Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | | | - Ina Dhrami
- Center of Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Ellen Umlauf
- Center of Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Eduard Rappold
- Center of Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Maria Zellner
- Center of Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Stevenson A, Lopez D, Khoo P, Kalaria RN, Mukaetova-Ladinska EB. Exploring Erythrocytes as Blood Biomarkers for Alzheimer’s Disease. J Alzheimers Dis 2017; 60:845-857. [DOI: 10.3233/jad-170363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Stevenson
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
- The School of Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Dianne Lopez
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Paul Khoo
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Rajesh N. Kalaria
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | | |
Collapse
|
18
|
Yu J, Kong L, Zhang A, Han Y, Liu Z, Sun H, Liu L, Wang X. High-Throughput Metabolomics for Discovering Potential Metabolite Biomarkers and Metabolic Mechanism from the APPswe/PS1dE9 Transgenic Model of Alzheimer’s Disease. J Proteome Res 2017; 16:3219-3228. [DOI: 10.1021/acs.jproteome.7b00206] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jingbo Yu
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Ling Kong
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Aihua Zhang
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Ying Han
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Zhidong Liu
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Hui Sun
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Liang Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Xijun Wang
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| |
Collapse
|
19
|
Entzeroth M, Ratty AK. Monoamine Oxidase Inhibitors—Revisiting a Therapeutic Principle. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ojd.2017.62004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Butterfield DA, Palmieri EM, Castegna A. Clinical implications from proteomic studies in neurodegenerative diseases: lessons from mitochondrial proteins. Expert Rev Proteomics 2016; 13:259-74. [PMID: 26837425 DOI: 10.1586/14789450.2016.1149470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria play a key role in eukaryotic cells, being mediators of energy, biosynthetic and regulatory requirements of these cells. Emerging proteomics techniques have allowed scientists to obtain the differentially expressed proteome or the proteomic redox status in mitochondria. This has unmasked the diversity of proteins with respect to subcellular location, expression and interactions. Mitochondria have become a research 'hot spot' in subcellular proteomics, leading to identification of candidate clinical targets in neurodegenerative diseases in which mitochondria are known to play pathological roles. The extensive efforts to rapidly obtain differentially expressed proteomes and unravel the redox proteomic status in mitochondria have yielded clinical insights into the neuropathological mechanisms of disease, identification of disease early stage and evaluation of disease progression. Although current technical limitations hamper full exploitation of the mitochondrial proteome in neurosciences, future advances are predicted to provide identification of specific therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- D Allan Butterfield
- a Department of Chemistry, and Sanders-Brown Center on Aging , University of Kentucky , Lexington , KY , USA
| | - Erika M Palmieri
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| | - Alessandra Castegna
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| |
Collapse
|
21
|
Izquierdo I, García Á. Platelet proteomics applied to the search for novel antiplatelet therapeutic targets. Expert Rev Proteomics 2016; 13:993-1006. [DOI: 10.1080/14789450.2016.1246188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Ramsay RR, Majekova M, Medina M, Valoti M. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Front Neurosci 2016; 10:375. [PMID: 27597816 PMCID: PMC4992697 DOI: 10.3389/fnins.2016.00375] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
HIGHLIGHTS Compounds that interact with multiple targets but minimally with the cytochrome P450 system (CYP) address the many factors leading to neurodegeneration.Acetyl- and Butyryl-cholineEsterases (AChE, BChE) and Monoamine Oxidases A/B (MAO A, MAO B) are targets for Multi-Target Designed Ligands (MTDL).ASS234 is an irreversible inhibitor of MAO A >MAO B and has micromolar potency against the cholinesterases.ASS234 is a poor CYP substrate in human liver, yielding the depropargylated metabolite.SMe1EC2, a stobadine derivative, showed high radical scavenging property, in vitro and in vivo giving protection in head trauma and diabetic damage of endothelium.Control of mitochondrial function and morphology by manipulating fission and fusion is emerging as a target area for therapeutic strategies to decrease the pathological outcome of neurodegenerative diseases. Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to "dirty drugs" for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson's Disease's (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are simply symptomatic treatment so if new drugs are to prevent degeneration rather than compensate for loss of neurotransmitters, then oxidative stress and mitochondrial events must also be targeted. MAO inhibitors can protect neurons from apoptosis by mechanisms unrelated to enzyme inhibition. Understanding the involvement of MAO and other proteins in the induction and regulation of the apoptosis in mitochondria will aid progress toward strategies to prevent the loss of neurons. In general, the oxidative stress observed both in PD and AD indicate that antioxidant properties are a desirable part of MTDL molecules. After two or more properties are incorporated into one molecule, the passage from a lead compound to a therapeutic tool is strictly linked to its pharmacokinetic and toxicity. In this context the interaction of any new molecules with cytochrome P450 and other xenobiotic metabolic processes is a crucial point. The present review covers the biochemistry of enzymes targeted in the design of drugs against neurodegeneration and the cytochrome P450-dependent metabolism of MTDLs.
Collapse
Affiliation(s)
- Rona R. Ramsay
- Biomedical Sciences Research Complex, University of St. AndrewsSt. Andrews, UK
| | - Magdalena Majekova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of SciencesBratislava, Slovakia
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and BIFI, Universidad de ZaragozaZaragoza, Spain
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di SienaSiena, Italy
| |
Collapse
|
23
|
Suganthy N, Malar DS, Devi KP. Rhizophora mucronata attenuates beta-amyloid induced cognitive dysfunction, oxidative stress and cholinergic deficit in Alzheimer's disease animal model. Metab Brain Dis 2016; 31:937-49. [PMID: 27188290 DOI: 10.1007/s11011-016-9831-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/28/2016] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by accumulation and deposition of Aβ peptide in human brain. The present study aimed to determine the protective effect of catechin rich extract of MERM (methanolic extract of Rhizophora mucronata) on Aβ (25-35) induced cognitive impairment and neuronal toxicity in mice. In the present study AD characteristics were induced by intracerberoventricular administration of aggregated Aβ (25-35) in the Swiss albino mice. Learning and memory deficits were assessed using behavioral assays such as Morris water maze, Y-maze and step down avoidance tasks. Oxidative stress mediated impairment were assessed by measuring the activities of enzymatic and non-enzymatic antioxidants, level of apoptotic protein and oxidative markers in the hippocampus and frontal cortex region. Histolopathological analysis of brain was also carried out. Results illustrated that oral treatment of MERM (200 and 400 mg/kg bw) significantly attenuated Aβ (25-35) induced memory impairment as evaluated by behavioral tests. In addition treatment with MERM attenuated the elevation of β-secretase activity accompanying the reduced level of Aβ (25-35) in the cortex and hippocampus of brain. MERM also enhanced the cognitive function by significantly inhibiting AChE, BuChE and MAO-B. Furthermore, MERM attenuated lipid peroxidation, protein oxidation, restored the antioxidant status and inhibited neuronal apoptosis by down-regulating the level of caspase 3 and Bax protein. These data suggest that MERM rich in catechin can act as promising drug for AD treatment because of its antioxidant, anti-apoptotic and reducing Aβ oligomer activities.
Collapse
Affiliation(s)
- Natarajan Suganthy
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Dicson Sheeja Malar
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
24
|
Ramsay RR. Molecular aspects of monoamine oxidase B. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:81-9. [PMID: 26891670 DOI: 10.1016/j.pnpbp.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO) influence the monoamine levels in brain by virtue of their role in neurotransmitter breakdown. MAO B is the predominant form in glial cells and in platelets. MAO B structure, function and kinetics are described as a background for the effect of alterations in its activity on behavior. The need to inhibit MAO B to combat decreased brain amines continues to drive the search for new drugs. Reversible and irreversible inhibitors are now designed using data-mining, computational screening, docking and molecular dynamics. Multi-target ligands designed to combat the elevated activity of MAO B in Alzheimer's and Parkinson's Diseases incorporate MAO inhibition (usually irreversible) as well as iron chelation, antioxidant or neuroprotective properties. The main focus of drug design is the catalytic activity of MAO, but the imidazoline I2 site in the entrance cavity of MAO B is also a pharmacological target. Endogenous regulation of MAO B expression is discussed briefly in light of new studies measuring mRNA, protein, or activity in healthy and degenerative samples, including the effect of DNA methylation on the expression. Overall, this review focuses on examples of recent research on the molecular aspects of the expression, activity, and inhibition of MAO B.
Collapse
Affiliation(s)
- Rona R Ramsay
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom.
| |
Collapse
|
25
|
García Á. Platelet clinical proteomics: Facts, challenges, and future perspectives. Proteomics Clin Appl 2016; 10:767-73. [PMID: 26948058 DOI: 10.1002/prca.201500125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/17/2016] [Accepted: 02/29/2016] [Indexed: 11/08/2022]
Abstract
In recent years, proteomics has been applied to platelet clinical research. Platelets are small enucleated cells that play a fundamental role in hemostasis. In a pathological context, unwanted platelet activation is related to various diseases, primarily thrombosis, but also cancer metastasis, inflammation, immunity, and neurodegenerative diseases. The absence of a nucleus is one of the reasons why proteomics can be considered an ideal analytical tool for platelet research. Indeed, platelet proteomics has allowed the identification of many novel signaling proteins and receptors, several of which are being pursued as potential therapeutic targets. Encouraged by this success, several research groups have recently initiated clinical proteomics studies covering diseases where platelets are involved in some way, such as coronary artery disease, storage pool diseases, uremia, cystic fibrosis, and Alzheimer disease. The goal was to identify platelet biomarkers and drug targets that can help to improve the treatment/diagnosis of the disease and provide further mechanistic evidences of the role platelets play in the pathology. The present article will comment on the recent progress of clinical proteomics in the context of platelet research, challenges, and perspectives for the future ahead.
Collapse
Affiliation(s)
- Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
26
|
Zinc Improves Cognitive and Neuronal Dysfunction During Aluminium-Induced Neurodegeneration. Mol Neurobiol 2016; 54:406-422. [PMID: 26742519 DOI: 10.1007/s12035-015-9653-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/17/2015] [Indexed: 12/16/2022]
Abstract
Metals are considered as important components of a physiologically active cell, and imbalance in their levels can lead to various diseased conditions. Aluminium (Al) is an environmental neurotoxicant, which is etiologically related to several neurodegenerative disorders like Alzheimer's, whereas zinc (Zn) is an essential trace element that regulates a large number of metabolic processes in the brain. The objective of the present study was to understand whether Zn provides any physiological protection during Al-induced neurodegeneration. Male Sprague Dawley rats weighing 140-160 g received either aluminium chloride (AlCl3) orally (100 mg/kg b.wt./day), zinc sulphate (ZnSO4) in drinking water (227 mg/L) or combined treatment of aluminium and zinc for 8 weeks. Al treatment resulted in a significant decline in the cognitive behaviour of rats, whereas zinc supplementation caused an improvement in various neurobehavior parameters. Further, Al exposure decreased (p ≤ 0.001) the levels of neurotransmitters, acetylcholinesterase activity, but increased (p ≤ 0.001) the levels of L-citrulline as well as activities of nitric oxide and monoamine oxidase in the brain. However, zinc administration to Al-treated animals increased the levels of neurotransmitters and regulated the altered activities of brain markers. Western blot of tau, amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ubiquitin, α-synuclein and Hsp 70 were also found to be elevated after Al exposure, which however were reversed following Zn treatment. Al treatment also revealed alterations in neurohistoarchitecture in the form of loss of pyramidal and Purkinje cells, which were improved upon zinc co-administration. Therefore, the present study demonstrates that zinc improves cognitive functions by regulating α-synuclein and APP-mediated molecular pathways during aluminium-induced neurodegeneration.
Collapse
|
27
|
Bijl N, Thys C, Wittevrongel C, De la Marche W, Devriendt K, Peeters H, Van Geet C, Freson K. Platelet studies in autism spectrum disorder patients and first-degree relatives. Mol Autism 2015; 6:57. [PMID: 26500752 PMCID: PMC4619313 DOI: 10.1186/s13229-015-0051-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Platelets have been proven to be a useful cellular model to study some neuropathologies, due to the overlapping biological features between neurons and platelets as granule secreting cells. Altered platelet dense granule morphology was previously reported in three autism spectrum disorder (ASD) patients with chromosomal translocations that disrupted ASD candidate genes NBEA, SCAMP5, and AMYSIN, but a systematic analysis of platelet function in ASD is lacking in contrast to numerous reports of elevated serotonin levels in platelets and blood as potential biomarker for ASD. METHODS We explored platelet count, size, epinephrine-induced activation, and dense granule ATP secretion in a cohort of 159 ASD patients, their 289 first-degree relatives (103 unaffected siblings, 99 mothers, and 87 fathers), 45 adult controls, and 65 pediatric controls. For each of the responses separately, a linear mixed model with gender as a covariate was used to compare the level between groups. We next investigated the correlation between platelet function outcomes and severity of impairments in social behavior (social responsiveness score (SRS)). RESULTS The average platelet count was increased in ASD patients and siblings vs. controls (ASD 320.3 × 10(9)/L, p = 0.003; siblings 332.0 × 10(9)/L, p < 0.001; controls 283.0 × 10(9)/L). The maximal platelet secretion-dependent aggregation response to epinephrine was not significantly lower for ASD patients. However, secondary wave responses following stimulation with epinephrine were more frequently delayed or absent compared to controls (ASD 52 %, siblings 45 %, parents 53 %, controls 22 %, p = 0.002). In addition, stimulated release of ATP from dense granules was reduced in ASD patients, siblings, and parents vs. controls following activation of platelets with either collagen (ASD 1.54 μM, p = 0.001; siblings 1.51 μM, p < 0.001; parents 1.67 μM, p = 0.021; controls 2.03 μM) or ADP (ASD 0.96 μM, p = 0.003; siblings 1.00 μM, p = 0.012; parents 1.17 μM, p = 0.21; controls 1.40 μM). Plasma serotonin levels were increased for ASD patients (n = 20, p = 0.005) and siblings (n = 20, p = 0.0001) vs. controls (n = 16). No significant correlations were found in the different groups between SRS scores and count, size, epinephrine aggregation, or ATP release. CONCLUSIONS We report increased platelet counts, decreased platelet ATP dense granule secretion, and increased serotonin plasma levels not only in ASD patients but also in their first-degree relatives. This suggests that potential genetic factors associated with platelet counts and granule secretion can be associated with, but are not fully penetrant for ASD.
Collapse
Affiliation(s)
- Nora Bijl
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Gasthuisberg Campus, O & N I, Herestraat 49-b911, 3000 Leuven, Belgium ; The LAuRes Consortium, KU Leuven, Leuven, Belgium
| | - Chantal Thys
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Gasthuisberg Campus, O & N I, Herestraat 49-b911, 3000 Leuven, Belgium
| | - Christine Wittevrongel
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Gasthuisberg Campus, O & N I, Herestraat 49-b911, 3000 Leuven, Belgium
| | - Wouter De la Marche
- Department of Neurosciences, Research Group Psychiatry, KU Leuven, Leuven, Belgium ; The LAuRes Consortium, KU Leuven, Leuven, Belgium
| | | | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium ; The LAuRes Consortium, KU Leuven, Leuven, Belgium
| | - Chris Van Geet
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Gasthuisberg Campus, O & N I, Herestraat 49-b911, 3000 Leuven, Belgium ; The LAuRes Consortium, KU Leuven, Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Gasthuisberg Campus, O & N I, Herestraat 49-b911, 3000 Leuven, Belgium ; The LAuRes Consortium, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Lindsey ML, Mayr M, Gomes AV, Delles C, Arrell DK, Murphy AM, Lange RA, Costello CE, Jin YF, Laskowitz DT, Sam F, Terzic A, Van Eyk J, Srinivas PR. Transformative Impact of Proteomics on Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association. Circulation 2015. [PMID: 26195497 DOI: 10.1161/cir.0000000000000226] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The year 2014 marked the 20th anniversary of the coining of the term proteomics. The purpose of this scientific statement is to summarize advances over this period that have catalyzed our capacity to address the experimental, translational, and clinical implications of proteomics as applied to cardiovascular health and disease and to evaluate the current status of the field. Key successes that have energized the field are delineated; opportunities for proteomics to drive basic science research, facilitate clinical translation, and establish diagnostic and therapeutic healthcare algorithms are discussed; and challenges that remain to be solved before proteomic technologies can be readily translated from scientific discoveries to meaningful advances in cardiovascular care are addressed. Proteomics is the result of disruptive technologies, namely, mass spectrometry and database searching, which drove protein analysis from 1 protein at a time to protein mixture analyses that enable large-scale analysis of proteins and facilitate paradigm shifts in biological concepts that address important clinical questions. Over the past 20 years, the field of proteomics has matured, yet it is still developing rapidly. The scope of this statement will extend beyond the reaches of a typical review article and offer guidance on the use of next-generation proteomics for future scientific discovery in the basic research laboratory and clinical settings.
Collapse
|
29
|
Musunuri S, Kultima K, Richard BC, Ingelsson M, Lannfelt L, Bergquist J, Shevchenko G. Micellar extraction possesses a new advantage for the analysis of Alzheimer's disease brain proteome. Anal Bioanal Chem 2014; 407:1041-57. [PMID: 25416231 DOI: 10.1007/s00216-014-8320-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022]
Abstract
Integral membrane proteins (MPs), such as transporters, receptors, and ion channels, are of great interest because of their participation in various vital cellular functions including cell-cell interactions, ion transport, and signal transduction. However, studies of MPs are complicated because of their hydrophobic nature, heterogeneity, and low abundance. Cloud-point extraction (CPE) with the non-ionic surfactant Triton X-114 was performed to simultaneously extract and phase separate hydrophobic and hydrophilic proteins from Alzheimer's disease (AD) and unaffected control brain tissue. Quantitative proteomics analysis of temporal neocortex samples of AD patients and controls was performed using a shotgun approach based on stable isotope dimethyl labeling (DML) quantification technique followed by nanoLC-MS/MS analysis. A total of 1096 unique proteins were identified and quantified, with 40.3 % (211/524) predicted as integral MPs with at least one transmembrane domain (TMD) found in the detergent phase, and 10 % (80/798) in the detergent-depleted phase. Among these, 62 proteins were shown to be significantly altered (p-value <0.05), in AD versus control samples. In the detergent fraction, we found 10 hydrophobic transmembrane proteins containing up to 14 putative TMDs that were significantly up- or down-regulated in AD compared with control brains. Changes in four of these proteins, alpha-enolase (ENOA), lysosome-associated membrane glycoprotein 1 (LAMP1), 14-3-3 protein gamma (1433G), and sarcoplasmic/endoplasmic reticulum calcium ATPase2 (AT2A2) were validated by immunoblotting. Our results emphasize that separating hydrophobic MPs in CPE contributes to an increased understanding of the underlying molecular mechanisms in AD. Such knowledge can become useful for the development of novel disease biomarkers.
Collapse
Affiliation(s)
- Sravani Musunuri
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
A platelet protein biochip rapidly detects an Alzheimer's disease-specific phenotype. Acta Neuropathol 2014; 128:665-77. [PMID: 25248508 PMCID: PMC4201753 DOI: 10.1007/s00401-014-1341-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD), a multifactorial neurodegenerative condition caused by genetic and environmental factors, is diagnosed using neuropsychological tests and brain imaging; molecular diagnostics are not routinely applied. Studies have identified AD-specific cerebrospinal fluid (CSF) biomarkers but sample collection requires invasive lumbar puncture. To identify AD-modulated proteins in easily accessible blood platelets, which share biochemical signatures with neurons, we compared platelet lysates from 62 AD, 24 amnestic mild cognitive impairment (aMCI), 13 vascular dementia (VaD), and 12 Parkinson's disease (PD) patients with those of 112 matched controls by fluorescence two-dimensional differential gel electrophoresis in independent discovery and verification sets. The optimal sum score of four mass spectrometry (MS)-identified proteins yielded a sensitivity of 94 % and a specificity of 89 % (AUC = 0.969, 95 % CI = 0.944-0.994) to differentiate AD patients from healthy controls. To bridge the gap between bench and bedside, we developed a high-throughput multiplex protein biochip with great potential for routine AD screening. For convenience and speed of application, this array combines loading control-assisted protein quantification of monoamine oxidase B and tropomyosin 1 with protein-based genotyping for single nucleotide polymorphisms (SNPs) in the apolipoprotein E and glutathione S-transferase omega 1 genes. Based on minimally invasive blood drawing, this innovative protein biochip enables identification of AD patients with an accuracy of 92 % in a single analytical step in less than 4 h.
Collapse
|
31
|
Neudorfer C, Shanab K, Jurik A, Schreiber V, Neudorfer C, Vraka C, Schirmer E, Holzer W, Ecker G, Mitterhauser M, Wadsak W, Spreitzer H. Development of potential selective and reversible pyrazoline based MAO-B inhibitors as MAO-B PET tracer precursors and reference substances for the early detection of Alzheimer’s disease. Bioorg Med Chem Lett 2014; 24:4490-4495. [DOI: 10.1016/j.bmcl.2014.07.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 11/26/2022]
|
32
|
Veitinger M, Varga B, Guterres SB, Zellner M. Platelets, a reliable source for peripheral Alzheimer's disease biomarkers? Acta Neuropathol Commun 2014; 2:65. [PMID: 24934666 PMCID: PMC4229876 DOI: 10.1186/2051-5960-2-65] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022] Open
Abstract
Peripheral biomarkers play an indispensable role in quick and reliable diagnoses of any kind of disease. With the population ageing, the number of people suffering from age-related diseases is expected to rise dramatically over the coming decades. In particular, all types of cognitive deficits, such as Alzheimer's disease, will increase. Alzheimer's disease is characterised mainly by coexistence of amyloid plaques and neurofibrillary tangles in brain. Reliable identification of such molecular characteristics antemortem, however, is problematic due to restricted availability of appropriate sample material and definitive diagnosis is only possible postmortem. Currently, the best molecular biomarkers available for antemortem diagnosis originate from cerebrospinal fluid. Though, this is not convenient for routine diagnosis because of the required invasive lumbar puncture. As a consequence, there is a growing demand for additional peripheral biomarkers in a more readily accessible sample material. Blood platelets, due to shared biochemical properties with neurons, can constitute an attractive alternative as discussed here. This review summarises potential platelet Alzheimer's disease biomarkers, their role, implication, and alteration in the disease. For easy comparison of their performance, the Hedge effect size was calculated whenever data were available.
Collapse
Affiliation(s)
- Michael Veitinger
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| | - Balazs Varga
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| | - Sheila B Guterres
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
- />Institute of Chemistry at São Carlos, University of São Paulo, São Paulo, Brazil
| | - Maria Zellner
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| |
Collapse
|
33
|
Burkhart JM, Gambaryan S, Watson SP, Jurk K, Walter U, Sickmann A, Heemskerk JWM, Zahedi RP. What can proteomics tell us about platelets? Circ Res 2014; 114:1204-19. [PMID: 24677239 DOI: 10.1161/circresaha.114.301598] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
More than 130 years ago, it was recognized that platelets are key mediators of hemostasis. Nowadays, it is established that platelets participate in additional physiological processes and contribute to the genesis and progression of cardiovascular diseases. Recent data indicate that the platelet proteome, defined as the complete set of expressed proteins, comprises >5000 proteins and is highly similar between different healthy individuals. Owing to their anucleate nature, platelets have limited protein synthesis. By implication, in patients experiencing platelet disorders, platelet (dys)function is almost completely attributable to alterations in protein expression and dynamic differences in post-translational modifications. Modern platelet proteomics approaches can reveal (1) quantitative changes in the abundance of thousands of proteins, (2) post-translational modifications, (3) protein-protein interactions, and (4) protein localization, while requiring only small blood donations in the range of a few milliliters. Consequently, platelet proteomics will represent an invaluable tool for characterizing the fundamental processes that affect platelet homeostasis and thus determine the roles of platelets in health and disease. In this article we provide a critical overview on the achievements, the current possibilities, and the future perspectives of platelet proteomics to study patients experiencing cardiovascular, inflammatory, and bleeding disorders.
Collapse
Affiliation(s)
- Julia M Burkhart
- From the Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (J.M.B., A.S., R.P.Z); Institut für Klinische Biochemie und Pathobiochemie, Universitätsklinikum Würzburg, Würzburg, Germany (S.G.); Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia (S.G.); Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.P.W.); Center for Thrombosis and Hemostasis, Universitätsklinikum der Johannes Gutenberg-Universität Mainz, Mainz, Germany (K.J., U.W.); Medizinisches Proteom Center, Ruhr Universität Bochum, Bochum, Germany (A.S.); Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom (A.S.); and Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands (J.W.M.H.)
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Follmer C. Monoamine oxidase and α-synuclein as targets in Parkinson’s disease therapy. Expert Rev Neurother 2014; 14:703-16. [DOI: 10.1586/14737175.2014.920235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Saraygord-Afshari N, Naderi-Manesh H, Naderi M. Enhanced reproducibility of the human gel-based tear proteome maps in the presence of di-(2-hydroxyethyl) disulfide. Biotechnol Appl Biochem 2014; 61:660-7. [PMID: 24575874 DOI: 10.1002/bab.1221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Neda Saraygord-Afshari
- Department of Biophysics; Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
| | - Hossein Naderi-Manesh
- Department of Biophysics; Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
| | - Mostafa Naderi
- Bina Eye Hospital; Tehran Iran
- Department of Ophthalmology; Baqiyatallah University of Medical Sciences; Tehran Iran
| |
Collapse
|
36
|
New insight into neurodegeneration: the role of proteomics. Mol Neurobiol 2013; 49:1181-99. [PMID: 24323427 DOI: 10.1007/s12035-013-8590-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Recent advances within the field of proteomics, including both upstream and downstream protocols, have fuelled a transition from simple protein identification to functional analysis. A battery of proteomics approaches is now being employed for the analysis of protein expression levels, the monitoring of cellular activities and for gaining an increased understanding into biochemical pathways. Combined, these approaches are changing the way we study disease by allowing accurate and targeted, large scale protein analysis, which will provide invaluable insight into disease pathogenesis. Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), prion disease, and other diseases that affect the neuromuscular system, are a leading cause of disability in the aging population. There are no effective intervention strategies for these disorders and diagnosis is challenging as it relies primarily on clinical symptomatic features, which often overlap at early stages of disease. There is, therefore, an urgent need to develop reliable biomarkers to improve early and specific diagnosis, to track disease progression, to measure molecular responses towards treatment regimes and ultimately devise new therapeutic strategies. To accomplish this, a better understanding of disease mechanisms is needed. In this review we summarize recent advances in the field of proteomics applicable to neurodegenerative disorders, and how these advances are fueling our understanding, diagnosis, and treatment of these complex disorders.
Collapse
|
37
|
Baumgartner R, Umlauf E, Veitinger M, Guterres S, Rappold E, Babeluk R, Mitulović G, Oehler R, Zellner M. Identification and validation of platelet low biological variation proteins, superior to GAPDH, actin and tubulin, as tools in clinical proteomics. J Proteomics 2013; 94:540-51. [DOI: 10.1016/j.jprot.2013.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/27/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022]
|
38
|
Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods 2013; 61:186-218. [PMID: 23623823 PMCID: PMC3891841 DOI: 10.1016/j.ymeth.2013.04.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/29/2013] [Accepted: 04/13/2013] [Indexed: 01/07/2023] Open
Abstract
The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- George E Craft
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Anshu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
- Yale/NIDA Neuroproteomics Center, Yale University School of Medicine, New Haven, CT, 06508
| |
Collapse
|
39
|
E. Kehrel B, F. Brodde M. State of the art in platelet function testing. Transfus Med Hemother 2013; 40:73-86. [PMID: 23653569 PMCID: PMC3638976 DOI: 10.1159/000350469] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 12/20/2022] Open
Abstract
Platelets perform many functions in hemostasis but also in other areas of physiology and pathology. Therefore, it is obvious that many different function tests have been developed, each one conceived and standardized for a special purpose. This review will summarize the different fields in which platelet function testing is currently in use; diagnostics of patients with bleeding disorders, monitoring patients' response to anti-platelet therapy, monitoring in transfusion medicine (blood donors, platelet concentrates, and after transfusion), and monitoring in perioperative medicine to predict bleeding tendency. The second part of the review outlines different methods for platelet function testing, spanning bleeding time, and platelet counting as well as determining platelet adhesion, platelet secretion, platelet aggregation, platelet morphology, platelet signal transduction, platelet procoagulant activity, platelet apoptosis, platelet proteomics, and molecular biology.
Collapse
Affiliation(s)
- Beate E. Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Hemostasis, University of Münster, Germany
| | - Martin F. Brodde
- Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Hemostasis, University of Münster, Germany
- OxProtect GmbH, Münster, Germany
| |
Collapse
|
40
|
Parguiña AF, Rosa I, García Á. Proteomics applied to the study of platelet-related diseases: Aiding the discovery of novel platelet biomarkers and drug targets. J Proteomics 2012; 76 Spec No.:275-86. [DOI: 10.1016/j.jprot.2012.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 01/04/2023]
|