1
|
von Werz V, Spadiut O, Kozma B. A review and statistical analysis to identify and describe relationships between CQAs and CPPs of natural killer cell expansion processes. Cytotherapy 2024; 26:1285-1298. [PMID: 38944794 DOI: 10.1016/j.jcyt.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024]
Abstract
Natural killer (NK) cells make only a small fraction of immune cells in the human body, however, play a pivotal role in the fight against cancer by the immune system. They are capable of eliminating abnormal cells via several direct or indirect cytotoxicity pathways in a self-regulating manner, which makes them a favorable choice as a cellular therapy against cancer. Additionally, allogeneic NK cells, unlike other lymphocytes, do not or only minimally cause graft-versus-host diseases opening the door for an off-the-shelf therapy. However, to date, the production of NK cells faces several difficulties, especially because the critical process parameters (CPPs) influencing the critical quality attributes (CQAs) are difficult to identify or correlate. There are numerous different cultivation platforms available, all with own characteristics, benefits and disadvantages that add further difficulty to define CPPs and relate them to CQAs. Our goal in this contribution was to summarize the current knowledge about NK cell expansion CPPs and CQAs, therefore we analyzed the available literature of both dynamic and static culture format experiments in a systematic manner. We present a list of the identified CQAs and CPPs and discuss the role of each CPP in the regulation of the CQAs. Furthermore, we could identify potential relationships between certain CPPs and CQAs. The findings based on this systematic literature research can be the foundation for meaningful experiments leading to better process understanding and eventually control.
Collapse
Affiliation(s)
- Valentin von Werz
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Bence Kozma
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria.
| |
Collapse
|
2
|
Korenevsky AV, Gert TN, Berezkina ME, Sinyavin SA, Mikhailova VA, Markova KL, Simbirtsev AS, Selkov SA, Sokolov DI. Protein Fractions of Natural Killer Cell Lysates Affect the Phenotype, Proliferation and Migration of Endothelial Cells in vitro. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Murin CD. Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity. Front Immunol 2020; 11:1635. [PMID: 32849559 PMCID: PMC7406664 DOI: 10.3389/fimmu.2020.01635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well-established that antibody isotype, glycosylation, and epitope all play roles in the process of antibody dependent cellular cytotoxicity (ADCC). For natural killer (NK) cells, these phenotypes are linked to cellular activation through interaction with the IgG receptor FcγRIIIa, a single pass transmembrane receptor that participates in cytoplasmic signaling complexes. Therefore, it has been hypothesized that there may be underlying spatial and geometric principles that guide proper assembly of an activation complex within the NK cell immune synapse. Further, synergy of antibody phenotypic properties as well as allosteric changes upon antigen binding may also play an as-of-yet unknown role in ADCC. Understanding these facets, however, remains hampered by difficulties associated with studying immune synapse dynamics using classical approaches. In this review, I will discuss relevant NK cell biology related to ADCC, including the structural biology of Fc gamma receptors, and how the dynamics of the NK cell immune synapse are being studied using innovative microscopy techniques. I will provide examples from the literature demonstrating the effects of spatial and geometric constraints on the T cell receptor complex and how this relates to intracellular signaling and the molecular nature of lymphocyte activation complexes, including those of NK cells. Finally, I will examine how the integration of high-throughput and "omics" technologies will influence basic NK cell biology research moving forward. Overall, the goal of this review is to lay a basis for understanding the development of drugs and therapeutic antibodies aimed at augmenting appropriate NK cell ADCC activity in patients being treated for a wide range of illnesses.
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, United States
| |
Collapse
|
4
|
Medel MLH, Reyes GG, Porras LM, Bernal AR, Luna JS, Garcia AP, Cordova J, Parra A, Mummidi S, Kershenobich D, Hernández J. Prolactin Induces IL-2 Associated TRAIL Expression on Natural Killer Cells from Chronic Hepatitis C Patients In vivo and In vitro. Endocr Metab Immune Disord Drug Targets 2020; 19:975-984. [PMID: 30520386 DOI: 10.2174/1871530319666181206125545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Natural killer cells (NKC) are a major component of the innate immune response to HCV, mediating their effects through TRAIL and IFN-γ. However, their function is diminished in chronic HCV patients (HCVp). Prolactin is an immunomodulatory hormone capable of activating NKC. OBJECTIVE The study aims to explore if hyperprolactinemia can activate NKC in HCVp. METHODS We treated twelve chronic HCVp (confidence level =95%, power =80%) for 15 days with Levosulpiride plus Cimetidine to induce mild hyperprolactinemia. Before and after treatment, we determined TRAIL and NKG2D expression on peripheral blood NKC, along with cytokine profiles, viral loads and liver function. We also evaluated in vitro effects of prolactin and/or IL-2 on NKC TRAIL or NKG2D expression and IFN-γ levels on cultured blood mononuclear cells from 8 HCVp and 7 healthy controls. RESULTS The treatment induced mild hyperprolactinemia and increased TRAIL expression on NKC as well as the secretion of IL-1ra, IL-2, PDGF and IFN-γ. Viral loads decreased in six HCVp. IL-2 and TRAIL together explained the viral load decrease. In vitro, prolactin plus IL-2 synergized to increase TRAIL and NKG2D expression on NKC from HCVp but not in controls. CONCLUSION Levosulpiride/Cimetidine treatment induced mild hyperprolactinaemia that was associated with NKC activation and Th1-type cytokine profile. Also, an increase in TRAIL and IL-2 was associated with viral load decrease. This treatment could potentially be used to reactivate NKC in HCVp.
Collapse
Affiliation(s)
- Maria L H Medel
- Infectology Service, General Hospital of Mexico Dr. "Eduardo Liceaga", Mexico City, Mexico
| | - Gabriela G Reyes
- Liver, Pancreas and Motility Laboratory (HIPAM) - Experimental Medicine Research Unit, Faculty of Medicine, Mexico City, Mexico
| | - Luz M Porras
- Liver, Pancreas and Motility Laboratory (HIPAM) - Experimental Medicine Research Unit, Faculty of Medicine, Mexico City, Mexico
| | - Arturo R Bernal
- Directorate of Research, General Hospital of Mexico Dr. Eduardo Liceaga ", Mexico City, Mexico
| | - Jesús S Luna
- Department of Cell Biology, IPN Research and Advanced Studies Center, Mexico City, Mexico
| | - Adolfo P Garcia
- Liver, Pancreas and Motility Laboratory (HIPAM) - Experimental Medicine Research Unit, Faculty of Medicine, Mexico City, Mexico
| | - Jacqueline Cordova
- Directorate of Research, General Hospital of Mexico Dr. Eduardo Liceaga ", Mexico City, Mexico
| | - Adalberto Parra
- Department of Endocrinology, National Institute of Perinatology "Isidro Espinosa de los Reyes ", Mexico City, Mexico
| | - Srinivas Mummidi
- South Texas Diabetes & Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, United States
| | - David Kershenobich
- National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, Mexico
| | - Joselín Hernández
- Liver, Pancreas and Motility Laboratory (HIPAM) - Experimental Medicine Research Unit, Faculty of Medicine, Mexico City, Mexico.,South Texas Diabetes & Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, United States.,Clinical Pharmacology Unit, General Hospital of Mexico Dr. "Eduardo Liceaga", Mexico City, Mexico
| |
Collapse
|
5
|
Mannan-Binding Lectin Regulates Inflammatory Cytokine Production, Proliferation, and Cytotoxicity of Human Peripheral Natural Killer Cells. Mediators Inflamm 2019; 2019:6738286. [PMID: 31915415 PMCID: PMC6930792 DOI: 10.1155/2019/6738286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells represent the founding members of innate lymphoid cells (ILC) and play critical roles in inflammation and the immune response. NK cell effector functions are regulated and fine-tuned by various immune modulators. Mannan (or mannose)-binding lectin (MBL), a soluble C-type lectin, is traditionally recognized as an initiator of the complement pathway. Recently, it is also considered as an immunomodulator by its interaction with kinds of immune cells. However, the effect of MBL on NK cell function remains unexplored. In this study, we found that human plasma MBL could interact directly with peripheral NK cells partially via its collagen-like region (CLR). This MBL binding markedly suppressed the interleukin-2- (IL-2-) induced inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) production but increased the IL-10 production in NK cells. In addition, the expression of activation surface markers such as CD25 and CD69 declined after MBL treatment. Also, MBL impaired the proliferation and lymphokine-activated killing (LAK) of NK cells. Moreover, we demonstrated that MBL inhibited IL-2-induced signal transducers and activators of transcription 5 (STAT5) activation in NK cells. In conclusion, we have uncovered a far unknown regulatory role of MBL on NK cells, a new clue that could be important in the immunomodulatory networks of immune responses.
Collapse
|
6
|
Liu Z, Wang Y, Yao Y, Fang Z, Miao QR, Ye M. Quantitative proteomic and phosphoproteomic studies reveal novel 5-fluorouracil resistant targets in hepatocellular carcinoma. J Proteomics 2019; 208:103501. [PMID: 31454556 DOI: 10.1016/j.jprot.2019.103501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
The development of chemoresistance remains the major obstacles to successful chemotherapy of hepatocellular carcinoma. The molecular mechanisms of drug resistance are complex. Identifying the key markers is crucial for development of therapeutic strategies to overcome resistance. In this study, we employed a cell-line model consisting of the 5-fluorouracil resistant Bel/5-Fu cell line and its parental Bel cell line. Using stable isotope dimethyl labeling combined with high-resolution mass spectrometry, in total, 8272 unique proteins and 22,095 phosphorylation sites with high localization confidence were identified. Our data indicated that the GnRH signaling pathway was involved in acquiring drug resistance, which has not been well elucidated. The western blotting results confirmed that the expression levels of PLCβ3 and PLCβ3 pS1105 in Bel/5-Fu cells were increased as compared to Bel cells. Furthermore, the protein levels of SRC and PKCδ, which could phosphorylate PLCβ3 at ser1105, were higher in Bel/5-Fu cells than in Bel cells. The knockdown of SRC, PKCδ and PLCβ3 increased the susceptibility of Bel/5-Fu cells to 5-Fu. Besides, the increased transcription levels of PLCβ3, PKCδ and SRC were significantly associated with decreased overall survival. Together, our deep proteomic and phosphoproteomic data reveal novel therapeutic targets for attenuating 5-Fu resistance in anti-cancer therapy. SIGNIFICANCE: It was reported that many hepatocellular carcinoma patients are resistance to 5-Fu. Although some studies related to drug resistance have been reported, the underlying mechanisms were not well elucidated. Unlike many single molecular studies, we focused on the global proteome and phosphoproteome analysis of Bel and Bel5-/Fu cell line using stable isotope dimethyl labeling to identify the previously unrecognized signaling pathway for causing 5-Fu resistance. Our results showed that the phosphorylation levels of PLCβ3 pS1105 and the protein levels of PLCβ3, PKCδ and SRC, which are major components of GnRH signaling pathway were higher in Bel/5-Fu cells than in Bel cells. Furthermore, knockdown of PLCβ3, PKCδ and SRC increased the susceptibility of Bel/5-Fu cells to 5-Fu. Overall, this is the first comprehensive proteomic and phosphoproteomic studies on 5-Fu resistant cell line Bel/5-Fu to identify the potential targets of attenuating chemoresistance in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhen Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing R Miao
- Divisions of Pediatric Surgery and Pediatric Pathology, Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America; New York University Winthrop Hospital, Mineola, NY 11501, United States of America.
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Fantini M, David JM, Wong HC, Annunziata CM, Arlen PM, Tsang KY. An IL-15 Superagonist, ALT-803, Enhances Antibody-Dependent Cell-Mediated Cytotoxicity Elicited by the Monoclonal Antibody NEO-201 Against Human Carcinoma Cells. Cancer Biother Radiopharm 2019; 34:147-159. [PMID: 30601063 PMCID: PMC6482908 DOI: 10.1089/cbr.2018.2628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A major mechanism of action for therapeutic antibodies is antibody-dependent cell-mediated cytotoxicity (ADCC). ALT-803 is an interleukin-15 superagonist complex that enhances ADCC against human carcinoma cells in vitro and exerts an antitumor activity in murine, rat, and human carcinomas in vivo. The authors investigated the ability of ALT-803 to modulate ADCC mediated by the humanized IgG1 monoclonal antibody (mAb) NEO-201 against human carcinoma cells. MATERIALS AND METHODS ALT-803 modulating activity on ADCC mediated by NEO-201 was evaluated on several NEO-201 ligand-expressing human carcinoma cells. Purified human natural killer (NK) cells from multiple healthy donors were treated with ALT-803 before their use as effectors in ADCC assay. Modulation of NK cell phenotype and cytotoxic function by exposure to ALT-803 was evaluated by flow cytometry and gene expression analysis. RESULTS ALT-803 significantly enhanced ADCC mediated by NEO-201. ALT-803 also upregulated NK activating receptors, antiapoptotic factors, and factors involved in the NK cytotoxicity, as well as downregulated gene expression of NK inhibiting receptors. CONCLUSIONS These findings indicate that ALT-803 can enhance ADCC activity mediated by NEO-201, by modulating NK activation and cytotoxicity, suggesting a possible clinical use of ALT-803 in combination with NEO-201 for the treatment of human carcinomas.
Collapse
Affiliation(s)
| | | | | | - Christina M. Annunziata
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Kwong Y. Tsang
- Precision Biologics, Inc., Rockville, Maryland
- Address correspondence to: Kwong Y. Tsang; Precision Biologics, Inc.; 9600 Medical Center Drive, Suite 300, Rockville, MD 20850
| |
Collapse
|
8
|
Korenevskii AV, Milyutina YP, Zhdanova AA, Pyatygina KM, Sokolov DI, Sel'kov SA. Mass-Spectrometric Analysis of Proteome of Microvesicles Produced by NK-92 Natural Killer Cells. Bull Exp Biol Med 2018; 165:564-571. [PMID: 30121912 DOI: 10.1007/s10517-018-4214-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/29/2022]
Abstract
Membrane extracellular microvesicles serve as carriers of a wide range of molecules, the most important among these are proteins, lipids, and nucleic acids. Cytotoxic proteins of natural killer cells play a key role in the realization of their cytolytic functions. An important stage in understanding of the distant communication of cells and mechanisms of its regulation is analysis of the proteome composition of microvesicles. We studied the proteomic composition of microvesicles produced by NK-92 natural killer cells. Granzyme A, a specific protein of cytotoxic cells, has been identified in the microvesicles by QTOF-mass spectrometry. It was shown that heat shock proteins, components of the ubiquitin-proteasome system, enzymes of protein biosynthesis and energy metabolism, nuclear and serum proteins, as well as cytoskeleton proteins are associated with the microvesicles.
Collapse
Affiliation(s)
- A V Korenevskii
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, Russia.
| | - Yu P Milyutina
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, Russia
| | - A A Zhdanova
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, Russia
| | - K M Pyatygina
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, Russia
| | - D I Sokolov
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, Russia
| | - S A Sel'kov
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, Russia
| |
Collapse
|
9
|
Liu W, Gao Y, Li H, Wang H, Ye M, Jiang G, Chen Y, Liu Y, Kong J, Liu W, Sun M, Hou M, Yu K. Intravenous transplantation of mesenchymal stromal cells has therapeutic effects in a sepsis mouse model through inhibition of septic natural killer cells. Int J Biochem Cell Biol 2016; 79:93-103. [PMID: 27521657 DOI: 10.1016/j.biocel.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/30/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022]
Abstract
Transplantation of mesenchymal stromal cells is a promising strategy for treating sepsis. Natural killer cells are important in the development of sepsis, and their functions can be inhibited by mesenchymal stromal cells, we asked whether mesenchymal stromal cells exert their therapeutic effects through inhibiting the functions of natural killer cells in a septic mouse model generated with cecal ligation puncture method. Using co-cultures of cells, small interfering RNA, enzyme-linked immnuosorbent assays, fluorescence assays, western blotting, and pathological examination, we investigated the levels of inflammatory cytokines, proliferation of natural killer cells, inflammatory infiltration of important organs in mice, and activity of the Janus kinase/signal transducer and activator of transcription signaling pathway and found that mesenchymal stromal cells inhibited the function and proliferation of septic natural killer cells, increased interleukin-10 levels and increased the expression of components, such as Janus kinase 1, Janus kinase 2, and signal transducer and activator of transcription 3 in the Janus kinase/signal transducer and activator of transcription pathway both in vitro and in vivo. We conclude that mesenchymal stromal cells have their therapeutic effect in the septic mouse model through inhibiting the function and proliferation of septic natural killer cells. This biological process may involve interleukin-10 and suppressor of cytokine signaling 3 as well as other pathway components in the Janus kinase/signal transducer and activator of transcription pathway. Transplantation of mesenchymal stromal cells is an effective strategy to treat sepsis.
Collapse
Affiliation(s)
- Wenhua Liu
- Depatment of Intensive Care Unit (ICU), The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Province Heilongjiang, China
| | - Yang Gao
- Depatment of Intensive Care Unit (ICU), The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China
| | - Haibo Li
- Depatment of Intensive Care Unit (ICU), The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China
| | - Hongliang Wang
- Depatment of Intensive Care Unit (ICU), The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China
| | - Ming Ye
- Depatment of Intensive Care Unit (ICU), The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China
| | - Guihua Jiang
- Depatment of Intensive Care Unit (ICU), The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Province Heilongjiang, China
| | - Yongsheng Chen
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Province Heilongjiang, China; Depatment of Urology, Harbin Medical University Cancer Hospital, Harbin, Province Heilongjiang, China
| | - Yang Liu
- Depatment of Intensive Care Unit (ICU), The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China
| | - Junying Kong
- Depatment of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China
| | - Wei Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Province Heilongjiang, China
| | - Meng Sun
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Province Heilongjiang, China
| | - Meng Hou
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Province Heilongjiang, China; Depatment of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China
| | - Kaijiang Yu
- Department of intensive Care Unit (ICU), Harbin Medical University Cancer Hospital, Harbin, Province Heilongjiang, China.
| |
Collapse
|
10
|
Nelson HH, Kelsey KT. Epigenetic epidemiology as a tool to understand the role of immunity in chronic disease. Epigenomics 2016; 8:1007-9. [PMID: 27411030 DOI: 10.2217/epi-2016-0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Heather H Nelson
- Department of Prevention & Etiology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karl T Kelsey
- Departments of Epidemiology, Laboratory Medicine & Pathology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
11
|
Wiencke JK, Butler R, Hsuang G, Eliot M, Kim S, Sepulveda MA, Siegel D, Houseman EA, Kelsey KT. The DNA methylation profile of activated human natural killer cells. Epigenetics 2016; 11:363-80. [PMID: 26967308 DOI: 10.1080/15592294.2016.1163454] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states.
Collapse
Affiliation(s)
- John K Wiencke
- a Department of Neurological Surgery , University of California San Francisco , San Francisco , CA
| | - Rondi Butler
- b Brown University , Department of Epidemiology , Providence , RI
| | - George Hsuang
- a Department of Neurological Surgery , University of California San Francisco , San Francisco , CA
| | - Melissa Eliot
- b Brown University , Department of Epidemiology , Providence , RI
| | - Stephanie Kim
- b Brown University , Department of Epidemiology , Providence , RI
| | - Manuel A Sepulveda
- d Janssen Oncology Therapeutic Area, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson , 1400 Welsh and McKean Roads, Spring House , PA
| | - Derick Siegel
- d Janssen Oncology Therapeutic Area, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson , 1400 Welsh and McKean Roads, Spring House , PA
| | - E Andres Houseman
- e University of Oregon, College of Public Health and Human Science , Corvallis , OR
| | - Karl T Kelsey
- b Brown University , Department of Epidemiology , Providence , RI.,c Department of Laboratory Medicine and Pathology , Providence , RI
| |
Collapse
|
12
|
Shao G, Qian D, Wang H, Yan Z, Hu M, Wang T, Wang B. Construction of the plasmid coding for the expression of the EGFP- M-IL-2( 88Arg, 125Ala) fusion protein and the anti-tumor effects exerted by the fusion protein in HeLa-60 cells. Oncol Lett 2015; 9:2729-2735. [PMID: 26137137 DOI: 10.3892/ol.2015.3125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 03/11/2015] [Indexed: 11/05/2022] Open
Abstract
Gene therapy is a promising therapeutic option for the treatment of various cancers, and tumor-targeted plasmids encoding toxic protein genes are potential tools for gene therapy. In the present study, a recombinant plasmid containing the genes for the toxic protein melittin and interleukin-2 (IL-2) was constructed. Melittin and IL-2 are known to play key roles in immunoregulation and cancer therapy, but they each possess defects that limit the clinical application of these proteins. The present study aimed to construct a novel recombinant expression plasmid, pLEGFP-C1-M-IL-2(88Arg, 125Ala), and to improve the biological activity of IL-2 and melittin. The M-IL-2(88Arg, 125Ala) gene was excised from the pPICZαA/M-IL-2(88Arg, 125Ala) plasmid by polymerase chain reaction (PCR). The pLEGFP-C1 plasmid carrying the enhanced green fluorescent protein (EGFP) gene was used as a shuttle plasmid. Subsequent to digestion, the M-IL-2(88Arg, 125Ala) gene was subcloned into the pLEGFP-C1 vector to build the pLEGFP-C1-M-IL-2(88Arg, 125Ala) eukaryotic expression plasmid, which was identified by restriction enzyme digestion and gene sequencing. Confocal microscopy was used to determine the transfection efficiency subsequent to the plasmid being transfected into the cervical cancer HeLa cell line. The cells transfected with the pLEGFP-C1-M-IL-2(88Arg, 125Ala) plasmid demonstrated a decreased transfection efficiency compared with the cells transfected with the pLEGFP-C1 plasmid. The cellular expression of M-IL-2(88Arg, 125Ala) was detected by reverse transcription PCR and western blot analysis. Finally, cell counting kit-8 and apoptosis assays were performed to investigate the effects of the expression of the M-IL-2(88Arg, 125Ala) fusion protein on HeLa cells and to analyze the antitumor activity of the protein. In conclusion, a recombinant eukaryotic pLEGFP-C1-M-IL-2(88Arg, 125Ala) expression plasmid containing the M-IL-2(88Arg, 125Ala) fusion gene was constructed and the M-IL-2(88Arg, 125Ala) fusion protein was successfully expressed in HeLa cells. Furthermore, the M-IL-2(88Arg, 125Ala) fusion protein was able to inhibit HeLa cell proliferation and induce apoptosis in the tumor cells. These findings may offer an alternative method for anticancer therapy. The present study has provided a basis for future studies into the M-IL-2(88Arg, 125Ala) fusion gene.
Collapse
Affiliation(s)
- Guangcan Shao
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Dongmeng Qian
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Haitao Wang
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Zhiyong Yan
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Ming Hu
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Tongmei Wang
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Bin Wang
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
13
|
Helou YA, Salomon AR. Protein networks and activation of lymphocytes. Curr Opin Immunol 2015; 33:78-85. [PMID: 25687331 DOI: 10.1016/j.coi.2015.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 12/30/2022]
Abstract
The signal transduction pathways initiated by lymphocyte activation play a critical role in regulating host immunity. High-resolution mass spectrometry has accelerated the investigation of these complex and dynamic pathways by enabling the qualitative and quantitative investigation of thousands of proteins and phosphoproteins simultaneously. In addition, the unbiased and wide-scale identification of protein-protein interaction networks and protein kinase substrates in lymphocyte signaling pathways can be achieved by mass spectrometry-based approaches. Critically, the integration of these discovery-driven strategies with single-cell analysis using mass cytometry can facilitate the understanding of complex signaling phenotypes in distinct immunophenotypes.
Collapse
Affiliation(s)
- Ynes A Helou
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
14
|
|