1
|
Goring AK, Hale S, Dasika P, Chen Y, Clubb RT, Loo JA. The Exoproteome and Surfaceome of Toxigenic Corynebacterium diphtheriae 1737 and Its Response to Iron Restriction and Growth on Human Hemoglobin. J Proteome Res 2025; 24:77-93. [PMID: 39692319 DOI: 10.1021/acs.jproteome.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Toxin-producing Corynebacterium diphtheriae strains are the etiological agents of the severe upper respiratory disease, diphtheria. A global phylogenetic analysis revealed that biotype gravis is particularly lethal as it produces diphtheria toxin and a range of other virulence factors, particularly when it encounters low levels of iron at sites of infection. To gain insight into how it colonizes its host, we have identified iron-dependent changes in the exoproteome and surfaceome of C. diphtheriae strain 1737 using a combination of whole-cell fractionation, intact cell surface proteolysis, and quantitative proteomics. In total, we identified 1414 of the predicted 2265 proteins (62%) encoded by its reference genome. For each protein, we quantified its degree of secretion and surface exposure, revealing that exoproteases and hydrolases predominate in the exoproteome, while the surfaceome is enriched with adhesins, particularly DIP2093. Our analysis provides insight into how components in the heme-acquisition system are positioned, showing pronounced surface exposure of the strain-specific ChtA/ChtC paralogues and high secretion of the species-conserved heme-binding HtaA protein, suggesting it functions as a hemophore. Profiling the response of the exoproteome and surfaceome after microbial exposure to human hemoglobin and iron limitation reveals potential virulence factors that may be expressed at sites of infection. Data are available via ProteomeXchange with identifier PXD051674.
Collapse
|
2
|
Loivamaa I, Sillanpää A, Deptula P, Chamlagain B, Edelmann M, Auvinen P, Nyman TA, Savijoki K, Piironen V, Varmanen P. Aerobic adaptation and metabolic dynamics of Propionibacterium freudenreichii DSM 20271: insights from comparative transcriptomics and surfaceome analysis. mSystems 2024; 9:e0061524. [PMID: 39345151 PMCID: PMC11494915 DOI: 10.1128/msystems.00615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Propionibacterium freudenreichii (PFR) DSM 20271T is a bacterium known for its ability to thrive in diverse environments and to produce vitamin B12. Despite its anaerobic preference, recent studies have elucidated its ability to prosper in the presence of oxygen, prompting a deeper exploration of its physiology under aerobic conditions. Here, we investigated the response of DSM 20271T to aerobic growth by employing comparative transcriptomic and surfaceome analyses alongside metabolite profiling. Cultivation under controlled partial pressure of oxygen (pO2) conditions revealed significant increases in biomass formation and altered metabolite production, notably of vitamin B12, pseudovitamin-B12, propionate, and acetate, under aerobic conditions. Transcriptomic analysis identified differential expression of genes involved in lactate metabolism, tricarboxylic acid cycle, and electron transport chain, suggesting metabolic adjustments to aerobic environments. Moreover, surfaceome analysis unveiled growth environment-dependent changes in surface protein abundance, with implications for adaptation to atmospheric conditions. Supplementation experiments with key compounds highlighted the potential for enhancing aerobic growth, emphasizing the importance of iron and α-ketoglutarate availability. Furthermore, in liquid culture, FeSO4 supplementation led to increased heme production and reduced vitamin B12 production, highlighting the impact of oxygen and iron availability on the metabolic pathways. These findings deepen our understanding of PFR's physiological responses to oxygen availability and offer insights for optimizing its growth in industrial applications. IMPORTANCE The study of the response of Propionibacterium freudenreichii to aerobic growth is crucial for understanding how this bacterium adapts to different environments and produces essential compounds like vitamin B12. By investigating its physiological changes under aerobic conditions, we can gain insights into its metabolic adjustments and potential for enhanced growth. These findings not only deepen our understanding of P. freudenreichii's responses to oxygen availability but also offer valuable information for optimizing its growth in industrial applications. This research sheds light on the adaptive mechanisms of this bacterium, providing a foundation for further exploration and potential applications in various fields.
Collapse
Affiliation(s)
- Iida Loivamaa
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Annika Sillanpää
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Paulina Deptula
- Department of Food Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Bhawani Chamlagain
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Das A, Behera RN, Kapoor A, Ambatipudi K. The Potential of Meta-Proteomics and Artificial Intelligence to Establish the Next Generation of Probiotics for Personalized Healthcare. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17528-17542. [PMID: 37955263 DOI: 10.1021/acs.jafc.3c03834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The symbiosis of probiotic bacteria with humans has rendered various health benefits while providing nutrition and a suitable environment for their survival. However, the probiotics must survive unfavorable gut conditions to exert beneficial effects. The intrinsic resistance of probiotics to survive harsh conditions results from a myriad of proteins. Interaction of microbial proteins with the host is indispensable for modulating the gut microbiome, such as interaction with cell receptors and protective action against pathogens. The complex interplay of proteins should be unraveled by utilizing metaproteomic strategies. The contribution of probiotics to health is now widely accepted. However, due to the inconsistency of generalized probiotics, contemporary research toward precision probiotics has gained momentum for customized treatment. This review explores the application of metaproteomics and AI/ML algorithms in resolving multiomics data analysis and in silico prediction of microbial features for screening specific beneficial probiotic organisms. Implementing these integrative strategies could augment the potential of precision probiotics for personalized healthcare.
Collapse
Affiliation(s)
- Arpita Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rama N Behera
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ayushi Kapoor
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
4
|
Montemari AL, Marzano V, Essa N, Levi Mortera S, Rossitto M, Gardini S, Selan L, Vrenna G, Onetti Muda A, Putignani L, Fiscarelli EV. A Shaving Proteomic Approach to Unveil Surface Proteins Modulation of Multi-Drug Resistant Pseudomonas aeruginosa Strains Isolated From Cystic Fibrosis Patients. Front Med (Lausanne) 2022; 9:818669. [PMID: 35355602 PMCID: PMC8959810 DOI: 10.3389/fmed.2022.818669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most common rare disease caused by a mutation of the CF transmembrane conductance regulator gene encoding a channel protein of the apical membrane of epithelial cells leading to alteration of Na+ and K+ transport, hence inducing accumulation of dense and sticky mucus and promoting recurrent airway infections. The most detected bacterium in CF patients is Pseudomonas aeruginosa (PA) which causes chronic colonization, requiring stringent antibiotic therapies that, in turn induces multi-drug resistance. Despite eradication attempts at the first infection, the bacterium is able to utilize several adaptation mechanisms to survive in hostile environments such as the CF lung. Its adaptive machinery includes modulation of surface molecules such as efflux pumps, flagellum, pili and other virulence factors. In the present study we compared surface protein expression of PA multi- and pan-drug resistant strains to wild-type antibiotic-sensitive strains, isolated from the airways of CF patients with chronic colonization and recent infection, respectively. After shaving with trypsin, microbial peptides were analyzed by tandem-mass spectrometry on a high-resolution platform that allowed the identification of 174 differentially modulated proteins localized in the region from extracellular space to cytoplasmic membrane. Biofilm assay was performed to characterize all 26 PA strains in term of biofilm production. Among the differentially expressed proteins, 17 were associated to the virulome (e.g., Tse2, Tse5, Tsi1, PilF, FliY, B-type flagellin, FliM, PyoS5), six to the resistome (e.g., OprJ, LptD) and five to the biofilm reservoir (e.g., AlgF, PlsD). The biofilm assay characterized chronic antibiotic-resistant isolates as weaker biofilm producers than wild-type strains. Our results suggest the loss of PA early virulence factors (e.g., pili and flagella) and later expression of virulence traits (e.g., secretion systems proteins) as an indicator of PA adaptation and persistence in the CF lung environment. To our knowledge, this is the first study that, applying a shaving proteomic approach, describes adaptation processes of a large collection of PA clinical strains isolated from CF patients in early and chronic infection phases.
Collapse
Affiliation(s)
- Anna Lisa Montemari
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valeria Marzano
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nour Essa
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Martina Rossitto
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Andrea Onetti Muda
- Department of Diagnostics and Laboratory Medicine, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
5
|
Unravelling the Initial Triggers of Botrytis cinerea Infection: First Description of Its Surfactome. J Fungi (Basel) 2021; 7:jof7121021. [PMID: 34947003 PMCID: PMC8708654 DOI: 10.3390/jof7121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Botrytis cinerea is a critically important phytopathogenic fungus, causing devastating crop losses; signal transduction cascades mediate the “dialogue” among the fungus, plant, and environment. Surface proteins play important roles as front-line receptors. We report the first description of the surfactome of a filamentous fungus. To obtain a complete view of these cascades during infection of B. cinerea, its surfactome has been described by optimization of the “shaving” process and LC–MS/MS at two different infection stages, and with both rapid and late responses to environmental changes. The best results were obtained using PBS buffer in the “shaving” protocol. The surfactome obtained comprises 1010 identified proteins. These have been categorized by gene ontology and protein–protein interactions to reveal new potential pathogenicity/virulence factors. From these data, the percentage of total proteins predicted for the genome of the fungus represented by proteins identified in this and other proteomics studies is calculated at 54%, a big increase over the previous 12%. The new data may be crucial for understanding better its biological activity and pathogenicity. Given its extensive exposure to plants and environmental conditions, the surfactome presents innumerable opportunities for interactions between the fungus and external elements, which should offer the best targets for fungicide development.
Collapse
|
6
|
Extracellular Vesicles from Different Pneumococcal Serotypes Are Internalized by Macrophages and Induce Host Immune Responses. Pathogens 2021; 10:pathogens10121530. [PMID: 34959485 PMCID: PMC8708143 DOI: 10.3390/pathogens10121530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Bacterial extracellular vesicles are membranous ultrastructures released from the cell surface. They play important roles in the interaction between the host and the bacteria. In this work, we show how extracellular vesicles produced by four different serotypes of the important human pathogen, Streptococcus pneumoniae, are internalized by murine J774A.1 macrophages via fusion with the membrane of the host cells. We also evaluated the capacity of pneumococcal extracellular vesicles to elicit an immune response by macrophages. Macrophages treated with the vesicles underwent a serotype-dependent transient loss of viability, which was further reverted. The vesicles induced the production of proinflammatory cytokines, which was higher for serotype 1 and serotype 8-derived vesicles. These results demonstrate the biological activity of extracellular vesicles of clinically important pneumococcal serotypes.
Collapse
|
7
|
Techawiwattanaboon T, Thaibankluay P, Kreangkaiwal C, Sathean-Anan-Kun S, Khaenam P, Makjaroen J, Pisitkun T, Patarakul K. Surface proteomics and label-free quantification of Leptospira interrogans serovar Pomona. PLoS Negl Trop Dis 2021; 15:e0009983. [PMID: 34843470 PMCID: PMC8659334 DOI: 10.1371/journal.pntd.0009983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/09/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Leptospirosis is a re-emerging zoonosis with a global distribution. Surface-exposed outer membrane proteins (SE-OMPs) are crucial for bacterial-host interactions. SE-OMPs locate and expose their epitope on cell surface where is easily accessed by host molecules. This study aimed to screen for surface-exposed proteins and their abundance profile of pathogenic Leptospira interrogans serovar Pomona. Two complementary approaches, surface biotinylation and surface proteolytic shaving, followed by liquid chromatography tandem-mass spectrometry (LC-MS/MS) were employed to identify SE-OMPs of intact leptospires. For quantitative comparison, in-depth label-free analysis of SE-OMPs obtained from each method was performed using MaxQuant. The total number of proteins identified was 1,001 and 238 for surface biotinylation and proteinase K shaving, respectively. Among these, 39 were previously known SE-OMPs and 68 were predicted to be localized on the leptospiral surface. Based on MaxQuant analysis for relative quantification, six known SE-OMPs including EF- Tu, LipL21, LipL41, LipL46, Loa22, and OmpL36, and one predicted SE-OMPs, LipL71 were found in the 20 most abundant proteins, in which LipL41 was the highest abundant SE-OMP. Moreover, uncharacterized LIC14011 protein (LIP3228 ortholog in serovar Pomona) was identified as a novel predicted surface βb-OMP. High-abundance leptospiral SE-OMPs identified in this study may play roles in virulence and infection and are potential targets for development of vaccine or diagnostic tests for leptospirosis.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Praparat Thaibankluay
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Medical Science, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Chahya Kreangkaiwal
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Suwitra Sathean-Anan-Kun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Prasong Khaenam
- Center for Standardization and Product Validation, Faculty of Medical Technology, Mahidol University, Bangkok-Noi, Bangkok, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
8
|
Ozma MA, Khodadadi E, Rezaee MA, Asgharzadeh M, Aghazadeh M, Zeinalzadeh E, Ganbarov K, Kafil H. Bacterial proteomics and its application for pathogenesis studies. Curr Pharm Biotechnol 2021; 23:1245-1256. [PMID: 34503411 DOI: 10.2174/1389201022666210908153234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 01/09/2023]
Abstract
Bacteria build their structures by implementing several macromolecules such as proteins, polysaccharides, phospholipids, and nucleic acids, which leads to preserve their lives and play an essential role in their pathogenesis. There are two genomic and proteomic methods to study various macromolecules of bacteria, which are complementary methods and provide comprehensive information. Proteomic approaches are used to identify proteins and their cell applications. Furthermore, to study bacterial proteins, macromolecules are involved in the bacteria's structures and functions. These protein-based methods provide comprehensive information about the cells, such as the external structures, internal compositions, post-translational modifications, and mechanisms of particular actions such as biofilm formation, antibiotic resistance, and adaptation to the environment, which are helpful in promoting bacterial pathogenesis. These methods use various devices such as MALDI-TOF MS, LC-MS, and two-dimensional electrophoresis, which are valuable tools for studying different structural and functional proteins of the bacteria and their mechanisms of pathogenesis that causes rapid, easy, and accurate diagnosis of the infections.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Ehsaneh Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Aghazadeh
- Microbiome and Health Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Hossein Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614711. Iran
| |
Collapse
|
9
|
Approaching In Vivo Models of Pneumococcus-Host Interaction: Insights into Surface Proteins, Capsule Production, and Extracellular Vesicles. Pathogens 2021; 10:pathogens10091098. [PMID: 34578131 PMCID: PMC8471892 DOI: 10.3390/pathogens10091098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Infections caused by the Gram-positive bacterium Streptococcus pneumoniae have become a major health problem worldwide because of their high morbidity and mortality rates, especially in developing countries. This microorganism colonizes the human upper respiratory tract and becomes pathogenic under certain circumstances, which are not well known. In the interaction with the host, bacterial surface structures and proteins play major roles. To gain knowledge into gradual changes and adaptive mechanisms that this pathogen undergoes from when it enters the host, we mimicked several in vivo situations representing interaction with epithelial and macrophage cells, as well as a condition of presence in blood. Then, we analyzed, in four pneumococcal strains, two major surface structures, the capsule and extracellular vesicles produced by the pneumococci, as well as surface proteins by proteomics, using the “shaving” approach, followed by LC-MS/MS. We found important differences in both surface ultrastructures and proteins among the culture conditions and strains used. Thus, this work provides insights into physiological adaptations of the pneumococcus when it interacts with the host, which may be useful for the design of strategies to combat infections caused by this pathogen.
Collapse
|
10
|
Olaya-Abril A, Rodríguez-Ortega MJ. Glass Slide-Printed Protein Arrays as a Platform to Discover Serodiagnostic Antigens Against Bacterial Infections. Methods Mol Biol 2021; 2344:151-161. [PMID: 34115358 DOI: 10.1007/978-1-0716-1562-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Infectious diseases represent a major cause of morbidity and mortality worldwide. Early detection of infections is capital for managing life-threatening cases. So far, traditional diagnostic methods such as microbiological cultures are slow and, sometimes, inaccurate. In the molecular era, high-throughput techniques are essential for providing tools that are able to diagnose in a fast and reliable way, as well as they can be used for monitoring the humoral response of groups of people in a program of epidemiological surveillance when an outbreak occurs, or when a vaccine is being evaluated. Antigen-based protein microarrays are an ideal means for these purposes, as they can carry up to thousands of protein antigens from pathogenic sources and be probed with sera from different human groups (acute or chronic infected people, convalescent, controls). For the diagnosis of bacterial infections, the best antigens are in principle the surface proteins, as they have the highest chances to raise an effective immune response. Here we describe a general protocol for fabricating a glass slide-based protein microarray using recombinant bacterial surface antigens, according to our own expertise in the study of pneumococcal disease. The probing with human sera aims to evaluate differences between diseased and healthy people, in order to discover discriminating antigens that can be used, after appropriate validation, in further easy-to-use formats such as immunostrips.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio "Severo Ochoa" Planta Baja, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Edificio "Severo Ochoa" Planta Baja, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain.
- Campus de Excelencia Internacional CeiA3, Córdoba, Spain.
| |
Collapse
|
11
|
Extraction and Preparation of Listeria monocytogenes Subproteomes for Mass Spectrometry Analysis. Methods Mol Biol 2020. [PMID: 32975772 DOI: 10.1007/978-1-0716-0982-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteomics has become an essential tool to answer biologists' questions. For bacteriologists, the proteome of bacteria is much less complex than that of eukaryotic organisms. However, not all the different cell "compartments" are easily accessible, and the analysis of cell envelope proteins is particularly challenging. For the Gram-positive bacterium Listeria monocytogenes, one of the main foodborne pathogen microorganisms, the study of surface proteins is crucial to better understand the mechanisms of pathogenicity, as well as adaptation/resistance to and persistence in hostile environments. The evolution of proteomic techniques, and particularly the possibility of separating and analyzing complex protein samples by off-gel (LC-MS/MS) versus in-gel (two-dimensional electrophoresis) approach, has opened the doors to new extraction and preparation methods to target the different subproteomes. Here, we describe three procedures to prepare and analyze intracellular, exocellular, and cell surface proteins: (1) the cell fractionation, based on cell broken and separation of protein subfractions by differential centrifugation; (2) the biotinylation, based on the labeling of cell surface proteins and their selective extraction; and (3) the enzymatic shaving by the action of trypsin on intact cells. These complementary methods allow to encompass all L. monocytogenes subproteomes for general profiling or target studies and could be applicable to other Gram-positive bacteria.
Collapse
|
12
|
Sousa SA, Seixas AM, Mandal M, Rodríguez-Ortega MJ, Leitão JH. Characterization of the Burkholderia cenocepacia J2315 Surface-Exposed Immunoproteome. Vaccines (Basel) 2020; 8:vaccines8030509. [PMID: 32899969 PMCID: PMC7565204 DOI: 10.3390/vaccines8030509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Infections by the Burkholderia cepacia complex (Bcc) remain seriously life threatening to cystic fibrosis (CF) patients, and no effective eradication is available. A vaccine to protect patients against Bcc infections is a highly attractive therapeutic option, but none is available. A strategy combining the bioinformatics identification of putative surface-exposed proteins with an experimental approach encompassing the “shaving” of surface-exposed proteins with trypsin followed by peptide identification by liquid chromatography and mass spectrometry is here reported. The methodology allowed the bioinformatics identification of 263 potentially surface-exposed proteins, 16 of them also experimentally identified by the “shaving” approach. Of the proteins identified, 143 have a high probability of containing B-cell epitopes that are surface-exposed. The immunogenicity of three of these proteins was demonstrated using serum samples from Bcc-infected CF patients and Western blotting, validating the usefulness of this methodology in identifying potentially immunogenic surface-exposed proteins that might be used for the development of Bcc-protective vaccines.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-2184-19986 (S.A.S.); +351-2184-17688 (J.H.L.)
| | - António M.M. Seixas
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
| | - Manoj Mandal
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
| | | | - Jorge H. Leitão
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-2184-19986 (S.A.S.); +351-2184-17688 (J.H.L.)
| |
Collapse
|
13
|
Galán-Relaño Á, Gómez-Gascón L, Rodríguez-Franco A, Luque I, Huerta B, Tarradas C, Rodríguez-Ortega MJ. Search of Potential Vaccine Candidates against Trueperella pyogenes Infections through Proteomic and Bioinformatic Analysis. Vaccines (Basel) 2020; 8:vaccines8020314. [PMID: 32560444 PMCID: PMC7350218 DOI: 10.3390/vaccines8020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022] Open
Abstract
Trueperella pyogenes is an opportunistic pathogen, responsible for important infections in pigs and significant economic losses in swine production. To date, there are no available commercial vaccines to control diseases caused by this bacterium. In this work, we performed a comparative proteomic analysis of 15 T. pyogenes clinical isolates, by “shaving” live cells, followed by LC-MS/MS, aiming at the identification of the whole set of surface proteins (i.e., the “pan-surfome”) as a source of antigens to be tested in further studies as putative vaccine candidates, or used in diagnostic tools. A total of 140 surface proteins were detected, comprising 25 cell wall proteins, 10 secreted proteins, 23 lipoproteins and 82 membrane proteins. After describing the “pan-surfome”, the identified proteins were ranked in three different groups based on the following criteria: to be (i) surface-exposed, (ii) highly conserved and (iii) widely distributed among different isolates. Two cell wall proteins, three lipoproteins, four secreted and seven membrane proteins were identified in more than 70% of the studied strains, were highly expressed and highly conserved. These proteins are potential candidates, alone or in combination, to obtain effective vaccines against T. pyogenes or to be used in the diagnosis of this pathogen.
Collapse
Affiliation(s)
- Ángela Galán-Relaño
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Lidia Gómez-Gascón
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
- Correspondence:
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, and Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (A.R.-F.); (M.J.R.-O.)
| | - Inmaculada Luque
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Belén Huerta
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Carmen Tarradas
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, and Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (A.R.-F.); (M.J.R.-O.)
| |
Collapse
|
14
|
Tkáčová Z, Pulzová LB, Mochnáčová E, Jiménez-Munguía I, Bhide K, Mertinková P, Majerová P, Kulkarni A, Kováč A, Bhide M. Identification of the proteins of Borrelia garinii interacting with human brain microvascular endothelial cells. Ticks Tick Borne Dis 2020; 11:101451. [PMID: 32360026 DOI: 10.1016/j.ttbdis.2020.101451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Lyme borreliosis is one of the major tick-borne diseases in Europe. Events of the translocation of Borrelia across the blood-brain barrier (BBB) involve multiple interactions between borrelial surface proteins and receptors on the brain microvascular endothelial cells (hBMECs). In this study, we aimed to identify proteins of Borrelia that plausibly interact with hBMECs. The surface proteome of live Borrelia (a neuroinvasive strain of B. garinii) was crosslinked with biotin prior to its incubation with hBMECs. The interacting proteins were recovered by affinity purification, followed by SWATH-MS. Twenty-four interacting candidates were grouped into outer membrane proteins (n = 12) and inner membrane proteins (n = 12) based on the subcellular location as per the predictions of LocateP. Other algorithms like TMHMM 2.0 and LipoP, ontology search and literature review were subsequently applied to each of the identified protein candidates to shortlist the most probable interactors. Six proteins namely, LysM domain protein, BESBP-5, Antigen S1, CRASP-1 (Bg071), Erp23 protein and Mlp family Lipoprotein were selected to produce their recombinant forms and experimentally validate their interaction with hBMECs. All the recombinant proteins interacted with hBMECs, in ELISA and immunocytochemistry. We present here a high-throughput approach of generating a dataset of plausible borrelial ligands followed by a systematic bioinformatic pipeline to categorize the proteins for experimental validation.
Collapse
Affiliation(s)
- Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Lucia Borszéková Pulzová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
15
|
Proteomic and Bioinformatic Analysis of Streptococcus suis Human Isolates: Combined Prediction of Potential Vaccine Candidates. Vaccines (Basel) 2020; 8:vaccines8020188. [PMID: 32325736 PMCID: PMC7348792 DOI: 10.3390/vaccines8020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium responsible for major infections in pigs and economic losses in the livestock industry, but also an emerging zoonotic pathogen causing serious diseases in humans. No vaccine is available so far against this microorganism. Conserved surface proteins are among the most promising candidates for new and effective vaccines. Until now, research on this pathogen has focused on swine isolates, but there is a lack of studies to identify and characterize surface proteins from human clinical isolates. In this work, we performed a comparative proteomic analysis of six clinical isolates from human patients, all belonging to the major serotype 2, by “shaving” the live bacterial cells with trypsin, followed by LC-MS/MS analysis. We identified 131 predicted surface proteins and carried out a label-free semi-quantitative analysis of protein abundances within the six strains. Then, we combined our proteomics results with bioinformatic tools to help improving the selection of novel antigens that can enter the pipeline of vaccine candidate testing. Our work is then a complement to the reverse vaccinology concept.
Collapse
|
16
|
Adu KT, Wilson R, Baker AL, Bowman J, Britz ML. Prolonged Heat Stress of Lactobacillus paracasei GCRL163 Improves Binding to Human Colorectal Adenocarcinoma HT-29 Cells and Modulates the Relative Abundance of Secreted and Cell Surface-Located Proteins. J Proteome Res 2020; 19:1824-1846. [PMID: 32108472 DOI: 10.1021/acs.jproteome.0c00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lactobacillus casei group bacteria improve cheese ripening and may interact with host intestinal cells as probiotics, where surface proteins play a key role. Three complementary methods [trypsin shaving (TS), LiCl-sucrose (LS) extraction, and extracellular culture fluid precipitation] were used to analyze cell surface proteins of Lactobacillus paracasei GCRL163 by label-free quantitative proteomics after culture to the mid-exponential phase in bioreactors at pH 6.5 and temperatures of 30-45 °C. A total of 416 proteins, including 300 with transmembrane, cell wall anchoring, and secretory motifs and 116 cytoplasmic proteins, were quantified as surface proteins. Although LS caused significantly greater cell lysis as growth temperature increased, higher numbers of extracytoplasmic proteins were exclusively obtained by LS treatment. Together with the increased positive surface charge of cells cultured at supra-optimal temperatures, proteins including cell wall hydrolases Msp1/p75 and Msp2/p40, α-fucosidase AlfB, SecA, and a PspC-domain putative adhesin were upregulated in surface or secreted protein fractions, suggesting that cell adhesion may be altered. Prolonged heat stress (PHS) increased binding of L. paracasei GCRL163 to human colorectal adenocarcinoma HT-29 cells, relative to acid-stressed cells. This study demonstrates that PHS influences cell adhesion and relative abundance of proteins located on the surface, which may impact probiotic functionality, and the detected novel surface proteins likely linked to the cell cycle and envelope stress.
Collapse
Affiliation(s)
- Kayode T Adu
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Anthony L Baker
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - John Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Margaret L Britz
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
17
|
Luu LDW, Octavia S, Aitken C, Zhong L, Raftery MJ, Sintchenko V, Lan R. Surfaceome analysis of Australian epidemic Bordetella pertussis reveals potential vaccine antigens. Vaccine 2019; 38:539-548. [PMID: 31703933 DOI: 10.1016/j.vaccine.2019.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
Since acellular vaccines (ACV) were introduced in Australia, epidemic Bordetella pertussis strains changed from single nucleotide polymorphism (SNP) cluster II to SNP cluster I. Our previous proteomic analysis identified potential proteomic adaptations in the whole cell and secretome of SNP cluster I. Additionally, current ACVs were shown to be less efficacious against cluster I in mice models and there is a pressing need to discover new antigens to improve the ACV. One important source of novel antigens is the surfaceome. Therefore, in this study we established surface shaving in B. pertussis to compare the surfaceome of SNP cluster I (L1423) and II (L1191), and identify novel surface antigens for vaccine development. Surface shaving using 1 μg of trypsin for 5 min identified 126 proteins with the most abundant being virulence-associated and known outer membrane proteins. Cell viability counts showed minimal lysis from shaving. The proportion of immunogenic proteins was higher in the surfaceome than in the whole cell and secretome. Key differences in the surfaceome were identified between SNP cluster I and II, consistent with those identified in the whole cell proteome and secretome. These differences include unique transport proteins and decreased immunogenic proteins in L1423, and provides further evidence of proteomic adaptation in SNP cluster I. Finally, a comparison of proteins in each sub-proteome identified 22 common proteins. These included 11 virulence proteins (Prn, PtxA, FhaB, CyaA, TcfA, SphB1, Vag8, BrkA, BopD, Bsp22 and BipA) and 11 housekeeping proteins (TuF, CtpA, TsF, OmpH, GltA, SucC, SucD, FusA, GroEL, BP3330 and BP3561) which were immunogenic, essential and consistently expressed thus demonstrating their potential as future targets. This study established surface shaving in B. pertussis, confirmed key expression differences and identified unknown surface proteins which may be potential vaccine antigens.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chelsea Aitken
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - Pathology West, Westmead Hospital, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
18
|
Siciliano RA, Lippolis R, Mazzeo MF. Proteomics for the Investigation of Surface-Exposed Proteins in Probiotics. Front Nutr 2019; 6:52. [PMID: 31069232 PMCID: PMC6491629 DOI: 10.3389/fnut.2019.00052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Probiotics are commensal microorganisms that are present in the intestinal tract and in many fermented foods and positively affect human health, promoting digestion and uptake of dietary nutrients, strengthening intestinal barrier function, modulating immune response, and enhancing antagonism toward pathogens. The proteosurfaceome, i.e., the complex set of proteins present on the bacterial surface, is directly involved as leading actor in the dynamic communication between bacteria and host. In the last decade, the biological relevance of surface-exposed proteins prompted research activities exploiting the potentiality of proteomics to define the complex network of proteins that are involved in the molecular mechanisms at the basis of the adaptation to gastrointestinal environment and the probiotic effects. These studies also took advantages of the recent technological improvements in proteomics, mass spectrometry and bioinformatics that triggered the development of ad hoc designed innovative strategies to characterize the bacterial proteosurfaceome. This mini-review is aimed at describing the key role of proteomics in depicting the cell wall protein architecture and the involvement of surface-exposed proteins in the intimate and dynamic molecular dialogue between probiotics and intestinal epithelial and immune cells.
Collapse
Affiliation(s)
- Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Rosa Lippolis
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
| | | |
Collapse
|
19
|
Fagerquist CK, Zaragoza WJ. Proteolytic Surface-Shaving and Serotype-Dependent Expression of SPI-1 Invasion Proteins in Salmonella enterica Subspecies enterica. Front Nutr 2018; 5:124. [PMID: 30619870 PMCID: PMC6295468 DOI: 10.3389/fnut.2018.00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
We performed proteolytic surface-shaving with trypsin on three strains/sevovars of Salmonella enterica enterica (SEE): Newport, Kentucky, and Thompson. Surfaced-exposed proteins of live bacterial cells were digested for 15 min. A separate 20 h re-digestion was also performed on the supernatant of each shaving experiment to more completely digest protein fragments into detectable peptides for proteomic analysis by nano-liquid chromatography-electrospray ionization-Orbitrap mass spectrometry. Control samples (i.e., no trypsin during surface-shaving step) were also performed in parallel. We detected peptides of flagella proteins: FliC (filament), FliD (cap), and FlgL (hook-filament junction) as well as peptides of FlgM (anti-σ28 factor), i.e., the negative regulator of flagella synthesis. For SEE Newport and Thompson, we detected Salmonella pathogenicity island 1 (SPI-1) secreted effector/invasion proteins: SipA, SipB, SipC, and SipD, whereas no Sip proteins were detected in control samples. No Sip proteins were detected for SEE Kentucky (or its control) although sip genes were confirmed to be present. Our results may suggest a biological response (<15 min) to proteolysis of live cells for these SEE strains and, in the case of Newport and Thompson, a possible invasion response.
Collapse
Affiliation(s)
- Clifton K Fagerquist
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| | - William J Zaragoza
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| |
Collapse
|
20
|
Esbelin J, Santos T, Ribière C, Desvaux M, Viala D, Chambon C, Hébraud M. Comparison of three methods for cell surface proteome extraction of Listeria monocytogenes biofilms. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:779-787. [PMID: 30457927 DOI: 10.1089/omi.2018.0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cell surface proteome of the foodborne pathogen Listeria monocytogenes, the etiological agent of listeriosis, is critical for understanding the physiological processes associated with stress resistance and persistence in the environment. In this context, the most widespread mode of growth for bacterial cells in natural and industrial environments is in biofilms. Cell surface proteins are, however, challenging to characterize because of their low abundance and poor solubility. Moreover, cell surface protein extracts are usually contaminated with cytoplasmic proteins that constitute the main signal in proteomic analysis. This study aimed to compare the efficiency of three methods to extract and explore surface proteins of L. monocytogenes growing in a biofilm: trypsin shaving, biotinylation, and cell fractionation. Peptide separation and identification were performed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The biotinylation method was the most effective in extracting surface proteins, with the lowest rate of contamination by cytoplasmic proteins. Although presenting a higher contamination rate in cytoplasmic proteins, the other two techniques allowed the identification of additional surface proteins. Seven proteins were commonly retrieved by the three methods. The extracted proteins belong to several functional classes, involved in virulence, transport, or metabolic pathways. Finally, the three extraction methods seemed complementary and their combined use improved the exploration of the bacterial surface proteome. These new findings collectively inform future discovery and translational proteomics for clinical, environmental health, and industrial applications.
Collapse
Affiliation(s)
- Julia Esbelin
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Tiago Santos
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Céline Ribière
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Mickaël Desvaux
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Didier Viala
- 2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| | - Christophe Chambon
- 2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| | - Michel Hébraud
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France.,2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| |
Collapse
|
21
|
Jiménez-Munguía I, Calderón-Santiago M, Rodríguez-Franco A, Priego-Capote F, Rodríguez-Ortega MJ. Multi-omic profiling to assess the effect of iron starvation in Streptococcus pneumoniae TIGR4. PeerJ 2018; 6:e4966. [PMID: 29915696 PMCID: PMC6004102 DOI: 10.7717/peerj.4966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
We applied multi-omics approaches (transcriptomics, proteomics and metabolomics) to study the effect of iron starvation on the Gram-positive human pathogen Streptococcus pneumoniae to elucidate global changes in the bacterium in a condition similar to what can be found in the host during an infectious episode. We treated the reference strain TIGR4 with the iron chelator deferoxamine mesylate. DNA microarrays revealed changes in the expression of operons involved in multiple biological processes, with a prevalence of genes coding for ion binding proteins. We also studied the changes in protein abundance by 2-DE followed by MALDI-TOF/TOF analysis of total cell extracts and secretome fractions. The main proteomic changes were found in proteins related to the primary and amino sugar metabolism, especially in enzymes with divalent cations as cofactors. Finally, the metabolomic analysis of intracellular metabolites showed altered levels of amino sugars involved in the cell wall peptidoglycan metabolism. This work shows the utility of multi-perspective studies that can provide complementary results for the comprehension of how a given condition can influence global physiological changes in microorganisms.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Mónica Calderón-Santiago
- Departamento de Química Analítica, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Feliciano Priego-Capote
- Departamento de Química Analítica, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| |
Collapse
|
22
|
Marín E, Haesaert A, Padilla L, Adán J, Hernáez ML, Monteoliva L, Gil C. Unraveling Gardnerella vaginalis Surface Proteins Using Cell Shaving Proteomics. Front Microbiol 2018; 9:975. [PMID: 29867878 PMCID: PMC5962675 DOI: 10.3389/fmicb.2018.00975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Gardnerella vaginalis is one of the main etiologic agents of bacterial vaginosis (BV). This infection is responsible for a wide range of public health costs and is associated with several adverse outcomes during pregnancy. Improving our understanding of G. vaginalis protein cell surface will assist in BV diagnosis. This study represents the first proteomic approach that has analyzed the exposed proteins on G. vaginalis cell surface using a shaving approach. The 261 G. vaginalis proteins identified using this approach were analyzed with bioinformatic tools to detect characteristic motifs from surface-exposed proteins, such as signal peptides (36 proteins), lipobox domains (17 proteins), LPXTG motifs (5 proteins) and transmembrane alpha-helices (66 proteins). One third of the identified proteins were found to have at least one typical motif of surface-exposed proteins. Furthermore, the subcellular location was examined using two predictors (PSORT and Gpos-mPLoc). These bioinformatic tools classified 17% of the identified proteins as surface-associated proteins. Interestingly, we identified 13 members of the ATP-binding cassette (ABC) superfamily, which were mainly involved in the translocation of various substrates across membranes. To validate the location of the G. vaginalis surface-exposed proteins, an immunofluorescence assay with antibodies against Escherichia coli GroEL was performed to reveal the extracellular location of the moonlighting GroEL. In addition, monoclonal antibodies (mAb) against G. vaginalis Cna protein were produced and used to validate the location of Cna on the surface of the G. vaginalis. These high affinity anti-Cna mAb represent a useful tool for the study of this pathogenic microorganism and the BV.
Collapse
Affiliation(s)
- Elvira Marín
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Annelies Haesaert
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Padilla
- Health and Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - Jaume Adán
- Health and Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - María L Hernáez
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
23
|
Jiménez-Munguía I, Pulzova L, Kanova E, Tomeckova Z, Majerova P, Bhide K, Comor L, Sirochmanova I, Kovac A, Bhide M. Proteomic and bioinformatic pipeline to screen the ligands of S. pneumoniae interacting with human brain microvascular endothelial cells. Sci Rep 2018; 8:5231. [PMID: 29588455 PMCID: PMC5869694 DOI: 10.1038/s41598-018-23485-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 01/17/2023] Open
Abstract
The mechanisms by which Streptococcus pneumoniae penetrates the blood-brain barrier (BBB), reach the CNS and causes meningitis are not fully understood. Adhesion of bacterial cells on the brain microvascular endothelial cells (BMECs), mediated through protein-protein interactions, is one of the crucial steps in translocation of bacteria across BBB. In this work, we proposed a systematic workflow for identification of cell wall associated ligands of pneumococcus that might adhere to the human BMECs. The proteome of S. pneumoniae was biotinylated and incubated with BMECs. Interacting proteins were recovered by affinity purification and identified by data independent acquisition (DIA). A total of 44 proteins were identified from which 22 were found to be surface-exposed. Based on the subcellular location, ontology, protein interactive analysis and literature review, five ligands (adhesion lipoprotein, endo-β-N-acetylglucosaminidase, PhtA and two hypothetical proteins, Spr0777 and Spr1730) were selected to validate experimentally (ELISA and immunocytochemistry) the ligand-BMECs interaction. In this study, we proposed a high-throughput approach to generate a dataset of plausible bacterial ligands followed by systematic bioinformatics pipeline to categorize the protein candidates for experimental validation. The approach proposed here could contribute in the fast and reliable screening of ligands that interact with host cells.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Lucia Pulzova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Evelina Kanova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Zuzana Tomeckova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Lubos Comor
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Ivana Sirochmanova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic.
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
24
|
Rodríguez-Ortega MJ. "Shaving" Live Bacterial Cells with Proteases for Proteomic Analysis of Surface Proteins. Methods Mol Biol 2018; 1722:21-29. [PMID: 29264796 DOI: 10.1007/978-1-4939-7553-2_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface proteins are essential molecules for the interplay between cells and the environment. They participate in many biological processes including transport, adhesion, cell-cell recognition, signaling, and other cell interactions. In pathogenic microorganisms, these molecules may act as virulence or cytotoxicity factors. Analyzing the set of surface proteins is critical to understand these processes and to identify possible targets that can be the starting point for other studies or discoveries (e.g., vaccines or diagnostics). Here I describe a proteomic procedure to identify in a fast and reliable way a set of surface-exposed proteins in bacteria, the methodology of which can be adapted to other biological systems (unicellular fungi, parasites). The protocol presented here involves "shaving" the cells cultured in broth with proteases followed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and analysis of the generated peptides. This method overcomes some important limitations of the first-generation, gel based proteomics techniques, and the "shaving" approach allows one to identify which domains from identified proteins are more accessible to proteases. These identified proteins have the highest potential to be recognized by antibodies, and thus permits the identification of potential epitopes or antigens.
Collapse
|
25
|
Integrated proteomic and metabolomic analysis reveals that rhodomyrtone reduces the capsule in Streptococcus pneumoniae. Sci Rep 2017; 7:2715. [PMID: 28578394 PMCID: PMC5457420 DOI: 10.1038/s41598-017-02996-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/21/2017] [Indexed: 01/12/2023] Open
Abstract
The emergence of antibiotic-resistant pathogenic bacteria is a healthcare problem worldwide. We evaluated the antimicrobial activity of rhodomyrtone, an acylphloroglucinol present in Rhodomyrtus tomentosa leaves, against the human Gram-positive pathogen Streptococcus pneumoniae. The compound exhibited pronounced anti-pneumococcal activity against a broad collection of clinical isolates. We studied the effects at the molecular level by integrated proteomic and metabolomic analysis. The results revealed alterations in enzymes and metabolites involved in several metabolic pathways including amino acid biosynthesis, nucleic acid biosynthesis, glucid, and lipid metabolism. Notably, the levels of two enzymes (glycosyltransferase and UTP-glucose-1-phosphate uridylyltransferase) and three metabolites (UDP-glucose, UDP-glucuronic acid and UDP-N-acetyl-D-galactosamine) participating in the synthesis of the pneumococcal capsule clearly diminished in the bacterial cells exposed to rhodomyrtone. Rhodomyrtone-treated pneumococci significantly possessed less amount of capsule, as measured by a colorimetric assay and visualized by electron microscopy. These findings reveal the utility of combining proteomic and metabolomic analyses to provide insight into phenotypic features of S. pneumoniae treated with this potential novel antibiotic. This can lead to an alternative antibiotic for the treatment of S. pneumoniae infections, because of the growing concern regarding antimicrobial resistance.
Collapse
|
26
|
'Omic' Approaches to Study Uropathogenic Escherichia coli Virulence. Trends Microbiol 2017; 25:729-740. [PMID: 28550944 DOI: 10.1016/j.tim.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 01/21/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is a pathogen of major significance to global human health and is strongly associated with rapidly increasing antibiotic resistance. UPEC is the primary cause of urinary tract infection (UTI), a disease that involves a complicated pathogenic pathway of extracellular and intracellular lifestyles during interaction with the host. The application of multiple 'omic' technologies, including genomics, transcriptomics, proteomics, and metabolomics, has provided enormous knowledge to our understanding of UPEC biology. Here we outline this progress and present a view for future developments using these exciting forefront technologies to fully comprehend UPEC pathogenesis in the context of infection.
Collapse
|
27
|
Hu YF, Zhao D, Yu XL, Hu YL, Li RC, Ge M, Xu TQ, Liu XB, Liao HY. Identification of Bacterial Surface Antigens by Screening Peptide Phage Libraries Using Whole Bacteria Cell-Purified Antisera. Front Microbiol 2017; 8:82. [PMID: 28184219 PMCID: PMC5266700 DOI: 10.3389/fmicb.2017.00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/11/2017] [Indexed: 01/10/2023] Open
Abstract
Bacterial surface proteins can be good vaccine candidates. In the present study, we used polyclonal antibodies purified with intact Erysipelothrix rhusiopthiae to screen phage-displayed random dodecapeptide and loop-constrained heptapeptide libraries, which led to the identification of mimotopes. Homology search of the mimotope sequences against E. rhusiopthiae-encoded ORF sequences revealed 14 new antigens that may localize on the surface of E. rhusiopthiae. When these putative surface proteins were used to immunize mice, 9/11 antigens induced protective immunity. Thus, we have demonstrated that a combination of using the whole bacterial cells to purify antibodies and using the phage-displayed peptide libraries to determine the antigen specificities of the antibodies can lead to the discovery of novel bacterial surface antigens. This can be a general approach for identifying surface antigens for other bacterial species.
Collapse
Affiliation(s)
- Yun-Fei Hu
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Dun Zhao
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Xing-Long Yu
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Yu-Li Hu
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Run-Cheng Li
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Meng Ge
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Tian-Qi Xu
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Xiao-Bo Liu
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Hua-Yuan Liao
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| |
Collapse
|
28
|
Gómez-Gascón L, Cardoso-Toset F, Tarradas C, Gómez-Laguna J, Maldonado A, Nielsen J, Olaya-Abril A, Rodríguez-Ortega MJ, Luque I. Characterization of the immune response and evaluation of the protective capacity of rSsnA against Streptococcus suis infection in pigs. Comp Immunol Microbiol Infect Dis 2016; 47:52-9. [PMID: 27477507 DOI: 10.1016/j.cimid.2016.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022]
Abstract
The efforts made to develop vaccines against Streptococcus suis have failed because of lack of common antigens cross-reactive against different serotypes of this species. The cell wall-anchored proteins can be good vaccine candidates due to their high expression and accessibility to antibodies, among these, a cell-wall protein, DNA-nuclease (SsnA), present in most of the S. suis serotypes and clinical isolates collected from infected pigs, was selected. An experimental challenge against S. suis serotype 2 in a pig model was used to validate the efficacy of recombinant SsnA combined with aluminium hydroxide plus Quil A as adjuvants, previously tested in mice by our research group with good results. In our study, clinical characteristics, bacterial load and spread, haematological and immunological parameters and the antibody response, including the opsonophagocytosis analysis of the sera were evaluated. Moreover the composition of peripheral blood leukocyte populations was studied in infected animals. The results show that the immunization of piglets with rSsnA elicits a significant humoral antibody response. However, the antibody response is not reflected in protection of pigs that are challenged with a virulent strain in our conventional vaccination model. Further studies are necessary to evaluate the use of rSsnA as a vaccine candidate for swine.
Collapse
Affiliation(s)
- Lidia Gómez-Gascón
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain.
| | - Fernando Cardoso-Toset
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; CICAP-Food Research Centre, Córdoba, Pozoblanco,14400, Spain
| | - Carmen Tarradas
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | | | - Alfonso Maldonado
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | - Jens Nielsen
- Technical University of Denmark, National Veterinary Institute, Lindholm, Denmark
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | - Inmaculada Luque
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| |
Collapse
|
29
|
Zhu D, Sun Y, Liu F, Li A, Yang L, Meng XC. Identification of surface-associated proteins of Bifidobacterium animalis ssp. lactis KLDS 2.0603 by enzymatic shaving. J Dairy Sci 2016; 99:5155-5172. [PMID: 27132091 DOI: 10.3168/jds.2015-10581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/21/2016] [Indexed: 01/05/2023]
Abstract
Bifidobacteria are commensal microorganisms of the human and animal intestinal tract, and their surface proteins can mediate bacterial communication and chemical sensing in the environment, as well as facilitate interactions between bacteria and the host. However, a systematic study of the outer surface-associated proteome of bifidobacteria has not been undertaken. In the present study, the proteins located on the surface of Bifidobacterium animalis ssp. lactis KLDS 2.0603 were systematically identified by a nongel proteomic approach, which consisted of the shaving of the bacterial surface with trypsin and an analysis of the released peptides by liquid chromatography-tandem mass spectrometry. A total of 105 surface-associated proteins were found, of which 15 proteins could potentially be involved in adhesion and interactions between bifidobacteria and the host. The proteins related to adhesion and interaction between bacteria and the host include pilus structure proteins (Fim A, Fim B), 10 moonlighting proteins, an NLP/P60 family protein, an immunogenic secreted protein, and a putative sugar-binding secreted protein. The results provide the basis for future studies on the molecular mechanisms of the interactions between bifidobacteria and the host.
Collapse
Affiliation(s)
- Dequan Zhu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China; College of Life Sciences, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Yu Sun
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Limei Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
30
|
Olaya-Abril A, Obando I, Rodríguez-Ortega MJ. Data in support of proteomic analysis of pneumococcal pediatric clinical isolates to construct a protein array. Data Brief 2016; 6:917-22. [PMID: 26949725 PMCID: PMC4758182 DOI: 10.1016/j.dib.2016.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/13/2022] Open
Abstract
Surface proteins play key roles in the interaction between cells and their environment, and in pathogenic microorganisms they are the best targets for drug or vaccine discovery and/or development. In addition, surface proteins can be the basis for serodiagnostic tools aiming at developing more affordable techniques for early diagnosis of infection in patients. We carried out a proteomic analysis of a collection of pediatric clinical isolates of Streptococcus pneumoniae, an important human pathogen responsible for more than 1.5 million child deaths worldwide. For that, cultured live bacterial cells were "shaved" with trypsin, and the recovered peptides were analyzed by LC/MS/MS. We selected 95 proteins to be produced as recombinant polypeptides, and printed them on an array. We probed the protein array with a collection of patient sera to define serodiagnostic antigens. The mass spectrometry proteomics data correspond to those published in [1] and have been deposited to the ProteomeXchange Consortium [2] via the PRIDE partner repository [3] with the dataset identifier PXD001740. The protein array raw data are provided as supplemental material in this article.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Ignacio Obando
- Sección de Enfermedades Infecciosas Pe diátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
- Corresponding author at: Departamento de Bioquímica y Biología Molecular, Edificio “Severo Ochoa” planta baja, Campus de Rabanales, Universidad de Córdoba. 14071 Córdoba, Spain. Tel.: +34 957 218519; fax: +34 957 218856.
| |
Collapse
|
31
|
Wang W, Jeffery CJ. An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. MOLECULAR BIOSYSTEMS 2016; 12:1420-31. [DOI: 10.1039/c5mb00550g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dozens of intracellular proteins have a second function on the cell surface, referred to as “intracellular/surface moonlighting proteins”. An analysis of the results of 22 cell surface proteomics studies was performed to address whether the hundreds of intracellular proteins found on the cell surface could be candidates for being additional intracellular/surface moonlighting proteins.
Collapse
Affiliation(s)
- Wangfei Wang
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Constance J. Jeffery
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
- Department of Biological Sciences
| |
Collapse
|
32
|
Galassie AC, Link AJ. Proteomic contributions to our understanding of vaccine and immune responses. Proteomics Clin Appl 2015; 9:972-89. [PMID: 26172619 PMCID: PMC4713355 DOI: 10.1002/prca.201500054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 01/19/2023]
Abstract
Vaccines are one of the greatest public health successes; yet, due to the empirical nature of vaccine design, we have an incomplete understanding of how the genes and proteins induced by vaccines contribute to the development of both protective innate and adaptive immune responses. While the advent of genomics has enabled new vaccine development and facilitated understanding of the immune response, proteomics identifies potentially new vaccine antigens with increasing speed and sensitivity. In addition, as proteomics is complementary to transcriptomic approaches, a combination of both approaches provides a more comprehensive view of the immune response after vaccination via systems vaccinology. This review details the advances that proteomic strategies have made in vaccine development and reviews how proteomics contributes to the development of a more complete understanding of human vaccines and immune responses.
Collapse
Affiliation(s)
| | - Andrew J. Link
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
33
|
Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Obando I, Rodríguez-Ortega MJ. A Pneumococcal Protein Array as a Platform to Discover Serodiagnostic Antigens Against Infection. Mol Cell Proteomics 2015; 14:2591-608. [PMID: 26183717 DOI: 10.1074/mcp.m115.049544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 01/22/2023] Open
Abstract
Pneumonia is one of the most common and severe diseases associated with Streptococcus pneumoniae infections in children and adults. Etiological diagnosis of pneumococcal pneumonia in children is generally challenging because of limitations of diagnostic tests and interference with nasopharyngeal colonizing strains. Serological assays have recently gained interest to overcome some problems found with current diagnostic tests in pediatric pneumococcal pneumonia. To provide insight into this field, we have developed a protein array to screen the antibody response to many antigens simultaneously. Proteins were selected by experimental identification from a collection of 24 highly prevalent pediatric clinical isolates in Spain, using a proteomics approach consisting of "shaving" the cell surface with proteases and further LC/MS/MS analysis. Ninety-five proteins were recombinantly produced and printed on an array. We probed it with a collection of sera from children with pneumococcal pneumonia. From the set of the most seroprevalent antigens, we obtained a clear discriminant response for a group of three proteins (PblB, PulA, and PrtA) in children under 4 years old. We validated the results by ELISA and an immunostrip assay showed the translation to easy-to-use, affordable tests. Thus, the protein array here developed presents a tool for broad use in serodiagnostics.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Jiménez-Munguía
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Gómez-Gascón
- §Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Ignacio Obando
- ¶Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Manuel J Rodríguez-Ortega
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain;
| |
Collapse
|
34
|
Jiménez-Munguía I, van Wamel WJB, Olaya-Abril A, García-Cabrera E, Rodríguez-Ortega MJ, Obando I. Proteomics-driven design of a multiplex bead-based platform to assess natural IgG antibodies to pneumococcal protein antigens in children. J Proteomics 2015; 126:228-33. [PMID: 26122914 DOI: 10.1016/j.jprot.2015.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/06/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
Pneumococcal surface proteins are potential candidates for the development of protein-based vaccines and serological assays. The objective of the study was to develop a multiple bead-based immunoassay using Luminex xMAP® technology for the quantitation of natural antibodies against Streptococcus pneumoniae proteins and the characterization of the acute serum response following pneumococcal pneumonia in children. Sixty-four recombinantly produced pneumococcal proteins, which were selected based on their proteomic experimental identification by "shaving" live cells with trypsin followed by LC/MS/MS analysis, were coupled to fluorescent SeroMAP® beads and anti-pneumococcal specific IgG levels were determined in sera. Multiplex assay was validated through comparison of IgG levels to 14 randomly chosen pneumococcal antigens by using multiplex and singleplex assays. Acute serum IgG levels against RrgB were significantly lower in children ≤ 4 years old with pneumococcal pneumonia than those in controls. In addition, there was a small trend toward slightly lower antibody levels for PrsA, RrgC and RrgB in pneumonia patients of the all age group.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Obando
- Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain.
| |
Collapse
|
35
|
Alfonso-Garrido J, Garcia-Calvo E, Luque-Garcia JL. Sample preparation strategies for improving the identification of membrane proteins by mass spectrometry. Anal Bioanal Chem 2015; 407:4893-905. [PMID: 25967148 DOI: 10.1007/s00216-015-8732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
Despite enormous advances in the mass spectrometry and proteomics fields during the last two decades, the analysis of membrane proteins still remains a challenge for the proteomic community. Membrane proteins play a wide number of key roles in several cellular events, making them relevant target molecules to study in a significant variety of investigations (e.g., cellular signaling, immune surveillance, drug targets, vaccine candidates, etc.). Here, we critically review the several attempts that have been carried out on the different steps of the sample preparation procedure to improve and modify existing conventional proteomic strategies in order to make them suitable for the study of membrane proteins. We also revise novel techniques that have been designed to tackle the difficult but relevant task of identifying and characterizing membrane proteins.
Collapse
Affiliation(s)
- Javier Alfonso-Garrido
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28004, Madrid, Spain
| | | | | |
Collapse
|
36
|
Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry. J Microbiol Methods 2015; 110:54-60. [PMID: 25578509 DOI: 10.1016/j.mimet.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 12/13/2022]
Abstract
Extracts of surface proteins, with minimal artifacts from contaminating cytosolic components, are highly desirable for investigating surface factors involved in the attachment and formation of biofilms by bacteria that are problematic in commercial food processing facilities. In this study, we compared the protein profiles of the food pathogen, Listeria monocytogenes, recovered after applying different surface protein extraction methods compiled from the literature: trypsin-enzymatic shaving with BICAM/sucrose or Tris/sucrose buffers (Tryp B+S, Tryp T+S), Tris-buffered urea (UB), lithium chloride (LiCl) and Tris-buffered urea applied with hypotonic-stressed cells (UB-Ghost), and subjected them to liquid chromatography tandem mass spectrometry and protein identification. The data indicate that the UB-Ghost extraction method provides a cleaner extract of surface proteins including the predicted (this study and the literature) or validated members (literature) from L. monocytogenes. This was determined by an accumulative lower unique peptide number exhibited by mass spectrometry for total cytoplasmic proteins among different surface extracts, with a majority of proteins demonstrating hydrophilic properties. The extracted proteins were from different functional categories and have associations with the cell surface, intermediary metabolism, information pathways, or functionally unknown proteins as suggested by in silico analyses performed by other groups (Leger and ListiList). The utilization of an optimized method for surface protein extraction should greatly facilitate identification by LC-MS/MS that could be useful to anyone working on molecular proteomics of bacterial surfaces.
Collapse
|
37
|
Espino E, Koskenniemi K, Mato-Rodriguez L, Nyman TA, Reunanen J, Koponen J, Öhman T, Siljamäki P, Alatossava T, Varmanen P, Savijoki K. Uncovering Surface-Exposed Antigens of Lactobacillus rhamnosus by Cell Shaving Proteomics and Two-Dimensional Immunoblotting. J Proteome Res 2014; 14:1010-24. [DOI: 10.1021/pr501041a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Eva Espino
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Lourdes Mato-Rodriguez
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | | | - Pia Siljamäki
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tapani Alatossava
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pekka Varmanen
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kirsi Savijoki
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
38
|
Lecomte X, Gagnaire V, Briard-Bion V, Jardin J, Lortal S, Dary A, Genay M. The naturally competent strain Streptococcus thermophilus LMD-9 as a new tool to anchor heterologous proteins on the cell surface. Microb Cell Fact 2014; 13:82. [PMID: 24902482 PMCID: PMC4076053 DOI: 10.1186/1475-2859-13-82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND From fundamental studies to industrial processes, synthesis of heterologous protein by micro-organisms is widely employed. The secretion of soluble heterologous proteins in the extracellular medium facilitates their recovery, while their attachment to the cell surface permits the use of the recombinant host cells as protein or peptide supports. One of the key points to carry out heterologous expression is to choose the appropriate host. We propose to enlarge the panel of heterologous secretion hosts by using Streptococcus thermophilus LMD-9. This lactic acid bacterium has a generally recognised as safe status, is widely used in the manufacture of yogurts, fermented milks and cheeses, and is easy to transform by natural competence. This study demonstrates the feasibility of secretion of a heterologous protein anchored to the cell surface by S. thermophilus. For this, we used the cell envelope proteinase (CEP) PrtH of Lactobacillus helveticus CNRZ32 CIRM-BIA 103. RESULTS Using S. thermophilus LMD-9 as the background host, three recombinant strains were constructed: i) a negative control corresponding to S. thermophilus PrtS- mutant where the prtS gene encoding its CEP was partially deleted; ii) a PrtH+ mutant expressing the L. helveticus PrtH pro-protein with its own motif (S-layer type) of cell-wall attachment and iii) a PrtH+WANS mutant expressing PrtH pro-protein with the LPXTG anchoring motif from PrtS. The PrtH+ and PrtH+WANS genes expression levels were measured by RT-qPCR in the corresponding mutants and compared to that of prtS gene in the strain LMD-9. The expression levels of both fused prtH CEPs genes, regardless of the anchoring motif, reached up-to more than 76% of the wild-type prtS expression level. CEPs were sought and identified on the cell surface of LMD-9 wild-type strain, PrtH+ and PrtH+WANS mutants using shaving technique followed by peptide identification with tandem mass spectrometry, demonstrating that the heterologous secretion and anchoring of a protein of more than 200 kDa was efficient. The anchoring to the cell-wall seems to be more efficient when the LPXTG motif of PrtS was used instead of the S-layer motif of PrtH. CONCLUSIONS We demonstrated S. thermophilus LMD-9 could heterologously secrete a high molecular weight protein and probably covalently anchor it to the cell-wall.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Magali Genay
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux, Equipe Protéolyse et Biofonctionnalité des Protéines et des Peptides, Université de Lorraine, Vandœuvre-lès-Nancy F-54506, France.
| |
Collapse
|
39
|
Olaya-Abril A, Prados-Rosales R, McConnell MJ, Martín-Peña R, González-Reyes JA, Jiménez-Munguía I, Gómez-Gascón L, Fernández J, Luque-García JL, García-Lidón C, Estévez H, Pachón J, Obando I, Casadevall A, Pirofski LA, Rodríguez-Ortega MJ. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J Proteomics 2014; 106:46-60. [PMID: 24769240 DOI: 10.1016/j.jprot.2014.04.023] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED Extracellular vesicles are produced by many pathogenic microorganisms and have varied functions that include secretion and release of microbial factors, which contribute to virulence. Very little is known about vesicle production by Gram-positive bacteria, as well as their biogenesis and release mechanisms. In this work, we demonstrate the active production of vesicles by Streptococcus pneumoniae from the plasma membrane, rather than being a product from cell lysis. We biochemically characterized them by proteomics and fatty acid analysis, showing that these vesicles and the plasma membrane resemble in essential aspects, but have some differences: vesicles are more enriched in lipoproteins and short-chain fatty acids. We also demonstrate that these vesicles act as carriers of surface proteins and virulence factors. They are also highly immunoreactive against human sera and induce immune responses that protect against infection. Overall, this work provides insights into the biology of this important Gram-positive human pathogen and the role of extracellular vesicles in clinical applications. BIOLOGICAL SIGNIFICANCE Pneumococcus is one of the leading causes of bacterial pneumonia worldwide in children and the elderly, being responsible for high morbidity and mortality rates in developing countries. The augment of pneumococcal disease in developed countries has raised major public health concern, since the difficulties to treat these infections due to increasing antibiotic resistance. Vaccination is still the best way to combat pneumococcal infections. One of the mechanisms that bacterial pathogens use to combat the defense responses of invaded hosts is the production and release of extracellular vesicles derived from the outer surface. Little is known about this phenomenon in Gram-positives. We show that pneumococcus produces membrane-derived vesicles particularly enriched in lipoproteins. We also show the utility of pneumococcal vesicles as a new type of vaccine, as they induce protection in immunized mice against infection with a virulent strain. This work will contribute to understand the role of these structures in important biological processes such as host-pathogen interactions and prevention of human disease.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael J McConnell
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Reyes Martín-Peña
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Gómez-Gascón
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Fernández
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - José L Luque-García
- Departamento de Química Analítica, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos García-Lidón
- Departamento de Química Analítica, Universidad Complutense de Madrid, Madrid, Spain
| | - Héctor Estévez
- Departamento de Química Analítica, Universidad Complutense de Madrid, Madrid, Spain
| | - Jerónimo Pachón
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ignacio Obando
- Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Liise-Anne Pirofski
- Department of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
40
|
Pribyl T, Moche M, Dreisbach A, Bijlsma JJE, Saleh M, Abdullah MR, Hecker M, van Dijl JM, Becher D, Hammerschmidt S. Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae. J Proteome Res 2014; 13:650-67. [PMID: 24387739 DOI: 10.1021/pr400768v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surface proteins are important for the fitness and virulence of the Gram-positive pathogen Streptococcus pneumoniae. They are crucial for interaction of the pathogen with its human host during infection. Therefore, the analysis of the pneumococcal surface proteome is an important task that requires powerful tools. In this study, two different methods, an optimized biotinylation approach and shaving with trypsin beads, were applied to study the pneumococcal surface proteome and to identify surface-exposed protein domains, respectively. The identification of nearly 95% of the predicted lipoproteins and 75% of the predicted sortase substrates reflects the high coverage of the two classical surface protein classes accomplished in this study. Furthermore, the biotinylation approach was applied to study the impact of an impaired lipoprotein maturation pathway on the cell envelope proteome and exoproteome. Loss of the lipoprotein diacylglyceryl transferase Lgt leads to striking changes in the lipoprotein distribution. Many lipoproteins disappear from the surface proteome and accumulate in the exoproteome. Further insights into lipoprotein processing in pneumococci are provided by immunoblot analyses of bacterial lysates and corresponding supernatant fractions. Taken together, the first comprehensive overview of the pneumococcal surface and exoproteome is presented, and a model for lipoprotein processing in S. pneumoniae is proposed.
Collapse
Affiliation(s)
- Thomas Pribyl
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald , Friedrich-Ludwig-Jahn-Str. 15a, Greifswald D-17487, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The proteomic approaches have considerably evolved over the past two decades. This opened the doors for larger scale and deeper explorations of cellular physiology. Like for other living organisms, using the tools of proteomics has undoubtedly improved knowledge about the foodborne pathogen Listeria monocytogenes. Among the different technologies and approaches permanently evolving in the field of proteomics, the 2-DE is an analytical separation method of choice to resolve thousands of proteins simultaneously in a single gel, allowing their quantification, the study of their posttranslational modifications and the understanding of their biological function. In this, 2-DE remains a perfectly complementary technique to the new high-throughput techniques such as shotgun proteomics approaches. Moreover, in order to gain in analysis depth and improve knowledge about the target of action and the function of proteins in relation to their subcellular location, it is necessary to explore more specifically the different subcellular proteomes. Thus, the subproteomic analyses became essential and dramatically increased these last years, particularly on proteins secreted into the extracellular milieu, named exoproteome, or on cell envelope proteins (cell wall and membrane proteins) which are involved in the interactions with the surrounding environment. Here, the extraction and separation of L. monocytogenes subproteomes are described based on cell fractionation and 2-DE techniques. This chapter gives a workflow to obtain the exoproteome, the intracellular proteome, the cell wall, and membrane proteomes of the Gram-positive bacterium L. monocytogenes. The different steps of 2-DE technology, composed of a first dimension based on the separation of proteins according to their charge, an equilibration step, then a second dimension based on the separation of proteins according to their mass, and finally the staining of proteins in the gel are detailed. Emerging technologies to extract the exoproteome or the cell surface proteome after enzymatic shaving and to analyze them by shotgun method are also discussed briefly.
Collapse
Affiliation(s)
- Michel Hébraud
- UR454 Microbiology and proteomic component of the Metabolism Exploration Platform (PFEMcp), INRA, Clermont-Ferrand Research Centre (Theix site), Saint-Genès Champanelle, F-63122, France,
| |
Collapse
|
42
|
Choi CW, An HY, Lee YJ, Lee YG, Yun SH, Park EC, Hong Y, Kim GH, Park JE, Baek SJ, Kim HS, Kim SI. Characterization of Streptococcus pneumoniae N-acetylglucosamine-6-phosphate deacetylase as a novel diagnostic marker. J Microbiol 2013; 51:659-64. [PMID: 24173645 DOI: 10.1007/s12275-013-3451-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 01/30/2023]
Abstract
The identification of novel diagnostic markers of pathogenic bacteria is essential for improving the accuracy of diagnoses and for developing targeted vaccines. Streptococcus pneumoniae is a significant human pathogenic bacterium that causes pneumonia. N-acetylglucosamine-6-phosphate deacetylase (NagA) was identified in a protein mixture secreted by S. pneumoniae and its strong immunogenicity was confirmed in an immuno-proteomic assay against the anti-serum of the secreted protein mixture. In this study, recombinant S. pneumoniae NagA protein was expressed and purified to analyze its protein characteristics, immunospecificity, and immunogenicity, thereby facilitating its evaluation as a novel diagnostic marker for S. pneumoniae. Mass spectrometry analysis showed that S. pneumoniae NagA contains four internal disulfide bonds and that it does not undergo post-translational modification. S. pneumoniae NagA antibodies successfully detected NagA from different S. pneumoniae strains, whereas NagA from other pathogenic bacteria species was not detected. In addition, mice infected with S. pneumoniae generated NagA antibodies in an effective manner. These results suggest that NagA has potential as a novel diagnostic marker for S. pneumoniae because of its high immunogenicity and immunospecificity.
Collapse
Affiliation(s)
- Chi-Won Choi
- Division of Life Science, Korea Basic Science Institute (KBSI), Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Obando I, Rodríguez-Ortega MJ. Identification of potential new protein vaccine candidates through pan-surfomic analysis of pneumococcal clinical isolates from adults. PLoS One 2013; 8:e70365. [PMID: 23894641 PMCID: PMC3720901 DOI: 10.1371/journal.pone.0070365] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/17/2013] [Indexed: 11/23/2022] Open
Abstract
Purified polysaccharide and conjugate vaccines are widely used for preventing infections in adults and in children against the Gram-positive bacterium Streptococcus pneumoniae, a pathogen responsible for high morbidity and mortality rates, especially in developing countries. However, these polysaccharide-based vaccines have some important limitations, such as being serotype-dependent, being subjected to losing efficacy because of serotype replacement and high manufacturing complexity and cost. It is expected that protein-based vaccines will overcome these issues by conferring a broad coverage independent of serotype and lowering production costs. In this study, we have applied the “shaving” proteomic approach, consisting of the LC/MS/MS analysis of peptides generated by protease treatment of live cells, to a collection of 16 pneumococcal clinical isolates from adults, representing the most prevalent strains circulating in Spain during the last years. The set of unique proteins identified in all the isolates, called “pan-surfome”, consisted of 254 proteins, which included most of the protective protein antigens reported so far. In search of new candidates with vaccine potential, we identified 32 that were present in at least 50% of the clinical isolates analyzed. We selected four of them (Spr0012, Spr0328, Spr0561 and SP670_2141), whose protection capacity has not yet been tested, for assaying immunogenicity in human sera. All of them induced the production of IgM antibodies in infected patients, thus indicating that they could enter the pipeline for vaccine studies. The pan-surfomic approach shows its utility in the discovery of new proteins that can elicit protection against infectious microorganisms.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; Hospital Universitario Reina Sofía, Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; Hospital Universitario Reina Sofía, Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ignacio Obando
- Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; Hospital Universitario Reina Sofía, Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
44
|
Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Rodríguez-Ortega MJ. Surfomics: shaving live organisms for a fast proteomic identification of surface proteins. J Proteomics 2013; 97:164-76. [PMID: 23624344 DOI: 10.1016/j.jprot.2013.03.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/25/2013] [Accepted: 03/24/2013] [Indexed: 12/11/2022]
Abstract
Surface proteins play a critical role in the interaction between cells and their environment, as they take part in processes like signaling, adhesion, transport, etc. In pathogenic microorganisms, they can also participate in virulence or cytotoxicity. As these proteins have the highest chances to be recognized by the immune system, they are often the targets for the discovery of new vaccines. In addition, they can serve for the development of serological-based tools to diagnose infectious diseases. First-generation proteomic strategies for the identification of surface proteins rely on the biochemical fractionation and/or enrichment of this group of molecules or organelles containing them. However, in the last years, a novel second-generation approach has been developed, consisting of the digestion of live, intact cells with proteases, so that surface-exposed moieties (i.e. the "surfome" of a cell) are "shaved" and analyzed by LC/MS/MS. Here we review such a strategy, firstly set up and developed in Gram-positive bacteria, and further applied to Gram-negative bacteria, unicellular fungi, and also pluricellular organisms. We also discuss the advantages and inconvenients of the approach, and the still unresolved question about the intriguing presence of proteins predicted as cytoplasmic in the surfomes. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Lidia Gómez-Gascón
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
| |
Collapse
|
45
|
Gómez-Gascón L, Luque I, Olaya-Abril A, Jiménez-Munguía I, Orbegozo-Medina RA, Peralbo E, Tarradas C, Rodríguez-Ortega MJ. Exploring the pan-surfome of Streptococcus suis: Looking for common protein antigens. J Proteomics 2012; 75:5654-66. [DOI: 10.1016/j.jprot.2012.07.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/28/2012] [Accepted: 07/16/2012] [Indexed: 11/29/2022]
|