1
|
Obi EN, Tellock DA, Thomas GJ, Veenstra TD. Biomarker Analysis of Formalin-Fixed Paraffin-Embedded Clinical Tissues Using Proteomics. Biomolecules 2023; 13:biom13010096. [PMID: 36671481 PMCID: PMC9855471 DOI: 10.3390/biom13010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The relatively recent developments in mass spectrometry (MS) have provided novel opportunities for this technology to impact modern medicine. One of those opportunities is in biomarker discovery and diagnostics. Key developments in sample preparation have enabled a greater range of clinical samples to be characterized at a deeper level using MS. While most of these developments have focused on blood, tissues have also been an important resource. Fresh tissues, however, are difficult to obtain for research purposes and require significant resources for long-term storage. There are millions of archived formalin-fixed paraffin-embedded (FFPE) tissues within pathology departments worldwide representing every possible tissue type including tumors that are rare or very small. Owing to the chemical technique used to preserve FFPE tissues, they were considered intractable to many newer proteomics techniques and primarily only useful for immunohistochemistry. In the past couple of decades, however, researchers have been able to develop methods to extract proteins from FFPE tissues in a form making them analyzable using state-of-the-art technologies such as MS and protein arrays. This review will discuss the history of these developments and provide examples of how they are currently being used to identify biomarkers and diagnose diseases such as cancer.
Collapse
|
2
|
Rossi R, Mereuta OM, Barbachan e Silva M, Molina Gil S, Douglas A, Pandit A, Gilvarry M, McCarthy R, O'Connell S, Tierney C, Psychogios K, Tsivgoulis G, Szikora I, Tatlisumak T, Rentzos A, Thornton J, Ó Broin P, Doyle KM. Potential Biomarkers of Acute Ischemic Stroke Etiology Revealed by Mass Spectrometry-Based Proteomic Characterization of Formalin-Fixed Paraffin-Embedded Blood Clots. Front Neurol 2022; 13:854846. [PMID: 35518205 PMCID: PMC9062453 DOI: 10.3389/fneur.2022.854846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Background and Aims Besides the crucial role in the treatment of acute ischemic stroke (AIS), mechanical thrombectomy represents a unique opportunity for researchers to study the retrieved clots, with the possibility of unveiling biological patterns linked to stroke pathophysiology and etiology. We aimed to develop a shotgun proteomic approach to study and compare the proteome of formalin-fixed paraffin-embedded (FFPE) cardioembolic and large artery atherosclerotic (LAA) clots. Methods We used 16 cardioembolic and 15 LAA FFPE thrombi from 31 AIS patients. The thrombus proteome was analyzed by label-free quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant v1.5.2.8 and Perseus v.1.6.15.0 were used for bioinformatics analysis. Protein classes were identified using the PANTHER database and the STRING database was used to predict protein interactions. Results We identified 1,581 protein groups as part of the AIS thrombus proteome. Fourteen significantly differentially abundant proteins across the two etiologies were identified. Four proteins involved in the ubiquitin-proteasome pathway, blood coagulation or plasminogen activating cascade were identified as significantly abundant in LAA clots. Ten proteins involved in the ubiquitin proteasome-pathway, cytoskeletal remodeling of platelets, platelet adhesion or blood coagulation were identified as significantly abundant in cardioembolic clots. Conclusion Our results outlined a set of 14 proteins for a proof-of-principle characterization of cardioembolic and LAA FFPE clots, advancing the proteome profile of AIS human thrombi and understanding the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Rosanna Rossi
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Oana Madalina Mereuta
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Mariel Barbachan e Silva
- School of Mathematical and Statistical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sara Molina Gil
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Andrew Douglas
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | | | | | - Shane O'Connell
- School of Mathematical and Statistical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ciara Tierney
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | | | - Georgios Tsivgoulis
- Second Department of Neurology, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| | - István Szikora
- Department of Neurointerventions, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Turgut Tatlisumak
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Alexandros Rentzos
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - John Thornton
- Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematical and Statistical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Karen M. Doyle
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
3
|
Evaluation of Fast and Sensitive Proteome Profiling of FF and FFPE Kidney Patient Tissues. Molecules 2022; 27:molecules27031137. [PMID: 35164409 PMCID: PMC8838561 DOI: 10.3390/molecules27031137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The application of proteomics to fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) human tissues is an important development spurred on by requests from stakeholder groups in clinical fields. One objective is to complement current diagnostic methods with new specific molecular information. An important goal is to achieve adequate and consistent protein recovery across and within large-scale studies. Here, we describe development of several protocols incorporating mass spectrometry compatible detergents, including Rapigest, PPS, and ProteaseMax. Methods were applied on 4 and 15 μm thick FF tissues, and 4 μm thick FFPE tissues. We evaluated sensitivity and repeatability of the methods and found that the protocol containing Rapigest enabled detection of 630 proteins from FF tissue of 1 mm2 and 15 μm thick, whereas 498 and 297 proteins were detected with the protocols containing ProteaseMax and PPS, respectively. Surprisingly, PPS-containing buffer showed good extraction of the proteins from 4 μm thick FFPE tissue with the average of 270 protein identifications (1 mm2), similar to the results on 4 μm thick FF. Moreover, we found that temperature increases during incubation with urea on 4 μm thick FF tissue revealed a decrease in the number of identified proteins and increase in the number of the carbamylated peptides.
Collapse
|
4
|
Griffin CP, Paul CL, Alexander KL, Walker MM, Hondermarck H, Lynam J. Postmortem brain donations vs premortem surgical resections for glioblastoma research: viewing the matter as a whole. Neurooncol Adv 2022; 4:vdab168. [PMID: 35047819 PMCID: PMC8760897 DOI: 10.1093/noajnl/vdab168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There have been limited improvements in diagnosis, treatment, and outcomes of primary brain cancers, including glioblastoma, over the past 10 years. This is largely attributable to persistent deficits in understanding brain tumor biology and pathogenesis due to a lack of high-quality biological research specimens. Traditional, premortem, surgical biopsy samples do not allow full characterization of the spatial and temporal heterogeneity of glioblastoma, nor capture end-stage disease to allow full evaluation of the evolutionary and mutational processes that lead to treatment resistance and recurrence. Furthermore, the necessity of ensuring sufficient viable tissue is available for histopathological diagnosis, while minimizing surgically induced functional deficit, leaves minimal tissue for research purposes and results in formalin fixation of most surgical specimens. Postmortem brain donation programs are rapidly gaining support due to their unique ability to address the limitations associated with surgical tissue sampling. Collecting, processing, and preserving tissue samples intended solely for research provides both a spatial and temporal view of tumor heterogeneity as well as the opportunity to fully characterize end-stage disease from histological and molecular standpoints. This review explores the limitations of traditional sample collection and the opportunities afforded by postmortem brain donations for future neurobiological cancer research.
Collapse
Affiliation(s)
- Cassandra P Griffin
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Biobank: NSW Regional Biospecimen and Research Services, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Christine L Paul
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Priority Research Centre Cancer Research, Innovation and Translation, University of Newcastle, New South Wales, Australia
- Priority Research Centre Health Behaviour, University of Newcastle, New South Wales, Australia
| | - Kimberley L Alexander
- Neurosurgery Department, Chris O’Brien Lifehouse, Camperdown, New South Wales, Australia
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, New South Wales, Australia
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Marjorie M Walker
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Hubert Hondermarck
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - James Lynam
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Medical Oncology, Calvary Mater, Newcastle, New South Wales, Australia
| |
Collapse
|
5
|
Pöschel A, Beebe E, Kunz L, Amini P, Guscetti F, Malbon A, Markkanen E. Identification of disease-promoting stromal components by comparative proteomic and transcriptomic profiling of canine mammary tumors using laser-capture microdissected FFPE tissue. Neoplasia 2021; 23:400-412. [PMID: 33794398 PMCID: PMC8042244 DOI: 10.1016/j.neo.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated stroma (CAS) profoundly influences progression of tumors including mammary carcinoma (mCA). Canine simple mCA represent relevant models of human mCA, notably also with respect to CAS. While transcriptomic changes in CAS of mCA are well described, it remains unclear to what extent these translate to the protein level. Therefore, we sought to gain insight into the proteomic changes in CAS and compare them with transcriptomic changes in the same tissue. To this end, we analyzed CAS and matched normal stroma using laser-capture microdissection (LCM) and LC-MS/MS in a cohort of 14 formalin-fixed paraffin embedded (FFPE) canine mCAs that we had previously characterized using LCM-RNAseq. Our results reveal clear differences in protein abundance between CAS and normal stroma, which are characterized by changes in the extracellular matrix, the cytoskeleton, and cytokines such as TNF. The proteomics- and RNAseq-based analyses of LCM-FFPE show a substantial degree of correlation, especially for the most deregulated targets and a comparable activation of pathways. Finally, we validate transcriptomic upregulation of LTBP2, IGFBP2, COL6A5, POSTN, FN1, COL4A1, COL12A1, PLOD2, COL4A2, and IGFBP7 in CAS on the protein level and demonstrate their adverse prognostic value for human breast cancer. Given the relevance of canine mCA as a model for the human disease, our analysis substantiates these targets as disease-promoting stromal components with implications for breast cancer in both species.
Collapse
Affiliation(s)
- Amiskwia Pöschel
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Laura Kunz
- Functional Genomics Center Zürich, ETH Zürich/University of Zurich, Zurich, Switzerland
| | - Parisa Amini
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Franco Guscetti
- Institute of Veterinary Pathology Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Alexandra Malbon
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute Easter Bush Campus, Midlothian, Scotland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Davalieva K, Kiprijanovska S, Dimovski A, Rosoklija G, Dwork AJ. Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues. J Proteomics 2021; 235:104117. [PMID: 33453434 DOI: 10.1016/j.jprot.2021.104117] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The proteomics of formalin-fixed, paraffin-embedded (FFPE) samples has advanced significantly during the last two decades, but there are many protocols and few studies comparing them directly. There is no consensus on the most effective protocol for shotgun proteomic analysis. We compared the in-solution digestion with RapiGest and Filter Aided Sample Preparation (FASP) of FFPE prostate tissues stored 7 years and mirroring fresh frozen samples, using two label-free data-independent LC-MS/MS acquisitions. RapiGest identified more proteins than FASP, with almost identical numbers of proteins from fresh and FFPE tissues and 69% overlap, good preservation of high-MW proteins, no bias regarding isoelectric point, and greater technical reproducibility. On the other hand, FASP yielded 20% fewer protein identifications in FFPE than in fresh tissue, with 64-69% overlap, depletion of proteins >70 kDa, lower efficiency in acidic and neutral range, and lower technical reproducibility. Both protocols showed highly similar subcellular compartments distribution, highly similar percentages of extracted unique peptides from FFPE and fresh tissues and high positive correlation between the absolute quantitation values of fresh and FFPE proteins. In conclusion, RapiGest extraction of FFPE tissues delivers a proteome that closely resembles the fresh frozen proteome and should be preferred over FASP in biomarker and quantification studies. SIGNIFICANCE: Here we analyzed the performance of two sample preparation methods for shotgun proteomic analysis of FFPE tissues to give a comprehensive overview of the obtained proteomes and the resemblance to its matching fresh frozen counterparts. These findings give us better understanding towards competent proteomics analysis of FFPE tissues. It is hoped that it will encourage further assessments of available protocols before establishing the most effective protocol for shotgun proteomic FFPE tissue analysis.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia.
| | - Sanja Kiprijanovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Aleksandar Dimovski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia; Faculty of Pharmacy, University "St. Cyril and Methodius", 50ta Divizija 6, 1000 Skopje, North Macedonia
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA
| |
Collapse
|
7
|
Quantitative Proteomic Analysis Using Formalin-Fixed, Paraffin-Embedded (FFPE) Human Cardiac Tissue. Methods Mol Biol 2021; 2261:525-533. [PMID: 33421012 DOI: 10.1007/978-1-0716-1186-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Clinical tissue archives represent an invaluable source of biological information. Formalin-fixed, paraffin-embedded (FFPE) tissue can be used for retrospective investigation of biomarkers of diseases and prognosis.Recently, the number of studies using proteome profiling of samples from clinical archives has markedly increased. However, the application of conventional quantitative proteomics technologies remains a challenge mainly due to the harsh fixation process resulting in protein cross-linking and protein degradation. In the present chapter, we demonstrate a protocol for label-free proteomic analysis of FFPE tissue prepared from human cardiac autopsies. The data presented here highlight the applicability and suitability of FFPE heart tissue for understanding the molecular mechanism of cardiac injury using a proteomics approach.
Collapse
|
8
|
Proteomic profiles and cytokeratin 13 as a potential biomarker of Ovis aries papillomavirus 3-positive and negative cutaneous squamous cell carcinomas. Res Vet Sci 2020; 134:112-119. [PMID: 33360571 DOI: 10.1016/j.rvsc.2020.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Ovis aries papillomavirus 3 (OaPV3) is an epidermotropic PV reported in sheep cutaneous squamous cell carcinoma (SCC). The presence of OaPV3 DNA and its transcriptional activity in cutaneous SCC, as well as its in vitro transforming properties, suggest a viral etiology for this neoplasm. Nevertheless, the reactome associated with viral-host interaction is still unexplored. Here, we investigated and compared the proteomic profiles of OaPV3-positive SCCs, OaPV3-negative SCCs, and non-SCC samples by liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis, bioinformatics tools, and immunohistochemistry (IHC). OaPV3-positive SCCs (n = 3), OaPV3-negative SCCs (n = 3), and non-SCCs samples (n = 3) were subjected to a shotgun proteomic analysis workflow to assess protein abundance differences among the three sample classes. Proteins involved in epithelial cell differentiation, extracellular matrix organization, and apoptotic signaling showed different abundances in OaPV3-positive SCCs tissues (P ≤ 0.05) when compared to the other tissues. Cytokeratin 13 (CK 13) was among the most increased proteins in OaPV3-positive SCC and was validated by immunohistochemistry on 10 samples per class, confirming its potential as a biomarker of OaPV3 infection in SCC. Collectively, results provide a preliminary insight into the reactome associated with viral-host interaction and pave the way to the development of specific biomarkers for viral-induced sheep SCC.
Collapse
|
9
|
Azimzadeh O, Azizova T, Merl-Pham J, Blutke A, Moseeva M, Zubkova O, Anastasov N, Feuchtinger A, Hauck SM, Atkinson MJ, Tapio S. Chronic Occupational Exposure to Ionizing Radiation Induces Alterations in the Structure and Metabolism of the Heart: A Proteomic Analysis of Human Formalin-Fixed Paraffin-Embedded (FFPE) Cardiac Tissue. Int J Mol Sci 2020; 21:ijms21186832. [PMID: 32957660 PMCID: PMC7555548 DOI: 10.3390/ijms21186832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies on workers employed at the Mayak plutonium enrichment plant have demonstrated an association between external gamma ray exposure and an elevated risk of ischemic heart disease (IHD). In a previous study using fresh-frozen post mortem samples of the cardiac left ventricle of Mayak workers and non-irradiated controls, we observed radiation-induced alterations in the heart proteome, mainly downregulation of mitochondrial and structural proteins. As the control group available at that time was younger than the irradiated group, we could not exclude age as a confounding factor. To address this issue, we have now expanded our study to investigate additional samples using archival formalin-fixed paraffin-embedded (FFPE) tissue. Importantly, the control group studied here is older than the occupationally exposed (>500 mGy) group. Label-free quantitative proteomics analysis showed that proteins involved in the lipid metabolism, sirtuin signaling, mitochondrial function, cytoskeletal organization, and antioxidant defense were the most affected. A histopathological analysis elucidated large foci of fibrotic tissue, myocardial lipomatosis and lymphocytic infiltrations in the irradiated samples. These data highlight the suitability of FFPE material for proteomics analysis. The study confirms the previous results emphasizing the role of adverse metabolic changes in the radiation-associated IHD. Most importantly, it excludes age at the time of death as a confounding factor.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, 85764 Neuherberg, Germany; (N.A.); (M.J.A.); (S.T.)
- Correspondence: ; Tel.: +49-89-3187-3887
| | - Tamara Azizova
- Southern Urals Biophysics Institute (SUBI), Russian Federation, 456780 Ozyorsk, Russia; (T.A.); (M.M.); (O.Z.)
| | - Juliane Merl-Pham
- Helmholtz Zentrum München—German Research Centre for Environmental Health, Research Unit Protein Science, 80939 Munich, Germany; (J.M.-P.); (S.M.H.)
| | - Andreas Blutke
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Research Unit Analytical Pathology, 85764 Neuherberg, Germany; (A.B.); (A.F.)
| | - Maria Moseeva
- Southern Urals Biophysics Institute (SUBI), Russian Federation, 456780 Ozyorsk, Russia; (T.A.); (M.M.); (O.Z.)
| | - Olga Zubkova
- Southern Urals Biophysics Institute (SUBI), Russian Federation, 456780 Ozyorsk, Russia; (T.A.); (M.M.); (O.Z.)
| | - Natasa Anastasov
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, 85764 Neuherberg, Germany; (N.A.); (M.J.A.); (S.T.)
| | - Annette Feuchtinger
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Research Unit Analytical Pathology, 85764 Neuherberg, Germany; (A.B.); (A.F.)
| | - Stefanie M. Hauck
- Helmholtz Zentrum München—German Research Centre for Environmental Health, Research Unit Protein Science, 80939 Munich, Germany; (J.M.-P.); (S.M.H.)
| | - Michael J. Atkinson
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, 85764 Neuherberg, Germany; (N.A.); (M.J.A.); (S.T.)
- Chair of Radiation Biology, Technical University of Munich, 81675 Munich, Germany
| | - Soile Tapio
- Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, 85764 Neuherberg, Germany; (N.A.); (M.J.A.); (S.T.)
| |
Collapse
|
10
|
Pagnozzi D, Tamarozzi F, Roggio AM, Tedde V, Addis MF, Pisanu S, Masu G, Santucciu C, Vola A, Casulli A, Masala G, Brunetti E, Uzzau S. Structural and Immunodiagnostic Characterization of Synthetic Antigen B Subunits From Echinococcus granulosus and Their Evaluation as Target Antigens for Cyst Viability Assessment. Clin Infect Dis 2019; 66:1342-1351. [PMID: 29149256 PMCID: PMC5905600 DOI: 10.1093/cid/cix1006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
Background Several tools have been proposed for serodiagnosis of cystic echinococcosis (CE), but none seems promising for cyst viability assessment. Antigens with stage-specific diagnostic value have been described, but few studies with well-characterized antigens and human serum samples have been performed. Antigen B (AgB) proteoforms hold promise as markers of viability, due to their differential stage-related expression and immunoreactivity. Methods Four AgB subunits (AgB1, AgB2, AgB3, AgB4) were synthesized and structurally characterized. Based on the preliminary evaluation of the subunits by western immunoblotting and enzyme-linked immunosorbent assay (ELISA), AgB1 and AgB2 were further tested in two ELISA setups and extensively validated on 422 human serum samples. Results All subunits showed a high degree of spontaneous oligomerization. Interacting residues within oligomers were identified, showing that both the N-terminal and C-terminal of each subunit are involved in homo-oligomer contact interfaces. No hetero-oligomer was identified. AgB1 and AgB2 ELISAs revealed different sensitivities relative to cyst stage. Of note, besides high specificity (97.2%), AgB1 revealed a higher sensitivity for active-transitional cysts (100% for CE1, 77.8% for CE2, 81.5% for CE3a, and 86.3% for CE3b) than for inactive cysts (41.7% for CE4 and 11.1% for CE5) and postsurgical patients (44%). Interestingly, 19 of 20 patients with spontaneously inactive cysts and 6 of 9 treated with albendazole >5 years earlier were negative on the AgB1 assay. Conclusions The structural characterization of subunits provides insights into the synthetic antigen conformation. The stage-related sensitivity of synthetic AgB1 holds promise as part of a multiantigen setting and deserves further longitudinal evaluation as marker of cyst viability.
Collapse
Affiliation(s)
- Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Francesca Tamarozzi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy.,WHO Collaborating Centre for the Clinical Management of Cystic Echinococcosis, Pavia, Italy
| | - Anna Maria Roggio
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Vittorio Tedde
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy
| | - Gabriella Masu
- National Reference Laboratory of Cystic Echinococcosis, Istituto zooprofilattico sperimentale della Sardegna "G. Pegreffi", Sassari, Italy
| | - Cinzia Santucciu
- National Reference Laboratory of Cystic Echinococcosis, Istituto zooprofilattico sperimentale della Sardegna "G. Pegreffi", Sassari, Italy
| | - Ambra Vola
- WHO Collaborating Centre for the Clinical Management of Cystic Echinococcosis, Pavia, Italy.,Division of Infectious and Tropical Diseases, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.,European Union Reference Laboratory for Parasites (EURLP), Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Masala
- National Reference Laboratory of Cystic Echinococcosis, Istituto zooprofilattico sperimentale della Sardegna "G. Pegreffi", Sassari, Italy
| | - Enrico Brunetti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy.,WHO Collaborating Centre for the Clinical Management of Cystic Echinococcosis, Pavia, Italy.,Division of Infectious and Tropical Diseases, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero (Sassari), Italy.,Department of Biomedical Sciences, University of Sassari, Italy
| |
Collapse
|
11
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Ghisaura S, Pagnozzi D, Melis R, Biosa G, Slawski H, Uzzau S, Anedda R, Addis MF. Liver proteomics of gilthead sea bream (Sparus aurata) exposed to cold stress. J Therm Biol 2019; 82:234-241. [PMID: 31128654 DOI: 10.1016/j.jtherbio.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022]
Abstract
The gilthead sea bream (Sparus aurata, L.) is very sensitive to low temperatures, which induce fasting and reduced growth performances. There is a strong interest in understanding the impact of cold on fish metabolism to foster the development and optimization of specific aquaculture practices for the winter period. In this study, an 8 week feeding trial was carried out on gilthead sea bream juveniles reared in a Recirculated Aquaculture System (RAS) by applying a temperature ramp in two phases of four weeks each: a cooling phase from 18 °C to 11 °C and a cold maintenance phase at 11 °C. Liver protein profiles were evaluated with a shotgun proteomics workflow based on filter-aided sample preparation (FASP) and liquid chromatography-mass spectrometry (LC-ESI-Q-TOF MS/MS) followed by label-free differential analysis. Along the whole trial, sea breams underwent several changes in liver protein abundance. These occurred mostly during the cooling phase when catabolic processes were mainly observed, including protein and lipid degradation, together with a reduction in protein synthesis and amino acid metabolism. A decrease in protein mediators of oxidative stress protection was also seen. Liver protein profiles changed less during cold maintenance, but pathways such as the methionine cycle and sugar metabolism were significantly affected. These results provide novel insights on the dynamics and extent of the metabolic shift occurring in sea bream liver with decreasing water temperature, supporting future studies on temperature-adapted feed formulations. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD011059.
Collapse
Affiliation(s)
- S Ghisaura
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - D Pagnozzi
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - R Melis
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - G Biosa
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | | | - S Uzzau
- Porto Conte Ricerche, Tramariglio, Alghero, Italy; Department of Biomedical Sciences, University of Sassari, Italy
| | - R Anedda
- Porto Conte Ricerche, Tramariglio, Alghero, Italy.
| | - M F Addis
- Porto Conte Ricerche, Tramariglio, Alghero, Italy; Department of Veterinary Medicine, University of Milan, Italy.
| |
Collapse
|
13
|
Pisanu S, Cubeddu T, Cacciotto C, Pilicchi Y, Pagnozzi D, Uzzau S, Rocca S, Addis MF. Characterization of paucibacillary ileal lesions in sheep with subclinical active infection by Mycobacterium avium subsp. paratuberculosis. Vet Res 2018; 49:117. [PMID: 30514405 PMCID: PMC6278003 DOI: 10.1186/s13567-018-0612-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
Paratuberculosis (PTB) or Johne's disease is a contagious enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Ovine PTB is less understood than bovine PTB, especially concerning paucibacillary infection and its evolution into clinical disease. We combined shotgun proteomics, histopathology and immunohistochemistry for the characterization of ileal tissues collected from seven asymptomatic sheep negative to serum ELISA, positive to feces and tissue MAP IS900 and F57 PCR, histologically classified as paucibacillary, actively infected, together with 3 MAP-free controls (K). Following shotgun proteomics with label-free quantitation and differential analysis, 96 proteins were significantly changed in PTB vs K, and were mostly involved in immune defense processes and in the macrophage-MAP interaction. Principal component analysis (PCA) of protein abundances highlighted two PTB sample clusters, PTB1 and PTB2, indicating a dichotomy in their proteomic profiles. This was in line with the PCA of histopathology data and was related to features of type 2 (PTB1) and type 3a (PTB2) lesions, respectively. PTB2 proteomes differed more than PTB1 proteomes from K: 43 proteins changed significantly only in PTB2 and 11 only in PTB1. The differential proteins cathelicidin, haptoglobin, S100A8 and S100A9 were evaluated by immunohistochemistry. K tissues were negative to cathelicidin and haptoglobin and sparsely positive to S100A8 and S100A9. PTB tissues were positive to all four proteins, with significantly more cells in PTB2 than in PTB1. In conclusion, we described several pathways altered in paucibacillary PTB, highlighted some proteomic differences among paucibacillary PTB cases, and identified potential markers for disease understanding, staging, and detection.
Collapse
Affiliation(s)
- Salvatore Pisanu
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041, Alghero, Italy
| | - Tiziana Cubeddu
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Carla Cacciotto
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041, Alghero, Italy
| | - Ylenia Pilicchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041, Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041, Alghero, Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Viale S. Pietro 43/B, 07100, Sassari, Italy
| | - Stefano Rocca
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041, Alghero, Italy. .,Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy.
| |
Collapse
|
14
|
Hoffmann F, Umbreit C, Krüger T, Pelzel D, Ernst G, Kniemeyer O, Guntinas-Lichius O, Berndt A, von Eggeling F. Identification of Proteomic Markers in Head and Neck Cancer Using MALDI-MS Imaging, LC-MS/MS, and Immunohistochemistry. Proteomics Clin Appl 2018; 13:e1700173. [PMID: 30411850 DOI: 10.1002/prca.201700173] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/29/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE The heterogeneity of squamous cell carcinoma tissue greatly complicates diagnosis and individualized therapy. Therefore, characterizing the heterogeneity of tissue spatially and identifying appropriate biomarkers is crucial. MALDI-MS imaging (MSI) is capable of analyzing spatially resolved tissue biopsies on a molecular level. EXPERIMENTAL DESIGN MALDI-MSI is used on snap frozen and formalin-fixed and paraffin-embedded (FFPE) tissue samples from patients with head and neck cancer (HNC) to analyze m/z values localized in tumor and nontumor regions. Peptide identification is performed using LC-MS/MS and immunohistochemistry (IHC). RESULTS In both FFPE and frozen tissue specimens, eight characteristic masses of the tumor's epithelial region are found. Using LC-MS/MS, the peaks are identified as vimentin, keratin type II, nucleolin, heat shock protein 90, prelamin-A/C, junction plakoglobin, and PGAM1. Lastly, vimentin, nucleolin, and PGAM1 are verified with IHC. CONCLUSIONS AND CLINICAL RELEVANCE The combination of MALDI-MSI, LC-MS/MS, and subsequent IHC furnishes a tool suitable for characterizing the molecular heterogeneity of tissue. It is also suited for use in identifying new representative biomarkers to enable a more individualized therapy.
Collapse
Affiliation(s)
- Franziska Hoffmann
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Claudia Umbreit
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany.,Institute of Forensic Medicine, Section Pathology, Jena University Hospital, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Daniela Pelzel
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Günther Ernst
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | | | - Alexander Berndt
- Institute of Forensic Medicine, Section Pathology, Jena University Hospital, Jena, Germany
| | - Ferdinand von Eggeling
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
15
|
Carcangiu L, Pisanu S, Tore S, Addis MF, Zini E, Uzzau S, Pagnozzi D. All Cats are Gray in the Dark: Enrichment/Depletion Approaches for Biomarker Discovery on Felis catus Plasma. Proteomics 2018; 18:e1800191. [PMID: 30216667 DOI: 10.1002/pmic.201800191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/03/2018] [Indexed: 11/08/2022]
Abstract
In veterinary medicine, assay performance is often affected by the lack of species-specific diagnostic tools. Reliable biomarkers might be identified by investigating biological fluids of the species of interest, but protein sequence databases are often incomplete and human-specific devices for reducing sample complexity might fail when applied to animal plasma. Here, seven commercial methods based on different capturing agents (anti-human antibodies, affinity ligands, mixture of antibodies and ligands, and combinatorial peptide ligand libraries) are applied to cat plasma and evaluated in terms of yield, identified proteins/ peptides, and relative abundance by high-resolution shotgun proteomics and label-free quantitation. As a result, anti-human antibody-based methods are unsatisfactory. Most fail in reducing albumin and immunoglobulins, and some lead to a substantial removal of other highly abundant proteins, probably because of nonspecific interactions. A protein A/dye ligand-based method is efficient in reducing immunoglobulins, fibrinogen, and apolipoprotein A1 and A2, but not albumin, and protein identifications do not increase. Only peptide ligand libraries flatten the dynamic range, and increased protein identification (59.0%). Albumin and immunoglobulins are successfully depleted (60.7% and 35.9%, respectively). Although further studies will be required for reinforcing our observations, this work can provide a useful guide for cat plasma pretreatment in biomarker discovery studies.
Collapse
Affiliation(s)
- Laura Carcangiu
- Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Sassari, Italy
| | - Silvia Tore
- Sardegna Ricerche, Piscina Manna, Pula, Cagliari, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Sassari, Italy
| | - Eric Zini
- Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy.,Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Sassari, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Sassari, Italy
| |
Collapse
|
16
|
Pisamai S, Roytrakul S, Phaonakrop N, Jaresitthikunchai J, Suriyaphol G. Proteomic analysis of canine oral tumor tissues using MALDI-TOF mass spectrometry and in-gel digestion coupled with mass spectrometry (GeLC MS/MS) approaches. PLoS One 2018; 13:e0200619. [PMID: 30001383 PMCID: PMC6042759 DOI: 10.1371/journal.pone.0200619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/29/2018] [Indexed: 12/15/2022] Open
Abstract
Oral tumors, including highly invasive and metastatic oral melanoma (OM), non-tonsillar oral squamous cell carcinoma (OSCC) and benign tumors (BN), are common neoplasms in dogs. Although these tumors behave differently, limited data of their protein expression profiles have been exhibited, particularly at the proteome level. The present study aimed to i.) characterize peptide-mass fingerprints (PMFs) and identify potential protein candidates of OM, OSCC, BN and normal control subjects, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), ii.) identify potential protein candidates associated with the diseases, using in-gel digestion coupled with mass spectrometric analysis (GeLC-MS/MS) and iii.) search for relationships between chemotherapy drugs and disease-perturbed proteins. A distinct cluster of each sample group and unique PMFs with identified protein candidates were revealed. The unique peptide fragment at 2,274 Da of sacsin molecular chaperone (SACS) was observed in early-stage OM whereas the fragment at 1,958 Da of sodium voltage-gated channel alpha subunit 10 (SCN10A) was presented in early- and late-stage OM. The peptide mass at 2,316 Da of Notch1 appeared in early-stage OM and benign oral tumors while the peptide mass at 2,505 Da of glutamate ionotropic receptor N-methyl-D-aspartate type subunit 3A (GRIN3A) was identified in all groups. Markedly expressed proteins from GeLC-MS/MS included Jumonji domain containing 1C (JMJD1C) in benign tumors, inversin (INVS) and rho guanine nucleotide exchange factor 28 (ARHGEF28) in OM, BTB domain-containing 16 (BTBD16) in OSCC, and protein tyrosine phosphatase non-receptor type 1 (PTPN1), BRCA2, DNA repair associated (BRCA2), WW domain binding protein 2 (WBP2), purinergic receptor P2Y1 and proteasome activator subunit 4 (PSME4) in all cancerous groups. The network connections between these proteins and chemotherapy drugs, cisplatin and doxorubicin, were also demonstrated. In conclusion, this study unveiled the unique PMFs and novel candidate protein markers of canine oral tumors.
Collapse
Affiliation(s)
- Sirinun Pisamai
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Companion Animal Cancer Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
17
|
Ongay S, Langelaar-Makkinje M, Stoop MP, Liu N, Overkleeft H, Luider TM, Groothuis GMM, Bischoff R. Cleavable Crosslinkers as Tissue Fixation Reagents for Proteomic Analysis. Chembiochem 2018; 19:736-743. [PMID: 29356267 DOI: 10.1002/cbic.201700625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 12/17/2022]
Abstract
Formaldehyde fixation is widely used for long-term maintenance of tissue. However, due to formaldehyde-induced crosslinks, fixed tissue proteins are difficult to extract, which hampers mass spectrometry (MS) proteomic analyses. Recent years have seen the use of different combinations of high temperature and solubilizing agents (usually derived from antigen retrieval techniques) to unravel formaldehyde-fixed paraffin-embedded tissue proteomes. However, to achieve protein extraction yields similar to those of fresh-frozen tissue, high-temperature heating is necessary. Such harsh extraction conditions can affect sensitive amino acids and post-translational modifications, resulting in the loss of important information, while still not resulting in protein yields comparable to those of fresh-frozen tissue. Herein, the objective is to evaluate cleavable protein crosslinkers as fixatives that allow tissue preservation and efficient protein extraction from fixed tissue for MS proteomics under mild conditions. With this goal in mind, disuccinimidyl tartrate (DST) and dithiobis(succinimidylpropionate) (DSP) are investigated as cleavable fixating reagents. These compounds crosslink proteins by reacting with amino groups, leading to amide bond formation, and can be cleaved with sodium metaperiodate (cis-diols, DST) or reducing agents (disulfide bonds, DSP), respectively. Results show that cleavable protein crosslinking with DST and DSP allows tissue fixation with morphology preservation comparable to that of formaldehyde. In addition, cleavage of DSP improves protein recovery from fixed tissue by a factor of 18 and increases the number of identified proteins by approximately 20 % under mild extraction conditions compared with those of formaldehyde-fixed paraffin-embedded tissue. A major advantage of DSP is the introduction of well-defined protein modifications that can be taken into account during database searching. In contrast to DSP fixation, DST fixation followed by cleavage with sodium metaperiodate, although effective, results in side reactions that prevent effective protein extraction and interfere with protein identification. Protein crosslinkers that can be cleaved under mild conditions and result in defined modifications, such as DSP, are thus viable alternatives to formaldehyde as tissue fixatives to facilitate protein analysis from paraffin-embedded, fixed tissue.
Collapse
Affiliation(s)
- Sara Ongay
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Miriam Langelaar-Makkinje
- Department Pharmacokinetics, Toxicology and Targeting, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Marcel P Stoop
- Department of Neurology, Erasmus University Medical Center, P. O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Nora Liu
- Department of Bio-Organic Synthesis, Leiden University, P. O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Hermen Overkleeft
- Department of Bio-Organic Synthesis, Leiden University, P. O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus University Medical Center, P. O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Geny M M Groothuis
- Department Pharmacokinetics, Toxicology and Targeting, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| |
Collapse
|
18
|
Palomba A, Tanca A, Addis MF, Pagnozzi D, Uzzau S. The Sarda Sheep Host Fecal Proteome. Proteomics 2018; 18. [PMID: 29328543 DOI: 10.1002/pmic.201700272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/20/2017] [Indexed: 12/16/2022]
Abstract
The first characterization of the sheep fecal microbiota was recently reported, as obtained by using a multi meta-omic approach. Here, the mass spectra generated by single-run LC/high-resolution MS in the context of that study were reanalyzed using a host-specific database, in order to gain insights for the first time into the host fecal proteome of healthy Sarda sheep. On the whole, 5349 non-redundant tryptic peptide sequences were identified, belonging to 1046 different proteins. The "core" fecal proteome (common to all animals) comprised 431 proteins, mainly related to biological processes as immune response and proteolysis. Proteins involved in the immune/inflammatory response and peptidases were specifically investigated. This dataset provides novel insights into the repertoire of proteins secreted in the sheep intestinal lumen, and constitutes the basis for future shotgun and targeted proteomics studies aimed at monitoring changes in the sheep fecal proteome in response to production variables, infectious/inflammatory states, and variations in the gut microbiota. Data are available via ProteomeXchange with identifier PXD006145.
Collapse
Affiliation(s)
- Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
19
|
Kumar M, Joseph SR, Augsburg M, Bogdanova A, Drechsel D, Vastenhouw NL, Buchholz F, Gentzel M, Shevchenko A. MS Western, a Method of Multiplexed Absolute Protein Quantification is a Practical Alternative to Western Blotting. Mol Cell Proteomics 2017; 17:384-396. [PMID: 29192002 DOI: 10.1074/mcp.o117.067082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 10/12/2017] [Indexed: 12/23/2022] Open
Abstract
Absolute quantification of proteins elucidates the molecular composition, regulation and dynamics of multiprotein assemblies and networks. Here we report on a method termed MS Western that accurately determines the molar abundance of dozens of user-selected proteins at the subfemtomole level in whole cell or tissue lysates without metabolic or chemical labeling and without using specific antibodies. MS Western relies on GeLC-MS/MS and quantifies proteins by in-gel codigestion with an isotopically labeled QconCAT protein chimera composed of concatenated proteotypic peptides. It requires no purification of the chimera and relates the molar abundance of all proteotypic peptides to a single reference protein. In comparative experiments, MS Western outperformed immunofluorescence Western blotting by the protein detection specificity, linear dynamic range and sensitivity of protein quantification. To validate MS Western in an in vivo experiment, we quantified the molar content of zebrafish core histones H2A, H2B, H3 and H4 during ten stages of early embryogenesis. Accurate quantification (CV<10%) corroborated the anticipated histones equimolar stoichiometry and revealed an unexpected trend in their total abundance.
Collapse
Affiliation(s)
- Mukesh Kumar
- From the ‡Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Shai R Joseph
- From the ‡Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Martina Augsburg
- §Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Aliona Bogdanova
- From the ‡Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - David Drechsel
- From the ‡Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Nadine L Vastenhouw
- From the ‡Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Frank Buchholz
- From the ‡Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,§Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.,¶German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, 01307 Dresden, Germany.,‖National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Marc Gentzel
- From the ‡Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Andrej Shevchenko
- From the ‡Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany;
| |
Collapse
|
20
|
Ceciliani F, Roccabianca P, Giudice C, Lecchi C. Application of post-genomic techniques in dog cancer research. MOLECULAR BIOSYSTEMS 2017; 12:2665-79. [PMID: 27345606 DOI: 10.1039/c6mb00227g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Omics techniques have been widely applied to veterinary science, although mostly on farm animal productions and infectious diseases. In canine oncology, on the contrary, the use of omics methodologies is still far behind. This review presents the most recent achievement in the application of postgenomic techniques, such as transcriptomics, proteomics, and metabolomics, to canine cancer research. The protocols to recover material suitable for omics analyses from formalin-fixed, paraffin-embedded tissues are presented, and omics applications for biomarker discovery and their potential for cancer diagnostics in veterinary medicine are highlighted.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - P Roccabianca
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Giudice
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Lecchi
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| |
Collapse
|
21
|
Quesada-Calvo F, Massot C, Bertrand V, Longuespée R, Blétard N, Somja J, Mazzucchelli G, Smargiasso N, Baiwir D, De Pauw-Gillet MC, Delvenne P, Malaise M, Coimbra Marques C, Polus M, De Pauw E, Meuwis MA, Louis E. OLFM4, KNG1 and Sec24C identified by proteomics and immunohistochemistry as potential markers of early colorectal cancer stages. Clin Proteomics 2017; 14:9. [PMID: 28344541 PMCID: PMC5364649 DOI: 10.1186/s12014-017-9143-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background Despite recent advances in colorectal cancer (CRC) diagnosis and population screening programs, the identification of patients with preneoplastic lesions or with early CRC stages remains challenging and is important for reducing CRC incidence and increasing patient’s survival.
Methods We analysed 76 colorectal tissue samples originated from early CRC stages, normal or inflamed mucosa by label-free proteomics. The characterisation of three selected biomarker candidates was performed by immunohistochemistry on an independent set of precancerous and cancerous lesions harbouring increasing CRC stages. Results Out of 5258 proteins identified, we obtained 561 proteins with a significant differential distribution among groups of patients and controls. KNG1, OLFM4 and Sec24C distributions were validated in tissues and showed different expression levels especially in the two early CRC stages compared to normal and preneoplastic tissues. Conclusion We highlighted three proteins that require further investigations to better characterise their role in early CRC carcinogenesis and their potential as early CRC markers. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9143-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florence Quesada-Calvo
- Gastroenterology Department, GIGA-R, Liège University Hospital CHU, ULg, GIGA CHU-B34 Avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Charlotte Massot
- Gastroenterology Department, GIGA-R, Liège University Hospital CHU, ULg, GIGA CHU-B34 Avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Virginie Bertrand
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, ULg, 4000 Liège, Belgium
| | - Rémi Longuespée
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, ULg, 4000 Liège, Belgium
| | - Noëlla Blétard
- Department of Anatomy and Pathology, GIGA-R, Liège University Hospital CHU, ULg, 4000 Liège, Belgium
| | - Joan Somja
- Department of Anatomy and Pathology, GIGA-R, Liège University Hospital CHU, ULg, 4000 Liège, Belgium
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, ULg, 4000 Liège, Belgium
| | - Nicolas Smargiasso
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, ULg, 4000 Liège, Belgium
| | | | - Marie-Claire De Pauw-Gillet
- Mammalian Cell Culture Laboratory, Department of Preclinical and Biomedical Sciences, GIGA-R, ULg, 4000 Liège, Belgium
| | - Philippe Delvenne
- Department of Anatomy and Pathology, GIGA-R, Liège University Hospital CHU, ULg, 4000 Liège, Belgium
| | - Michel Malaise
- Department of Clinical Sciences, Rheumatology, Liège University Hospital CHU, 4000 Liège, Belgium
| | | | - Marc Polus
- Gastroenterology Department, GIGA-R, Liège University Hospital CHU, ULg, GIGA CHU-B34 Avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, Chemistry Department, GIGA-R, CART, ULg, 4000 Liège, Belgium
| | - Marie-Alice Meuwis
- Gastroenterology Department, GIGA-R, Liège University Hospital CHU, ULg, GIGA CHU-B34 Avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Edouard Louis
- Gastroenterology Department, GIGA-R, Liège University Hospital CHU, ULg, GIGA CHU-B34 Avenue de l'Hôpital 11, 4000 Liège, Belgium
| |
Collapse
|
22
|
Pedersen MH, Hood BL, Beck HC, Conrads TP, Ditzel HJ, Leth-Larsen R. Downregulation of antigen presentation-associated pathway proteins is linked to poor outcome in triple-negative breast cancer patient tumors. Oncoimmunology 2017. [PMID: 28638726 DOI: 10.1080/2162402x.2017.1305531] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype with varying disease outcomes. Tumor-infiltrating lymphocytes (TILs) are frequent in TNBC and have been shown to correlate with outcome, suggesting an immunogenic component in this subtype. However, other factors intrinsic to the cancer cells may also influence outcome. To identify proteins and molecular pathways associated with recurrence in TNBC, 34 formalin-fixed paraffin-embedded (FFPE) primary TNBC tumors were investigated by global proteomic profiling using mass spectrometry. Approximately, half of the patients were lymph node-negative and remained free of local or distant metastasis within 10 y follow-up, while the other half developed distant metastasis. Proteomic profiling identified >4,000 proteins, of which 63 exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. Importantly, downregulation of proteins in the major histocompatibility complex (MHC) class I antigen presentation pathways were enriched, including TAP1, TAP2, CALR, HLA-A, ERAP1 and TAPBP, and were associated with significantly shorter recurrence-free and overall survival. In addition, proteins involved in cancer cell proliferation and growth, including GBP1, RAD23B, WARS and STAT1, also exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. The association between the antigen-presentation pathway and outcome were validated in a second sample set of 10 primary TNBC tumors and corresponding metastases using proteomics and in a large public gene expression database of 249 TNBC and 580 basal-like breast cancer cases. Our study demonstrates that downregulation of antigen presentation is a key mechanism for TNBC cells to avoid immune surveillance, allowing continued growth and spread.
Collapse
Affiliation(s)
- Martin H Pedersen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Brian L Hood
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Thomas P Conrads
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Oncology, Odense University Hospital, Odense C, Denmark
| | - Rikke Leth-Larsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
23
|
Burrai GP, Tanca A, Cubeddu T, Abbondio M, Polinas M, Addis MF, Antuofermo E. A first immunohistochemistry study of transketolase and transketolase-like 1 expression in canine hyperplastic and neoplastic mammary lesions. BMC Vet Res 2017; 13:38. [PMID: 28143530 PMCID: PMC5282725 DOI: 10.1186/s12917-017-0961-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022] Open
Abstract
Background Canine mammary tumors represent the most common neoplasm in female dogs, and the discovery of cancer biomarkers and their translation to clinical relevant assays is a key requirement in the war on cancer. Since the description of the ‘Warburg effect’, the reprogramming of metabolic pathways is considered a hallmark of pathological changes in cancer cells. In this study, we investigate the expression of two cancer-related metabolic enzymes, transketolase (TKT) and transketolase-like 1 (TKTL1), involved in the pentose phosphate pathway (PPP), an alternative metabolic pathway for glucose breakdown that could promote cancer by providing the precursors and energy required for rapidly growing cells. Results TKT and TKTL1 protein expression was investigated by immunohistochemistry in canine normal (N = 6) and hyperplastic glands (N = 3), as well as in benign (N = 11) and malignant mammary tumors (N = 17). TKT expression was higher in hyperplastic lesions and in both benign and malignant tumors compared to the normal mammary gland, while TKTL1 levels were remarkably higher in hyperplastic lesions, simple adenomas and simple carcinomas than in the normal mammary glands (P < 0.05). Conclusions This study reveals that the expression of a key PPP enzyme varies along the evolution of canine mammary neoplastic lesions, and supports a role of metabolic changes in the development of canine mammary tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-0961-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Alessandro Tanca
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Loc, 07041, Tramariglio, Alghero, Italy
| | - Tiziana Cubeddu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Marcello Abbondio
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Loc, 07041, Tramariglio, Alghero, Italy
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Loc, 07041, Tramariglio, Alghero, Italy
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| |
Collapse
|
24
|
Broeckx V, Boonen K, Pringels L, Sagaert X, Prenen H, Landuyt B, Schoofs L, Maes E. Comparison of multiple protein extraction buffers for GeLC-MS/MS proteomic analysis of liver and colon formalin-fixed, paraffin-embedded tissues. MOLECULAR BIOSYSTEMS 2016; 12:553-65. [PMID: 26676081 DOI: 10.1039/c5mb00670h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a potential valuable source of samples for clinical research. Since these specimens are banked in hospital archives, large cohorts of samples can be collected in short periods of time which can all be linked with a patients' clinical history. Therefore, the use of FFPE tissue in protein biomarker discovery studies gains interest. However, despite the growing number of FFPE proteome studies in the literature, there is a lack of a FFPE proteomics standard operating procedure (SOP). One of the challenging steps in the development of such a SOP is the ability to obtain an efficient and repeatable extraction of full length FFPE proteins. In this study, the protein extraction efficiency of eight protein extraction buffers is critically compared with GeLC-MS/MS (1D gel electrophoresis followed by in-gel digestion and LC-MS/MS). The data variation caused by using these extraction buffers was investigated since the variation is a very important aspect when using FFPE tissue as a source for biomarker detection. In addition, a qualitative comparison was made between the protein extraction efficiency and repeatability for FFPE tissue and fresh frozen tissue.
Collapse
Affiliation(s)
- Valérie Broeckx
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Kurt Boonen
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lentel Pringels
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Xavier Sagaert
- Centre for Translational Cell and Tissue Research, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hans Prenen
- Department of Gastro-Enterology, Digestive Oncology Unit, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bart Landuyt
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Evelyne Maes
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium and Centre for Proteomics, University of Antwerp/Flemish Institute for Technological Research (VITO), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
25
|
Morris JS. Genomic and proteomic profiling for cancer diagnosis in dogs. Vet J 2016; 215:101-9. [DOI: 10.1016/j.tvjl.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/01/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022]
|
26
|
Luebker SA, Wojtkiewicz M, Koepsell SA. Two methods for proteomic analysis of formalin-fixed, paraffin embedded tissue result in differential protein identification, data quality, and cost. Proteomics 2016; 15:3744-53. [PMID: 26306679 DOI: 10.1002/pmic.201500147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/06/2015] [Accepted: 08/19/2015] [Indexed: 12/18/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a rich source of clinically relevant material that can yield important translational biomarker discovery using proteomic analysis. Protocols for analyzing FFPE tissue by LC-MS/MS exist, but standardization of procedures and critical analysis of data quality is limited. This study compared and characterized data obtained from FFPE tissue using two methods: a urea in-solution digestion method (UISD) versus a commercially available Qproteome FFPE Tissue Kit method (Qkit). Each method was performed independently three times on serial sections of homogenous FFPE tissue to minimize pre-analytical variations and analyzed with three technical replicates by LC-MS/MS. Data were evaluated for reproducibility and physiochemical distribution, which highlighted differences in the ability of each method to identify proteins of different molecular weights and isoelectric points. Each method replicate resulted in a significant number of new protein identifications, and both methods identified significantly more proteins using three technical replicates as compared to only two. UISD was cheaper, required less time, and introduced significant protein modifications as compared to the Qkit method, which provided more precise and higher protein yields. These data highlight significant variability among method replicates and type of method used, despite minimizing pre-analytical variability. Utilization of only one method or too few replicates (both method and technical) may limit the subset of proteomic information obtained.
Collapse
Affiliation(s)
- Stephen A Luebker
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Melinda Wojtkiewicz
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Scott A Koepsell
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Addis MF, Tanca A, Landolfo S, Abbondio M, Cutzu R, Biosa G, Pagnozzi D, Uzzau S, Mannazzu I. Proteomic analysis ofRhodotorula mucilaginosa: dealing with the issues of a non-conventional yeast. Yeast 2016; 33:433-49. [DOI: 10.1002/yea.3162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/16/2016] [Accepted: 03/09/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Sara Landolfo
- Dipartimento di Agraria; Università di Sassari; Italy
| | | | | | | | | | - Sergio Uzzau
- Porto Conte Ricerche; Tramariglio Alghero Italy
- Dipartimento di Scienze Biomediche; Università di Sassari; Italy
| | | |
Collapse
|
28
|
Cutillas PR, Crnogorac-Jurcevic T. Application of Proteomics in Cancer Biomarker Discovery: GeLC-MS/MS. Methods Mol Biol 2016; 1381:201-209. [PMID: 26667462 DOI: 10.1007/978-1-4939-3204-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteomic approaches are being increasingly applied to study multiple facets of healthy and diseased processes. In particular, the application of global proteome profiling in the field of oncology is already starting to shape the diagnostic, prognostic, monitoring, and therapeutic approaches. At the heart of such approaches lies a quest for clinically relevant biomarkers, particularly arising from global analyses of body fluids, as, in major part, they represent easily accessible and noninvasive matrices. A detailed protocol of one of the popular approaches for global proteome profiling, SDS-PAGE-liquid chromatography-tandem mass spectrometry or GeLC-MS/MS, and its application for biomarker discovery in urine is provided here.
Collapse
Affiliation(s)
- Pedro R Cutillas
- Centre for Haemato-Oncology, Bart Cancer Institute, Queen Mary University of London, 3rd Floor, John Vane Science Centre, John Vane Science Building, Charterhouse Square, London, EC1 6BQ, UK.
| | - Tatjana Crnogorac-Jurcevic
- Molecular Oncology Centre, Bart Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1 6BQ, UK
| |
Collapse
|
29
|
Steiner C, Tille JC, Lamerz J, Kux van Geijtenbeek S, McKee TA, Venturi M, Rubbia-Brandt L, Hochstrasser D, Cutler P, Lescuyer P, Ducret A. Quantification of HER2 by Targeted Mass Spectrometry in Formalin-Fixed Paraffin-Embedded (FFPE) Breast Cancer Tissues. Mol Cell Proteomics 2015; 14:2786-99. [PMID: 26149442 DOI: 10.1074/mcp.o115.049049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/06/2022] Open
Abstract
The ability to accurately quantify proteins in formalin-fixed paraffin-embedded tissues using targeted mass spectrometry opens exciting perspectives for biomarker discovery. We have developed and evaluated a selectedreaction monitoring assay for the human receptor tyrosine-protein kinase erbB-2 (HER2) in formalin-fixed paraffin-embedded breast tumors. Peptide candidates were identified using an untargeted mass spectrometry approach in relevant cell lines. A multiplexed assay was developed for the six best candidate peptides and evaluated for linearity, precision and lower limit of quantification. Results showed a linear response over a calibration range of 0.012 to 100 fmol on column (R(2): 0.99-1.00).The lower limit of quantification was 0.155 fmol on column for all peptides evaluated. The six HER2 peptides were quantified by selected reaction monitoring in a cohort of 40 archival formalin-fixed paraffin-embedded tumor tissues from women with invasive breast carcinomas, which showed different levels of HER2 gene amplification as assessed by standard methods used in clinical pathology. The amounts of the six HER2 peptides were highly and significantly correlated with each other, indicating that peptide levels can be used as surrogates of protein amounts in formalin-fixed paraffin-embedded tissues. After normalization for sample size, selected reaction monitoring peptide measurements were able to correctly predict 90% of cases based on HER2 amplification as defined by the American Society of Clinical Oncology and College of American Pathologists. In conclusion, the developed assay showed good analytical performance and a high agreement with immunohistochemistry and fluorescence in situ hybridization data. This study demonstrated that selected reaction monitoring allows to accurately quantify protein expression in formalin-fixed paraffin-embedded tissues and represents therefore a powerful approach for biomarker discovery studies. The untargeted mass spectrometry data is available via ProteomeXchange whereas the quantification data by selected reaction monitoring is available on the Panorama Public website.
Collapse
Affiliation(s)
- Carine Steiner
- From the ‡Division of Laboratory Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland; §Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland;
| | - Jean-Christophe Tille
- ¶Division of Clinical Pathology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Jens Lamerz
- §Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Sabine Kux van Geijtenbeek
- §Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Thomas A McKee
- ¶Division of Clinical Pathology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Miro Venturi
- ‖Oncology Division, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Laura Rubbia-Brandt
- ¶Division of Clinical Pathology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Denis Hochstrasser
- From the ‡Division of Laboratory Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Paul Cutler
- §Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Pierre Lescuyer
- From the ‡Division of Laboratory Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Axel Ducret
- §Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| |
Collapse
|
30
|
Zhang Y, Muller M, Xu B, Yoshida Y, Horlacher O, Nikitin F, Garessus S, Magdeldin S, Kinoshita N, Fujinaka H, Yaoita E, Hasegawa M, Lisacek F, Yamamoto T. Unrestricted modification search reveals lysine methylation as major modification induced by tissue formalin fixation and paraffin embedding. Proteomics 2015; 15:2568-79. [PMID: 25825003 DOI: 10.1002/pmic.201400454] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/22/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is considered as an appropriate alternative to frozen/fresh tissue for proteomic analysis. Here we study formalin-induced alternations on a proteome-wide level. We compared LC-MS/MS data of FFPE and frozen human kidney tissues by two methods. First, clustering analysis revealed that the biological variation is higher than the variation introduced by the two sample processing techniques and clusters formed in accordance with the biological tissue origin and not with the sample preservation method. Second, we combined open modification search and spectral counting to find modifications that are more abundant in FFPE samples compared to frozen samples. This analysis revealed lysine methylation (+14 Da) as the most frequent modification induced by FFPE preservation. We also detected a slight increase in methylene (+12 Da) and methylol (+30 Da) adducts as well as a putative modification of +58 Da, but they contribute less to the overall modification count. Subsequent SEQUEST analysis and X!Tandem searches of different datasets confirmed these trends. However, the modifications due to FFPE sample processing are a minor disturbance affecting 2-6% of all peptide-spectrum matches and the peptides lists identified in FFPE and frozen tissues are still highly similar.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland.,Biofluid Biomarker Center (BB-C), Institute for Research Collaboration and Promotion, Niigata University, Niigata, Japan
| | - Markus Muller
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Bo Xu
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yutaka Yoshida
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | | - Sameh Magdeldin
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Naohiko Kinoshita
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hidehiko Fujinaka
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Institute of Clinical Research, Niigata National Hospital, Kashiwazaki, Japan
| | - Eishin Yaoita
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Miki Hasegawa
- Division of Digestive & General Surgery, Niigata University, Niigata, Japan
| | | | - Tadashi Yamamoto
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Biofluid Biomarker Center (BB-C), Institute for Research Collaboration and Promotion, Niigata University, Niigata, Japan
| |
Collapse
|
31
|
Tanca A, Palomba A, Pisanu S, Addis MF, Uzzau S. Enrichment or depletion? The impact of stool pretreatment on metaproteomic characterization of the human gut microbiota. Proteomics 2015; 15:3474-85. [PMID: 25677681 DOI: 10.1002/pmic.201400573] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 02/03/2023]
Abstract
To date, most metaproteomic studies of the gut microbiota employ stool sample pretreatment methods to enrich for microbial components. However, a specific investigation aimed at assessing if, how, and to what extent this may impact on the final taxonomic and functional results is still lacking. Here, stool replicates were either pretreated by differential centrifugation (DC) or not centrifuged. Protein extracts were then processed by filter-aided sample preparation, single-run LC, and high-resolution MS, and the metaproteomic data were compared by spectral counting. DC led to a higher number of identifications, a significantly richer microbial diversity, as well as to reduced information on the nonmicrobial components (host and food) when compared to not centrifuged. Nevertheless, dramatic differences in the relative abundance of several gut microbial taxa were also observed, including a significant change in the Firmicutes/Bacteroidetes ratio. Furthermore, some important microbial functional categories, including cell surface enzymes, membrane-associated proteins, extracellular proteins, and flagella, were significantly reduced after DC. In conclusion, this work underlines that a critical evaluation is needed when selecting the appropriate stool sample processing protocol in the context of a metaproteomic study, depending on the specific target to which the research is aimed. All MS data have been deposited in the ProteomeXchange with identifier PXD001573 (http://proteomecentral.proteomexchange.org/dataset/PXD001573).
Collapse
Affiliation(s)
| | | | | | | | - Sergio Uzzau
- Porto Conte Ricerche, Tramariglio, Alghero, Italy.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| |
Collapse
|
32
|
Tanca A, Uzzau S, Addis MF. Full-length protein extraction protocols and gel-based downstream applications in formalin-fixed tissue proteomics. Methods Mol Biol 2015; 1295:117-134. [PMID: 25820719 DOI: 10.1007/978-1-4939-2550-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Archival formalin-fixed, paraffin-embedded (FFPE) tissue repositories and their associated clinical information can represent a valuable resource for tissue proteomics. In order to make these tissues available for protein biomarker discovery and validation studies, dedicated sample preparation procedures overcoming the intermolecular cross-links introduced by formalin need to be implemented. This chapter describes a full-length protein extraction protocol optimized for downstream gel-based proteomics applications. Using the procedures detailed here, SDS-PAGE, western immunoblotting, GeLC-MS/MS, 2D-PAGE, and 2D-DIGE can be carried out on FFPE tissues. Technical tips, critical aspects, and drawbacks of the method are presented and discussed.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Loc, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, Alghero (SS), 07041, Italy
| | | | | |
Collapse
|
33
|
Kwok MM, Goodyear P. Prognostic and Predictive Protein Biomarkers in Laryngeal Squamous Cell Carcinoma—A Systematic Review. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ijohns.2015.43031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Steiner C, Ducret A, Tille JC, Thomas M, McKee TA, Rubbia-Brandt L, Scherl A, Lescuyer P, Cutler P. Applications of mass spectrometry for quantitative protein analysis in formalin-fixed paraffin-embedded tissues. Proteomics 2014; 14:441-51. [PMID: 24339433 PMCID: PMC4265304 DOI: 10.1002/pmic.201300311] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022]
Abstract
Proteomic analysis of tissues has advanced in recent years as instruments and methodologies have evolved. The ability to retrieve peptides from formalin-fixed paraffin-embedded tissues followed by shotgun or targeted proteomic analysis is offering new opportunities in biomedical research. In particular, access to large collections of clinically annotated samples should enable the detailed analysis of pathologically relevant tissues in a manner previously considered unfeasible. In this paper, we review the current status of proteomic analysis of formalin-fixed paraffin-embedded tissues with a particular focus on targeted approaches and the potential for this technique to be used in clinical research and clinical diagnosis. We also discuss the limitations and perspectives of the technique, particularly with regard to application in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Carine Steiner
- Division of Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland; Human Protein Sciences Department, University of Geneva, Geneva, Switzerland; Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Comparison of two FFPE preparation methods using label-free shotgun proteomics: Application to tissues of diverticulitis patients. J Proteomics 2014; 112:250-61. [PMID: 25218866 DOI: 10.1016/j.jprot.2014.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/12/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022]
Abstract
UNLABELLED Formalin-fixed paraffin-embedded (FFPE) specimens of patients are useful sources of materials for clinical research and have recently gained interest for use in the discovery of clinical proteomic biomarkers. However, the critical step in this field is the ability to obtain an efficient and repeatable extraction using the limited quantities of material available for research in hospital biobanks. This work describes the evaluation of the peptide/protein extraction using FFPE sections treated by the following two methods before shotgun proteomic analysis: a commercial solution (FFPE-FASP) (filter aided sample preparation) and an antigen retrieval-derived protocol (On Slice AR). Their efficiencies and repeatabilities are compared using data-independent differential quantitative label-free analysis. FFPE-FASP was shown to be globally better both qualitatively and quantitatively than On Slice AR. FFPE-FASP was tested on several samples, and differential analysis was used to compare the tissues of diverticulitis patients (healthy and inflammatory tissues). In this differential proteomic analysis using retrospective clinical FFPE material, FFPE-FASP was reproducible and provided a high number of confident protein identifications, highlighting potential protein biomarkers. BIOLOGICAL SIGNIFICANCE In clinical proteomics, FFPE is an important resource for retrospective analysis and for the discovery of biomarkers. The challenge for FFPE shotgun proteomic analysis is preparation by an efficient and reproducible protocol, which includes protein extraction and digestion. In this study, we analyzed two different methods and evaluated their repeatabilities and efficiencies. We illustrated the reproducibility of the most efficient method, FFPE-FASP, by a pilot study on diverticulitis tissue and on FFPE samples amount accessible in hospital biobanks. These data showed that FFPE is suitable for use in clinical proteomics, especially when the FFPE-FASP method is combined with label-free shotgun proteomics as described in the workflow presented in this work.
Collapse
|
36
|
Lai X, Schneider BP. Integrated and convenient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for LC-MS/MS analysis. Proteomics 2014; 14:2623-7. [DOI: 10.1002/pmic.201400110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/09/2014] [Accepted: 07/31/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Xianyin Lai
- Department of Biochemistry and Molecular Biology; Indiana University School of Medicine; Indianapolis IN USA
- Department of Cellular and Integrative Physiology; Indiana University School of Medicine; Indianapolis IN USA
| | - Bryan P. Schneider
- Department of Medicine; Indiana University School of Medicine; Indianapolis IN USA
- Department of Medical & Molecular Genetics; Indiana University School of Medicine; Indianapolis IN USA
| |
Collapse
|
37
|
Hu M, Liu Y, Yu K, Liu X. Decreasing the amount of trypsin in in-gel digestion leads to diminished chemical noise and improved protein identifications. J Proteomics 2014; 109:16-25. [DOI: 10.1016/j.jprot.2014.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 11/26/2022]
|
38
|
Finne K, Vethe H, Skogstrand T, Leh S, Dahl TD, Tenstad O, Berven FS, Reed RK, Vikse BE. Proteomic analysis of formalin-fixed paraffin-embedded glomeruli suggests depletion of glomerular filtration barrier proteins in two-kidney, one-clip hypertensive rats. Nephrol Dial Transplant 2014; 29:2217-27. [PMID: 25129444 PMCID: PMC4240179 DOI: 10.1093/ndt/gfu268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background It is well known that hypertension may cause glomerular damage, but the molecular mechanisms involved are still incompletely understood. Methods In the present study, we used formalin-fixed paraffin-embedded (FFPE) tissue to investigate changes in the glomerular proteome in the non-clipped kidney of two-kidney one-clip (2K1C) hypertensive rats, with special emphasis on the glomerular filtration barrier. 2K1C hypertension was induced in 6-week-old Wistar Hannover rats (n = 6) that were sacrificed 23 weeks later and compared with age-matched sham-operated controls (n = 6). Tissue was stored in FFPE tissue blocks and later prepared on tissue slides for laser microdissection. Glomeruli without severe morphological damage were isolated, and the proteomes were analysed using liquid chromatography–tandem mass spectrometry. Results 2K1C glomeruli showed reduced abundance of proteins important for slit diaphragm complex, such as nephrin, podocin and neph1. The podocyte foot process had a pattern of reduced abundance of transmembrane proteins but unchanged abundances of the podocyte cytoskeletal proteins synaptopodin and α-actinin-4. Lower abundance of important glomerular basement membrane proteins was seen. Possible glomerular markers of damage with increased abundance in 2K1C were transgelin, desmin and acyl-coenzyme A thioesterase 1. Conclusions Microdissection and tandem mass spectrometry could be used to investigate the proteome of isolated glomeruli from FFPE tissue. Glomerular filtration barrier proteins had reduced abundance in the non-clipped kidney of 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Trude Skogstrand
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tone D Dahl
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Frode S Berven
- Department of Biomedicine, University of Bergen, Bergen, Norway The Norwegian Multiple Sclerosis National Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Bjørn Egil Vikse
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Medicine, Haukeland University Hospital, Bergen, Norway Department of Medicine, Haugesund Hospital, Haugesund, Norway
| |
Collapse
|
39
|
Tanca A, Abbondio M, Pisanu S, Pagnozzi D, Uzzau S, Addis MF. Critical comparison of sample preparation strategies for shotgun proteomic analysis of formalin-fixed, paraffin-embedded samples: insights from liver tissue. Clin Proteomics 2014; 11:28. [PMID: 25097466 PMCID: PMC4115481 DOI: 10.1186/1559-0275-11-28] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/03/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The growing field of formalin-fixed paraffin-embedded (FFPE) tissue proteomics holds promise for improving translational research. Direct tissue trypsinization (DT) and protein extraction followed by in solution digestion (ISD) or filter-aided sample preparation (FASP) are the most common workflows for shotgun analysis of FFPE samples, but a critical comparison of the different methods is currently lacking. EXPERIMENTAL DESIGN DT, FASP and ISD workflows were compared by subjecting to the same label-free quantitative approach three independent technical replicates of each method applied to FFPE liver tissue. Data were evaluated in terms of method reproducibility and protein/peptide distribution according to localization, MW, pI and hydrophobicity. RESULTS DT showed lower reproducibility, good preservation of high-MW proteins, a general bias towards hydrophilic and acidic proteins, much lower keratin contamination, as well as higher abundance of non-tryptic peptides. Conversely, FASP and ISD proteomes were depleted in high-MW proteins and enriched in hydrophobic and membrane proteins; FASP provided higher identification yields, while ISD exhibited higher reproducibility. CONCLUSIONS These results highlight that diverse sample preparation strategies provide significantly different proteomic information, and present typical biases that should be taken into account when dealing with FFPE samples. When a sufficient amount of tissue is available, the complementary use of different methods is suggested to increase proteome coverage and depth.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Marcello Abbondio
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy ; Dipartimento di Scienze Biomediche, Università di Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| |
Collapse
|
40
|
Decrease of dynamic range of proteins in human plasma by ampholine immobilized polymer microspheres. Anal Chim Acta 2014; 826:43-50. [DOI: 10.1016/j.aca.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/28/2014] [Accepted: 04/03/2014] [Indexed: 12/25/2022]
|
41
|
Fowler CB, O'Leary TJ, Mason JT. Toward improving the proteomic analysis of formalin-fixed, paraffin-embedded tissue. Expert Rev Proteomics 2014; 10:389-400. [PMID: 23992421 DOI: 10.1586/14789450.2013.820531] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Archival formalin-fixed, paraffin-embedded (FFPE) tissue and their associated diagnostic records represent an invaluable source of retrospective proteomic information on diseases for which the clinical outcome and response to treatment are known. However, analysis of archival FFPE tissues by high-throughput proteomic methods has been hindered by the adverse effects of formaldehyde fixation and subsequent tissue histology. This review examines recent methodological advances for extracting proteins from FFPE tissue suitable for proteomic analysis. These methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, allow at least a qualitative analysis of the proteome of FFPE archival tissues. The authors also discuss recent advances in the proteomic analysis of FFPE tissue; including liquid-chromatography tandem mass spectrometry, reverse phase protein microarrays and imaging mass spectrometry.
Collapse
Affiliation(s)
- Carol B Fowler
- Laboratory of Proteomics and Protein Science, Washington DC Veterans Affairs Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
42
|
Identification of differentially expressed serum proteins in infectious purpura fulminans. DISEASE MARKERS 2014; 2014:698383. [PMID: 24659849 PMCID: PMC3934775 DOI: 10.1155/2014/698383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/26/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Purpura fulminans (PF) is a life-threatening hemorrhagic condition. Because of the rarity and randomness of the disease, no improvement in treatment has been made for a long time. In this study, we assessed the serum proteome response to PF by comparing serum proteins between healthy controls and PF patient. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) approach was used after depleting 6 abundant proteins of serum. In total, 262 proteins were confidently identified with 2 unique peptides, and 38 proteins were identified significantly up- (≥2) or downregulated (≤0.5) based on spectral counting ratios (SpCPF/N). In the 38 proteins with significant abundance changes, 11 proteins were previously known to be associated with burn or sepsis response, but 27 potentially novel proteins may be specifically associated with PF process. Two differentially expressed proteins, alpha-1-antitrypsin (SERPINA1) and alpha-2 antiplasmin (SERPINF2), were validated by Western blot. This is the first study where PF patient and healthy controls are compared in a proteomic study to elucidate proteins involved in the response to PF. This study provides an initial basis for future studies of PF, and the differentially expressed proteins might provide new therapeutic targets to decrease the mortality of PF.
Collapse
|
43
|
Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis. J Proteomics 2014; 96:92-102. [DOI: 10.1016/j.jprot.2013.10.037] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 10/24/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022]
|
44
|
Pauly F, Dexlin-Mellby L, Ek S, Ohlin M, Olsson N, Jirström K, Dictor M, Schoenmakers S, Borrebaeck CAK, Wingren C. Protein Expression Profiling of Formalin-Fixed Paraffin-Embedded Tissue Using Recombinant Antibody Microarrays. J Proteome Res 2013; 12:5943-53. [DOI: 10.1021/pr4003245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Frida Pauly
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
- CREATE Health, Lund University, Medicon Village, Lund, Sweden
| | - Linda Dexlin-Mellby
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
- CREATE Health, Lund University, Medicon Village, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
- CREATE Health, Lund University, Medicon Village, Lund, Sweden
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
- CREATE Health, Lund University, Medicon Village, Lund, Sweden
| | - Niclas Olsson
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
- CREATE Health, Lund University, Medicon Village, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Michael Dictor
- Department of Clinical Sciences, Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Carl A. K. Borrebaeck
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
- CREATE Health, Lund University, Medicon Village, Lund, Sweden
| | - Christer Wingren
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
- CREATE Health, Lund University, Medicon Village, Lund, Sweden
| |
Collapse
|
45
|
Theis JD, Dasari S, Vrana JA, Kurtin PJ, Dogan A. Shotgun-proteomics-based clinical testing for diagnosis and classification of amyloidosis. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1067-1077. [PMID: 24130009 DOI: 10.1002/jms.3264] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/01/2013] [Accepted: 08/16/2013] [Indexed: 06/02/2023]
Abstract
Shotgun proteomics technology has matured in the research laboratories and is poised to enter clinical laboratories. However, the road to this transition is sprinkled with major technical unknowns such as long-term stability of the platform, reproducibility of the technology and clinical utility over traditional antibody-based platforms. Further, regulatory bodies that oversee the clinical laboratory operations are unfamiliar with this new technology. As a result, diagnostic laboratories have avoided using shotgun proteomics for routine diagnostics. In this perspectives article, we describe the clinical implementation of a shotgun proteomics assay for amyloid subtyping, with a special emphasis on standardizing the platform for better quality control and earning clinical acceptance. This assay is the first shotgun proteomics assay to receive regulatory approval for patient diagnosis. The blueprint of this assay can be utilized to develop novel proteomics assays for detecting numerous other disease pathologies.
Collapse
Affiliation(s)
- Jason D Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
46
|
Babudieri S, Soddu A, Nieddu P, Tanca A, Madeddu G, Addis M, Pagnozzi D, Cossu-Rocca P, Massarelli G, Dore M, Uzzau S, Mura M. Proteomic characterization of hepatitis C eradication: Enzyme switch in the healing liver. J Clin Virol 2013; 57:274-8. [DOI: 10.1016/j.jcv.2013.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/23/2013] [Accepted: 03/02/2013] [Indexed: 12/13/2022]
|
47
|
Analysis of the formalin-fixed paraffin-embedded tissue proteome: pitfalls, challenges, and future prospectives. Amino Acids 2013; 45:205-18. [PMID: 23592010 DOI: 10.1007/s00726-013-1494-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are a real treasure for retrospective analysis considering the amount of samples present in hospital archives, combined with pathological, clinical, and outcome information available for every sample. Although unlocking the proteome of these tissues is still a challenge, new approaches are being developed. In this review, we summarize the different mass spectrometry platforms that are used in human clinical studies to unravel the FFPE proteome. The different ways of extracting crosslinked proteins and the analytical strategies are pointed out. Also, the pitfalls and challenges concerning the quality of FFPE proteomic approaches are depicted. We also evaluated the potential of these analytical methods for future clinical FFPE proteomics applications.
Collapse
|