1
|
Upadhyay VR, Ramesh V, Kumar H, Somagond YM, Priyadarsini S, Kuniyal A, Prakash V, Sahoo A. Phenomics in Livestock Research: Bottlenecks and Promises of Digital Phenotyping and Other Quantification Techniques on a Global Scale. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:380-393. [PMID: 39012961 DOI: 10.1089/omi.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Bottlenecks in moving genomics to real-life applications also include phenomics. This is true not only for genomics medicine and public health genomics but also in ecology and livestock phenomics. This expert narrative review explores the intricate relationship between genetic makeup and observable phenotypic traits across various biological levels in the context of livestock research. We unpack and emphasize the significance of precise phenotypic data in selective breeding outcomes and examine the multifaceted applications of phenomics, ranging from improvement to assessing welfare, reproductive traits, and environmental adaptation in livestock. As phenotypic traits exhibit strong correlations, their measurement alongside specific biological outcomes provides insights into performance, overall health, and clinical endpoints like morbidity and disease. In addition, automated assessment of livestock holds potential for monitoring the dynamic phenotypic traits across various species, facilitating a deeper comprehension of how they adapt to their environment and attendant stressors. A key challenge in genetic improvement in livestock is predicting individuals with optimal fitness without direct measurement. Temporal predictions from unmanned aerial systems can surpass genomic predictions, offering in-depth data on livestock. In the near future, digital phenotyping and digital biomarkers may further unravel the genetic intricacies of stress tolerance, adaptation and welfare aspects of animals enabling the selection of climate-resilient and productive livestock. This expert review thus delves into challenges associated with phenotyping and discusses technological advancements shaping the future of biological research concerning livestock.
Collapse
Affiliation(s)
| | - Vikram Ramesh
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, India
| | - Harshit Kumar
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, India
| | - Y M Somagond
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, India
| | | | - Aruna Kuniyal
- ICAR-National Research Centre on Camel, Bikaner, Rajasthan, India
| | - Ved Prakash
- ICAR-National Research Centre on Camel, Bikaner, Rajasthan, India
| | - Artabandhu Sahoo
- ICAR-National Research Centre on Camel, Bikaner, Rajasthan, India
| |
Collapse
|
2
|
Zhao L, Liu S, Zhang X, Yang J, Mao M, Zhang S, Xu S, Feng S, Wang X. Satellite glial cell-secreted exosomes after in-vitro oxaliplatin treatment presents a pro-nociceptive effect for dorsal root ganglion neurons and induce mechanical hypersensitivity in naïve mice. Mol Cell Neurosci 2023; 126:103881. [PMID: 37467904 DOI: 10.1016/j.mcn.2023.103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The pathophysiological mechanism underlying chemotherapy-induced neuropathic pain (CINP) remains unclear. Sensory neuronal hypersensitivity in the dorsal root ganglion (DRG) is essential for the onset and maintenance of chronic pain. Satellite glial cells (SGCs) in the DRG potentially affect the function of sensory neurons, possibly by mediating extracellular or paracrine signaling. Exosomes play an essential role in cell-cell communication. However, the role of SGC-secreted exosomes in glia-neuron communication and CINP remains unclear. METHODS SGCs and sensory neurons were cultured from the DRG of mice. The SGCs were treated with 4 μM oxaliplatin for 24 h. Glial fibrillary acid protein (GFAP) and connexin-43 (Cx-43) expressions in the SGCs were examined with immunocytochemistry (ICC). Enzyme-linked immunosorbent assay (ELISA) detected cytokine release in the SGCs after oxaliplatin treatment. Subsequently, SGC-secreted exosomes were collected using ultracentrifugation and identified by nanoparticle tracking analysis, transmission electron microscopy, and western blotting. Subsequently, DRG neurons were incubated with SGC-secreted exosomes for 24 h. The percentage of reactive oxygen species (ROS)-positive neurons was detected using flow cytometry, and acid-sensing ion channel 3 (ASIC3) and transient receptor potential vanilloid 1 (TRPV1) expression were examined by western blotting. SGC-secreted exosomes were intrathecally injected into naïve mice. The mechanical withdrawal threshold was assessed 24, 48, and 72 h following the injection. TRPV1 expression in the DRG was examined 72 h after intrathecal injection. Furthermore, differentially expressed (DE) miRNAs within the SGC-secreted exosomes were detected using RNA sequencing and bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses were performed to predict the function of the target genes of DE miRNAs. Finally, the DE miRNAs with pain regulation potential were identified in silico. RESULTS After in-vitro oxaliplatin treatment, ICC showed an increase in the immunoreactivity of GFAP and Cx-43 in the SGCs. ELISA results suggested an increased release of tumor necrosis factor-α and interleukin (IL)-1β, but a decreased release of IL-10. Oxaliplatin treatment increased the secretion of exosomes in the SGCs from 4.34 to 5.99 × 1011 (particles/ml). The exosome-specific markers CD9 and TSG101 were positive, whereas calnexin was negative for the obtained exosomes. Additionally, the SGC-secreted exosomes were endocytosed by DRG neurons after co-incubation. Moreover, after incubation with conditioned SGC-secreted exosomes (after 4 μM oxaliplatin treatment), the percentage of ROS-positive DRG neurons increased and ASIC3 and TRPV1 expressions were upregulated. After the intrathecal injection of the conditioned SGC-secreted exosomes, the mice presented with mechanical hypersensitivity and TRPV1 expression upregulation in the DRG. Notably, 25 and 120 significantly upregulated and downregulated miRNAs, respectively, were identified in the conditioned SGC-secreted exosomes. When predicting the function of target genes of DE miRNAs, certain GO terms, such as synapse organization, neurogenesis regulation, histone modification, and pain-related KEGG or Reactome pathways, including vascular endothelial growth factor A-vascular endothelial growth factor receptor 2, mammalian target of rapamycin, and mitogen-activated protein kinase signaling pathways, related to nervous system function were predicted. Finally, 27 pain regulation-related miRNAs, including miR-324-3p, miR-181a-5p, and miR-122-5p, were identified in silico. CONCLUSION Our study demonstrates that SGC-secreted exosomes after in-vitro oxaliplatin treatment present a pro-nociceptive effect for DRG neurons and induce mechanical hypersensitivity in naïve mice, possibly via the contained miRNA cargo. Identifying the candidate miRNAs and verifying their functions in vivo are required to elucidate the exosomes mediating 'glia-neuron' communication under CINP condition.
Collapse
Affiliation(s)
- Liping Zhao
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Shijiang Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaobao Zhang
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu Province, China
| | - Juan Yang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Mao Mao
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Susu Zhang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Shiqin Xu
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China.
| | - Shanwu Feng
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China.
| | - Xian Wang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Zhang L, Liu J, Zhou C. Current aspects of small extracellular vesicles in pain process and relief. Biomater Res 2023; 27:78. [PMID: 37563666 PMCID: PMC10416402 DOI: 10.1186/s40824-023-00417-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
Small extracellular vesicles (sEVs) have been identified as a noteworthy paracrine mechanism of intercellular communication in diagnosing and managing neurological disorders. Current research suggests that sEVs play a pivotal role in the pathological progression of pain, emphasizing their critical function in the pathological progression of pain in acute and chronic pain models. By facilitating the transfer of diverse molecules, such as proteins, nucleic acids, and metabolites, sEVs can modulate pain signaling transmission in both the central and peripheral nervous systems. Furthermore, the unique molecules conveyed by sEVs in pain disorders indicate their potential as diagnostic biomarkers. The application of sEVs derived from mesenchymal stem cells (MSCs) in regenerative pain medicine has emerged as a promising strategy for pain management. Moreover, modified sEVs have garnered considerable attention in the investigation of pathological processes and therapeutic interventions. This review presents a comprehensive overview of the current knowledge regarding the involvement of sEVs in pain pathogenesis and treatment. Nevertheless, additional research is imperative to facilitate their clinical implementation. Schematic diagram of sEVs in the biogenesis, signal transmission, diagnosis, and treatment of pain disorders. Small extracellular vesicles (sEVs) are secreted by multiple cells, loading with various biomolecules, such as miRNAs, transmembrane proteins, and amino acids. They selectively target other cells and regulating pain signal transmission. The composition of sEVs can serve as valuable biomarkers for pain diagnosis. In particular, mesenchymal stem cell-derived sEVs have shown promise as regenerative medicine for managing multiple pain disorders. Furthermore, by modifying the structure or contents of sEVs, they could potentially be used as a potent analgesic method.
Collapse
Affiliation(s)
- Lanyu Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Abstract
Satellite glial cells (SGCs) that surround sensory neurons in the peripheral nervous system ganglia originate from neural crest cells. Although several studies have focused on SGCs, the origin and characteristics of SGCs are unknown, and their lineage remains unidentified. Traditionally, it has been considered that SGCs regulate the environment around neurons under pathological conditions, and perform functions of supporting, nourishing, and protecting neurons. However, recent studies demonstrated that SGCs may have the characteristics of stem cells. After nerve injury, SGCs up-regulate the expression of stem cell markers and can differentiate into functional sensory neurons. Moreover, SGCs express several markers of Schwann cell precursors and Schwann cells, such as CDH19, MPZ, PLP1, SOX10, ERBB3, and FABP7. Schwann cell precursors have also been proposed as a potential source of neurons in the peripheral nervous system. The similarity in function and markers suggests that SGCs may represent a subgroup of Schwann cell precursors. Herein, we discuss the roles and functions of SGCs, and the lineage relationship between SGCs and Schwann cell precursors. We also describe a new perspective on the roles and functions of SGCs. In the DRG located on the posterior root of spinal nerves, satellite glial cells wrap around each sensory neuron to form an anatomically and functionally distinct unit with the sensory neurons. Following nerve injury, satellite glial cells up-regulate the expression of progenitor markers, and can differentiate into neurons.
Collapse
|
5
|
Chase R, de la Peña JB, Smith PR, Lawson J, Lou TF, Stanowick AD, Black BJ, Campbell ZT. Global analyses of mRNA expression in human sensory neurons reveal eIF5A as a conserved target for inflammatory pain. FASEB J 2022; 36:e22422. [PMID: 35747924 DOI: 10.1096/fj.202101933rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Nociceptors are a type of sensory neuron that are integral to most forms of pain. Targeted disruption of nociceptor sensitization affords unique opportunities to prevent pain. An emerging model for nociceptors are sensory neurons derived from human stem cells. Here, we subjected five groups to high-throughput sequencing: human induced pluripotent stem cells (hiPSCs) prior to differentiation, mature hiPSC-derived sensory neurons, mature co-cultures containing hiPSC-derived astrocytes and sensory neurons, mouse dorsal root ganglion (DRG) tissues, and mouse DRG cultures. Co-culture of nociceptors and astrocytes promotes expression of transcripts enriched in DRG tissues. Comparisons of the hiPSC models to tissue samples reveal that many key transcripts linked to pain are present. Markers indicative of a range of neuronal subtypes present in the DRG were detected in mature hiPSCs. Intriguingly, translation factors were maintained at consistently high expression levels across species and culture systems. As a proof of concept for the utility of this resource, we validated expression of eukaryotic initiation factor 5A (eIF5A) in DRG tissues and hiPSC samples. eIF5A is subject to a unique posttranslational hypusine modification required for its activity. Inhibition of hypusine biosynthesis prevented hyperalgesic priming by inflammatory mediators in vivo and diminished hiPSC activity in vitro. Collectively, our results illuminate the transcriptomes of hiPSC sensory neuron models. We provide a demonstration for this resource through our investigation of eIF5A. Our findings reveal hypusine as a potential target for inflammation associated pain in males.
Collapse
Affiliation(s)
- Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - June Bryan de la Peña
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Patrick R Smith
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jennifer Lawson
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Alexander D Stanowick
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Bryan J Black
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
6
|
Jager SE, Pallesen LT, Lin L, Izzi F, Pinheiro AM, Villa-Hernandez S, Cesare P, Vaegter CB, Denk F. Comparative transcriptional analysis of satellite glial cell injury response. Wellcome Open Res 2022; 7:156. [PMID: 35950162 PMCID: PMC9329822 DOI: 10.12688/wellcomeopenres.17885.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Satellite glial cells (SGCs) tightly surround and support primary sensory neurons in the peripheral nervous system and are increasingly recognized for their involvement in the development of neuropathic pain following nerve injury. SGCs are difficult to investigate due to their flattened shape and tight physical connection to neurons in vivo and their rapid changes in phenotype and protein expression when cultured in vitro. Consequently, several aspects of SGC function under normal conditions as well as after a nerve injury remain to be explored. The recent advance in single cell RNA sequencing (scRNAseq) technologies has enabled a new approach to investigate SGCs. Methods: In this study we used scRNAseq to investigate SGCs from mice subjected to sciatic nerve injury. We used a meta-analysis approach to compare the injury response with that found in other published datasets. Furthermore, we also used scRNAseq to investigate how cells from the dorsal root ganglion (DRG) change after 3 days in culture. Results: From our meta-analysis of the injured conditions, we find that SGCs share a common signature of 18 regulated genes following sciatic nerve crush or sciatic nerve ligation, involving transcriptional regulation of cholesterol biosynthesis. We also observed a considerable transcriptional change when culturing SGCs, suggesting that some differentiate into a specialised in vitro state while others start resembling Schwann cell-like precursors. Conclusion: By using integrated analyses of new and previously published scRNAseq datasets, this study provides a consensus view of which genes are most robustly changed in SGCs after injury. Our results are available via the Broad Institute Single Cell Portal, so that readers can explore and search for genes of interest.
Collapse
Affiliation(s)
- Sara Elgaard Jager
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Lone Tjener Pallesen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Denmark & Steno and Diabetes Center, Aarhus, Denmark
| | - Francesca Izzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Alana Miranda Pinheiro
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Sara Villa-Hernandez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Paolo Cesare
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Christian Bjerggaard Vaegter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| |
Collapse
|
7
|
Ahmad S, Srivastava RK, Singh P, Naik UP, Srivastava AK. Role of Extracellular Vesicles in Glia-Neuron Intercellular Communication. Front Mol Neurosci 2022; 15:844194. [PMID: 35493327 PMCID: PMC9043804 DOI: 10.3389/fnmol.2022.844194] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cross talk between glia and neurons is crucial for a variety of biological functions, ranging from nervous system development, axonal conduction, synaptic transmission, neural circuit maturation, to homeostasis maintenance. Extracellular vesicles (EVs), which were initially described as cellular debris and were devoid of biological function, are now recognized as key components in cell-cell communication and play a critical role in glia-neuron communication. EVs transport the proteins, lipids, and nucleic acid cargo in intercellular communication, which alters target cells structurally and functionally. A better understanding of the roles of EVs in glia-neuron communication, both in physiological and pathological conditions, can aid in the discovery of novel therapeutic targets and the development of new biomarkers. This review aims to demonstrate that different types of glia and neuronal cells secrete various types of EVs, resulting in specific functions in intercellular communications.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| | - Rohit K. Srivastava
- Department of Pediatric Surgery, Texas Children’s Hospital, Houston, TX, United States
- M.E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Pratibha Singh
- Department of Biochemistry and Cell Biology, Biosciences Research Collaborative, Rice University, Houston, TX, United States
| | - Ulhas P. Naik
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Cardeza Foundation for Hematologic Research, Philadelphia, PA, United States
| | - Amit K. Srivastava
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Cardeza Foundation for Hematologic Research, Philadelphia, PA, United States
- *Correspondence: Amit K. Srivastava,
| |
Collapse
|
8
|
Abstract
Inflammatory pain is the perception of noxious stimuli that occurs during inflammation or an immune response. Glial cells are widespread in the central and peripheral nervous systems, supporting and guiding the migration of neurons, participating in the immune response, forming the myelin sheath and blood-brain barrier, and maintaining the concentration of potassium ions outside nerve cells. Recent studies have shown that glial cells have a significant connection with the production and development of inflammatory pain. This article reviews the relationship, mechanisms, therapeutic targets between five types of glial cells and inflammatory pain, and the medicine composition that can effectively inhibit inflammatory pain. It expands the study on the mechanism of glial cells regulating pain and provides new ideas for the therapy of inflammatory pain.
Collapse
Affiliation(s)
- Hongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, P.R. China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, P.R. China
- The Clinical Medical School, Jiangxi Medical College, Shangrao 334000, P.R. China
| |
Collapse
|
9
|
Huang B, Zdora I, de Buhr N, Lehmbecker A, Baumgärtner W, Leitzen E. Phenotypical peculiarities and species-specific differences of canine and murine satellite glial cells of spinal ganglia. J Cell Mol Med 2021; 25:6909-6924. [PMID: 34096171 PMCID: PMC8278083 DOI: 10.1111/jcmm.16701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Satellite glial cells (SGCs) are located in the spinal ganglia (SG) of the peripheral nervous system and tightly envelop each neuron. They preserve tissue homeostasis, protect neurons and react in response to injury. This study comparatively characterizes the phenotype of murine (mSGCs) and canine SGCs (cSGCs). Immunohistochemistry and immunofluorescence as well as 2D and 3D imaging techniques were performed to describe a SGC-specific marker panel, identify potential functional subsets and other phenotypical, species-specific peculiarities. Glutamine synthetase (GS) and the potassium channel Kir 4.1 are SGC-specific markers in murine and canine SG. Furthermore, a subset of mSGCs showed CD45 immunoreactivity and the majority of mSGCs were immunopositive for neural/glial antigen 2 (NG2), indicating an immune and a progenitor cell character. The majority of cSGCs were immunopositive for glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and Sox2. Therefore, cSGCs resemble central nervous system glial cells and progenitor cells. SGCs lacked expression of macrophage markers CD107b, Iba1 and CD204. Double labelling with GS/Kir 4.1 highlights the unique anatomy of SGC-neuron units and emphasizes the indispensability of further staining and imaging techniques for closer insights into the specific distribution of markers and potential colocalizations.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
10
|
Gazerani P. Satellite Glial Cells in Pain Research: A Targeted Viewpoint of Potential and Future Directions. FRONTIERS IN PAIN RESEARCH 2021; 2:646068. [PMID: 35295432 PMCID: PMC8915641 DOI: 10.3389/fpain.2021.646068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is known to be caused by sensitization within the pain circuits. An imbalance occurs between excitatory and inhibitory transmission that enables this sensitization to form. In addition to neurons, the contribution of central glia, especially astrocytes and microglia, to the pathogenesis of pain induction and maintenance has been identified. This has led to the targeting of astrogliosis and microgliosis to restore the normal functions of astrocytes and microglia to help reverse chronic pain. Gliosis is broadly defined as a reactive response of glial cells in response to insults to the central nervous system (CNS). The role of glia in the peripheral nervous system (PNS) has been less investigated. Accumulating evidence, however, points to the contribution of satellite glial cells (SGCs) to chronic pain. Hence, understanding the potential role of these cells and their interaction with sensory neurons has become important for identifying the mechanisms underlying pain signaling. This would, in turn, provide future therapeutic options to target pain. Here, a viewpoint will be presented regarding potential future directions in pain research, with a focus on SGCs to trigger further research. Promising avenues and new directions include the potential use of cell lines, cell live imaging, computational analysis, 3D tissue prints and new markers, investigation of glia–glia and macrophage–glia interactions, the time course of glial activation under acute and chronic pathological pain compared with spontaneous pain, pharmacological and non-pharmacological responses of glia, and potential restoration of normal function of glia considering sex-related differences.
Collapse
Affiliation(s)
- Parisa Gazerani
- Laboratory of Molecular Pharmacology, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet, Oslo, Norway
- *Correspondence: Parisa Gazerani
| |
Collapse
|
11
|
Lv Y, Chen J, Hu J, Qian Y, Kong Y, Fu L. Nonmuscle Myosin Heavy Chain ⅡA-Mediated Exosome Release via Regulation of the Rho-Associated Kinase 1/Myosin Light Chains/Actin Pathway. Front Pharmacol 2020; 11:598592. [PMID: 33363470 PMCID: PMC7753194 DOI: 10.3389/fphar.2020.598592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Nonmuscle myosin ⅡA, a kind of ATP-dependent molecular motor, binds actin to form the molecular motors of the cell. We found that interfering with nonmuscle myosin heavy chain (NMMHC) ⅡA could affect the exosome release from microglial cells stimulated by LPS. LPS could enhance exosome release from microglial cells by increasing exosome concentration, elevating the rate of positively labeled CD9 and CD81 proteins and protein expression. The myosin inhibitor, blebbistatin, could decrease the concentration of released exosome and reduce CD9 and CD81 protein expression on the exosome surface compared with that in the LPS group. To further determine the exact subtype of myosin Ⅱ responsible for these effects, we transfected microglial cells with siRNA for MYH9, MYH10, and MYH14. The data showed that only the transfection of siRNA-MYH9, but not MYH10 or MYH14 could decrease the released exosome concentration and particle size compared with those in the LPS group. siRNA-MYH9 would also weaken the CD9 and CD81 protein positive rate and protein expression compared with that in the LPS group by the quantification of CD9 and CD81 fluorescence intensities and by western blotting. Western blots and immunofluorescence assays indicated that NMMHC ⅡA might trigger the ROCK1/MLC/actin signaling pathway of microglial cells upon stimulation by LPS, which might be the potential mechanism of exosome release. These observations demonstrated that NMMHC ⅡA might be the potential target required for exosome release.
Collapse
Affiliation(s)
- Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jin Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jinfang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yisong Qian
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ying Kong
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
12
|
Somaza S, Montilla EM. Novel theory about radiosurgery's action mechanisms on trigeminal ganglion for idiopathic trigeminal neuralgia: Role of the satellite glial cells. Surg Neurol Int 2020; 11:412. [PMID: 33365175 PMCID: PMC7749945 DOI: 10.25259/sni_484_2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND There are many theories about the cause of trigeminal neuralgia (TN). None of them satisfactorily explains how demyelination alone through the ephaptic mechanism can contribute to the development of the TN crisis. The main characteristic of TN pain is its dynamic nature, which is difficult to explain based only on anatomical findings. With these antecedents, the exact mechanism by which radiosurgery produces pain relief in TN is unknown. METHODS It is based on the trigeminal ganglion (TG) cytoarchitecture and the pathophysiological findings observed after an injury to a trigeminal branch. TG seems to have a predominant role given its cellular structure. The neuronal component in sensory ganglia is generally surrounded by a single layer of satellite glial cells (SGC), which forms a sheath around each body cell. There is increasing evidence that SGCs play a key role in nociception. This depends on their ability to influence the neuronal excitability that occurs in conditions of neuropathic and inflammatory pain; contributing to both the generation and maintenance of pain. RESULTS We have already published the beneficial effects of radiosurgery on the TG for the treatment of idiopathic TN and secondary to vertebrobasilar ectasia. Now, we are investigating the functioning of the TG and how radiosurgery could act on the SGC, deactivating them, and contributing to the decrease or disappearance of the painful condition. CONCLUSION We are postulating a theory on how radiosurgery in TG produces changes in the SGC, with implications in the pathological mechanisms initiated by the alteration caused in the neuron after a nerve injury.
Collapse
Affiliation(s)
- Salvador Somaza
- Department of Neurosurgery, Centro Diagnostico Docente Las Mercedes, Hospital de Clinicas Caracas
| | - Eglee M. Montilla
- Department of Radiation Oncologist Radiation Oncology, Centro Diagnostico Docente Las Mercedes, Caracas, Miranda, Venezuela
| |
Collapse
|
13
|
Jean-Toussaint R, Tian Y, Chaudhuri AD, Haughey NJ, Sacan A, Ajit SK. Proteome characterization of small extracellular vesicles from spared nerve injury model of neuropathic pain. J Proteomics 2020; 211:103540. [PMID: 31669360 PMCID: PMC6916715 DOI: 10.1016/j.jprot.2019.103540] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
Abstract
Exosomes are 30-150 nm extracellular vesicles mediating intercellular communication. Disease states can alter exosome composition affecting the message carried and thereby, its functional impact. The objective of this study was to identify proteins present in these vesicles in a mouse model of neuropathic pain induced by spared nerve injury (SNI). Small extracellular vesicles (sEVs) were purified from serum four weeks after SNI surgery and the protein composition was determined using tandem mass spectrometry and cytokine array. Proteomic analysis detected 274 gene products within sEVs. Of these, 24 were unique to SNI model, 100 to sham surgery control and five to naïve control samples. In addition to commonly expressed sEVs proteins, multiple members of serpin and complement family were detected in sEVs. Cytokine profiling using a membrane-based antibody array showed significant upregulation of complement component 5a (C5a) and Intercellular Adhesion Molecule 1 (ICAM-1) in sEVs from SNI model compared to sham control. We observed a differential distribution of C5a and ICAM-1 within sEVs and serum between sham and SNI, indicating changes from local or paracrine to long distance signaling under neuropathic pain. Our studies suggest critical roles for cargo sorting of vesicular proteins in mediating signaling mechanisms underlying neuropathic pain. SIGNIFICANCE: Approximately 100 million U.S. adults are burdened by chronic pain. Neuropathic pain resulting from injury or dysfunction of the nervous system is challenging to treat. Unlike acute pain that resolves over time, chronic pain persists resulting in changes in the peripheral and central nervous system. The transport of biomolecular cargo comprised of proteins and RNAs by small extracellular vesicles (sEVs) including exosomes has been proposed to be a fundamental mode of intercellular communication. To obtain insights on the role of exosome-mediated information transfer in the context of neuropathic pain, we investigated alterations in protein composition of sEVs in a mouse model of neuropathic pain induced by spared nerve injury (SNI). Our studies using mass spectrometry and cytokine array show that sEVs from SNI model harbor unique proteins. We observed an upregulation of C5a and ICAM-1 in exosomes from SNI model compared to control. There was a differential distribution of C5a and ICAM-1 within exosomes and serum, between control and SNI suggesting a switch from local to long distance signaling. Our studies suggest critical roles for cargo sorting of vesicular proteins in mediating signaling under neuropathic pain.
Collapse
Affiliation(s)
- Renee Jean-Toussaint
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Amrita Datta Chaudhuri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA, USA
| | - Seena K Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Holliday LS, de Faria LP, Rody WJ. Actin and Actin-Associated Proteins in Extracellular Vesicles Shed by Osteoclasts. Int J Mol Sci 2019; 21:ijms21010158. [PMID: 31881680 PMCID: PMC6981389 DOI: 10.3390/ijms21010158] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are shed by all eukaryotic cells and have emerged as important intercellular regulators. EVs released by osteoclasts were recently identified as important coupling factors in bone remodeling. They are shed as osteoclasts resorb bone and stimulate osteoblasts to form bone to replace the bone resorbed. We reported the proteomic content of osteoclast EVs with data from two-dimensional, high resolution liquid chromatography/mass spectrometry. In this article, we examine in detail the actin and actin-associated proteins found in osteoclast EVs. Like EVs from other cell types, actin and various actin-associated proteins were abundant. These include components of the polymerization machinery, myosin mechanoenzymes, proteins that stabilize or depolymerize microfilaments, and actin-associated proteins that are involved in regulating integrins. The selective incorporation of actin-associated proteins into osteoclast EVs suggests that they have roles in the formation of EVs and/or the regulatory signaling functions of the EVs. Regulating integrins so that they bind extracellular matrix tightly, in order to attach EVs to the extracellular matrix at specific locations in organs and tissues, is one potential active role for actin-associated proteins in EVs.
Collapse
Affiliation(s)
- L. Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| | - Lorraine Perciliano de Faria
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo 01000, Brazil;
| | - Wellington J. Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY 11794, USA;
| |
Collapse
|
15
|
Liu F, Zhang YY, Song N, Lin J, Liu MK, Huang CL, Zhou C, Wang H, Wang M, Shen JF. GABA B receptor activation attenuates inflammatory orofacial pain by modulating interleukin-1β in satellite glial cells: Role of NF-κB and MAPK signaling pathways. Brain Res Bull 2019; 149:240-250. [PMID: 31034945 DOI: 10.1016/j.brainresbull.2019.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/26/2019] [Accepted: 04/22/2019] [Indexed: 02/05/2023]
Abstract
Orofacial inflammation could activate satellite glial cells (SGCs) in the trigeminal ganglion (TG) to produce interleukin 1β (IL-1β) which plays crucial roles in the development of inflammatory pain. Recent studies have shown that gamma-amino butyric acid-B (GABAB) receptor could modulate the expression of inflammatory cytokines in microglia and astrocytes in the spinal cord. The objective of this study was to investigate whether GABAB receptors in TG SGCs attenuate inflammatory facial pain via mediating IL-1β following inflammation and its mechanisms. Complete Freund's adjuvant (CFA) was injected into the whisker pad of rats to induce inflammation in vivo. Lipopolysaccharide (LPS) was added to culture medium to activate SGCs in vitro. Behavioral measures showed that microinjection of baclofen (a selective GABAB receptor agonist) into the TG ameliorated the mechanical allodynia of CFA-treated rats. Interestingly, baclofen pretreatment inhibited SGC activation and IL-1β production, however, preserved the decreased expression of GABAB receptors in SGCs activated by CFA in vivo and LPS in vitro. In addition, baclofen suppressed the increased expression of p-NF- κ B p65, p-I κ Bα, and p-p38 MAPK, while reversed the decreased production of I κ Bα, and further enhanced the increased expression of p-ERK(1/2) in LPS-treated SGCs in vitro. Finally, those effects of baclofen were abolished by saclofen (a specific GABAB receptor antagonist) co-administration. Altogether, these results demonstrated for the first time that activation of GABAB receptor might inhibit IL-1β production by suppressing NF- κ B and p38 MAPK signaling pathway activation and restore GABAB receptor expression in SGCs to attenuate inflammatory facial pain.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Ning Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Meng-Ke Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Min Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
16
|
Chan BD, Wong WY, Lee MML, Cho WCS, Yee BK, Kwan YW, Tai WCS. Exosomes in Inflammation and Inflammatory Disease. Proteomics 2019; 19:e1800149. [PMID: 30758141 DOI: 10.1002/pmic.201800149] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/09/2019] [Indexed: 01/06/2023]
Abstract
Exosomes are a subset of extracellular vesicles released by all cell types and involved in local and systemic intercellular communication. In the past decade, research into exosomes has swelled as their important role in the mediation of health and disease has been increasingly established and acknowledged. Exosomes carry a diverse range of cargo including proteins, nucleic acids, and lipids derived from their parental cell that, when delivered to the recipient cell, can confer pathogenic or therapeutic effects through modulation of immunity and inflammation. In this review, the role of exosomes on mediation of immune and inflammatory responses, and their participation in diseases with a significant inflammatory component is discussed. The considerable potential for exosomes in therapy and diagnosis of inflammatory diseases is also highlighted.
Collapse
Affiliation(s)
- Brandon Dow Chan
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Wing-Yan Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Magnolia Muk-Lan Lee
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - William Chi-Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, P. R. China
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Yiu Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - William Chi-Shing Tai
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, P. R. China
| |
Collapse
|
17
|
Extracellular Vesicle-Mediated Cell⁻Cell Communication in the Nervous System: Focus on Neurological Diseases. Int J Mol Sci 2019; 20:ijms20020434. [PMID: 30669512 PMCID: PMC6359416 DOI: 10.3390/ijms20020434] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell–cell communication in physiology and pathology.
Collapse
|