1
|
De Simone S, Alfieri L, Bosco MA, Cantatore S, Carpinteri M, Cipolloni L, Neri M. The forensic aspects of suicide and neurotrophin factors: a research study. Front Pharmacol 2024; 15:1392832. [PMID: 39170712 PMCID: PMC11335659 DOI: 10.3389/fphar.2024.1392832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Suicide represents a significant public health problem whose neurobiology is not yet fully understood. In many cases, suicidal behavior and psychiatric spectrum disorders are linked, in particular, to major depression. An emerging pathophysiological hypothesis underlines the role of neurotrophic factors, proteins involved in neurogenesis, in synaptic plasticity in response to stressors. Our research aims to evaluate the degree of expression of brain neurotrophic factor (BDNF) in brain areas involved in depressive disorder in suicidal subjects. Furthermore, we want to evaluate the expression of glial cell line-derived neurotrophic factor (GDNF) in suicidal subjects. Methods: We selected twenty confirmed cases of suicide among subjects with a clinical history of depressive pathology and possible psychopharmacological treatment, compared to ten controls of individuals who died of non-suicidal causes. For all selected cases and controls, immunohistochemical investigations were performed using a panel of antibodies against the BDNF and GDNF antigens on samples from the various brain areas. Results and discussion: The results show that BDNF was under-expressed in the cerebral parenchyma of subjects who died by suicide compared to controls, while there was an overexpression of GDNF in suicide victims, these data could be useful for a clinical application as potential markers for suicidal risk, to assess the severity of depression and development of specific pharmacological therapies for depression.
Collapse
Affiliation(s)
- Stefania De Simone
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Letizia Alfieri
- Department of Medical Sciences, Section of Legal Medicine University of Ferrara, Ferrara, Italy
| | - Maria Antonella Bosco
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Santina Cantatore
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Michele Carpinteri
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Margherita Neri
- Department of Medical Sciences, Section of Legal Medicine University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Lu CL, Ren J, Cao X. An Astroglial Basis of Major Depressive Disorder: Molecular, Cellular, and Circuit Features. Biol Psychiatry 2024:S0006-3223(24)01484-7. [PMID: 39084500 DOI: 10.1016/j.biopsych.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Major depressive disorder is a common psychiatric disorder and a leading cause of disability worldwide. Astrocytes play a role in the maintenance of the function of the central nervous system, both physiologically and pathologically. Accumulated evidence indicates that the astrocyte is an important contributor to the pathophysiology of major depressive disorder including blood-brain barrier integrity, gap junctions, gliotransmission, glutamate homeostasis, and energy metabolism. Here, we comprehensively summarize an astroglial basis for major depressive disorder based on molecular, cellular, and circuit properties, suggesting that astrocytes appear to be highly sensitive to stress and are likely to be uniquely positioned to integrate peripheral and central stress responses.
Collapse
Affiliation(s)
- Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Salama A, Gouida MSO, Yassen NN, Sedik AA. Immunoregulatory role of hesperidin against ovalbumin (OVA)-induced bronchial asthma and depression in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3363-3378. [PMID: 37950769 PMCID: PMC11074047 DOI: 10.1007/s00210-023-02833-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Links between bronchial asthma and depression have recently become a great subject of interest. The present study was carried out to assess the protective role of hesperidin against ovalbumin (OVA)-induced bronchial asthma that is associated with depression in rats, for this purpose, four groups. Rats were sensitized with intraperitoneal administration of 200 μg OVA/10 mg aluminum hydroxide (Al (OH) 3 for 3 consecutive days then at day 11 followed by intranasal challenge with OVA (1.5 mg/kg) at days 19, 20, and 21. Rats were pretreated with hesperidin (100 & 200 mg/kg) 1h before OVA challenge. At the end of the study, behavioral tests, biochemical indices, and histopathological architectures of lung and brain tissues were evaluated. Our findings showed that hesperidin significantly ameliorated the reduction in motor activity, motor coordination, forced swimming, CD4, CD25 and foxp3, interleukin-10 (IL-10), dopamine, serotonin, and neurotrophin-3 (NT3) as well as alleviated the elevation in transforming growth factor-beta (TGF-β), tumor necrosis factor-alpha (TNF-α), iL-5, and immunoglobulin E (IgE). In addition, hesperidin reduced cellular infiltration, alveolar sacs damage, the bronchioles wall disruption, and nuclei pyknosis in neuron cells. Finally, hesperidin may provide protection against OVA-induced asthma and depression. This impact could be mediated in part by its anti-inflammatory and immunoregulatory properties.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mona S O Gouida
- Genetics Unit, Faculty of Medicine, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
4
|
Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front Cell Neurosci 2024; 18:1360242. [PMID: 38650657 PMCID: PMC11033448 DOI: 10.3389/fncel.2024.1360242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The immune system has emerged as a key regulator of central nervous system (CNS) function in health and in disease. Importantly, improved understanding of immune contributions to mood disorders has provided novel opportunities for the treatment of debilitating stress-related mental health conditions such as major depressive disorder (MDD). Yet, the impact to, and involvement of, B lymphocytes in the response to stress is not well-understood, leaving a fundamental gap in our knowledge underlying the immune theory of depression. Several emerging clinical and preclinical findings highlight pronounced consequences for B cells in stress and MDD and may indicate key roles for B cells in modulating mood. This review will describe the clinical and foundational observations implicating B cell-psychological stress interactions, discuss potential mechanisms by which B cells may impact brain function in the context of stress and mood disorders, describe research tools that support the investigation of their neurobiological impacts, and highlight remaining research questions. The goal here is for this discussion to illuminate both the scope and limitations of our current understanding regarding the role of B cells, stress, mood, and depression.
Collapse
Affiliation(s)
- Elizabeth Engler-Chiurazzi
- Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
5
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
6
|
Underlying Mechanisms Involved in Gambling Disorder Severity: A Pathway Analysis Considering Genetic, Psychosocial, and Clinical Variables. Nutrients 2023; 15:nu15020418. [PMID: 36678289 PMCID: PMC9864492 DOI: 10.3390/nu15020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Gambling Disorder (GD) has a complex etiology that involves biological and environmental aspects. From a genetic perspective, neurotrophic factors (NTFs) polymorphisms have been associated with the risk of developing GD. The aim of this study was to assess the underlying mechanisms implicated in GD severity by considering the direct and mediational relationship between different variables including genetic, psychological, socio-demographic, and clinical factors. To do so, we used genetic variants that were significantly associated with an increased risk for GD and evaluated its relationship with GD severity through pathway analysis. We found that the interaction between these genetic variants and other different biopsychological features predicted a higher severity of GD. On the one hand, the presence of haplotype block 2, interrelated with haplotype block 3, was linked to a more dysfunctional personality profile and a worse psychopathological state, which, in turn, had a direct link with GD severity. On the other hand, having rs3763614 predicted higher general psychopathology and therefore, higher GD severity. The current study described the presence of complex interactions between biopsychosocial variables previously associated with the etiopathogenesis and severity of GD, while also supporting the involvement of genetic variants from the NTF family.
Collapse
|
7
|
Wu Y, Kong L, Yang A, Xin K, Lu Y, Yan X, Liu W, Zhu Y, Guo Y, Jiang X, Zhou Y, Sun Q, Tang Y, Wu F. Gray matter volume reduction in orbitofrontal cortex correlated with plasma glial cell line-derived neurotrophic factor (GDNF) levels within major depressive disorder. Neuroimage Clin 2023; 37:103341. [PMID: 36739789 PMCID: PMC9932451 DOI: 10.1016/j.nicl.2023.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental disorder characterized by reduced gray matter volume (GMV). To date, the pathogenesis of MDD remains unclear, but neurotrophic factors play an essential role in the pathophysiological alterations of MDD during disease development. In particular, plasma glial cell line-derived neurotrophic factor (GDNF) has been suggested as a potential biomarker that may be associated with disease activity and neurological progression in MDD. Our study investigated whether plasma GDNF levels in MDD patients and healthy controls (HCs) are correlated with GMV alterations. METHODS We studied 54 MDD patients and 48 HCs. The effect of different diagnoses on whole-brain GMV was investigated using ANOVA (Analysis of Variance). The threshold of significance was p < 0.05, and Gaussian random-field (GRF) correction for error was used. All analyses were controlled for covariates such as ethnicity, handedness, age, and gender that could affect GMV. RESULT Compared with the HC group, the GMV in the MDD group was significantly reduced in the right inferior orbitofrontal cortex (OFC), and plasma GDNF levels were significantly higher in the MDD group than in the HC group. In the right inferior OFC, the GDNF levels were positively correlated with GMV reduction in the MDD group, whereas in the HC group, a negative correlation was observed between GDNF levels and GMV reduction. CONCLUSION Although increased production of GDNF in MDD may help repair neural damage in brain regions associated with brain disease, its repairing effects may be interfered with and hindered by underlying neuroinflammatory processes.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Anqi Yang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Kaiqi Xin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yihui Lu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Xintong Yan
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Wen Liu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yingrui Guo
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Brain Function Research Section, Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Qikun Sun
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Department of Geriatric Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Suicide and Neurotrophin Factors: A Systematic Review of the Correlation between BDNF and GDNF and Self-Killing. Healthcare (Basel) 2022; 11:healthcare11010078. [PMID: 36611538 PMCID: PMC9818650 DOI: 10.3390/healthcare11010078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
According to WHO data, suicide is a public health priority. In particular, suicide is the fourth-leading cause of death in young people. Many risk factors of suicide are described, including individual-, relationship-, community-, and societal-linked ones. The leading factor is the diagnosis of mental illness. Nevertheless, not all people who attempt suicide are psychiatric patients; these characteristics help define high-risk populations. There are currently no useful biomarkers to indicate the risk of suicide. In recent years, neurotrophic factors have increasingly become of scientific interest. This review aims to summarize the current scientific knowledge on the correlation between BDNF and GDNF and suicide, to theorize whether neurotrophins could be a reliable marker for an early diagnosis of suicidal risk. The authors conducted a systematic review following PRISMA criteria. They found eight research papers in agreement with the inclusion criteria. According to the results of these studies, there may be a connection between BDNF brain levels and complete suicide, although there are discrepancies. A lack of interest in GDNF may suggest less involvement in the suicidal dynamic. Further studies may provide helpful information to researchers.
Collapse
|
9
|
Begum N, Mandhare A, Tryphena KP, Srivastava S, Shaikh MF, Singh SB, Khatri DK. Epigenetics in depression and gut-brain axis: A molecular crosstalk. Front Aging Neurosci 2022; 14:1048333. [PMID: 36583185 PMCID: PMC9794020 DOI: 10.3389/fnagi.2022.1048333] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Gut-brain axis is a dynamic, complex, and bidirectional communication network between the gut and brain. Changes in the microbiota-gut-brain axis are responsible for developing various metabolic, neurodegenerative, and neuropsychiatric disorders. According to clinical and preclinical findings, the gut microbiota is a significant regulator of the gut-brain axis. In addition to interacting with intestinal cells and the enteric nervous system, it has been discovered that microbes in the gut can modify the central nervous system through metabolic and neuroendocrine pathways. The metabolites of the gut microbiome can modulate a number of diseases by inducing epigenetic alteration through DNA methylation, histone modification, and non-coding RNA-associated gene silencing. Short-chain fatty acids, especially butyrate, are well-known histone deacetylases inhibitors. Similarly, other microbial metabolites such as folate, choline, and trimethylamine-N-oxide also regulate epigenetics mechanisms. Furthermore, various studies have revealed the potential role of microbiome dysbiosis and epigenetics in the pathophysiology of depression. Hence, in this review, we have highlighted the role of gut dysbiosis in epigenetic regulation, causal interaction between host epigenetic modification and the gut microbiome in depression and suggest microbiome and epigenome as a possible target for diagnosis, prevention, and treatment of depression.
Collapse
Affiliation(s)
- Nusrat Begum
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aniket Mandhare
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Kamatham Pushpa Tryphena
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,*Correspondence: Saurabh Srivastava,
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia,Mohd Farooq Shaikh,
| | - Shashi Bala Singh
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,Dharmendra Kumar Khatri,
| |
Collapse
|
10
|
Zinchuk MS, Guekht AB, Druzhkova TA, Gulyaeva NV, Shpak AA. Glial cell line-derived neurotrophic factor (GDNF) in blood serum and lacrimal fluid of patients with a current depressive episode. J Affect Disord 2022; 318:409-413. [PMID: 36116600 DOI: 10.1016/j.jad.2022.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/10/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Many studies indicate a significant role of GDNF in the pathogenesis of the mood disorders, including bipolar disorder (BD) and major depressive disorder (MDD). Potentially, neurotrophic factors in lacrimal fluid (LF) could become biomarkers of various specific disorders. The aim of this study was to assess GDNF levels in LF and blood serum (BS) of patients with a current depressive episode (cDE). METHODS We studied the glial cell line-derived neurotrophic factor (GDNF) concentration in the LF and BS of 39 healthy controls and 137 patients with a current depressive episode (cDE) (both subgroups members were 20-49 years): BD - 46 patients, MDD - 91 patients. RESULTS GDNF concentration in BS of women with MDD was significantly lower than in men. In BD patients, univariate linear regression analysis revealed significant correlations between GDNF concentration in the LF and the use of anxiolytics or antidepressants. These correlations were confirmed by the multivariate linear regression analysis. A significant correlation between GDNF concentrations in the LF and BS was found in controls. LIMITATIONS The unequal proportion of men in the BD group did not permit adjusting GDNF concentrations for sex. The collected LF was stimulated, which could influence GDNF levels. It should also be noted that the patients included in the study were not treatment- naïve. CONCLUSIONS Our findings suggest that GDNF concentration in LF could be a biomarker of the cDE (both unipolar and bipolar), though the sensitivity of this potential biomarker may be lower in depressive patients with anxiety symptoms.
Collapse
Affiliation(s)
- Mikhail S Zinchuk
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation.
| | - Alla B Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation; Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Tatiana A Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Natalia V Gulyaeva
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander A Shpak
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation; The S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russian Federation
| |
Collapse
|
11
|
Dos Santos Guilherme M, Tsoutsouli T, Chongtham MC, Winter J, Gerber S, Müller MB, Endres K. Selective targeting of chronic social stress-induced activated neurons identifies neurogenesis-related genes to be associated with resilience in female mice. Psychoneuroendocrinology 2022; 139:105700. [PMID: 35220090 DOI: 10.1016/j.psyneuen.2022.105700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Prolonged social stress is a major cause for depression in humans and is associated with a wide range of subsequent pathophysiological changes such as elevated blood pressure. A routinely used model for investigating this kind of stress in mice is the chronic social defeat paradigm where a smaller intruder is exposed to an aggressive inhabitant of a home cage. This model is restricted to males and includes a high proportion of physical stress that might e.g., interfere with immunological aspects of the stress. The prevalence of depression in humans is even higher in women than in men. Therefore, expanding models to female individuals is desirable. We here tested the social instability model as a tool for administering chronic social stress to female C57BL/6J mice and analyzed short-term as well as long-lasting effects. Animals were housed in groups of four and were shuffled two times a week, resulting in a permanent re-structuration of their social hierarchy. While directly after the stress exposure, serum corticosterone was elevated, increased body weight and fat deposits were observed in stressed mice even one year after discontinuation of the stress. At the behavioral level, animals could be stratified into resilient and susceptible animals directly post-stress, but those subgroups were not distinguishable any more in the long-term analysis. To identify molecular contributors to resilience in the here presented social instability induced stress model, Arc-activity dependent trapping of neurons was conducted in Arc-creERT2/sun1sfGFP mice. RNA samples derived from activated nuclei from the ventral hippocampus, a brain region involved in stress-regulation during attacks or explorative behavior of mice, were subjected to a neurogenesis pathway array. While several genes were differentially regulated by stress, in particular, artemin, a neurotrophic factor was upregulated in resilient versus susceptible individuals.
Collapse
Affiliation(s)
- Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Theodora Tsoutsouli
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Monika Chanu Chongtham
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Jennifer Winter
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marianne B Müller
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Solé-Morata N, Baenas I, Etxandi M, Granero R, Forcales SV, Gené M, Barrot C, Gómez-Peña M, Menchón JM, Ramoz N, Gorwood P, Fernández-Aranda F, Jiménez-Murcia S. The role of neurotrophin genes involved in the vulnerability to gambling disorder. Sci Rep 2022; 12:6925. [PMID: 35484167 PMCID: PMC9051155 DOI: 10.1038/s41598-022-10391-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/07/2022] [Indexed: 01/16/2023] Open
Abstract
Evidence about the involvement of genetic factors in the development of gambling disorder (GD) has been assessed. Among studies assessing heritability and biological vulnerability for GD, neurotrophin (NTF) genes have emerged as promising targets, since a growing literature showed a possible link between NTF and addiction-related disorders. Thus, we aimed to explore the role of NTF genes and GD with the hypothesis that some NTF gene polymorphisms could constitute biological risk factors. The sample included 166 patients with GD and 191 healthy controls. 36 single nucleotide polymorphisms (SNPs) from NTFs (NGF, NGFR, NTRK1, BDNF, NTRK2, NTF3, NTRK3, NTF4, CNTF and CNTFR) were selected and genotyped. Linkage disequilibrium (LD) and haplotype constructions were analyzed, in relationship with the presence of GD. Finally, regulatory elements overlapping the identified SNPs variants associated with GD were searched. The between groups comparisons of allele frequencies indicated that 6 SNPs were potentially associated with GD. Single and multiple-marker analyses showed a strong association between both NTF3 and NTRK2 genes, and GD. The present study supports the involvement of the NTF family in the aetiopathogenesis of GD. An altered cross-regulation of different NTF members signalling pathways might be considered as a biological vulnerability factor for GD.
Collapse
Affiliation(s)
- Neus Solé-Morata
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Isabel Baenas
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mikel Etxandi
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Roser Granero
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychobiology and Methodology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Sonia V Forcales
- Serra Húnter Programme, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Hospitalet de Llobregat, 08907, Spain
| | - Manel Gené
- Genetic Lab, Forensic and Legal Medicine Unit, Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Carme Barrot
- Genetic Lab, Forensic and Legal Medicine Unit, Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mónica Gómez-Peña
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - José M Menchón
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Hospitalet del Llobregat, Spain.,Ciber of Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Psychiatry and Mental Health Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet del Llobregat, Spain
| | - Nicolás Ramoz
- Psychiatry and Mental Health Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet del Llobregat, Spain.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Vulnerability of Psychiatric and Addictive Disorders, Université de Paris, 75014, Paris, France
| | - Philip Gorwood
- Psychiatry and Mental Health Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet del Llobregat, Spain.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Vulnerability of Psychiatric and Addictive Disorders, Université de Paris, 75014, Paris, France
| | - Fernando Fernández-Aranda
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Hospitalet del Llobregat, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, Bellvitge University Hospital, c/Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain. .,Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain. .,Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain. .,Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Hospitalet del Llobregat, Spain.
| |
Collapse
|
13
|
Liu T, Deng K, Xue Y, Yang R, Yang R, Gong Z, Tang M. Carnitine and Depression. Front Nutr 2022; 9:853058. [PMID: 35369081 PMCID: PMC8964433 DOI: 10.3389/fnut.2022.853058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Depression has become one of the most common mental diseases in the world, but the understanding of its pathogenesis, diagnosis and treatments remains insufficient. Carnitine is a natural substance that exists in organisms, which can be synthesized in vivo or supplemented by intake. Relationships of carnitine with depression, bipolar disorder and other mental diseases have been reported in different studies. Several studies show that the level of acylcarnitines (ACs) changes significantly in patients with depression compared with healthy controls while the supplementation of acetyl-L-carnitine is beneficial to the treatment of depression. In this review, we aimed to clarify the effects of ACs in depressive patients and to explore whether ACs might be the biomarkers for the diagnosis of depression and provide new ideas to treat depression.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Kunhong Deng
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Xue
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rui Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| |
Collapse
|
14
|
Pineda-Cirera L, Cabana-Domínguez J, Lee PH, Fernàndez-Castillo N, Cormand B. Identification of genetic variants influencing methylation in brain with pleiotropic effects on psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110454. [PMID: 34637873 PMCID: PMC10501479 DOI: 10.1016/j.pnpbp.2021.110454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Psychiatric disorders affect 29% of the global population at least once in the lifespan, and genetic studies have proved a shared genetic basis among them, although the underlying molecular mechanisms remain largely unknown. DNA methylation plays an important role in complex disorders and, remarkably, enrichment of common genetic variants influencing allele-specific methylation (ASM) has been reported among variants associated with specific psychiatric disorders. In the present study we assessed the contribution of ASM to a set of eight psychiatric disorders by combining genetic, epigenetic and expression data. We interrogated a list of 3896 ASM tagSNPs in the brain in the summary statistics of a cross-disorder GWAS meta-analysis of eight psychiatric disorders from the Psychiatric Genomics Consortium, including more than 162,000 cases and 276,000 controls. We identified 80 SNPs with pleiotropic effects on psychiatric disorders that show an opposite directional effect on methylation and gene expression. These SNPs converge on eight candidate genes: ZSCAN29, ZSCAN31, BTN3A2, DDAH2, HAPLN4, ARTN, FAM109B and NAGA. ZSCAN29 shows the broadest pleiotropic effects, showing associations with five out of eight psychiatric disorders considered, followed by ZSCAN31 and BTN3A2, associated with three disorders. All these genes overlap with CNVs related to cognitive phenotypes and psychiatric traits, they are expressed in the brain, and seven of them have previously been associated with specific psychiatric disorders, supporting our results. To sum up, our integrative functional genomics analysis identified eight psychiatric disease risk genes that impact a broad list of disorders and highlight an etiologic role of SNPs that influence DNA methylation and gene expression in the brain.
Collapse
Affiliation(s)
- Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Phil H Lee
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain.
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain.
| |
Collapse
|
15
|
Veenakumari M, Goyal N, Kumar M, Kshitiz KK, Kumar P. Serum glial cell derived neurotrophic factor (GDNF) as a predictor of response to HD-tDCS in bipolar affective disorder. Asian J Psychiatr 2022; 68:102965. [PMID: 34952447 DOI: 10.1016/j.ajp.2021.102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/30/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
Serum glial cell line derived neurotrophic factor (GDNF) homeostasis within brain circuits represent target for focal neuromodulation techniques such as high-definition transcranial direct current stimulation (HD-tDCS). In current trial 37 inpatients with bipolar disorder (BD) received active (n = 18) or sham (n = 19) anodal HD-tDCS over right dorsolateral prefrontal cortex (DLPFC). Outcome measures evaluated by YMRS (p = 0.001, effect size=0.946), BPRS (p = 0.015, effect size=0.220) scales and serum GDNF (p = 0.003, effect size = 0.287) at baseline, before and after receiving HD-tDCS revealed significant improvement (active>sham) with modest effect size. However, the study findings are limited due to small sample size and shorter duration of follow-up.
Collapse
Affiliation(s)
- M Veenakumari
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India.
| | - Nishant Goyal
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - Mahesh Kumar
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - K K Kshitiz
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - Pramod Kumar
- Rajendra Institute of Medical Sciences, Ranchi 834009, Jharkhand, India
| |
Collapse
|
16
|
Astrocytes in Neuropsychiatric Disorders: A Review of Postmortem Evidence. ADVANCES IN NEUROBIOLOGY 2021; 26:153-172. [PMID: 34888835 DOI: 10.1007/978-3-030-77375-5_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glial cell types in the central nervous system (CNS) include microglia, oligodendrocytes and the most diverse type, astrocytes. Clinical and experimental evidence suggest critical roles for astrocytes in the pathogenesis of CNS disease. Here, we summarize the extensive morphological heterogeneity and physiological properties of different astrocyte subtypes. We review postmortem studies, discussing astrocyte-related changes found in the brain in subjects diagnosed with the neuropsychiatric disorders schizophrenia, major depressive disorder and bipolar disorder. Finally, we discuss the potential effects of psychotropic medication on these findings. In summary, postmortem studies highlight that the morphology of astrocytes and the expression of functionally important astrocyte markers are altered in the brain in neuropsychiatric disorders and may play a role in the pathophysiology of these serious mental illnesses.
Collapse
|
17
|
Zhang X, Alnafisah RS, Hamoud ARA, Shukla R, Wen Z, McCullumsmith RE, O'Donovan SM. Role of Astrocytes in Major Neuropsychiatric Disorders. Neurochem Res 2021; 46:2715-2730. [PMID: 33411227 DOI: 10.1007/s11064-020-03212-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Astrocytes are the primary homeostatic cells of the central nervous system, essential for normal neuronal development and function, metabolism and response to injury and inflammation. Here, we review postmortem studies examining changes in astrocytes in subjects diagnosed with the neuropsychiatric disorders schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BPD). We discuss the astrocyte-related changes described in the brain in these disorders and the potential effects of psychotropic medication on these findings. Finally, we describe emerging tools that can be used to study the role of astrocytes in neuropsychiatric illness.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Rawan S Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Abdul-Rizaq A Hamoud
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA.,Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
18
|
Fornaro M, Trinchillo A, Saccà F, Iasevoli F, Nolano M, de Bartolomeis A. Pharmacotherapy to prevent the onset of depression following traumatic brain injury. Expert Opin Pharmacother 2021; 23:255-262. [PMID: 34530652 DOI: 10.1080/14656566.2021.1980537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Depressive symptoms may follow traumatic brain injury (TBI), affecting cognition, apathy, and overall general functioning. Pharmacotherapy to prevent the onset of depression following TBI is, therefore, crucial. AREAS COVERED The present report critically appraises current pharmacotherapy to prevent the onset of depression following TBI as well as novel potential pharmacological avenues on the matter. Both efficacy and safety issues are considered, emphasizing an evidence-based approach whenever feasible. The authors further provide the reader with their expert opinion and future perspectives on the subject. EXPERT OPINION Despite its clinical burden and relatively frequent occurrence, the prophylaxis of post-TBI depression warrants further research. The current clinical guidelines of depression do not account for people with a primary diagnosis of TBI. Prospective cohort studies supported by proof-of-concept trials are nonetheless urged toward more effective, patient-tailored pharmacotherapy to prevent the onset of depression and treatment-resistance phenomena following TBI.
Collapse
Affiliation(s)
- Michele Fornaro
- Section of Psychiatry, Department of Neuroscience, Reproductive Science, and Odontostomatology, Federico Ii University of Naples, Naples, Italy
| | - Assunta Trinchillo
- Section of Neurology, Reproductive Science, and Odontostomatology Department of Neuroscience, Federico Ii University of Naples, Naples, Italy
| | - Francesco Saccà
- Section of Neurology, Reproductive Science, and Odontostomatology Department of Neuroscience, Federico Ii University of Naples, Naples, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Department of Neuroscience, Reproductive Science, and Odontostomatology, Federico Ii University of Naples, Naples, Italy
| | - Maria Nolano
- Section of Neurology, Reproductive Science, and Odontostomatology Department of Neuroscience, Federico Ii University of Naples, Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Department of Neuroscience, Reproductive Science, and Odontostomatology, Federico Ii University of Naples, Naples, Italy.,Staff Unesco Chair Chair "Education for Health and Sustainable Development," University of Naples, Federico Ii Naples, Naples, Italy
| |
Collapse
|
19
|
Kawanokuchi J, Takagi K, Tanahashi N, Yamamoto T, Nagaoka N, Ishida T, Ma N. Acupuncture Treatment for Social Defeat Stress. Front Behav Neurosci 2021; 15:685433. [PMID: 34393735 PMCID: PMC8355549 DOI: 10.3389/fnbeh.2021.685433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/05/2021] [Indexed: 01/22/2023] Open
Abstract
Depression is a mood disorder characterized by disordered affect, thoughts, cognition, and behavior. Antidepressant therapy is often the primary treatment for depression. However, antidepressant therapy may cause unwanted side effects, and its effects are slow. Therefore, some patients are seeking alternative treatments for depression, such as acupuncture. However, there are many unclear points regarding the mechanism of the effect of acupuncture on depression. In recent years, we have reported that acupuncture improves the symptoms of mild depression induced by water-immersion stress in a rat model and depression induced by forced swimming in a mouse model. In this study, we examined the effect of acupuncture on the symptoms of social defeat stress (SDS)-induced depression in mice that most closely resemble human symptoms. In this study, we investigated the preventive and therapeutic effects of acupuncture as part of GV20 “Bai-Hui” and Ex-HN3 “Yintang” on model mice with depression induced by SDS. To examine the mechanism of the preventive and therapeutic effects of acupuncture on depression model mice, we examined the expression of neurotrophic factors in the brains of SDS mice. Two weeks of simultaneous acupuncture stimulation as part of GV20 and Ex-HN3 restored SDS-reduced brain-derived neurotrophic factor (BDNF), neurotrophin (NT)-3, and NT-4/5 expression, which was not observed with antidepressants. In contrast, acupuncture stimulation suppressed nerve growth factor (NGF) expression induced by SDS. These results suggest that acupuncture treatment could be effective in correcting the imbalance in the expression of neurotrophic factors. Furthermore, the effects of acupuncture on the expression of neurotrophic factors appear earlier than those of antidepressants, suggesting that it may be a useful treatment for depression.
Collapse
Affiliation(s)
- Jun Kawanokuchi
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Japan.,Division of Health Science, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Ken Takagi
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Japan.,Department of Acupuncture and Moxibustion Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Nobuyuki Tanahashi
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Teruhisa Yamamoto
- Department of Acupuncture and Moxibustion Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Nobuyuki Nagaoka
- Department of Acupuncture and Moxibustion Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Torao Ishida
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Japan
| | - Ning Ma
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Japan.,Division of Health Science, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| |
Collapse
|
20
|
Kawatake-Kuno A, Murai T, Uchida S. The Molecular Basis of Depression: Implications of Sex-Related Differences in Epigenetic Regulation. Front Mol Neurosci 2021; 14:708004. [PMID: 34276306 PMCID: PMC8282210 DOI: 10.3389/fnmol.2021.708004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms. Males and females also differ in their responsiveness to antidepressants. These clinical findings suggest that sex-dependent molecular and neural mechanisms may underlie the development of depression and the actions of antidepressant medications. This review discusses recent advances regarding the role of epigenetics in stress and depression. The first section presents a brief introduction of the basic mechanisms of epigenetic regulation, including histone modifications, DNA methylation, and non-coding RNAs. The second section reviews their contributions to neural plasticity, the risk of depression, and resilience against depression, with a particular focus on epigenetic modulators that have causal relationships with stress and depression in both clinical and animal studies. The third section highlights studies exploring sex-dependent epigenetic alterations associated with susceptibility to stress and depression. Finally, we discuss future directions to understand the etiology and pathophysiology of MDD, which would contribute to optimized and personalized therapy.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
21
|
Guo H, Baker G, Hartle K, Fujiwara E, Wang J, Zhang Y, Xing J, Lyu H, Li XM, Chen J. Exploratory study on neurochemical effects of low-intensity pulsed ultrasound in brains of mice. Med Biol Eng Comput 2021; 59:1099-1110. [PMID: 33881705 DOI: 10.1007/s11517-021-02351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/19/2021] [Indexed: 01/25/2023]
Abstract
There is now a relatively large body of evidence suggesting a relationship between dysfunction of myelin and oligodendrocytes and the etiology of several neuropsychiatric disorders, including depression and schizophrenia, and also suggesting that ultrasound methods may alleviate some of the symptoms of depression. We have applied low-intensity pulsed ultrasound (LIPUS) to the brains of mice treated with the demyelinating drug cuprizone, a drug that has been used as the basis for a rodent model relevant to a number of psychiatric and neurologic disorders including depression, schizophrenia, and multiple sclerosis. Prior to conducting the studies in mice, preliminary studies were carried out on the effects of LIPUS in vitro in neuron-like SH-SY5Y cells and primary glial cells. In subsequent studies in mice, female C57BL/6 mice were restrained in plastic tubes for 20 min daily with the ultrasound transducer near the end of the tube directly above the mouse's head. LIPUS was used at an intensity of 25 mW/cm2 once daily for 22 days in control mice and in mice undergoing daily repetitive restraint stress (RRS). Behavioral or neurochemical studies were done on the mice or the brain tissue obtained from them. The studies in vitro indicated that LIPUS stimulation at an intensity of 15 mW/cm2 delivered for 5 min daily for 3 days in an enclosed sterile cell culture plate in an incubator increased the viability of SH-SY5Y and primary glial cells. In the studies in mice, LIPUS elevated levels of doublecortin, a marker for neurogenesis, in the cortex compared to levels in the RRS mice and caused a trend in elevation of brain levels of brain-derived neurotrophic factor in the hippocampus relative to control levels. LIPUS also increased sucrose preference (a measure of the attenuation of anhedonia, a common symptom of several psychiatric disorders) in the RRS model in mice. The ability of LIPUS administered daily to rescue damaged myelin and oligodendrocytes was studied in mice treated chronically with cuprizone for 35 days. LIPUS increased cortex and corpus callosum levels of myelin basic protein, a protein marker for mature oligodendrocytes, and neural/glial antigen 2, a protein marker for oligodendrocyte precursor cells, relative to levels in the cuprizone + sham animals. These results of this exploratory study suggest that future comprehensive time-related studies with LIPUS on brain chemistry and behavior related to neuropsychiatric disorders are warranted. Exploratory Study on Neurochemical Effects of Low Intensity Pulsed Ultrasound in Brains of Mice. Upper part of figure: LIPUS device and in-vitro cell experimental set-up. The center image is the LIPUS generating box; the image in the upper left shows the cell experiment set-up; the image in the upper right shows a zoomed-in sketch for the cell experiment; the image in the lower left shows the set-up of repetitive restraint stress (RRS) with a mouse; the image in the lower middle shows the set-up of LIPUS treatment of a mouse; the image in the lower right shows a zoomed-in sketch for the LIPUS treatment of a mouse.
Collapse
Affiliation(s)
- Huining Guo
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada
| | - Glen Baker
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Kelly Hartle
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Junhui Wang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Jida Xing
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Haiyan Lyu
- Department of Pharmacy, Xianyue Hospital, Xiamen, China
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada. .,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| | - Jie Chen
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada. .,Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
22
|
Nerve impulse transmission pathway-focused genes expression analysis in patients with primary hypothyroidism and autoimmune thyroiditis. Endocr Regul 2021; 54:109-118. [PMID: 32597152 DOI: 10.2478/enr-2020-0013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Thyroid hormones have important actions in the adult brain. They regulate genes expression in myelination, differentiation of neuronal and glial cells, and neuronal viability and function. METHODS We used the pathway-specific real-time PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and verify nerve impulse transmission pathway-focused genes expression in peripheral white blood cells of patients with postoperative hypothyroidism, hypothyroidism as a result of autoimmune thyroiditis (AIT) and AIT with elevated serum an anti-thyroglobulin (anti-Tg) and anti-thyroid peroxidase (anti-TPO) antibodies. RESULTS It was shown that patients with postoperative hypothyroidism and hypothyroidism resulting from AIT had significantly lower expression of BDNF and CBLN1. In patients with AIT with elevated serum anti-Tg and anti-TPO antibodies, the expression of GDNF was significantly down-regulated and the expression of PNOC was up-regulated. The expression levels of MEF2C and NTSR1 were decreased in the group of patients with postoperative hypothyroidism and AIT, correspondingly. CONCLUSIONS The results of this study demonstrate that AIT and hypothyroidism can affect the expression of mRNA nerve impulse transmission genes in gene specific manner and that these changes in gene expressions can be playing a role in the development of neurological complications associated with thyroid pathology. Detection of the transcriptional activity of nerve impulse transmission genes in peripheral white blood cells can be used as an important minimally invasive prognostic marker of the risk for developing neurological complications comorbid with thyroid pathology.
Collapse
|
23
|
Nedic Erjavec G, Sagud M, Nikolac Perkovic M, Svob Strac D, Konjevod M, Tudor L, Uzun S, Pivac N. Depression: Biological markers and treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110139. [PMID: 33068682 DOI: 10.1016/j.pnpbp.2020.110139] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Nowadays depression is considered as a systemic illness with different biological mechanisms involved in its etiology, including inflammatory response, hypothalamic-pituitary-adrenal (HPA) axis dysregulation and neurotransmitter and neurotrophic systems imbalance. Novel "omics" approaches, such as metabolomics and glycomics provide information about altered metabolic pathways and metabolites, as well as disturbances in glycosylation processes affected by or causing the development of depression. The clinical diagnosis of depression continues to be established based on the presence of the specific symptoms, but due to its heterogeneous underlying biological background, that differs according to the disease stage, there is an unmet need for treatment response biomarkers which would facilitate the process of appropriate treatment selection. This paper provides an overview of the role of major stress response system, the HPA axis, and its dysregulation in depression, possible involvement of neurotrophins, especially brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and insulin-like growth factor-1, in the development of depression. Article discusses how activated inflammation processes and increased cytokine levels, as well as disturbed neurotransmitter systems can contribute to different stages of depression and could specific metabolomic and glycomic species be considered as potential biomarkers of depression. The second part of the paper includes the most recent findings about available medical treatment of depression. The described biological factors impose an optimistic conclusion that they could represent easy obtainable biomarkers potentially predicting more personalized treatment and diagnostic options.
Collapse
Affiliation(s)
- Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marina Sagud
- The University of Zagreb School of Medicine, Salata 3, 10000 Zagreb, Croatia; University Hospital Center Zagreb, Department of Psychiatry, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Sandra Uzun
- University Hospital Center Zagreb, Department for Anesthesiology, Reanimatology, and Intensive Care, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
24
|
Latham LE, Wang C, Patterson TA, Slikker W, Liu F. Neuroprotective Effects of Carnitine and Its Potential Application to Ameliorate Neurotoxicity. Chem Res Toxicol 2021; 34:1208-1222. [PMID: 33570912 DOI: 10.1021/acs.chemrestox.0c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carnitine is an essential metabolite that is absorbed from the diet and synthesized in the kidney, liver, and brain. It ferries fatty acids across the mitochondrial membrane to undergo β-oxidation. Carnitine has been studied as a therapy or protective agent for many neurological diseases and neurotoxicity (e.g., prolonged anesthetic exposure-induced developmental neurotoxicity in preclinical models). Preclinical and clinical data support the notion that carnitine or acetyl carnitine may improve a patient's quality of life through increased mitochondrial respiration, release of neurotransmitters, and global gene expression changes, showing the potential of carnitine beyond its approved use to treat primary and secondary carnitine deficiency. In this review, we summarize the beneficial effects of carnitine or acetyl carnitine on the central nervous system, highlighting protective effects against neurotoxicity-induced damage caused by various chemicals and encouraging a thorough evaluation of carnitine use as a therapy for patients suffering from neurotoxicant exposure.
Collapse
Affiliation(s)
- Leah E Latham
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Tucker A Patterson
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - William Slikker
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| |
Collapse
|
25
|
Primary hypothyroidism and autoimmune thyroiditis alter the transcriptional activity of genes regulating neurogenesis in the blood of patients. Endocr Regul 2021; 55:5-15. [PMID: 33600668 DOI: 10.2478/enr-2021-0002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective. Thyroid hormones play an important role in the development and maturation of the central nervous symptom and their failure in the prenatal period leading to an irreversible brain damage. Their effect on the brain of adult, however, has not been fully studied. With the discovery of neurogenesis in the adult brain, many recent studies have been focused on the understanding the basic mechanisms controlling this process. Many neurogenesis regulatory genes are not only transcribed but also translated into the blood cells. The goal of our study was to analyze the transcriptional activity of neurogenesis regulatory genes in peripheral blood cells in patients with thyroid pathology.Methods. The pathway-specific PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) was used to identify and validate the neurogenesis regulatory genes expression in patients with thyroid pathology and control group.Results. The results showed that GFRA3, NGFR, NRG1, NTF3, NTRK1, and NTRK2 significantly decreased their expression in patients with autoimmune thyroiditis with rising serum of autoantibodies. The patients with primary hypothyroidism, as a result of autoimmune thyroiditis and postoperative hypothyroidism, had significantly lower expression of FGF2, NGFR, NRG1, and NTF3. The mRNA level of CNTFR was markedly decreased in the group of patients with postoperative hypothyroidism. No change in the ARTN, PSPN, TFG, MT3, and NELL1 expression was observed in any group of patients.Conclusion. The finding indicates that a decrease in thyroid hormones and a high level of autoantibodies, such as anti-thyroglobulin antibody and anti-thyroid peroxidase antibody, affect the expression of mRNA neurogenesis-regulated genes in patients with thyroid pathology.
Collapse
|
26
|
The Role of Neurotrophic Factors in Pathophysiology of Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:257-272. [PMID: 33834404 DOI: 10.1007/978-981-33-6044-0_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to the neurotrophic hypothesis of major depressive disorder (MDD), impairment in growth factor signaling might be associated with the pathology of this illness. Current evidence demonstrates that impaired neuroplasticity induced by alterations of neurotrophic growth factors and related signaling pathways may be underlying to the pathophysiology of MDD. Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophic factor involved in the neurobiology of MDD. Nevertheless, developing evidence has implicated other neurotrophic factors, including neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), glial cell-derived neurotrophic factor (GDNF), and fibroblast growth factor (FGF) in the MDD pathophysiology. Here, we summarize the current literature on the involvement of neurotrophic factors and related signaling pathways in the pathophysiology of MDD.
Collapse
|
27
|
Cholewinski T, Pereira D, Moerland M, Jacobs GE. MTORC1 signaling as a biomarker in major depressive disorder and its pharmacological modulation by novel rapid-acting antidepressants. Ther Adv Psychopharmacol 2021; 11:20451253211036814. [PMID: 34733478 PMCID: PMC8558816 DOI: 10.1177/20451253211036814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a multifactorial psychiatric disorder with obscure pathophysiology. A biomarker-based approach in combination with standardized interview-based instruments is needed to identify MDD subtypes and novel therapeutic targets. Recent findings support the impairment of the mammalian target of rapamycin complex 1 (mTORC1) in MDD. No well-established biomarkers of mTORC1 disease- and treatment-modulated activity are currently available for use in early phase antidepressant drug (AD) development. This review aims to summarize biomarkers of mTORC1 activity in MDD and to suggest how these could be implemented in future early clinical trials on mTORC1 modulating ADs. Therefore, a PubMed-based narrative literature review of the mTORC1 involvement in MDD was performed. We have summarized recent pre-clinical and clinical findings linking the MDD to the impaired activity of several key biomarkers related to mTORC1. Also, cases of restoration of these impairments by classical ADs and novel fast-acting investigational ADs are summarized. The presented biomarkers may be used to monitor pharmacological effects by novel rapid-acting mTORC1-targeting ADs. Based on findings in the peripheral blood mononuclear cells, we argue that those may serve as an ex vivo model for evaluation of mTORC1 activity and propose the use of the summarized biomarkers for this purpose. This could both facilitate the selection of a pharmacodynamically active dose and guide future early clinical efficacy studies in MDD. In conclusion, this review provides a blueprint for the rational development of rapid-acting mTORC1-targeting ADs.
Collapse
Affiliation(s)
| | - Diana Pereira
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Gabriel E Jacobs
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| |
Collapse
|
28
|
de Miranda AS, de Barros JLVM, Teixeira AL. Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety? Expert Opin Ther Targets 2020; 24:1225-1238. [PMID: 33141605 DOI: 10.1080/14728222.2020.1846720] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Neurotrophin-3 (NT-3) is thought to play a role in the neurobiological processes implicated in mood and anxiety disorders. NT-3 is a potential pharmacological target for mood disorders because of its effects on monoamine neurotransmitters, regulation of synaptic plasticity and neurogenesis, brain-derived neurotrophic factor (BDNF) signaling boosting, and modulation of the hypothalamic-pituitary-adrenal (HPA) axis. The mechanisms underlying NT-3 anxiolytic properties are less clear and require further exploration and definition. Areas covered: The evidence that supports NT-3 as a pharmacological target for anxiety and mood disorders is presented and this is followed by a reflection on the quandaries, stumbling blocks, and future perspectives for this novel target. Expert opinion: There is evidence for miRNAs being key post-transcriptional regulators of neurotrophin-3 receptor gene (NTRK3) in anxiety disorders; however, the anxiolytic properties of NT-3 need further examination and delineation. Moreover, NT-3 expression by non-neuronal cells and its role in brain circuits that participate in anxiety and mood disorders require further scrutiny. Further work is vital before progression into clinical trials can be realized.
Collapse
Affiliation(s)
- A S de Miranda
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil.,Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil
| | - J L V M de Barros
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil
| | - Antonio Lucio Teixeira
- Neuropsychiatry Program, Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston , Houston, TX, Brazil
| |
Collapse
|
29
|
Amadio P, Zarà M, Sandrini L, Ieraci A, Barbieri SS. Depression and Cardiovascular Disease: The Viewpoint of Platelets. Int J Mol Sci 2020; 21:E7560. [PMID: 33066277 PMCID: PMC7589256 DOI: 10.3390/ijms21207560] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a major cause of morbidity and low quality of life among patients with cardiovascular disease (CVD), and it is now considered as an independent risk factor for major adverse cardiovascular events. Increasing evidence indicates not only that depression worsens the prognosis of cardiac events, but also that a cross-vulnerability between the two conditions occurs. Among the several mechanisms proposed to explain this interplay, platelet activation is the more attractive, seeing platelets as potential mirror of the brain function. In this review, we dissected the mechanisms linking depression and CVD highlighting the critical role of platelet behavior during depression as trigger of cardiovascular complication. In particular, we will discuss the relationship between depression and molecules involved in the CVD (e.g., catecholamines, adipokines, lipids, reactive oxygen species, and chemokines), emphasizing their impact on platelet activation and related mechanisms.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| |
Collapse
|
30
|
Page KC, Anday EK. Dietary Exposure to Excess Saturated Fat During Early Life Alters Hippocampal Gene Expression and Increases Risk for Behavioral Disorders in Adulthood. Front Neurosci 2020; 14:527258. [PMID: 33013310 PMCID: PMC7516040 DOI: 10.3389/fnins.2020.527258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose Maternal and postnatal diets result in long-term changes in offspring brain and behavior; however, the key mediators of these developmental changes are not well-defined. In this study, we investigated the impact of maternal and post-weaning high-fat diets on gene expression of key components mediating hippocampal synaptic efficacy. In addition, we evaluated the risk for impaired stress-coping and anxiety-like behaviors in adult offspring exposed to obesogenic diets during early life. Methods Dams were fed a control (C) or high-fat (HF) diet prior to mating, pregnancy, and lactation. Male offspring from control chow and high-fat fed dams were weaned to control chow or HF diets. The forced swim test (FST) and the elevated-plus maze (EPM) were used to detect stress-coping and anxiety-like behavior, respectively. Real-time RT-PCR and ELISA were used to analyze hippocampal expression of genes mediating synaptic function. Results Animals fed a HF diet post-weaning spent more time immobile in the FST. Swimming time was reduced in response to both maternal and post-weaning HF diets. Both maternal and post-weaning HF diets contributed to anxiety-like behavior in animals exposed to the EPM. Maternal and post-weaning HF diets were associated with a significant decrease in mRNA and protein expression for hippocampal GDNF, MAP2, SNAP25, and synaptophysin. Hippocampal mRNA expression of key serotonergic and glutamatergic receptors also exhibited differential responses to maternal and post-weaning HF diets. Hippocampal serotonergic receptor 5HT1A mRNA was reduced in response to both the maternal and post-weaning diet, whereas, 5HT2A receptor mRNA expression was increased in response to the maternal HF diet. The glutamate AMPA receptor subunit, GluA1, mRNA expression was significantly reduced in response to both diets, whereas no change was detected in GluA2 subunit mRNA expression. Conclusion These data demonstrate that the expression of genes mediating synaptic function are differentially affected by maternal and post-weaning high-fat diets. The post-weaning high-fat diet clearly disturbs both behavior and gene expression. In addition, although the transition to control diet at weaning partially compensates for the adverse effects of the maternal HF diet, the negative consequence of the maternal HF diet is exacerbated by continuing the high-fat diet post-weaning. We present evidence to support the claim that these dietary influences increase the risk for anxiety and impaired stress-coping abilities in adulthood.
Collapse
Affiliation(s)
- Kathleen C Page
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| | - Endla K Anday
- College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Morel L, Domingues O, Zimmer J, Michel T. Revisiting the Role of Neurotrophic Factors in Inflammation. Cells 2020; 9:cells9040865. [PMID: 32252363 PMCID: PMC7226825 DOI: 10.3390/cells9040865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The neurotrophic factors are well known for their implication in the growth and the survival of the central, sensory, enteric and parasympathetic nervous systems. Due to these properties, neurturin (NRTN) and Glial cell-derived neurotrophic factor (GDNF), which belong to the GDNF family ligands (GFLs), have been assessed in clinical trials as a treatment for neurodegenerative diseases like Parkinson’s disease. In addition, studies in favor of a functional role for GFLs outside the nervous system are accumulating. Thus, GFLs are present in several peripheral tissues, including digestive, respiratory, hematopoietic and urogenital systems, heart, blood, muscles and skin. More precisely, recent data have highlighted that different types of immune and epithelial cells (macrophages, T cells, such as, for example, mucosal-associated invariant T (MAIT) cells, innate lymphoid cells (ILC) 3, dendritic cells, mast cells, monocytes, bronchial epithelial cells, keratinocytes) have the capacity to release GFLs and express their receptors, leading to the participation in the repair of epithelial barrier damage after inflammation. Some of these mechanisms pass on to ILCs to produce cytokines (such as IL-22) that can impact gut microbiota. In addition, there are indications that NRTN could be used in the treatment of inflammatory airway diseases and it prevents the development of hyperglycemia in the diabetic rat model. On the other hand, it is suspected that the dysregulation of GFLs produces oncogenic effects. This review proposes the discussion of the biological understanding and the potential new opportunities of the GFLs, in the perspective of developing new treatments within a broad range of human diseases.
Collapse
|
32
|
Maier HB, Neyazi M, Neyazi A, Hillemacher T, Pathak H, Rhein M, Bleich S, Goltseker K, Sadot-Sogrin Y, Even-Chen O, Frieling H, Barak S. Alcohol consumption alters Gdnf promoter methylation and expression in rats. J Psychiatr Res 2020; 121:1-9. [PMID: 31710958 DOI: 10.1016/j.jpsychires.2019.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
Abstract
Alcohol use disorder is one of the most disabling diseases worldwide. Glial-cell derived neurotrophic factor (Gdnf) shows promising results concerning the inhibition of alcohol consumption in rodent models. We investigated the epigenetic regulation of Gdnf following ethanol consumption and withdrawal in a rat model. 32 Wistar rats underwent 7 weeks of intermittent access to alcohol in a 2-bottle choice (IA2BC). Whole blood, Nucleus Accumbens (NAc) and Ventral Tegmental Area (VTA) were collected immediately after the last 24 h of an alcohol-drinking session (alcohol group, AG) or 24 h after withdrawal (withdrawal group, WG). MRNA levels were measured using real-time quantitative PCR. Bisulfite-conversion of DNA and capillary sequencing was used to determine methylation levels of the core promoter (CP) and the negative regulatory element (NRE). The CP of the AG in the NAc was significantly less methylated compared to controls (p < 0.05). In the NAc, mRNA expression was significantly higher in the WG (p < 0.05). In the WG, mRNA expression levels in the VTA were significantly lower (p < 0.05) and showed significantly less methylation in the NRE in the VTA (p < 0.001) and the NAc (p < 0.01) compared to controls. Changes in the cerebral mRNA expression correspond to alterations in DNA methylation of the Gdnf promoter in a rodent model. Our results hold clinical relevance since differences in Gdnf mRNA expression and DNA methylation could be a target for pharmacological interventions.
Collapse
Affiliation(s)
- Hannah Benedictine Maier
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Meraj Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Thomas Hillemacher
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany; Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Hansi Pathak
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Mathias Rhein
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Koral Goltseker
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Sadot-Sogrin
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oren Even-Chen
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Segev Barak
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Chen F, Bertelsen AB, Holm IE, Nyengaard JR, Rosenberg R, Dorph-Petersen KA. Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain Res 2020; 1727:146546. [DOI: 10.1016/j.brainres.2019.146546] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/29/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
|
34
|
Savaheli S, Ahmadiani A. Obsessive-compulsive disorder and growth factors: A comparative review. Behav Brain Res 2019; 372:111967. [PMID: 31136772 DOI: 10.1016/j.bbr.2019.111967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/22/2019] [Accepted: 05/20/2019] [Indexed: 01/19/2023]
Abstract
The goal of this article is to clarify the role of various growth factors in the establishment and progression of obsessive-compulsive disorder (OCD). OCD is a chronic mental disorder with recurrent intrusive thoughts and/or repetitive compulsive behaviors that increase during stressful periods. Growth and neurotrophic factors may be contributing factors in the pathophysiology of OCD. Many of them are synthesized and released within the central nervous system and act as trophic agents in neurons; some of them are involved in brain growth, development, neurogenesis, myelination and plasticity, while others take part in the protection of the nervous system following brain injuries. This paper attempts to identify all articles investigating the relationship between OCD and neurotrophic and growth factors, in both animal and human studies, with a focus on adult brain studies. Based on the PubMed and Scopus and Science Direct search tools, the available articles and studies are reviewed. Out of 230 records in total, the ones related to our review topic were taken into account to further understand the pathophysiological mechanism(s) of OCD, providing methods to improve its symptoms via the modification of neurotrophins and growth factor imbalances.
Collapse
Affiliation(s)
- Sara Savaheli
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Pineda-Cirera L, Shivalikanjli A, Cabana-Domínguez J, Demontis D, Rajagopal VM, Børglum AD, Faraone SV, Cormand B, Fernàndez-Castillo N. Exploring genetic variation that influences brain methylation in attention-deficit/hyperactivity disorder. Transl Psychiatry 2019; 9:242. [PMID: 31582733 PMCID: PMC6776507 DOI: 10.1038/s41398-019-0574-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder caused by an interplay of genetic and environmental factors. Epigenetics is crucial to lasting changes in gene expression in the brain. Recent studies suggest a role for DNA methylation in ADHD. We explored the contribution to ADHD of allele-specific methylation (ASM), an epigenetic mechanism that involves SNPs correlating with differential levels of DNA methylation at CpG sites. We selected 3896 tagSNPs reported to influence methylation in human brain regions and performed a case-control association study using the summary statistics from the largest GWAS meta-analysis of ADHD, comprising 20,183 cases and 35,191 controls. We observed that genetic risk variants for ADHD are enriched in ASM SNPs and identified associations with eight tagSNPs that were significant at a 5% false discovery rate (FDR). These SNPs correlated with methylation of CpG sites lying in the promoter regions of six genes. Since methylation may affect gene expression, we inspected these ASM SNPs together with 52 ASM SNPs in high LD with them for eQTLs in brain tissues and observed that the expression of three of those genes was affected by them. ADHD risk alleles correlated with increased expression (and decreased methylation) of ARTN and PIDD1 and with a decreased expression (and increased methylation) of C2orf82. Furthermore, these three genes were predicted to have altered expression in ADHD, and genetic variants in C2orf82 correlated with brain volumes. In summary, we followed a systematic approach to identify risk variants for ADHD that correlated with differential cis-methylation, identifying three novel genes contributing to the disorder.
Collapse
Affiliation(s)
- Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
| | - Anu Shivalikanjli
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Veera M Rajagopal
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Stephen V Faraone
- Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain.
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain.
| |
Collapse
|
36
|
de Assis GG, Gasanov EV. BDNF and Cortisol integrative system - Plasticity vs. degeneration: Implications of the Val66Met polymorphism. Front Neuroendocrinol 2019; 55:100784. [PMID: 31425696 DOI: 10.1016/j.yfrne.2019.100784] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
UNLABELLED BDNF is the neurotrophin mediating pro-neuronal survival and plasticity. Cortisol (COR), in turn, is engaged in the coordination of several processes in the brain homeostasis. Stress-responsive, both factors show an integrative role through their receptor's dynamics in neurophysiology. Furthermore, the Val66Met BDNF polymorphism may play a role in this mechanism. AIM to investigate BDNF-COR interaction in the human neurophysiology context. METHODS We collected all papers containing BDNF and COR parameters or showing COR analyses in genotyped individuals in a PubMed search - full description available on PROSPERO - CRD42016050206. DISCUSSION BDNF and COR perform distinct roles in the physiology of the brain whose systems are integrated by glucocorticoid receptors dynamics. The BDNF polymorphism appears to have an influence on individual COR responsivity to stress. BDNF and COR play complementary roles in the nervous system where COR is a regulator of positive/negative effects. Exercise positively regulates both factors, regardless of BDNF polymorphism.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland; Lab. of Behavioral Endocrinology, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Eugene V Gasanov
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Poland
| |
Collapse
|
37
|
Hsieh MT, Lin CC, Lee CT, Huang TL. Abnormal Brain-Derived Neurotrophic Factor Exon IX Promoter Methylation, Protein, and mRNA Levels in Patients with Major Depressive Disorder. J Clin Med 2019; 8:jcm8050568. [PMID: 31027379 PMCID: PMC6571872 DOI: 10.3390/jcm8050568] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) exon IX promoter methylation levels, serum BDNF protein levels, and serum mRNA levels were investigated in patients with major depressive disorder (MDD) and healthy controls. Over two years, 51 patients with MDD and 62 healthy controls were recruited. Peripheral blood was drawn from all participants to analyze the BDNF exon IX promoter methylation levels as well as serum BDNF protein and mRNA levels, at baseline and after four weeks of antidepressant treatment. Methylation sequential analysis showed that patients with MDD (n = 39) had a higher methylation level at CpG site 217 and lower methylation levels at CpG site 327 and CpG site 362. Drug responders (n = 25) had a higher methylation level at CpG site 24 and CpG site 324 than the non-responders (n = 11). Patients with MDD had a lower serum BDNF protein and mRNA levels than the healthy controls. In conclusion, these results showed that BDNF exon IX promoter methylation levels, serum BDNF protein level, and serum BDNF mRNA level could contribute to the pathophysiology of a major depressive disorder.
Collapse
Affiliation(s)
- Men-Ting Hsieh
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chin-Chuen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
38
|
Sun J, Kong L, Wu F, Wei Y, Zhu Y, Yin Z, Deng X, Jiang X, Tang Y, Wang F. Decreased plasma glial cell line-derived neurotrophic factor level in major depressive disorder is associated with age and clinical severity. J Affect Disord 2019; 245:602-607. [PMID: 30445385 DOI: 10.1016/j.jad.2018.11.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/15/2018] [Accepted: 11/03/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) as a neurotrophic factor closely related to depression is able to promote the growth, proliferation, differentiation, and survival of multiple neurons. Clinical features, recurrence rates and suicide rates are significant different in major depressive disorder (MDD) according to age. GDNF level changes in the peripheral blood has been reported in patients with MDD. In this study, we aimed to investigate whether GDNF levels differentiated within various age groups and its relationship with age/clinical severity. METHOD MDD subjects and healthy controls (HC) are divided into younger (age 13-24 years) group (yMDD n = 35, yHC n = 44) and older (age 25-45 years) group (oMDD n = 30, oHC n = 55) based on the age of brain maturity. Clinical symptom severity was evaluated by the Hamilton Depression Rating Scale (HAMD-17) and the Hamilton Anxiety Rating Scale (HAMA-17). The levels of plasma GDNF were compared within subgroups. RESULTS Plasma GDNF levels in yMDD patients were significantly decreased compared to yHC (yMDD 1.55 ± 0.46pg/ml, yHC 1.77 ± 0.47pg/ml, p < 0.05). Moreover, such difference was not found between oMDD group and oHC group. Our results also showed negative correlations between plasma GDNF levels and HAMD/HAMA scores (r = -0.33, p < 0.05; r = -0.39, p < 0.05). LIMITATIONS This study was underpowered to observe dynamic changes between age and GDNF in MDD due to the cross-sectional design of present study. We also failed to divided subjects into more age groups because of moderate sample size. CONCLUSION The present result showed the level of protective neurotrophic factor GDNF associated with age in MDD, suggesting a relevance between GDNF and MDD subjects abnormal brain development in adolescent and young adult period.
Collapse
Affiliation(s)
- Jiaze Sun
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lingtao Kong
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Wu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yange Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Deng
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
39
|
The role of neurotrophins in psychopathology and cardiovascular diseases: psychosomatic connections. J Neural Transm (Vienna) 2019; 126:265-278. [PMID: 30767081 PMCID: PMC6449302 DOI: 10.1007/s00702-019-01973-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
Cardiovascular (CV) diseases and mood disorders are common public health problems worldwide. Their connections are widely studied, and the role of neurotrophins (NTs) is already supposed in both conditions. However, data in the literature of clinical aspects are sometimes controversial and no reviews are available describing possible associations between CV risk and mood disorders based on NTs. The mostly studied NT is brain-derived neurotrophic factor (BDNF). Decreased level of BDNF is observed in depression and its connection to hypertension has also been demonstrated with affecting the arterial baroreceptors, renin–angiotensin system and endothelial nitric oxide synthase. BDNF was also found to be the predictor of CV outcome in different patient populations. Other types of human NT-s, such as nerve growth factor, neurotrophin 3 and neurotrophin 4 also seem to have both psychopathological and CV connections. Our aim was to overview the present knowledge in this area, demonstrating a new aspect of the associations between mood disorders and CV diseases through the mediation of NTs. These findings might enlighten new psychosomatic connections and suggest new therapeutic targets that are beneficial both in respect of mood disorders and CV pathology.
Collapse
|
40
|
Skibinska M, Kapelski P, Rajewska-Rager A, Szczepankiewicz A, Narozna B, Duda J, Dmitrzak-Weglarz M, Twarowska-Hauser J, Pawlak J. Correlation of metabolic parameters, neurotrophin-3, and neurotrophin-4 serum levels in women with schizophrenia and first-onset depression. Nord J Psychiatry 2019; 73:96-103. [PMID: 30654674 DOI: 10.1080/08039488.2018.1563213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neurotrophin-3 (NTF3) and neurotrophin-4 (NTF4) play a crucial role in the neurodevelopment, differentiation, survival, and protection of neurons in different brain regions. Schizophrenia and depression are highly associated with metabolic abnormalities. Longitudinal and cross-sectional comparisons of NTF3 and NTF4 levels, as well as clinical and metabolic parameters, were studied in schizophrenia, first-episode depression, and control groups. MATERIALS AND METHODS Serum NTF3 and NTF4 levels, body mass index (BMI), fasting serum glucose and lipid profile: cholesterol, triglyceride, high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) were measured at baseline and week 8 in 133 women: 55 patients with schizophrenia (19 with first-episode and 36 chronic), 30 patients with a first-episode depression and 48 healthy controls. The severity of the symptoms was evaluated with the Positive and Negative Syndrome Scale, 17-item Hamilton Depression Rating Scale and the Beck Depression Inventory. RESULTS Longitudinal and cross-sectional comparisons did not detect any differences in the serum levels of NTF3 and NTF4 between studied groups. NTF3 and NTF4 levels were strongly correlated. Correlation of NTF3 and HDL-C levels at baseline was observed. Significant changes in cholesterol and fasting serum glucose levels in first-episode depression patients during 8 weeks of treatment were detected. Significant differences in BMI and LDL-C levels between schizophrenia and first-episode depression patients were discovered. CONCLUSIONS To our knowledge, this is the first research which correlates NTF3 and NTF4 with metabolic parameters. Our study does not support the theory that the peripheral levels of NTF3 and NTF4 are disturbed in schizophrenia or first-episode depression.
Collapse
Affiliation(s)
- Maria Skibinska
- a Psychiatric Genetics Unit, Department of Psychiatry , Poznan University of Medical Sciences , Poznan , Poland
| | - Pawel Kapelski
- a Psychiatric Genetics Unit, Department of Psychiatry , Poznan University of Medical Sciences , Poznan , Poland
| | - Aleksandra Rajewska-Rager
- a Psychiatric Genetics Unit, Department of Psychiatry , Poznan University of Medical Sciences , Poznan , Poland
| | - Aleksandra Szczepankiewicz
- a Psychiatric Genetics Unit, Department of Psychiatry , Poznan University of Medical Sciences , Poznan , Poland
| | - Beata Narozna
- b Laboratory of Molecular and Cell Biology , Poznan University of Medical Sciences , Poznan , Poland
| | - Joanna Duda
- a Psychiatric Genetics Unit, Department of Psychiatry , Poznan University of Medical Sciences , Poznan , Poland
| | - Monika Dmitrzak-Weglarz
- a Psychiatric Genetics Unit, Department of Psychiatry , Poznan University of Medical Sciences , Poznan , Poland
| | - Joanna Twarowska-Hauser
- a Psychiatric Genetics Unit, Department of Psychiatry , Poznan University of Medical Sciences , Poznan , Poland
| | - Joanna Pawlak
- a Psychiatric Genetics Unit, Department of Psychiatry , Poznan University of Medical Sciences , Poznan , Poland
| |
Collapse
|
41
|
Arabska J, Łucka A, Strzelecki D, Wysokiński A. In schizophrenia serum level of neurotrophin-3 (NT-3) is increased only if depressive symptoms are present. Neurosci Lett 2018; 684:152-155. [DOI: 10.1016/j.neulet.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/28/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022]
|
42
|
Yamagata H, Uchida S, Matsuo K, Harada K, Kobayashi A, Nakashima M, Higuchi F, Watanuki T, Matsubara T, Watanabe Y. Altered plasma protein glycosylation in a mouse model of depression and in patients with major depression. J Affect Disord 2018; 233:79-85. [PMID: 28844310 DOI: 10.1016/j.jad.2017.08.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/18/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glycosylation is a common posttranslational modification in protein biosynthesis that is implicated in several disease states. It has been reported that specific protein glycan structures are useful as biomarkers for cancer and some neuropsychiatric diseases; however, the relationship between plasma protein glycosylation and major depressive disorder (MDD) has not been investigated to date. The aim of this study was to determine whether plasma protein glycan structures are altered in depression using a stress-based mouse model and samples from patients with MDD. METHODS We used chronic ultra-mildly stressed mice that were untreated or treated with imipramine as mouse models of depression and remission, respectively. We also made comparisons between samples from depressed and remitted patients with MDD. Protein glycosylation was analyzed using a lectin microarray that included 45 lectins with binding affinities for various glycan structures. RESULTS Sia-alpha2-6Gal/GalNAc was a commonly altered glycan structure in both depression model mice and patients with MDD. Moreover, the expression of ST6GALNAC2 was decreased in leukocytes from patients with MDD. LIMITATIONS Our study samples were small and we did not identify specific alpha2-6Gal/GalNAc-sialylated proteins. CONCLUSIONS The glycan structure Sia-alpha2-6GalNAc in plasma protein and ST6GALNAC2 expression in peripheral leukocytes may have utility as candidate biomarkers for the clinical diagnosis and monitoring of MDD.
Collapse
Affiliation(s)
- Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mami Nakashima
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; Nagatoichinomiya Hospital, 17-35 Katachiyama-midoricho, Shimonoseki, Yamaguchi 751-0885, Japan
| | - Fumihiro Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Toshio Watanuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; Health Service Center Organization for University Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
43
|
The Gender-Biased Effects of Intranasal MPTP Administration on Anhedonic- and Depressive-Like Behaviors in C57BL/6 Mice: the Role of Neurotrophic Factors. Neurotox Res 2018; 34:808-819. [DOI: 10.1007/s12640-018-9912-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
|
44
|
Uchida S, Yamagata H, Seki T, Watanabe Y. Epigenetic mechanisms of major depression: Targeting neuronal plasticity. Psychiatry Clin Neurosci 2018; 72:212-227. [PMID: 29154458 DOI: 10.1111/pcn.12621] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022]
Abstract
Major depressive disorder is one of the most common mental illnesses as it affects more than 350 million people globally. Major depressive disorder is etiologically complex and disabling. Genetic factors play a role in the etiology of major depression. However, identical twin studies have shown high rates of discordance, indicating non-genetic mechanisms as well. For instance, stressful life events increase the risk of depression. Environmental stressors also induce stable changes in gene expression within the brain that may lead to maladaptive neuronal plasticity in regions implicated in disease pathogenesis. Epigenetic events alter the chromatin structure and thus modulate expression of genes that play a role in neuronal plasticity, behavioral response to stress, depressive behaviors, and response to antidepressants. Here, we review new information regarding current understanding of epigenetic events that may impact depression. In particular, we discuss the roles of histone acetylation, DNA methylation, and non-coding RNA. These novel mechanisms of action may lead to new therapeutic strategies for treating major depression.
Collapse
Affiliation(s)
- Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Tomoe Seki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
45
|
Safari R, Tunca Z, Özerdem A, Ceylan D, Yalçın Y, Sakizli M. Glial cell-derived neurotrophic factor gene polymorphisms affect severity and functionality of bipolar disorder. J Integr Neurosci 2018; 16:471-481. [DOI: 10.3233/jin-170031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Roghaiyeh Safari
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, Izmir 35220, Turkey
| | - Zeliha Tunca
- Department of Psychiatry, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
| | - Ayşegül Özerdem
- Department of Psychiatry, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
- Department of Neuroscience, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
| | - Deniz Ceylan
- Department of Psychiatry, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
| | - Yaprak Yalçın
- Department of Psychiatry, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
| | - Meral Sakizli
- Department of Medical Biology and Genetics, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
| |
Collapse
|
46
|
Corrêa-Velloso JC, Gonçalves MC, Naaldijk Y, Oliveira-Giacomelli Á, Pillat MM, Ulrich H. Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:34-53. [PMID: 28476640 DOI: 10.1016/j.pnpbp.2017.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric disorders involve various pathological mechanisms, resulting in neurodegeneration and brain atrophy. Neurodevelopmental processes have shown to be critical for the progression of those disorders, which are based on genetic and epigenetic mechanisms as well as on extrinsic factors. We review here common mechanisms underlying the comorbidity of Bipolar Disorders and Alzheimer's Disease, such as aberrant neurogenesis and neurotoxicity, reporting current therapeutic approaches. The understanding of these mechanisms precedes stem cell-based strategies as a new therapeutic possibility for treatment and prevention of Bipolar and Alzheimer's Disease progression. Taking into account the difficulty of studying the molecular basis of disease progression directly in patients, we also discuss the importance of stem cells for effective drug screening, modeling and treating psychiatric diseases, once in vitro differentiation of patient-induced pluripotent stem cells provides relevant information about embryonic origins, intracellular pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Juliana C Corrêa-Velloso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Maria Cb Gonçalves
- Departamento de Neurologia e Neurociências, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, São Paulo, SP 04039-032, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Micheli M Pillat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
47
|
Fielder GC, Yang TWS, Razdan M, Li Y, Lu J, Perry JK, Lobie PE, Liu DX. The GDNF Family: A Role in Cancer? Neoplasia 2018; 20:99-117. [PMID: 29245123 PMCID: PMC5730419 DOI: 10.1016/j.neo.2017.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFLs) comprising of GDNF, neurturin, artemin, and persephin plays an important role in the development and maintenance of the central and peripheral nervous system, renal morphogenesis, and spermatogenesis. Here we review our current understanding of GFL biology, and supported by recent progress in the area, we examine their emerging role in endocrine-related and other non-hormone-dependent solid neoplasms. The ability of GFLs to elicit actions that resemble those perturbed in an oncogenic phenotype, alongside mounting evidence of GFL involvement in tumor progression, presents novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Mahalakshmi Razdan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, P. R. China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
48
|
The protein and mRNA expression levels of glial cell line-derived neurotrophic factor in post stroke depression and major depressive disorder. Sci Rep 2017; 7:8674. [PMID: 28819313 PMCID: PMC5561249 DOI: 10.1038/s41598-017-09000-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Previous studies have indicated that the level of glial cell line-derived neurotrophic factor (GDNF) may be correlated with stroke and depression. Here, we investigated whether GDNF can be a discriminant indicator for post stroke depression (PSD). 159 participants were divided into four groups: PSD, stroke without depression (Non-PSD), major depressive disorder (MDD) and normal control (NC) group, and the protein and mRNA expression levels of GDNF in serum were measured. The results showed that only MDD group had statistical difference in protein and mRNA levels compared with the other three groups (Bonferroni test, P < 0.05). The results of receiver operating curve (ROC) analysis supported GDNF as general distinguishing models in PSD and MDD groups with the area under the curve (AUC) at 0.797 (P < 0.001) and 0.831 (P < 0.001) respectively. In addition, the Spearman analysis demonstrated that the GDNF protein level negatively correlated with the value of Hamilton depression rating scale (HAMD) in PSD patients (correlation coefficient = -0.328, P = 0.047). Together, these findings suggest the protein and mRNA expression levels of GDNF decreased in patients with depression. GDNF may serve as a potential biomarker for differential diagnosis of PSD from MDD patients.
Collapse
|
49
|
Yamagata H, Uchida S, Matsuo K, Harada K, Kobayashi A, Nakashima M, Nakano M, Otsuki K, Abe-Higuchi N, Higuchi F, Watanuki T, Matsubara T, Miyata S, Fukuda M, Mikuni M, Watanabe Y. Identification of commonly altered genes between in major depressive disorder and a mouse model of depression. Sci Rep 2017; 7:3044. [PMID: 28596527 PMCID: PMC5465183 DOI: 10.1038/s41598-017-03291-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/26/2017] [Indexed: 12/11/2022] Open
Abstract
The heterogeneity of depression (due to factors such as varying age of onset) may explain why biological markers of major depressive disorder (MDD) remain uncertain. We aimed to identify gene expression markers of MDD in leukocytes using microarray analysis. We analyzed gene expression profiles of patients with MDD (age ≥50, age of depression onset <50) (N = 10, depressed state; N = 13, remitted state). Seven-hundred and ninety-seven genes (558 upregulated, 239 downregulated when compared to those of 30 healthy subjects) were identified as potential markers for MDD. These genes were then cross-matched to microarray data obtained from a mouse model of depression (676 genes, 148 upregulated, 528 downregulated). Of the six common genes identified between patients and mice, five genes (SLC35A3, HIST1H2AL, YEATS4, ERLIN2, and PLPP5) were confirmed to be downregulated in patients with MDD by quantitative real-time polymerase chain reaction. Of these genes, HIST1H2AL was significantly decreased in a second set of independent subjects (age ≥20, age of onset <50) (N = 18, subjects with MDD in a depressed state; N = 19, healthy control participants). Taken together, our findings suggest that HIST1H2AL may be a biological marker of MDD.
Collapse
Affiliation(s)
- Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Mami Nakashima
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Nagatoichinomiya Hospital, 17-35 Katachiyama-midoricho, Shimonoseki, Yamaguchi, 751-0885, Japan
| | - Masayuki Nakano
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Katakura Hospital, 229-3 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Koji Otsuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Department of Psychiatry, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Naoko Abe-Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumihiro Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Watanuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Matsubara
- Health Service Center Organization for University Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi, 753-8511, Japan
| | - Shigeo Miyata
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masato Fukuda
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Mikuni
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Hakodate Watanabe Hospital, 1-31-1 Yunokawa-cho, Hakodate, Hokkaido, 042-8678, Japan
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
50
|
Abstract
OBJECTIVE The exact pathophysiology of bipolar disorder (BD) is not yet fully understood, and there are many questions in this area which should be answered. This review aims to discuss the roles of glial cells in the pathophysiology of BD and their contribution to the mechanism of action of mood-stabilising drugs. METHODS We critically reviewed the most recent advances regarding glial cell roles in the pathophysiology and treatment of BD and the neuroprotective and neurotrophic effects of these cells. RESULTS Postmortem studies revealed a decrease in the glial cell number or density in the specific layers of prefrontal and anterior cingulate cortex in the patients with BD, whereas there was no difference in other brain regions, such as entorhinal cortex, amygdala and hippocampus. Astrocytes and oligodendrocytes were the most important glial types that were responsible for the glial reduction, but microglia activation rather than loss may be implicated in BD. The decreased number or density of glial cells may contribute to the pathological changes observed in neurons in the patients with BD. Alteration of specific neurotrophic factors such as glial cell line-derived neurotrophic factor and S100B may be an important feature of BD. Glial cells mediate the therapeutic effects of mood-stabilising agents in the treatment of BD. CONCLUSION Recent studies provide important evidence on the impairment of glial cells in the pathophysiology and treatment of BD. However, future controlled studies are necessary to elucidate different aspects of glial cells contribution to BD, and the mechanism of action of mood-stabilising drugs.
Collapse
|