1
|
Sánchez MÁN, Martinez-Sanchez MA, Sierra-Cruz M, Lambertos A, Rico-Chazarra S, Oliva-Bolarín A, Román AB, Yuste JE, Martínez CM, Mika A, Frutos MD, Llamoza-Torres CJ, Córdoba-Chacón J, Ramos-Molina B. Increased hepatic putrescine levels as a new potential factor related to the progression of metabolic dysfunction-associated steatotic liver disease. J Pathol 2024; 264:101-111. [PMID: 39022853 PMCID: PMC11300153 DOI: 10.1002/path.6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/05/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Marta Sierra-Cruz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Sara Rico-Chazarra
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alba Oliva-Bolarín
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Andrés Balaguer Román
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - José Enrique Yuste
- Metabolomics Platform of CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Carlos Manuel Martínez
- Experimental Pathology Platform, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Camilo J. Llamoza-Torres
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Division of Liver Diseases, Department of Gastroenterology and Hepatology, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - José Córdoba-Chacón
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
2
|
Zhao X, Zhu X, Tao H, Zou H, Cao J, Chen Y, Zhang Z, Zhu Y, Li Q, Li M. Liquidambaric acid inhibits the proliferation of hepatocellular carcinoma cells by targeting PPARα-RXRα to down-regulate fatty acid metabolism. Toxicol Appl Pharmacol 2024; 490:117042. [PMID: 39067772 DOI: 10.1016/j.taap.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver. As the global obesity rate rises, non-alcoholic fatty liver disease (NAFLD) has emerged as the most rapidly increasing cause of HCC. Consequently, the regulation of lipid metabolism has become a crucial target for the prevention and treatment of HCC. Liquidambaric acid (LDA), a pentacyclic triterpenoid compound derived from various plants, exhibits diverse biological activities. We found that LDA could inhibit HCC cell proliferation by arresting cell cycle and prompting apoptosis. Additionally, LDA can augment the therapeutic efficacy of Regorafenib in HCC in vitro and vivo. Our study utilized transcriptome analysis, luciferase reporter assays, and co-immunocoprecipitation experiments to elucidate the anti-HCC mechanism of LDA. We discovered that LDA disrupts the formation of the PPARα-RXRα heterodimer, leading to the down-regulation of the ACSL4 gene and subsequently impacting the fatty acid metabolism of HCC cells, ultimately inhibiting HCC proliferation. Our research contributes to the identification of novel therapeutic agents and targets for the treatment of HCC.
Collapse
Affiliation(s)
- Xinyun Zhao
- College of Life Science, Sichuan Normal University, Chengdu 610101, Sichuan, China; Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Xinping Zhu
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Honglei Tao
- Anesthesiology Department, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Hongling Zou
- College of Life Science, Sichuan Normal University, Chengdu 610101, Sichuan, China; Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Jili Cao
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Yuxin Chen
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China; Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
| | - Ziru Zhang
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China; Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
| | - Yongqiang Zhu
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, Sichuan, China.
| | - Mingqian Li
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China; Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
| |
Collapse
|
3
|
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24:454-476. [PMID: 36765164 PMCID: PMC10330318 DOI: 10.1038/s41580-023-00576-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 202.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.
Collapse
Affiliation(s)
- Andrew C Dixson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Bai G, Cheng L, Peng L, Wu B, Zhen Y, Qin G, Zhang X, Aschalew ND, Sun Z, Wang T. Effects of ultra-high-temperature processes on metabolite changes in milk. Food Sci Nutr 2023; 11:3601-3615. [PMID: 37324878 PMCID: PMC10261746 DOI: 10.1002/fsn3.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 06/17/2023] Open
Abstract
Processing can affect milk properties and alter the composition of milk metabolites, which has corresponding effects on milk flavor and quality. It is quite important to study the safe quality control of milk processing. Therefore, the purpose of this study was to identify metabolites at different steps of ultra-high-temperature-sterilized (UHT) milk processing using gas chromatography-mass spectrometry (GC-MS). These steps included raw milk, pasteurized milk (80°C for 15 s), semi-finished milk (after pasteurizing, it was homogenized at 75°C with pressure of 250 bar), UHT milk (at 140°C for 10 s), and finished milk (homogenized UHT milk). A total of 66 metabolites were identified across all samples, including 30 metabolites in the chloroform layers of the milk samples and 41 metabolites in the water layers; 5 metabolites were found in both layers. The metabolites were primarily fatty acids, amino acids, sugars, and organic acids. For example, pasteurized and ultra-high-temperature-sterilized kinds of milk had lactose contents similar to those of raw milk, with increases in saturated fatty acids such as hexadecanoic acid and octadecanoic acid. Additionally, these findings indicated that these methods of processing can affect the contents of some components of milk. Therefore, from the perspective of milk's nutritional value and consumer health, the excessive heating of dairy products should be avoided and the milk heat treatment process should be standardized from the source.
Collapse
Affiliation(s)
- Ge Bai
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU‐Borui Dairy Science and Technology R&D Center, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Long Cheng
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU‐Borui Dairy Science and Technology R&D Center, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Liying Peng
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU‐Borui Dairy Science and Technology R&D Center, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Bin Wu
- Institute of Animal and Veterinary SciencesJilin Academy of Agricultural SciencesChangchunChina
| | - Yuguo Zhen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU‐Borui Dairy Science and Technology R&D Center, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., Ltd.ChangchunChina
| | - Guixin Qin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU‐Borui Dairy Science and Technology R&D Center, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Xuefeng Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU‐Borui Dairy Science and Technology R&D Center, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Natnael D. Aschalew
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU‐Borui Dairy Science and Technology R&D Center, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- College of Agriculture and Environmental ScienceDilla UniversityDillaEthiopia
| | - Zhe Sun
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU‐Borui Dairy Science and Technology R&D Center, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., Ltd.ChangchunChina
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Tao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU‐Borui Dairy Science and Technology R&D Center, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., Ltd.ChangchunChina
| |
Collapse
|
5
|
Dou N, Sun R, Su C, Ma Y, Zhang X, Wu M, Hou J. Soybean Oil Bodies as a Milk Fat Substitute Improves Quality, Antioxidant and Digestive Properties of Yogurt. Foods 2022; 11:foods11142088. [PMID: 35885331 PMCID: PMC9320349 DOI: 10.3390/foods11142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/27/2023] Open
Abstract
In this experiment, the effect of replacing milk fat with soybean fat body (25%, 50%, 75%, 100%) on the quality, antioxidant capacity and in vitro digestive characteristics of yogurt was investigated while maintaining the total fat content of the yogurt unchanged. The results showed that increasing the substitution amount of soy fat body for milk fat had little effect on the pH and acidity of yogurt during the storage period, while the physicochemical properties, degree of protein gel network crosslinking, saturated fatty acid content, PV value and TBARS value of the yogurt significantly decreased (p < 0.05). Meanwhile, protein content, solids content, unsaturated fatty acid content, tocopherol content and water holding capacity significantly increased (p < 0.05). Flavor analysis revealed that yogurts with soybean oil bodies were significantly different when compared to those without soybean oil bodies (p < 0.05), and yogurt with 25% substitution had the highest sensory score. After in vitro digestion, the free fatty acid release, antioxidant capacity and protein digestibility of soybean oil body yogurt were significantly higher (p < 0.05). The SDS-PAGE results showed that the protein hydrolysis of the soybean oil body yogurt was faster. Therefore, the use of an appropriate amount of soybean oil bodies to replace milk fat is able to enhance the taste of yogurt and improve the quality of the yogurt.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-5519-0710
| |
Collapse
|
6
|
Wang W, Wang M, Xu C, Liu Z, Gu L, Ma J, Jiang L, Jiang Z, Hou J. Effects of Soybean Oil Body as a Milk Fat Substitute on Ice Cream: Physicochemical, Sensory and Digestive Properties. Foods 2022; 11:foods11101504. [PMID: 35627074 PMCID: PMC9141774 DOI: 10.3390/foods11101504] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Soybean oil body (SOB) has potential as a milk fat substitute due to its ideal emulsification, stability and potential biological activity. In this study, SOB was used as a milk fat substitute to prepare ice cream, expecting to reduce the content of saturated fatty acid and improve the quality defects of ice cream products caused by the poor stability of milk fat at low temperatures. This study investigated the effect of SOB as a milk fat substitute (the substitution amount was 10–50%) on ice cream through apparent viscosity, particle size, overrun, melting, texture, sensory and digestive properties. The results show SOB substitution for milk fat significantly increased the apparent viscosity and droplet uniformity and decreased the particle size of the ice cream mixes, indicating that there were lots of intermolecular interactions to improve ice cream stability. In addition, ice cream with 30% to 50% SOB substitution had better melting properties and texture characteristics. The ice cream with 40% SOB substitution had the highest overall acceptability. Furthermore, SOB substitution for milk fat increased unsaturated fatty acid content in ice cream and fatty acid release during digestion, which had potential health benefits for consumers. Therefore, SOB as a milk fat substitute may be an effective way to improve the nutritional value and quality characteristics of dairy products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-55190710
| |
Collapse
|
7
|
Gindlhuber J, Schinagl M, Liesinger L, Darnhofer B, Tomin T, Schittmayer M, Birner-Gruenberger R. Hepatocyte Proteome Alterations Induced by Individual and Combinations of Common Free Fatty Acids. Int J Mol Sci 2022; 23:3356. [PMID: 35328776 PMCID: PMC8951603 DOI: 10.3390/ijms23063356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease is a pathology with a hard-to-detect onset and is estimated to be present in a quarter of the adult human population. To improve our understanding of the development of non-alcoholic fatty liver disease, we treated a human hepatoma cell line model, HepG2, with increasing concentrations of common fatty acids, namely myristic, palmitic and oleic acid. To reproduce more physiologically representative conditions, we also included combinations of these fatty acids and monitored the cellular response with an in-depth proteomics approach and imaging techniques. The two saturated fatty acids initially presented a similar phenotype of a dose-dependent decrease in growth rates and impaired lipid droplet formation. Detailed analysis revealed that the drop in the growth rates was due to delayed cell-cycle progression following myristic acid treatment, whereas palmitic acid led to cellular apoptosis. In contrast, oleic acid, as well as saturated fatty acid mixtures with oleic acid, led to a dose-dependent increase in lipid droplet volume without adverse impacts on cell growth. Comparing the effects of harmful single-fatty-acid treatments and the well-tolerated fatty acid mixes on the cellular proteome, we were able to differentiate between fatty-acid-specific cellular responses and likely common lipotoxic denominators.
Collapse
Affiliation(s)
- Juergen Gindlhuber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.S.); (L.L.); (B.D.)
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Maximilian Schinagl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.S.); (L.L.); (B.D.)
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.S.); (L.L.); (B.D.)
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.S.); (L.L.); (B.D.)
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.S.); (L.L.); (B.D.)
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (T.T.); (M.S.)
| |
Collapse
|
8
|
Ammar NM, Hassan HA, Abdallah HMI, Afifi SM, Elgamal AM, Farrag ARH, El-Gendy AENG, Farag MA, Elshamy AI. Protective Effects of Naringenin from Citrus sinensis (var. Valencia) Peels against CCl 4-Induced Hepatic and Renal Injuries in Rats Assessed by Metabolomics, Histological and Biochemical Analyses. Nutrients 2022; 14:841. [PMID: 35215494 PMCID: PMC8924893 DOI: 10.3390/nu14040841] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Citrus fruits are grown worldwide for their special nutritive and several health benefits. Among citrus bioactives, naringenin, a major flavanone, exhibits a potential hepatoprotective effect that is not fully elucidated. Herein, serum biochemical parameters and histopathological assays were used to estimate the hepatoprotective activity of naringenin, isolated from Citrus sinensis (var. Valencia) peels, in CCl4-induced injury in a rat model. Further, GC-MS-based untargeted metabolomics was used to characterize the potential metabolite biomarkers associated with its activity. Present results revealed that naringenin could ameliorate the increases in liver enzymes (ALT and AST) induced by CCl4 and attenuate the pathological changes in liver tissue. Naringenin decreased urea, creatinine and uric acid levels and improved the kidney tissue architecture, suggesting its role in treating renal disorders. In addition, naringenin increased the expression of the antiapoptoic cell marker, Bcl-2. Significant changes in serum metabolic profiling were noticed in the naringenin-treated group compared to the CCl4 group, exemplified by increases in palmitic acid, stearic acid, myristic acid and lauric acids and decrease levels of alanine, tryptophan, lactic acid, glucosamine and glucose in CCl4 model rats. The results suggested that naringenin's potential hepato- and renoprotective effects could be related to its ability to regulate fatty acids (FAs), amino acids and energy metabolism, which may become effective targets for liver and kidney toxicity management. In conclusion, the current study presents new insights into the hepato- and renoprotective mechanisms of naringenin against CCl4-induced toxicity.
Collapse
Affiliation(s)
- Naglaa M. Ammar
- Therapeutic Chemistry Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Heba A. Hassan
- Therapeutic Chemistry Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Heba M. I. Abdallah
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Abdelbaset M. Elgamal
- Chemistry of Microbial and Natural Products Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt;
| | - Abdel Razik H. Farrag
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Abd El-Nasser G. El-Gendy
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt;
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
9
|
Parthasarathy G, Malhi H. Assessment of Lipotoxic Endoplasmic Reticulum (ER) Stress in Nonalcoholic Steatohepatitis (NASH). Methods Mol Biol 2022; 2455:243-254. [PMID: 35212999 PMCID: PMC9333415 DOI: 10.1007/978-1-0716-2128-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hepatocyte lipotoxicity is a hallmark of nonalcoholic steatohepatitis (NASH), and lipid induced liver injury occurs, in part, via activation of endoplasmic reticulum (ER) stress. Consequently, the unfolded protein response (UPR) is initiated, driven by three key ER transmembrane proteins, resulting in downstream responses that are dynamic and interconnected. Thus, careful interrogation of these pathways is required to investigate the complex role of ER stress in NASH. Herein, we describe different mechanisms of, and in vitro assays for assessment of lipotoxic ER stress in mouse hepatocytes.
Collapse
Affiliation(s)
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Masetto Antunes M, Godoy G, Curi R, Vergílio Visentainer J, Barbosa Bazotte R. The Myristic Acid:Docosahexaenoic Acid Ratio Versus the n-6 Polyunsaturated Fatty Acid:n-3 Polyunsaturated Fatty Acid Ratio as Nonalcoholic Fatty Liver Disease Biomarkers. Metab Syndr Relat Disord 2021; 20:69-78. [PMID: 34813379 DOI: 10.1089/met.2021.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is well established that diets containing an increased omega-6 polyunsaturated fatty acid (n-6 PUFA) to omega-3 polyunsaturated fatty acid (n-3 PUFA) ratios are linked to inflammation and chronic diseases such as nonalcoholic fatty liver disease (NAFLD). However, the influence of an elevated n-6 PUFA:n-3 PUFA ratio in the tissues requires clarification. Herein, we identified primary experimental and clinical studies where it is possible to compare the performance of the myristic acid (Myr):docosahexaenoic acid (DHA) and n-6 PUFA:n-3 PUFA ratios in the liver and/or serum as potential NAFLD biomarkers. Articles were included if quantitative values of n-6 PUFA, n-3 PUFA, Myr, DHA, and information about liver inflammation or liver disease progression parameters were provided. Overall, most experimental (91.6%) and clinical studies (87.5%) reported higher Myr:DHA ratios associated with inflammation and/or NAFLD progression than the n-6 PUFA:n-3 PUFA ratio. We conclude that the Myr:DHA ratio represents a better biomarker of NAFLD than the n-6 PUFA:n-3 PUFA ratio. Future studies are necessary for verifying this observation.
Collapse
Affiliation(s)
- Marina Masetto Antunes
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Guilherme Godoy
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Roberto Barbosa Bazotte
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil.,Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| |
Collapse
|
11
|
Jin R, Ren H, Liao M, Shang J, Wang D, Li M, Liu N. A dipeptidyl peptidase IV inhibitory peptide relieves palmitic acid-induced endoplasmic reticulum stress in HepG2 cells independent of inhibiting dipeptidyl peptidase IV activity. Food Funct 2021; 12:10773-10782. [PMID: 34609396 DOI: 10.1039/d1fo02283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The peptide VLATSGPG (VLA) is known to inhibit dipeptidyl peptidase IV (DPP-IV), although its mechanism in relieving endoplasmic reticulum (ER) stress is unclear. In this study, we found that treating HepG2 cells with 1.0 mM VLA reduced DPP-IV activity by 73.7 ± 4.8% without changing the DPP-IV mRNA expression level. In addition, 1.0 and 0.5 mM VLA alleviated palmitic acid (PA)-induced cell death and intracellular calcium imbalances. The levels of apoptosis-related proteins (caspase-3, caspase-9, and CHOP) were reduced by VLA treatment, which was presumed to be related to ER stress. Further studies confirmed that VLA alleviated PA-induced morphological damage to the ER and reduced the levels of the ER stress marker proteins (BIP, p-PERK, and p-IRE1α). VLA alleviated PA-induced ER stress in HepG2 cells independent of DPP-IV enzymatic activity inhibition. These findings have implications for developing novel treatment approaches for liver diseases caused by ER stress.
Collapse
Affiliation(s)
- Ritian Jin
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Haowei Ren
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Minhe Liao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Jiaqi Shang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.,College of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Meng Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| |
Collapse
|
12
|
Integrated lipidomics and proteomics reveal cardiolipin alterations, upregulation of HADHA and long chain fatty acids in pancreatic cancer stem cells. Sci Rep 2021; 11:13297. [PMID: 34168259 PMCID: PMC8225828 DOI: 10.1038/s41598-021-92752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer stem cells (PCSCs) play a key role in the aggressiveness of pancreatic ductal adenocarcinomas (PDAC); however, little is known about their signaling and metabolic pathways. Here we show that PCSCs have specific and common proteome and lipidome modulations. PCSCs displayed downregulation of lactate dehydrogenase A chain, and upregulation of trifunctional enzyme subunit alpha. The upregulated proteins of PCSCs are mainly involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs. Accordingly, lipidomics reveals an increase in long and very long-chain unsaturated FAs, which are products of fatty acid elongase-5 predicted as a key gene. Moreover, lipidomics showed the induction in PCSCs of molecular species of cardiolipin with mixed incorporation of 16:0, 18:1, and 18:2 acyl chains. Our data indicate a crucial role of FA elongation and alteration in cardiolipin acyl chain composition in PCSCs, representing attractive therapeutic targets in PDAC.
Collapse
|
13
|
Benbow JH, Marrero E, McGee RM, Brandon-Warner E, Attal N, Feilen NA, Culberson CR, McKillop IH, Schrum LW. Hepatic stellate cell-derived exosomes modulate macrophage inflammatory response. Exp Cell Res 2021; 405:112663. [PMID: 34051242 DOI: 10.1016/j.yexcr.2021.112663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatic stellate cell (HSC) differentiation/activation is central to liver fibrosis and is innately linked to the immune response to liver injury. Exosomes (EXOs) are important means of communication between cell populations. This study sought to characterize EXO release from HSCs and the effect of HSC-EXOs on macrophage cytokine release/function. METHODS Liver from a rat fibrosis model was analyzed for EXO expression and localization. Quiescent and culture-activated rat and mouse HSCs and activated human HSCs were analyzed for microRNA expression. Mouse, rat, and human HSCs were culture-activated and EXOs purified from culture medium prior to addition to macrophages, and interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) mRNA and protein measured. The effect of activated HSC-EXOs on macrophage migration was assayed. RESULTS Activation of rat HSCs led to increased EXO production in vivo, an effect mirrored by in vitro rat HSC culture-activation. Culture activation of mouse and rat HSCs led to altered EXO microRNA profiles, with a similar microRNA profile detected in activated human HSCs. Addition of activated HSC-EXOs to macrophages stimulated IL-6 and TNFα mRNA expression and protein secretion in mouse and human macrophages, but not for rat HSC-EXO-macrophages. Addition of human EXOs to macrophages stimulated migration, effects mirrored by the direct addition of rhIL-6 and rhTNFα. CONCLUSIONS HSC-EXOs associate with macrophages and stimulate cytokine synthesis-release and macrophage migration. Constructing a comprehensive understanding of EXO interactions between liver cell populations in the setting of inflammation/fibrosis increases the potential for developing new diagnostic/therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer H Benbow
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Emilio Marrero
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Rachel M McGee
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Elizabeth Brandon-Warner
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Neha Attal
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Nicole A Feilen
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Catherine R Culberson
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA.
| | - Laura W Schrum
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| |
Collapse
|
14
|
UPLC-Q-TOF/MS-based plasma metabolome to identify biomarkers and time of injury in traumatic brain injured rats. Neuroreport 2021; 32:415-422. [PMID: 33788810 DOI: 10.1097/wnr.0000000000001576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To identify the potent metabolic biomarkers and time of injury of traumatic brain injured (TBI). METHODS A total of 70 Sprague-Dawley rats were used to establish the TBI model in this study. The serum was collected at 3 h, 6 h, 12 h, 24 h, 3 days and 7 days after surgery. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was performed to analyze metabolic changes in the serum of the TBI rats from different groups. The differences between the metabolic profiles of the rats in seven groups were analyzed using partial least squares discriminant analysis. RESULTS Metabolic profiling revealed significant differences between the sham-operated and other groups. A total of 49 potential TBI metabolite biomarkers were identified between the sham-operated group and the model groups at different time points. Among them, six metabolites (methionine sulfone, kynurenine, 3-hydroxyanthranilic acid, 3-Indolepropionic acid, citric acid and glycocholic acid) were identified as biomarkers of TBI to estimate the injury time. CONCLUSION Using metabolomic analysis, we identified new TBI serum biomarkers for accurate detection and determination of the timing of TBI injury.
Collapse
|
15
|
Wang X, Xu Y, Jia Q, Song X, Zhang L, Zhang W, Qian Y, Qiu J. Perturbations in glycerophospholipid levels of PC12 cells after exposure to PCB95 based on targeted lipidomics analysis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 235:108788. [PMID: 32376495 DOI: 10.1016/j.cbpc.2020.108788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a group of organic chlorine chemicals that can induce various adverse health effects in animals and humans. The toxicology of PCBs is a significant public health concern because of their long-term presence in the environment. Among the 209 PCB congeners, PCB95 has been reported to be neurotoxic, however, there has been limited researches on evaluating whether and how PCB95 affects cellular lipids, the most abundant components of the brain. In this study, PCB95 was found to inhibit cell proliferation at concentrations of 0.1 μM, 2 μM and 10 μM for 120 h. Additionally, there may be a shift in apoptosis to necrosis at 2 μM PCB95 exposure for 24 h. However, lipid peroxidation was found not dominant for PCB95 exposure, especially at the concentrations of 0.1 μM and 2 μM. Because of playing vital roles in cell metabolism, 20 glycerophospholipids in PC12 cells were investigated after exposure to PCB95 for 120 h. The distinctions in the orthogonal projection to latent structures-discriminant analysis (OPLS-DA) models indicated that different concentrations of PCB95 leaded to aberrant glycerophospholipid metabolism. Based on the principles of t-test P-value < 0.05, variable importance at projection (VIP) value >1 and fold change >1, PC (14:0/14:0) and PC (16:0/14:0) were screened as potential biomarkers from all the target glycerophospholipids. This study is the first time that identifies the effects of PCB95 on specific glycerophospholipids in PC12 cells, and the observed changes in glycerophospholipids provides the basis for further evaluation of PCB95-induced neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yanyang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiao Song
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lin Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
16
|
Soleyman NM, Darnhofer B, Gruenberger RB, Abnous K, Borji H. Proteomic analysis of soluble protein extract of adult Toxocara cati. Comp Immunol Microbiol Infect Dis 2020; 73:101528. [PMID: 32911377 DOI: 10.1016/j.cimid.2020.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Toxocara cati is a cat roundworm and the causative agent of toxocariasis as a cosmopolitan zoonotic disease. As no information has been reported so far, identification of T. cati proteins can be useful for the development of new diagnostic strategies. This study was conducted to identify the major proteins in the adult T. cati tegument using bi-dimensional electrophoresis (2-DE) and shotgun proteomics. A total proteins were identified, among them the metabolic enzymes were the largest group, including: Enolase, triose phosphate isomerase, fructose-bisphosphate aldolase, aldehyde dehydrogenase. The other important protein groups recognized in T. cati, belong to the HSP-family, the structure and motor proteins, such as actin. The role of these proteins have been implicated in parasite-host interactions and modulating cellular immune response, immune regulation in evasion mechanisms of the host immune response. Characterizing T. cati adult proteins play a key role not only in host-parasite interactions, but also in the discovery of drug targets, subunit vaccines against toxocariasis, immunodiagnostic kits for toxocariasis and the identification of novel immuno-modulators that can form the next generation of therapeutic possibilities for inflammatory diseases.
Collapse
Affiliation(s)
- Nooshin Mehra Soleyman
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran
| | | | - Ruth Birner Gruenberger
- Austrian Center of Industrial Biotechnology, Graz, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Institute of Chemical Technologies and Analytics, Vienna, Austria
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran.
| |
Collapse
|
17
|
da Silva JM, Klososki SJ, Silva R, Raices RSL, Silva MC, Freitas MQ, Barão CE, Pimentel TC. Passion fruit-flavored ice cream processed with water-soluble extract of rice by-product: What is the impact of the addition of different prebiotic components? Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109472] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Xiao Y, Contaifer D, Huang W, Yang J, Hu Z, Guo Q, Bradley J, Peberdy MA, Ornato JP, Wijesinghe DS, Tang W. Cannabinoid Receptor Agonist WIN55, 212-2 Adjusts Lipid Metabolism in a Rat Model of Cardiac Arrest. Ther Hypothermia Temp Manag 2020; 10:192-203. [PMID: 31990631 DOI: 10.1089/ther.2019.0038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to investigate the effects of pharmacologically induced hypothermia with WIN55, 212-2 (WIN)on postresuscitation myocardial function, microcirculation, and metabolism-specific lipids in a rat cardiac arrest (CA) model. Ventricular fibrillation was electrically induced and untreated for 6 minutes in 24 Sprague-Dawley rats weighing 450-550 g. Cardiopulmonary resuscitation including chest compression and mechanical ventilation was then initiated and continued for 8 minutes, followed by defibrillation. At 5 minutes after restoration of spontaneous circulation (ROSC), animals were randomized into four groups: (1) normothermia with vehicle (NT); (2) physical hypothermia with vehicle (PH); (3) WIN55, 212-2 with normothermia (WN); and (4) WIN55, 212-2 with hypothermia (WH). For groups of WN and WH, WIN was administered by continuous intravenous infusion with a syringe pump for 4 hours. PH started at 5 minutes after resuscitation. NT maintained core temperature at 37°C ± 0.2°C with the aid of a heating blanket. Hypothermia groups maintained temperature at 33°C ± 0.5°C for 4 hours after ROSC. There was a significant improvement in myocardial function as measured by ejection fraction, cardiac output, and myocardial performance index in animals treated with WH and PH beginning at 1 hour after start of infusion. In the WH and PH groups, buccal microcirculation was significantly improved compared with NT and WN. Plasma at pre-CA and ROSC 4 hours was harvested for lipid metabolism. The WH group appeared to be closer to baseline than the other groups in lipid metabolism. lysophosphatidylcholine (LPC) 18:2, free fatty acid (FFA) 22:6, and ceramide (CER) (24:0) changed significantly among the lipidomic data compared with NT (p < 0.05). Postresuscitation hypothermia improved myocardial function and microcirculation. WH-mediated lipid metabolism had the best metabolic outcome to bring back the animals to normal metabolism, which may be protective to improve outcomes of CA. LPC 18:2, FFA 22:6, and CER (24:0) may be important predictors of outcomes of CA.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Soochow, China.,Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Daniel Contaifer
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Weiping Huang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jin Yang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhangle Hu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qinyue Guo
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Bradley
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mary Ann Peberdy
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| | - Joseph P Ornato
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Emergency Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dayanjan S Wijesinghe
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, USA.,Da Vinci Center, School of Pharmacy, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Emergency Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
19
|
Abstract
Lipid droplets (LDs) are fat storage organelles integral to energy homeostasis and a wide range of cellular processes. LDs physically and functionally interact with many partner organelles, including the ER, mitochondria, lysosomes, and peroxisomes. Recent findings suggest that the dynamics of LD inter-organelle contacts is in part controlled by LD intracellular motility. LDs can be transported directly by motor proteins along either actin filaments or microtubules, via Kinesin-1, Cytoplasmic Dynein, and type V Myosins. LDs can also be propelled indirectly, by hitchhiking on other organelles, cytoplasmic flows, and potentially actin polymerization. Although the anchors that attach motors to LDs remain elusive, other regulators of LD motility have been identified, ranging from modification of the tracks to motor co-factors to members of the perilipin family of LD proteins. Manipulating these regulatory pathways provides a tool to probe whether altered motility affects organelle contacts and has revealed that LD motility can promote interactions with numerous partners, with profound consequences for metabolism. LD motility can cause dramatic redistribution of LDs between a clustered and a dispersed state, resulting in altered organelle contacts and LD turnover. We propose that LD motility can thus promote switches in the metabolic state of a cell. Finally, LD motility is also important for LD allocation during cell division. In a number of animal embryos, uneven allocation results in a large difference in LD content in distinct daughter cells, suggesting cell-type specific LD needs.
Collapse
Affiliation(s)
- Marcus D Kilwein
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA
| | - M A Welte
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA
| |
Collapse
|
20
|
Brandi J, Di Carlo C, Manfredi M, Federici F, Bazaj A, Rizzi E, Cornaglia G, Manna L, Marengo E, Cecconi D. Investigating the Proteomic Profile of HT-29 Colon Cancer Cells After Lactobacillus kefiri SGL 13 Exposure Using the SWATH Method. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1690-1699. [PMID: 31309410 DOI: 10.1007/s13361-019-02268-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/18/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Despite some studies revealed that kefir acts on different cancers, such as colorectal cancer, the proteomic changes that occur in the colon cancer cells remain to be explored. In this study, the proteomic analysis was combined with determination of kefir characteristics (e.g., adhesion capacity, gastrointestinal and antibiotic resistances), in order to confirm its use as a probiotic. Therefore, a label-free strategy based on SWATH-MS was applied to investigate the proteomic profile of HT-29 cells after exposure for 24 h to a specific strain of Lactobacillus kefiri named SGL 13. We identified a total of 60 differentially expressed proteins in HT-29 cells, among which most are located into the extracellular exosome, playing important/crucial roles in translation and cell adhesion, as indicated by the enrichment analysis. The eIF2 and retinoid X receptor activation pathways appeared to be correlated with the anti-tumoral effect of SGL 13. Immunoblot analysis showed an increase in Bax and a decrease in caspase 3 and mutant p53, and ELISA assay revealed inhibition of IL-8 secretion from HT-29 cells stimulated with LPS upon SGL 13 treatment, suggesting pro-apoptotic and anti-inflammatory properties of kefir. In conclusion, the results of this study, the first of its kind using co-culture of kefir and colon cancer cells, demonstrate that L. kefiri SGL 13 possesses probiotic potency and contribute to elucidate the molecular mechanisms involved in the L. kefiri-colon cancer cell interactions.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Claudia Di Carlo
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Marcello Manfredi
- ISALIT s.r.l., Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases-CAAD, Novara, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Alda Bazaj
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Eleonora Rizzi
- Sintal Dietetics s.r.l., Castelnuovo Vomano, Teramo, Italy
| | - Giuseppe Cornaglia
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Laura Manna
- Sintal Dietetics s.r.l., Castelnuovo Vomano, Teramo, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune & Allergic Diseases-CAAD, Novara, Italy
- Department of Sciences and Technological Innovation, University of Eastern Piedmont, Alessandria, Italy
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
21
|
Servià L, Jové M, Sol J, Pamplona R, Badia M, Montserrat N, Portero-Otin M, Trujillano J. A prospective pilot study using metabolomics discloses specific fatty acid, catecholamine and tryptophan metabolic pathways as possible predictors for a negative outcome after severe trauma. Scand J Trauma Resusc Emerg Med 2019; 27:56. [PMID: 31118076 PMCID: PMC6530007 DOI: 10.1186/s13049-019-0631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
Background We wanted to define metabolomic patterns in plasma to predict a negative outcome in severe trauma patients. Methods A prospective pilot study was designed to evaluate plasma metabolomic patterns, established by liquid chromatography coupled to mass spectrometry, in patients allocated to an intensive care unit (in the University Hospital Arnau de Vilanova, Lleida, Spain) in the first hours after a severe trauma (n = 48). Univariate and multivariate statistics were employed to establish potential predictors of mortality. Results Plasma of patients non surviving to trauma (n = 5) exhibited a discriminating metabolomic pattern, involving basically metabolites belonging to fatty acid and catecholamine synthesis as well as tryptophan degradation pathways. Thus, concentration of several metabolites exhibited an area under the receiver operating curve (ROC) higher than 0.84, including 3-indolelactic acid, hydroxyisovaleric acid, phenylethanolamine, cortisol, epinephrine and myristic acid. Multivariate binary regression logistic revealed that patients with higher myristic acid concentrations had a non-survival odds ratio of 2.1 (CI 95% 1.1–3.9). Conclusions Specific fatty acids, catecholamine synthesis and tryptophan degradation pathways could be implicated in a negative outcome after trauma. The metabolomic study of severe trauma patients could be helpful for biomarker proposal. Electronic supplementary material The online version of this article (10.1186/s13049-019-0631-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis Servià
- Critical Care Unit, University Hospital Arnau de Vilanova, 25198, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Mariona Badia
- Critical Care Unit, University Hospital Arnau de Vilanova, 25198, Lleida, Spain
| | - Neus Montserrat
- Critical Care Unit, University Hospital Arnau de Vilanova, 25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain.
| | - Javier Trujillano
- Critical Care Unit, University Hospital Arnau de Vilanova, 25198, Lleida, Spain.
| |
Collapse
|
22
|
Iwata K, Sakai H, Takahashi D, Sakane F. Myristic acid specifically stabilizes diacylglycerol kinase δ protein in C2C12 skeletal muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1031-1038. [PMID: 30980919 DOI: 10.1016/j.bbalip.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 02/01/2023]
Abstract
Decreased levels of the δ isozyme of diacylglycerol kinase (DGK) in skeletal muscle attenuate glucose uptake and, consequently, are critical for the pathogenesis of type 2 diabetes. We recently found that free myristic acid (14:0), but not free palmitic acid (16:0), increased the DGKδ protein levels and enhanced glucose uptake in C2C12 myotube cells. However, it has been unclear how myristic acid regulates the level of DGKδ2 protein. In the present study, we characterized the myristic acid-dependent increase of DGKδ protein. A cycloheximide chase assay demonstrated that myristic acid, but not palmitic acid, markedly stabilized DGKδ protein. Moreover, other DGK isozymes, DGKη and ζ, as well as glucose uptake-related proteins, such as protein kinase C (PKC) α, PKCζ, Akt and glycogen synthase kinase 3β, failed to be stabilized by myristic acid. Furthermore, DGKδ was not stabilized in cultured hepatocellular carcinoma cells, pancreas carcinoma cells or neuroblastoma cells, and only a moderate stabilizing effect was observed in embryonic kidney cells. A proteasome inhibitor and a lysosome inhibitor, MG132 and chloroquine, respectively, partly inhibited DGKδ degradation, suggesting that myristic acid prevents, at least in part, the degradation of DGKδ by the ubiquitin-proteasome system and the autophagy-lysosome pathway. Overall, these results strongly suggest that myristic acid attenuates DGKδ protein degradation in skeletal muscle cells and that this attenuation is fatty acid-, protein- and cell line-specific. These new findings provide novel insights into the molecular mechanisms of the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Kai Iwata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo 693-8501, Japan
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| |
Collapse
|
23
|
Zhang X, Tang X, Tran NT, Huang Y, Gong Y, Zhang Y, Zheng H, Ma H, Li S. Innate immune responses and metabolic alterations of mud crab (Scylla paramamosain) in response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:166-177. [PMID: 30639477 DOI: 10.1016/j.fsi.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 05/27/2023]
Abstract
Vibrio parahaemolyticus is one of the major pathogens caused diseases in cultured mud crab (Scylla paramamosain). Mud crabs lack an adaptive immune system, their defenses depend almost on innate immunity. Evaluation of the molecular responses of mud crabs to pathogens is essential for control of disease occurrence in farmed animals. In this study, the impacts of V. parahaemolyticus on immunity-related genes and metabolites in mud crabs of different groups (PG, SG and MG refer to controlled, survival and moribund groups, respectively) were investigated. Our results revealed that V. parahaemolyticus infection stimulated significant expressions of immune-related genes (prophenoloxidase, alpha 2-macroglobulin, lysosomal-associated membrane protein, Rab5, C-type lectin B and anti-lipopolysaccharide factor 5) in the MG within 72 h post-infection. The ATP content was significantly reduced in all tissues except muscle of moribund mud crabs. A total of 668 metabolites (including 190 down-regulated and 145 up-regulated) were identified and assigned to 77 pathways in both SG and MG. Metabolites involved in the saturated fatty acid are up-regulated, whereas unsaturated fatty acid and amino acid metabolisms are down-regulated in the immune system of mud crabs during the bacterial infection in MG. Furthermore, a reduction of hemocyte number and an increase of microbial abundance was found in MG. Our results demonstrated that V. parahaemolyticus induced death of mud crabs through reducing the metabolites associate with energy biosynthesis and innate immune system (i.e. proliferation of hemocyte and melanization), resulting in decrease of ATP in different tissues and failed to clearance of pathogens, respectively. The findings of this study provide a basic information of the responses of mud crab on bacterial infection, which is essential for prevention and control of diseases in mud crab aquaculture.
Collapse
Affiliation(s)
- Xusheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ying Huang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|