1
|
Yang Y, Lin L, Zhang S. Preventive Effect of 3,3'-dimethoxy-4,4'-dihydroxy-stilbene Triazole on Pulmonary Fibrosis through Inhibition of Inflammation and Down-regulation of TGF-b Signaling Pathway. DOKL BIOCHEM BIOPHYS 2024:10.1134/S1607672924600350. [PMID: 39400768 DOI: 10.1134/s1607672924600350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 10/15/2024]
Abstract
In the present study effect of 3,3'-dimethoxy-4,4'-dihydroxy-stilbene triazole (STT) on plmonary fibrosis development was investigated in vitro in primary lung fibroblasts as well as in vivo in mice model. The results demonstrated that STT treatment effectively inhibited the TGF-β1 induced increase in expression of α-SMA and collagen I proteins in PLFs. STT treatment effectively reversed the TGF-β1 induced increase in expression of LOXL2 protein and phosphorylation of Smad2/3 proteins. Treatment of PLFs with STT reversed the TGF-β1-induced increase in expression of NOX4 and suppression of p-AMPK protein. In mice model of pulmonary fibrosis STT treatment significantly inhibited the BLM-mediated decrease in body weight and survival rate. The BLM induced increase in pulmonary index in mice was also effectively inhibited on treatment with STT. Treatment of the mice with STT inhibited the BLM-induced increase in α-SMA and Col I protein expression in pulmonary tissues. The BLM-induced increase in TGF-β1 protein expression in pulmonary tissues of the mice was inhibited on treatment with STT. Treatment with STT effectively promoted the AMPK activation in lung tissues of the BLM administered mice. In summary, the present study demonstrates that STT treatment prevents TGF-β1 induced up-regulation of α-SMA, collagen I, LOXL2 protein expression and targets phosphorylation of Smad2/3 proteins in PLFs. Moreover, it inhibits TGF-β1-induced increase in expression of NOX4 and reverses TGF-β1-mediated suppression in expression of p-AMPK protein. Therefore, STT inhibits fibrosis development in vitro as well as in vivo and therefore can be investigated further as a therapeutic agent for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Yanping Yang
- School of Health, Shaanxi Fashion Engineering University, 712046, Shaanxi, Xi'an, China.
| | - Lianjun Lin
- School of Health, Shaanxi Fashion Engineering University, 712046, Shaanxi, Xi'an, China
| | - Shanshan Zhang
- School of Health, Shaanxi Fashion Engineering University, 712046, Shaanxi, Xi'an, China
| |
Collapse
|
2
|
Hunt T, Pontifex MG, Vauzour D. (Poly)phenols and brain health - beyond their antioxidant capacity. FEBS Lett 2024. [PMID: 39043619 DOI: 10.1002/1873-3468.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
(Poly)phenols are a group of naturally occurring phytochemicals present in high amounts in plant food and beverages with various structures and activities. The impact of (poly)phenols on brain function has gained significant attention due to the growing interest in the potential benefits of these dietary bioactive molecules for cognitive health and neuroprotection. This review will therefore summarise the current knowledge related to the impact of (poly)phenols on brain health presenting evidence from both epidemiological and clinical studies. Cellular and molecular mechanisms in relation to the observed effects will also be described, including their impact on the gut microbiota through the modulation of the gut-brain axis. Although (poly)phenols have the potential to modulate the gut-brain axis regulation and influence cognitive function and decline through their interactions with gut microbiota, anti-inflammatory and antioxidant properties, further research, including randomised controlled trials and mechanistic studies, is needed to better understand the underlying mechanisms and establish causal relationships between (poly)phenol intake and brain health.
Collapse
Affiliation(s)
- Thomas Hunt
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
3
|
Aranda-Abreu GE, Rojas-Durán F, Hernández-Aguilar ME, Herrera-Covarrubias D, Chí-Castañeda LD, Toledo-Cárdenas MR, Suárez-Medellín JM. Alzheimer's Disease: Cellular and Pharmacological Aspects. Geriatrics (Basel) 2024; 9:86. [PMID: 39051250 PMCID: PMC11270425 DOI: 10.3390/geriatrics9040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease was described more than 100 years ago and despite the fact that several molecules are being tested for its treatment, which are in phase III trials, the disease continues to progress. The main problem is that these molecules function properly in healthy neurons, while neuronal pathology includes plasma membrane disruption, malfunction of various organelles, and hyperphosphorylation of Tau and amyloid plaques. The main objective of this article is the discussion of a neuronal restoration therapy, where molecules designed for the treatment of Alzheimer's disease would probably be more effective, and the quality of life of people would be better.
Collapse
Affiliation(s)
- Gonzalo Emiliano Aranda-Abreu
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91192, Mexico; (F.R.-D.); (M.E.H.-A.); (D.H.-C.); (L.D.C.-C.); (M.R.T.-C.); (J.M.S.-M.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Liu Q, Wang J, Gu Z, Ouyang T, Gao H, Kan H, Yang Y. Comprehensive Exploration of the Neuroprotective Mechanisms of Ginkgo biloba Leaves in Treating Neurological Disorders. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1053-1086. [PMID: 38904550 DOI: 10.1142/s0192415x24500435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Neurological disorders (NDs) are diseases that seriously affect the health of individuals worldwide, potentially leading to a significant reduction in the quality of life for patients and their families. Herbal medicines have been widely used in the treatment of NDs due to their multi-target and multi-pathway features. Ginkgo biloba leaves (GBLs), one of the most popular herbal medicines in the world, have been demonstrated to present therapeutic effects on NDs. However, the pharmacological mechanisms of GBLs in the treatment of neurological disorders have not been systematically summarized. This study aimed to summarize the molecular mechanism of GBLs in treating NDs from the cell models, animal models, and clinical trials of studies. Four databases, i.e., PubMed, Google Scholar, CNKI, and Web of Science were searched using the following keywords: "Ginkgo biloba", "Ginkgo biloba extract", "Ginkgo biloba leaves", "Ginkgo biloba leaves extract", "Neurological disorders", "Neurological diseases", and "Neurodegenerative diseases". All items meeting the inclusion criteria on the treatment of NDs with GBLs were extracted and summarized. Additionally, PRISMA 2020 was performed to independently evaluate the screening methods. Out of 1385 records in the database, 52 were screened in relation to the function of GBLs in the treatment of NDs; of these 52 records, 39 were preclinical trials and 13 were clinical studies. Analysis of pharmacological studies revealed that GBLs can improve memory, cognition, behavior, and psychopathology of NDs and that the most frequently associated GBLs are depression, followed by Alzheimer's disease, stroke, Huntington's disease, and Parkinson's disease. Additionally, the clinical studies of depression, AD, and stroke are the most common, and most of the remaining ND data are available from in vitro or in vivo animal studies. Moreover, the possible mechanisms of GBLs in treating NDs are mainly through free radical scavenging, anti-oxidant activity, anti-inflammatory response, mitochondrial protection, neurotransmitter regulation, and antagonism of PAF. This is the first paper to systematically and comprehensively investigate the pharmacological effects and neuroprotective mechanisms of GBLs in the treatment of NDs thus far. All findings contribute to a better understanding of the efficacy and complexity of GBLs in treating NDs, which is of great significance for the further clinical application of this herbal medicine.
Collapse
Affiliation(s)
- Qiwei Liu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Zongyun Gu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, P. R. China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| |
Collapse
|
5
|
Nazzi C, Avenanti A, Battaglia S. The Involvement of Antioxidants in Cognitive Decline and Neurodegeneration: Mens Sana in Corpore Sano. Antioxidants (Basel) 2024; 13:701. [PMID: 38929140 PMCID: PMC11200558 DOI: 10.3390/antiox13060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
With neurodegenerative disorders being on the rise, a great deal of research from multiple fields is being conducted in order to further knowledge and propose novel therapeutic interventions. Among these investigations, research on the role of antioxidants in contrasting cognitive decline is putting forward interesting and promising results. In this review, we aim to collect evidence that focused on the role of a variety of antioxidants and antioxidant-rich foods in improving or stabilizing cognitive functions, memory, and Alzheimer's disease, the most common neurodegenerative disorder. Specifically, we considered evidence collected on humans, either through longitudinal studies or randomized, placebo-controlled ones, which evaluated cognitive performance, memory abilities, or the progression level of neurodegeneration. Overall, despite a great deal of variety between study protocols, cohorts of participants involved, neuropsychological tests used, and investigated antioxidants, there is a solid trend that suggests that the properties of antioxidants may be helpful in hampering cognitive decline in older people. Thus, the help of future research that will further elucidate the role of antioxidants in neuroprotection will lead to the development of novel interventions that will take into account such findings to provide a more global approach to treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Claudio Nazzi
- Dipartimento di Psicologia, Università degli Studi di Torino, 10134 Torino, Italy;
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, Campus di Cesena, 47521 Cesena, Italy;
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, Campus di Cesena, 47521 Cesena, Italy;
- Neuropsychology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - Simone Battaglia
- Dipartimento di Psicologia, Università degli Studi di Torino, 10134 Torino, Italy;
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, Campus di Cesena, 47521 Cesena, Italy;
| |
Collapse
|
6
|
Mohamed Yusof NIS, Mohd Fauzi F. Nature's Toolbox for Alzheimer's Disease: A Review on the Potential of Natural Products as Alzheimer's Disease Drugs. Neurochem Int 2024; 176:105738. [PMID: 38616012 DOI: 10.1016/j.neuint.2024.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Numerous clinical trials involving natural products have been conducted to observe cognitive performances and biomarkers in Alzheimer's Disease (AD) patients. However, to date, no natural-based drugs have been approved by the FDA as treatments for AD. In this review, natural product-based compounds that were tested in clinical trials from 2011 to 2023, registered at www.clinicaltrials.gov were reviewed. Thirteen compounds, encompassing 7 different mechanisms of action were covered. Several observations were deduced, which are: i) several compounds showed cognitive improvement, but these improvements may not extend to AD, ii) compounds that are endogenous to the human body showed better outcomes, and iii) Docosahexaenoic acid (DHA) and cerebrolysin had the most potential as AD drugs among the 13 compounds. Based on the current findings, natural products may be more suitable as a supplement than AD drugs in most cases. However, the studies covered here were conducted in a relatively short amount of time, where compounds acting on AD pathways may take time to show any effect. Given the diverse pathways that these natural products are involved in, they may potentially produce synergistic effects that would be beneficial in treating AD. Additionally, natural products benefit from both physicochemical properties being in more favorable ranges and active transport playing a more significant role than it does for synthetic compounds.
Collapse
Affiliation(s)
| | - Fazlin Mohd Fauzi
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia; Center for Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
7
|
Pagotto GLDO, dos Santos LMO, Osman N, Lamas CB, Laurindo LF, Pomini KT, Guissoni LM, de Lima EP, Goulart RDA, Catharin VMCS, Direito R, Tanaka M, Barbalho SM. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer's Dementia: Clinical Trial Systematic Review. Antioxidants (Basel) 2024; 13:651. [PMID: 38929090 PMCID: PMC11201198 DOI: 10.3390/antiox13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a stealthy and progressive neurological disorder that is a leading cause of dementia in the global elderly population, imposing a significant burden on both the elderly and society. Currently, the condition is treated with medications that alleviate symptoms. Nonetheless, these drugs may not consistently produce the desired results and can cause serious side effects. Hence, there is a vigorous pursuit of alternative options to enhance the quality of life for patients. Ginkgo biloba (GB), an herb with historical use in traditional medicine, contains bioactive compounds such as terpenoids (Ginkgolides A, B, and C), polyphenols, organic acids, and flavonoids (quercetin, kaempferol, and isorhamnetin). These compounds are associated with anti-inflammatory, antioxidant, and neuroprotective properties, making them valuable for cognitive health. A systematic search across three databases using specific keywords-GB in AD and dementia-yielded 1702 documents, leading to the selection of 15 clinical trials for synthesis. In eleven studies, GB extract/EGb 761® was shown to improve cognitive function, neuropsychiatric symptoms, and functional abilities in both dementia types. In four studies, however, there were no significant differences between the GB-treated and placebo groups. Significant improvements were observed in scores obtained from the Mini-Mental State Examination (MMSE), Short Cognitive Performance Test (SKT), and Neuropsychiatric Inventory (NPI). While the majority of synthesized clinical trials show that Ginkgo biloba has promising potential for the treatment of these conditions, more research is needed to determine optimal dosages, effective delivery methods, and appropriate pharmaceutical formulations. Furthermore, a thorough assessment of adverse effects, exploration of long-term use implications, and investigation into potential drug interactions are critical aspects that must be carefully evaluated in future studies.
Collapse
Affiliation(s)
- Guilherme Lopes de Oliveira Pagotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Livia Maria Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Najwa Osman
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Leila M. Guissoni
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Virginia M. C. Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
8
|
Peng Y, Chen Q, Xue YH, Jin H, Liu S, Du MQ, Yao SY. Ginkgo biloba and Its Chemical Components in the Management of Alzheimer's Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:625-666. [PMID: 38654507 DOI: 10.1142/s0192415x24500277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The pathogenesis of Alzheimer's disease (AD), a degenerative disease of the central nervous system, remains unclear. The main manifestations of AD include cognitive and behavioral disorders, neuropsychiatric symptoms, neuroinflammation, amyloid plaques, and neurofibrillary tangles. However, current drugs for AD once the dementia stage has been reached only treat symptoms and do not delay progression, and the research and development of targeted drugs for AD have reached a bottleneck. Thus, other treatment options are needed. Bioactive ingredients derived from plants are promising therapeutic agents. Specifically, Ginkgo biloba (Gb) extracts exert anti-oxidant, anticancer, neuroplastic, neurotransmitter-modulating, blood fluidity, and anti-inflammatory effects, offering alternative options in the treatment of cardiovascular, metabolic, and neurodegenerative diseases. The main chemical components of Gb include flavonoids, terpene lactones, proanthocyanidins, organic acids, polysaccharides, and amino acids. Gb and its extracts have shown remarkable therapeutic effects on various neurodegenerative diseases, including AD, with few adverse reactions. Thus, high-quality Gb extracts are a well-established treatment option for AD. In this review, we summarize the insights derived from traditional Chinese medicine, experimental models, and emerging clinical trials on the role of Gb and its chemical components in the treatment of the main clinical manifestations of AD.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| |
Collapse
|
9
|
Morató X, Tartari JP, Pytel V, Boada M. Pharmacodynamic and Clinical Effects of Ginkgo Biloba Extract EGb 761 and Its Phytochemical Components in Alzheimer's Disease. J Alzheimers Dis 2024; 101:S285-S298. [PMID: 39422946 DOI: 10.3233/jad-231372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Extracts made from plants are complex mixtures of substances with varying compositions depending on the plant material and method of manufacture. This complexity makes it difficult for scientists and clinicians to interpret findings from pharmacological and clinical research. We performed a narrative review summarizing information on ginkgo biloba leaf extract, its composition, pharmacological data and clinical evidence supporting its administration for the treatment of Alzheimer's disease (AD). Medicinal products containing ginkgo biloba leaf extract which are manufactured in compliance with the requirements of the European Pharmacopoeia are approved as medicinal products for the treatment of dementia and related conditions by drug regulatory agencies in Europe, Asia and South America. As multicomponent mixtures, they may affect various targets in the pathogenesis of AD, the most common form of dementia. Pharmacodynamic studies demonstrate the effects of EGb 761 and individual constituents on various pathophysiological features of experimentally induced cognitive impairment and neurodegeneration that could contribute to its clinical efficacy. The safety and efficacy in the treatment of AD and cognitive decline has been studied in randomized, placebo-controlled clinical trials. Most of the studies that investigate the effects of ginkgo biloba extract (GbE) used the special extract EGb 761, which makes it the best-researched plant preparation worldwide. It is therefore the only herbal alternative to standard-of-care anti-dementia drugs. However, the mechanism of action has not been fully elucidated yet, and the clinical studies in AD show heterogeneity.
Collapse
Affiliation(s)
- Xavier Morató
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Trabert M, Seifert R. Critical analysis of ginkgo preparations: comparison of approved drugs and dietary supplements marketed in Germany. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:451-461. [PMID: 37470803 PMCID: PMC10771617 DOI: 10.1007/s00210-023-02602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/24/2023] [Indexed: 07/21/2023]
Abstract
Demographic change is taking place in the population of western industrialized countries, and the population is aging constantly. As a result, the mortality rate of patients due to dementia is rising steadily. To counteract this, the relevance of neuroprotective agents is increasing. Preparations from the medicinal tree species Ginkgo biloba ("gingko") are becoming increasingly popular. In this study, 63 ginkgo preparations marketed in Germany were analyzed. The following data were collected from the package inserts of the preparations: Country of manufacture, approval as a drug, compliance to target values of flavone glycosides, compliance to target values of terpene lactones, compliance to target values of ginkgolic acids, dosage per unit in milligrams (mg), duration of use, interactions with other drugs, contraindications, adverse effects and daily defined dose costs. In the next step, these data were compared in the following form: Total preparations versus preparations with drug approval versus dietary supplements. Almost without exception, the results indicate a pharmaceutical reliability of the preparations with drug approval and a dubious reliability of the preparations marketed as dietary supplements. Thus, ginkgo preparations marketed as dietary supplements appear to have an economic rather than a medical focus. We discuss the evidence of efficacy, and other criteria mentioned above, to evaluate the adequacy of the costs for the statutory health insurance that pay for preparations with drug approval in Germany. From the analysis of our results it is very doubtful that ginkgo biloba extract preparations of the food industry have any health benefit. It must be evaluated whether prohibition of selling ginkgo biloba extract as a dietary supplement is an option.
Collapse
Affiliation(s)
- Milan Trabert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hanover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hanover, Germany.
| |
Collapse
|
11
|
Monteiro KLC, de Aquino TM, da Silva-Júnior EF. Natural Compounds as Inhibitors of Aβ Peptide and Tau Aggregation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1234-1250. [PMID: 38018200 DOI: 10.2174/0118715273273539231114095300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023]
Abstract
Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
12
|
Özge A, Ghouri R, Öksüz N, Taşdelen B. Early intervention and adding effective doses of EGb761 like Ginkgo extract slow down dementia progression: insights to the neurovascular unit. Front Neurol 2023; 14:1240655. [PMID: 38156089 PMCID: PMC10754526 DOI: 10.3389/fneur.2023.1240655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Dementia is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and functional deterioration. Pharmacological interventions play a crucial role in managing dementia symptoms and potentially slowing down disease progression. Objectives This study aimed to investigate the impact of pharmacological interventions, including acetylcholinesterase inhibitors (AChEIs), memantine, and Gingko extract, on the progression of dementia, with a specific focus on mild cognitive impairment (MCI), Alzheimer's disease (AD), and non-Alzheimer dementias. Methods A total of 547 participants out of 3,547 cases in a specific dataset followed by the same author, including healthy controls, individuals with MCI, AD, and non-Alzheimer dementias, were included in this study. The follow-up duration was up to 211 months, allowing for a minimum 3 visits comprehensive assessment of disease progression. The treatment approaches included AChEIs, memantine, and combination therapy, with variations in the starting time for these treatments based on the dementia type. Results The use of AChEIs and memantine showed efficacy in improving cognitive function and overall function in individuals with MCI, AD, and non-AD dementias. Combination therapy EGb761 like Gingko extract with AChEIs and/or Memantine demonstrated a slower progression compared to AChEIs alone in individuals with prodromal dementia (MCI) and AD. The starting time for memantine and combination therapy was earlier in non-AD dementia cases compared to AD dementia cases and prodromal dementia. Conclusion Pharmacological interventions, particularly the use of AChEIs and memantine, can have a positive impact on cognitive function and overall function in individuals with dementia. The combination of AChEIs with EGb761 like Gingko extract may provide additional benefits in slowing down disease progression in AD cases. Early recognition and accurate classification of MCI subtypes are crucial, and the use of EGb761 like Gingko extract is recommended for symptomatic treatment. Future personalized risk predictions based on biomarker constellations may further enhance the multi-target treatment approaches of MCI and different dementia types.
Collapse
Affiliation(s)
- Aynur Özge
- Department of Neurology, School of Medicine, Mersin University, Mersin, Türkiye
| | - Reza Ghouri
- Department of Neurology, School of Medicine, Mersin University, Mersin, Türkiye
| | - Nevra Öksüz
- Department of Neurology, School of Medicine, Mersin University, Mersin, Türkiye
| | - Bahar Taşdelen
- Department of Biostatistics, School of Medicine, Mersin University, Mersin, Türkiye
| |
Collapse
|
13
|
Wijeweera G, Wijekoon N, Gonawala L, Imran Y, Mohan C, De Silva KRD. Therapeutic Implications of Some Natural Products for Neuroimmune Diseases: A Narrative of Clinical Studies Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5583996. [PMID: 37089709 PMCID: PMC10118888 DOI: 10.1155/2023/5583996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 01/24/2023] [Accepted: 02/11/2023] [Indexed: 04/25/2023]
Abstract
Neuroimmune diseases are a group of disorders that occur due to the dysregulation of both the nervous and immune systems, and these illnesses impact tens of millions of people worldwide. However, patients who suffer from these debilitating conditions have very few FDA-approved treatment options. Neuroimmune crosstalk is important for controlling the immune system both centrally and peripherally to maintain tissue homeostasis. This review aims to provide readers with information on how natural products modulate neuroimmune crosstalk and the therapeutic implications of natural products, including curcumin, epigallocatechin-3-gallate (EGCG), ginkgo special extract, ashwagandha, Centella asiatica, Bacopa monnieri, ginseng, and cannabis to mitigate the progression of neuroimmune diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, depression, and anxiety disorders. The majority of the natural products based clinical studies mentioned in this study have yielded positive results. To achieve the expected results from natural products based clinical studies, researchers should focus on enhancing bioavailability and determining the synergistic mechanisms of herbal compounds and extracts, which will lead to the discovery of more effective phytomedicines while averting the probable negative effects of natural product extracts. Therefore, future studies developing nutraceuticals to mitigate neuroimmune diseases that incorporate phytochemicals to produce synergistic effects must analyse efficacy, bioavailability, gut-brain axis function safety, chemical modifications, and encapsulation with nanoparticles.
Collapse
Affiliation(s)
- Gayathri Wijeweera
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Nalaka Wijekoon
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Lakmal Gonawala
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Yoonus Imran
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - K. Ranil D. De Silva
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| |
Collapse
|
14
|
Morató X, Marquié M, Tartari JP, Lafuente A, Abdelnour C, Alegret M, Jofresa S, Buendía M, Pancho A, Aguilera N, Ibarria M, Diego S, Cuevas R, Cañada L, Calvet A, Antonio EED, Pérez-Cordón A, Sanabria Á, de Rojas I, Nuñez-Llaves R, Cano A, Orellana A, Montrreal L, Cañabate P, Rosende-Roca M, Vargas L, Bojaryn U, Ricciardi M, Ariton DM, Espinosa A, Ortega G, Muñoz N, Lleonart N, Alarcón-Martín E, Moreno M, Preckler S, Tantinya N, Ramis M, Nogales AB, Seguer S, Martín E, Pytel V, Valero S, Gurruchaga M, Tárraga L, Ruiz A, Boada M. A randomized, open-label clinical trial in mild cognitive impairment with EGb 761 examining blood markers of inflammation and oxidative stress. Sci Rep 2023; 13:5406. [PMID: 37012306 PMCID: PMC10070452 DOI: 10.1038/s41598-023-32515-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Although beta-amyloid (Aβ) and phosphorylated tau remain the preferred targets for disease-modifying treatments (DMT) against Alzheimer's disease (AD), part of the pathophysiological mechanisms of cognitive impairment are related to neuroinflammation and oxidative stress. In mild cognitive impairment (MCI), a prodromal stage of AD and other neurodegenerative conditions, the joint appearance of inflammation, oxidative stress, and metabolic alterations are the common pathways of neurotoxicity and neurodegeneration. The standardized extract of Ginkgo biloba EGb 761 interferes with the pathogenic mechanisms involved in both the development of cognitive impairment due to AD and that of vascular origin. The primary objective of this study is to compare changes in the levels of blood markers of inflammation and oxidative stress after treatment with EGb 761 in a cohort of 100 patients with MCI. In addition, we aim to assess changes in these blood markers during an additional 12-month extension phase in which patients in the control group will also receive EGb 761 and patients in the active group will extend their treatment duration. Secondary objectives include comparing changes in neuropsychiatric and cognitive test scores between the baseline (v0) and 12-month visits (v2). This study is a Phase IV, single-center, randomized, open-label, parallel-group clinical trial consisting of the 12-month follow-up of a cohort of participants with MCI [Global Deterioration Scale (GDS) = 3] and an extension with an additional 12-month follow-up. During the first 12 months, participants will be randomized into two arms: in one arm, patients will receive 1 daily tablet of EGb 761 240 mg orally (study group, n = 50), while in the other arm, patients will not receive EGb 761 and will undergo the same assessments as the treated group (control group, n = 50). After the first 12 months of the study, patients in the EGb 761-treated group will continue treatment, and patients in the control group will be offered one EGb 761 240 mg tablet per day orally. All participants will be monitored for an additional 12 months. A battery of blood markers of inflammation and oxidative stress will be quantified at v0, v1, v2, v3, and v4. The Olink Proteomics panel of inflammation markers ( https://www.olink.com/products/inflammation/ ) will be used to evaluate 92 proteins associated with inflammatory diseases and related biological processes. The second panel measures 92 proteins involved in neurological processes. At v0, v2, and v4, neuropsychological and neurological evaluations will be conducted in addition to vital signs and anthropometric studies using a body composition monitor with bioimpedance technology (Tanita). Sixty percent of the 100 MCI patients recruited were women. The mean age was 73.1 years, and the mean time between symptom onset and MCI diagnosis was 2.9 years. The mean Mini-Mental State Examination (MMSE) score was 26.7. Depressive and anxiety disorders, as well as vascular risk factors, were the most frequent comorbidities among the cohort. The study is still ongoing, and results for the first year of treatment (v0, v1, v2) are expected by 2023. Individuals with MCI have an elevated risk of developing dementia. EGb 761 is used worldwide for the symptomatic treatment of cognitive disorders due to its neuroprotective effects. In experimental models and clinical observational studies, EGb 761 has shown strong antioxidant and anti-inflammatory activity. As a result, this study has been proposed to evaluate the antioxidant and anti-inflammatory effects on plasma markers and their potential clinical correlation with the progression of cognitive decline in patients with MCI.Trial registration: Registro Español de estudios clínicos (REec) number 2020-003776-41, ClinicalTrials.gov Identifier: NCT05594355.
Collapse
Affiliation(s)
- Xavier Morató
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Marta Marquié
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Asunción Lafuente
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Carla Abdelnour
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Jofresa
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mar Buendía
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Pancho
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Núria Aguilera
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Marta Ibarria
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Susana Diego
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Rosario Cuevas
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Laia Cañada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Anna Calvet
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Alba Pérez-Cordón
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raúl Nuñez-Llaves
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pilar Cañabate
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Maitée Rosende-Roca
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Liliana Vargas
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Urszula Bojaryn
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mario Ricciardi
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Diana M Ariton
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Espinosa
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Ortega
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Nathalia Muñoz
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Núria Lleonart
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Emilio Alarcón-Martín
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mariola Moreno
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Silvia Preckler
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Tantinya
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maribel Ramis
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Belen Nogales
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Susanna Seguer
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elvira Martín
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Miren Gurruchaga
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Wang X, Su Y, Cai Z, Xu Y, Wu X, Al Rudaisat M, Hua C, Chen S, Lai L, Cheng H, Song Y, Zhou Q. γ-Aminobutyric acid promotes the inhibition of hair growth induced by chronic restraint stress. Life Sci 2023; 317:121439. [PMID: 36731645 DOI: 10.1016/j.lfs.2023.121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023]
Abstract
Stress plays a critical role in hair loss, although the underlying mechanisms are largely unknown. γ-aminobutyric acid (GABA) has been reported to be associated with stress; however, whether it affects stress-induced hair growth inhibition is unclear. This study aimed to investigate the potential roles and mechanisms of action of GABA in chronic restraint stress (CRS)-induced hair growth inhibition. We performed RNA-seq analysis and found that differentially expressed genes (DEGs) associated with neuroactive ligand-receptor interaction, including genes related to GABA receptors, significantly changed after mice were treated with CRS. Targeted metabolomics analysis and enzyme-linked immunosorbent assay (ELISA) also showed that GABA levels in back skin tissues and serum significantly elevated in the CRS group. Notably, CRS-induced hair growth inhibition got aggravated by GABA and alleviated through GABAA antagonists, such as picrotoxin and ginkgolide A. RNA sequencing analysis revealed that DEGs related to the cell cycle, DNA replication, purine metabolism, and pyrimidine metabolism pathways were significantly downregulated in dermal papilla (DP) cells after GABA treatment. Moreover, ginkgolide A, a GABAA antagonist extracted from the leaves of Ginkgo biloba, promoted the cell cycle of DP cells. Therefore, the present study demonstrated that the increase in GABA could promote CRS-induced hair growth inhibition by downregulating the cell cycle of DP cells and suggested that ginkgolide A may be a promising therapeutic drug for hair loss.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixin Su
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, China
| | - Zhenying Cai
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mus'ab Al Rudaisat
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunting Hua
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Li Q, Alotaibi SH, Wei Y, Lone AM. Preventive Effect of 3,3′‐Dimethoxy‐4,4′‐dihydroxystilbene Triazole against Alzheimer's Disease by Inhibition of Neuronal Apoptosis. ChemistrySelect 2023. [DOI: 10.1002/slct.202204087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Qi Li
- Department of Encephalopathy Xi'an Hospital of Traditional Chinese Medicine Xi'an 710021 China
| | - Saad H. Alotaibi
- Department of Chemistry Turabah University College Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Yan Wei
- Department of Encephalopathy Xi'an Hospital of Traditional Chinese Medicine Xi'an 710021 China
| | - Ali Mohd Lone
- Department of Medicinal Chemistry Govt. Degree College for Women Baramulla Jammu & Kashmir 193101 India
| |
Collapse
|
17
|
Liu D, Hu Y, Wang D, Han H, Wang Y, Wang X, Zhou Z, Ma X, Dong Y. Herbal medicines in the treatment of tinnitus: An updated review. Front Pharmacol 2023; 13:1037528. [PMID: 36686691 PMCID: PMC9847569 DOI: 10.3389/fphar.2022.1037528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Tinnitus is perception of sound in the absence of an apparent external acoustic stimulus. The condition is prevalent in adults, especially the elderly (≥65 years), and may be associated with cognitive function decline and significantly impacts on the quality of life, heralding difficulties in managing this challenging disorder. Interventions for tinnitus have been varied. However, drugs have not yet been approved for the treatment of tinnitus and there is no pharmacotherapy recommended by existing guidelines. Still, herbal medicines are used for the treatment of tinnitus in many countries, especially Gingko (G.) biloba. In the current updated literature review, we evaluated the efficacy of herbal medicines in the treatment of tinnitus by reviewing the evidence of relevant randomized controlled trials. The authors also highlight some of the issues in clinical trials of herbal medicines given that currently available evidence on herbal medicines for tinnitus is overall of insufficient quality and the conclusions from existing trials are conflicting. Nevertheless, there is a clear and urgent need for safe and effective pharmacotherapy of tinnitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiulan Ma
- *Correspondence: Yaodong Dong, ; Xiulan Ma,
| | | |
Collapse
|
18
|
Obrenovich M, Singh SK, Li Y, Perry G, Siddiqui B, Haq W, Reddy VP. Natural Product Co-Metabolism and the Microbiota-Gut-Brain Axis in Age-Related Diseases. Life (Basel) 2022; 13:41. [PMID: 36675988 PMCID: PMC9865576 DOI: 10.3390/life13010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Complementary alternative medicine approaches are growing treatments of diseases to standard medicine practice. Many of these concepts are being adopted into standard practice and orthomolecular medicine. Age-related diseases, in particular neurodegenerative disorders, are particularly difficult to treat and a cure is likely a distant expectation for many of them. Shifting attention from pharmaceuticals to phytoceuticals and "bugs as drugs" represents a paradigm shift and novel approaches to intervention and management of age-related diseases and downstream effects of aging. Although they have their own unique pathologies, a growing body of evidence suggests Alzheimer's disease (AD) and vascular dementia (VaD) share common pathology and features. Moreover, normal metabolic processes contribute to detrimental aging and age-related diseases such as AD. Recognizing the role that the cerebral and cardiovascular pathways play in AD and age-related diseases represents a common denominator in their pathobiology. Understanding how prosaic foods and medications are co-metabolized with the gut microbiota (GMB) would advance personalized medicine and represents a paradigm shift in our view of human physiology and biochemistry. Extending that advance to include a new physiology for the advanced age-related diseases would provide new treatment targets for mild cognitive impairment, dementia, and neurodegeneration and may speed up medical advancements for these particularly devastating and debilitating diseases. Here, we explore selected foods and their derivatives and suggest new dementia treatment approaches for age-related diseases that focus on reexamining the role of the GMB.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Department of Veteran's Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| | - Yi Li
- Department of Nutrition and Dietetics, Saint Louis University, Saint Louis, MO 63103, USA
| | - George Perry
- Department of Neuroscience Developmental and Regenerative Biology, University of Texas, San Antonio, TX 78249, USA
| | - Bushra Siddiqui
- School of Medicine, Northeast Ohio College of Medicine, Rootstown, OH 44272, USA
| | - Waqas Haq
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
19
|
Martínez-Iglesias O, Naidoo V, Carrera I, Corzo L, Cacabelos R. Nosustrophine: An Epinutraceutical Bioproduct with Effects on DNA Methylation, Histone Acetylation and Sirtuin Expression in Alzheimer's Disease. Pharmaceutics 2022; 14:pharmaceutics14112447. [PMID: 36432638 PMCID: PMC9698419 DOI: 10.3390/pharmaceutics14112447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, causes irreversible memory loss and cognitive deficits. Current AD drugs do not significantly improve cognitive function or cure the disease. Novel bioproducts are promising options for treating a variety of diseases, including neurodegenerative disorders. Targeting the epigenetic apparatus with bioactive compounds (epidrugs) may aid AD prevention treatment. The aims of this study were to determine the composition of a porcine brain-derived extract Nosustrophine, and whether treating young and older trigenic AD mice produced targeted epigenetic and neuroprotective effects against neurodegeneration. Nosustrophine regulated AD-related APOE and PSEN2 gene expression in young and older APP/BIN1/COPS5 mice, inflammation-related (NOS3 and COX-2) gene expression in 3-4-month-old mice only, global (5mC)- and de novo DNA methylation (DNMT3a), HDAC3 expression and HDAC activity in 3-4-month-old mice; and SIRT1 expression and acetylated histone H3 protein levels in 8-9-month-old mice. Mass spectrometric analysis of Nosustrophine extracts revealed the presence of adenosylhomocysteinase, an enzyme implicated in DNA methylation, and nicotinamide phosphoribosyltransferase, which produces the NAD+ precursor, enhancing SIRT1 activity. Our findings show that Nosustrophine exerts substantial epigenetic effects against AD-related neurodegeneration and establishes Nosustrophine as a novel nutraceutical bioproduct with epigenetic properties (epinutraceutical) that may be therapeutically effective for prevention and early treatment for AD-related neurodegeneration.
Collapse
|
20
|
Cheng N, Bell L, Lamport DJ, Williams CM. Dietary Flavonoids and Human Cognition: A Meta-Analysis. Mol Nutr Food Res 2022; 66:e2100976. [PMID: 35333451 PMCID: PMC9787524 DOI: 10.1002/mnfr.202100976] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/09/2022] [Indexed: 12/30/2022]
Abstract
Improving cognition is important in all age groups, from performance in school examinations to prevention of cognitive decline in later life. Dietary polyphenols, in particular flavonoids, have been examined for their benefits to cognitive outcomes. This meta-analysis evaluates the effects of dietary flavonoids on cognition across the lifespan. In January 2020 databases were searched for randomized controlled trials investigating flavonoid effects on human cognition. Eighty studies, comprising 5519 participants, were included in the final meta-analysis. The global analysis indicates dietary flavonoids induced significant benefit to cognitive performance (g = 0.148, p < 0.001), with subgroup analyses revealing that cocoa (g = 0.224, p = 0.036), ginkgo (g = 0.187, p ≤ 0.001), and berries (g = 0.149, p = 0.009) yielded the most notable improvements. Significant benefits were observed from chronic studies, in middle-aged and older adults, and with low and medium doses. The domains of long-term memory, processing speed, and mood showed sensitivity to flavonoid intervention. This meta-analysis provides evidence for the positive effects of flavonoids on cognition and highlights several moderating factors. Flavonoid-based dietary interventions therefore potentially offer a highly accessible, safe, and cost-effective treatment to help tackle the burden of cognitive decline.
Collapse
Affiliation(s)
- Nancy Cheng
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUK
| | - Lynne Bell
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUK
| | - Daniel J. Lamport
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUK
| | - Claire M. Williams
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUK
| |
Collapse
|
21
|
Kurek M, Benaida-Debbache N, Elez Garofulić I, Galić K, Avallone S, Voilley A, Waché Y. Antioxidants and Bioactive Compounds in Food: Critical Review of Issues and Prospects. Antioxidants (Basel) 2022; 11:antiox11040742. [PMID: 35453425 PMCID: PMC9029822 DOI: 10.3390/antiox11040742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
This review paper gives an insight into the effective delivery mechanisms for health-promoting substances and highlights the challenges of using antioxidants and bioactives in foods. The selection criteria for choosing bioactives and their extraction in bioavailable form with their adequate incorporation techniques and delivery mechanisms are covered. Moreover, an overview of existing methods for determination of bioactivity is given. The importance of scientifically evaluating the effects of foods or food components on consumer health before making claims about the healthiness is aligned. Finally, a scientific perspective on how to respond to the booming demand for health-promoting products is given, and we acknowledge that despite the work done, there are still many challenges that need to be overcome.
Collapse
Affiliation(s)
- Mia Kurek
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (I.E.G.); (K.G.)
- Correspondence: ; Tel.: +385-1460-5003
| | - Nadjet Benaida-Debbache
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Ivona Elez Garofulić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (I.E.G.); (K.G.)
| | - Kata Galić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (I.E.G.); (K.G.)
| | - Sylvie Avallone
- QualiSud, University of Montpellier, 34000 Montpellier, France;
- CIRAD, Institut Universitaire de Technologie d’Avignon, 84029 Avignon, France
| | - Andrée Voilley
- International Joint Research Laboratory “Tropical Bioresources & Biotechnology” UMR PAM, Institut Agro Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21078 Dijon, France; (A.V.); (Y.W.)
- The School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Yves Waché
- International Joint Research Laboratory “Tropical Bioresources & Biotechnology” UMR PAM, Institut Agro Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21078 Dijon, France; (A.V.); (Y.W.)
- The School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
22
|
Villegas C, Perez R, Petiz LL, Glaser T, Ulrich H, Paz C. Ginkgolides and Huperzine A for complementary treatment of Alzheimer's disease. IUBMB Life 2022; 74:763-779. [PMID: 35384262 DOI: 10.1002/iub.2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual deterioration of cognitive function, memory, and inability to perform daily, social, or occupational activities. Its etiology is associated with the accumulation of β-amyloid peptides, phosphorylated tau protein, and neuroinflammatory and oxidative processes in the brain. Currently, there is no successful pharmacological treatment for AD. The few approved drugs are mainly aimed at treating the symptoms; however, due to the increasing discovery of etiopathological factors, there are great efforts to find new multifunctional molecules to slow down the course of this neurodegenerative disease. The commercial Ginkgo biloba formulation EGb 761® and Huperzine A, an alkaloid present in the plant Huperzia serrata, have shown in clinical trials to possess cholinergic and neuroprotective activities, including improvement in cognition, activities of daily living, and neuropsychiatric symptoms in AD patients. The purpose of this review is to expose the positive results of intervention with EGb 761® and Huperzine in patients with mild to moderate AD in the last 10 years, highlighting the pharmacological functions that justify their use in AD therapy.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| | - Rebeca Perez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Talita Glaser
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
23
|
Barbalho SM, Direito R, Laurindo LF, Marton LT, Guiguer EL, Goulart RDA, Tofano RJ, Carvalho ACA, Flato UAP, Capelluppi Tofano VA, Detregiachi CRP, Bueno PCS, Girio RSJ, Araújo AC. Ginkgo biloba in the Aging Process: A Narrative Review. Antioxidants (Basel) 2022; 11:525. [PMID: 35326176 PMCID: PMC8944638 DOI: 10.3390/antiox11030525] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases, cardiovascular disease (CVD), hypertension, insulin resistance, cancer, and other degenerative processes commonly appear with aging. Ginkgo biloba (GB) is associated with several health benefits, including memory and cognitive improvement, in Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. Its antiapoptotic, antioxidant, and anti-inflammatory actions have effects on cognition and other conditions associated with aging-related processes, such as insulin resistance, hypertension, and cardiovascular conditions. The aim of this study was to perform a narrative review of the effects of GB in some age-related conditions, such as neurodegenerative diseases, CVD, and cancer. PubMed, Cochrane, and Embase databases were searched, and the PRISMA guidelines were applied. Fourteen clinical trials were selected; the studies showed that GB can improve memory, cognition, memory scores, psychopathology, and the quality of life of patients. Moreover, it can improve cerebral blood flow supply, executive function, attention/concentration, non-verbal memory, and mood, and decrease stress, fasting serum glucose, glycated hemoglobin, insulin levels, body mass index, waist circumference, biomarkers of oxidative stress, the stability and progression of atherosclerotic plaques, and inflammation. Therefore, it is possible to conclude that the use of GB can provide benefits in the prevention and treatment of aging-related conditions.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
- School of Food and Technology of Marilia (FATEC), Avenida Castro Alves, Marília 17500-000, SP, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Ledyane Taynara Marton
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
- School of Food and Technology of Marilia (FATEC), Avenida Castro Alves, Marília 17500-000, SP, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Ricardo José Tofano
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Antonely C. A. Carvalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Uri Adrian Prync Flato
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Viviane Alessandra Capelluppi Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Patrícia C. Santos Bueno
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, SP, Brazil;
| | - Raul S. J. Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, SP, Brazil;
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| |
Collapse
|
24
|
Noor-E-Tabassum, Das R, Lami MS, Chakraborty AJ, Mitra S, Tallei TE, Idroes R, Mohamed AAR, Hossain MJ, Dhama K, Mostafa-Hedeab G, Emran TB. Ginkgo biloba: A Treasure of Functional Phytochemicals with Multimedicinal Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8288818. [PMID: 35265150 PMCID: PMC8901348 DOI: 10.1155/2022/8288818] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
Ginkgo biloba is an ancient plant species that is thought to provide a variety of health benefits to living organisms and contains plenty of bioactive components, making it a chemically diversified plant. G. biloba has been shown to have a variety of medicinal and pharmacological properties, including anticancer, antidementia, antidiabetic, antiobesity, antilipidemic, antimicrobial, antioxidant, antilipid peroxidation, antiplatelet, anti-inflammatory, hepatoprotective, antidepressant, antiaging, immunomodulatory, antihypertensive, and neuroprotective effects and is frequently used to treat neurological, cardiovascular, and respiratory diseases, such as tardive dyskinesia. Therefore, this review described the therapeutic applications of G. biloba. In addition to describing the therapeutic potential, this review also evaluates the chemical constituents, toxicity, adverse effect, synergistic effect, and the clinical studies of this plant which have been utilized for therapeutic benefits but have demonstrated other consequences. The capacity of G. biloba components to act as free radical scavengers is critical, and combining its extract with other plant extracts has been shown to synergistically boost antioxidant properties. G. biloba used long-term or at high doses that resulted in some adverse effects. Severe drug interactions have also been reported in both animals and humans when combined with other medications. The available data established from both preclinical and clinical studies confirm the potential of G. biloba plant extract in various diseases. Besides, the safety and efficacy of G. biloba continue to require verification through additional experimentation to guide medicinal use.
Collapse
Affiliation(s)
- Noor-E-Tabassum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mashia Subha Lami
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Arka Jyoti Chakraborty
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
- The University Centre of Excellence for Biotechnology and Conservation of Wallacea, Institute for Research and Community Services, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | | | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department, Health Sciences Research Unit, Medical College, Jouf University, Sakaka, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
25
|
Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical Studies. Cells 2022; 11:cells11030479. [PMID: 35159288 PMCID: PMC8833923 DOI: 10.3390/cells11030479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Ginkgo biloba extract (GBE) has been widely used to treat central nervous system and cardiovascular diseases. Accumulating evidence has revealed the therapeutic potential of GBE against AD; however, no systematic evaluation has been performed; (2) Methods: a total of 17 preclinical studies and 20 clinical trials assessing the therapeutic effects of GBE against AD were identified from electronic databases. The data in the reports were extracted to conduct a meta-analysis of the AD-related pathological features or symptoms; (3) Results: For the preclinical reports, 45 animals treated with GBE, in six studies, were subjected to cognitive function assessments by the Morris water maze. GBE was shown to reduce the escape latencies in several studies, in both rats and mice (I2 > 70%, p < 0.005). For the clinical trials, eight trials, including 2100 individuals, were conducted. The results show that GBE improved the SKT and ADAS-Cog scores in early-stage AD patients after high doses and long-term administration; (4) Conclusions: GBE displayed generally consistent anti-AD effects in animal experiments, and it might improve AD symptoms in early-stage AD patients after high doses and long-term administration. A lack of sample size calculations and the poor quality of the methods are two obvious limitations of the studies. Nevertheless, the preclinical and clinical data suggest that further large-scale clinical trials may be needed in order to examine the effects of long-term GEB administration on early-stage AD.
Collapse
|
26
|
de Vries K, Medawar E, Korosi A, Witte AV. The Effect of Polyphenols on Working and Episodic Memory in Non-pathological and Pathological Aging: A Systematic Review and Meta-Analysis. Front Nutr 2022; 8:720756. [PMID: 35155509 PMCID: PMC8826433 DOI: 10.3389/fnut.2021.720756] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Life expectancy steadily increases, and so do age-associated diseases, leading to a growing population suffering from cognitive decline and dementia. Impairments in working memory (WM) and episodic memory (EM) are associated with an increased risk of developing dementia. While there are no effective pharmacological therapies to preserve or enhance cognition and to slow down the progression from mild memory complaints to dementia so far, plant-based nutrients including polyphenols have been suggested to exert beneficial effects on brain aging. This review studies whether supplementary polyphenols are effective in preserving or enhancing memory in both non-pathological and pathological aging, and whether there are polyphenol efficiency differences between WM and EM. A systematic literature search was conducted and 66 out of 294 randomized clinical trials with 20 participants or more per group, aged 40 years or older were included. These covered a daily intake of 35–1,600 mg polyphenols, e.g., flavonols, flavonoids, isoflovones, anthocyanins, and/or stilbenes, over the course of 2 weeks to 6.5 years duration. In total, around half of the studies reported a significantly improved performance after polyphenol administration compared to control, while three studies reported a worsening of performance, and the remainder did not observe any effects. According to pooled WM and EM meta-analysis of all memory outcomes reported in 49 studies, overall effect size for WM and EM indicated a significant small positive effect on EM and WM with similar estimates (b ~ 0.24, p < 0.001), with large study heterogeneity and significant Funnel asymmetry tests suggesting a positivity bias. These results remained similar when excluding studies reporting extremely large positive effect sizes from the meta-analyses. While Ginkgo biloba and isoflavones did not show benefits in subgroup meta-analyses, those suggested some effects in extracts containing anthocyanins, other flavonoids and resveratrol, again potentially resulting from publication bias. To conclude, a systematic review and meta-analysis indicate that short- to moderate-term polyphenol interventions might improve WM and EM in middle-to older aged adults, however, publication bias in favor of positive results seems likely, rendering definite conclusions difficult. Future studies with larger, more diverse samples and sensitive monitoring of cardiovascular, metabolic and beginning brain pathologies as well as longer follow-up are needed to better understand the impact of age, (beginning) pathologies, gender, and long-term use on polyphenol action.
Collapse
Affiliation(s)
- Karin de Vries
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Evelyn Medawar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - A. Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
- *Correspondence: A. Veronica Witte
| |
Collapse
|
27
|
Dominguez LJ, Veronese N, Vernuccio L, Catanese G, Inzerillo F, Salemi G, Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021; 13:nu13114080. [PMID: 34836334 PMCID: PMC8624903 DOI: 10.3390/nu13114080] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple factors combined are currently recognized as contributors to cognitive decline. The main independent risk factor for cognitive impairment and dementia is advanced age followed by other determinants such as genetic, socioeconomic, and environmental factors, including nutrition and physical activity. In the next decades, a rise in dementia cases is expected due largely to the aging of the world population. There are no hitherto effective pharmaceutical therapies to treat age-associated cognitive impairment and dementia, which underscores the crucial role of prevention. A relationship among diet, physical activity, and other lifestyle factors with cognitive function has been intensively studied with mounting evidence supporting the role of these determinants in the development of cognitive decline and dementia, which is a chief cause of disability globally. Several dietary patterns, foods, and nutrients have been investigated in this regard, with some encouraging and other disappointing results. This review presents the current evidence for the effects of dietary patterns, dietary components, some supplements, physical activity, sleep patterns, and social engagement on the prevention or delay of the onset of age-related cognitive decline and dementia.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
- Correspondence: ; +39-0916554828
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Laura Vernuccio
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppina Catanese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Flora Inzerillo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy;
- UOC of Neurology, University Hospital “Paolo Giaccone”, 90100 Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| |
Collapse
|
28
|
Nowak A, Kojder K, Zielonka-Brzezicka J, Wróbel J, Bosiacki M, Fabiańska M, Wróbel M, Sołek-Pastuszka J, Klimowicz A. The Use of Ginkgo Biloba L. as a Neuroprotective Agent in the Alzheimer's Disease. Front Pharmacol 2021; 12:775034. [PMID: 34803717 PMCID: PMC8599153 DOI: 10.3389/fphar.2021.775034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease, a neurodegenerative disease, is one of the most common causes of dementia if elderly people worldwide. Alzheimer's disease leads to the alienation of individuals and their exclusion from social and professional life. It is characterized mainly by the degradation of memory and disorientation, which occurs as a result of the loss of neuronal structure and function in different brain areas. In recent years, more and more attention has been paid to use in the treatment of natural bioactive compounds that will be effective in neurodegenerative diseases, including Alzheimer's disease. G. biloba L. and its most frequently used standardized extract (EGb 761), have been used for many years in supportive therapy and in the prevention of cognitive disorders. The paper presents an overview of reports on the pathogenesis of Alzheimer's disease, as well as a summary of the properties of G. biloba extract and its effects on the possible pathogenesis of the disease. By exploring more about the pathogenesis of the disease and the benefits of G. biloba extract for patients with Alzheimer's disease, it will be possible to create an individualized therapeutic protocol to optimize the treatment.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Zielonka-Brzezicka
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Fabiańska
- Institute of Philosophy and Cognitive Science, University of Szczecin, Szczecin, Poland
| | - Mariola Wróbel
- Department of Landscape Architecture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Joanna Sołek-Pastuszka
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
29
|
Xiao Y, Li F, Zheng A, Chen Q, Chen F, Cheng X, Tao Z. Ginkgolic Acid Suppresses Nasopharyngeal Carcinoma Growth by Inducing Apoptosis and Inhibiting AKT/NF-κB Signaling. J Med Food 2021; 24:806-816. [PMID: 34382859 DOI: 10.1089/jmf.2021.k.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Even though nasopharyngeal carcinoma (NPC) is not common worldwide, it is a major public health burden in endemic areas. Distant metastasis often leads to a poor prognosis for NPC; therefore, new and effective anticancer strategies are needed. Ginkgolic acid (GA) is small-molecule compound existing in Ginkgo biloba that has various biologically relevant activities, including antitumor properties; however, its effects and mechanism of action in NPC are unknown. The effects of GA on NPC and such underlying mechanisms were investigated using 5-8F and CNE2 cells and NP69 human immortalized nasopharyngeal epithelial cells in this study. Moreover, the xenograft models were built to examine GA's effection in vivo. GA treatment decreased the survival and invasive capacity of 5-8F and CNE2 and induced their apoptosis, which varied with dose; this was accompanied by downregulation of B cell lymphoma (Bcl)2, upregulation of Bcl2-associated X protein, and activation of poly-ADP ribose polymerase, and caspase-9/-3. G0/G1 phase arrest was induced by GA in NPCs. It also reduced the expression of cyclin-dependent kinase 6 and its regulators cyclin D2 and cyclin D3. GA inhibited the activation of protein kinase B/nuclear factor signaling; this effect was potentiated with GA and 5-fluorouracil (5-FU), which also enhanced 5-FU-induced apoptosis. In summary, GA may be effective as an adjuvant to conventional chemotherapy drugs in preventing the progression of NPC.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fen Li
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyuan Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuhai Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Dorman G, Flores I, Gutiérrez C, Castaño RF, Aldecoa M, Kim L. Medicinal herbs and nutritional supplements for dementia therapy: potential therapeutic targets and clinical evidence. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:26-51. [PMID: 34370647 DOI: 10.2174/1871527320666210809121230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/20/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Spices and herbs have been used for medicinal purposes for centuries. Also, in the last decades, the use of different nutritional supplements has been implemented to treat all kinds of diseases, including those that present an alteration in cognitive functioning. Dementia is a clinical syndrome in which a person's mental and cognitive capacities gradually decline. As the disease progresses, the person's autonomy diminishes. As there is not an effective treatment to prevent progressive deterioration in many of these pathologies, nutritional interventions have been, and still are, one of the most widely explored therapeutic possibilities. In this review, we have discussed a great number of potentially interesting plants, nutritional derivatives and probiotics for the treatment of dementia around the world. Their action mechanisms generally involve neuroprotective effects via anti-inflammatory, antioxidant, anti-apoptotic, b-amyloid and tau anti-aggregate actions; brain blood flow improvement, and effects on synaptic cholinergic and dopaminergic neurotransmission, which may optimize cognitive performance in patients with cognitive impairment. As for their efficacy in patients with cognitive impairment and/or dementias, evidence is still scarce and/or their outcomes are controversial. We consider that many of these substances have promising therapeutic properties. Therefore, the scientific community has to continue with a more complete research focused on both identifying possible action mechanisms and carrying out clinical trials, preferably randomized double-blind ones, with a greater number of patients, a long-term follow-up, dose standardization and the use of current diagnosis criteria.
Collapse
Affiliation(s)
- Guido Dorman
- Division of Neurology, Ramos Mejia Hospital. Argentina
| | - Ignacio Flores
- Neuroscience Institute, Favaloro Foundation Hospital. Argentina
| | | | | | - Mayra Aldecoa
- Division of Neurology, Ramos Mejia Hospital. Argentina
| | - Leandro Kim
- Division of Neurology, Ramos Mejia Hospital. Argentina
| |
Collapse
|
31
|
The Influence of Depression, Anxiety and Cognition on the Treatment Effects of Ginkgo biloba Extract EGb 761 ® in Patients with Tinnitus and Dementia: A Mediation Analysis. J Clin Med 2021; 10:jcm10143151. [PMID: 34300317 PMCID: PMC8307082 DOI: 10.3390/jcm10143151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Comorbid occurrence of tinnitus and emotional symptoms of anxiety and depression is highly prevalent. The Ginkgo biloba extract EGb 761® has been shown to be effective in reducing neuropsychiatric symptoms in patients with dementia and tinnitus. Methods: We performed a mediation analysis to evaluate direct effects of EGb 761® on tinnitus severity, as well as indirect effects mediated by symptoms of depression and anxiety and by changed cognition. We pooled data from subsets of patients suffering from tinnitus that were enrolled in three double-blind, randomized, placebo-controlled clinical trials, which investigated the efficacy of EGb 761® (240 mg/day for 22–24 weeks) in dementia with concomitant neuropsychiatric symptoms. Results: In total, 594 patients suffered from tinnitus (EGb 761®, 289; placebo, 305). Direct effects of EGb 761® on tinnitus severity (p < 0.001) in patients with mild to moderate dementia were found to represent about 60% of the total effect, whereas the indirect effects (p < 0.001) mediated by improvement of anxiety, depression and cognition represented about 40% of the total effect. Conclusions: EGb 761® could be considered as a supporting treatment for tinnitus in elderly patients suffering from dementia, with added benefit in those with symptoms of depression or anxiety.
Collapse
|
32
|
Singh AK, Rai SN, Maurya A, Mishra G, Awasthi R, Shakya A, Chellappan DK, Dua K, Vamanu E, Chaudhary SK, Singh MP. Therapeutic Potential of Phytoconstituents in Management of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5578574. [PMID: 34211570 PMCID: PMC8208882 DOI: 10.1155/2021/5578574] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Since primitive times, herbs have been extensively used in conventional remedies for boosting cognitive impairment and age-associated memory loss. It is mentioned that medicinal plants have a variety of dynamic components, and they have become a prominent choice for synthetic medications for the care of cognitive and associated disorders. Herbal remedies have played a major role in the progression of medicine, and many advanced drugs have already been developed. Many studies have endorsed practicing herbal remedies with phytoconstituents, for healing Alzheimer's disease (AD). All the information in this article was collated from selected research papers from online scientific databases, such as PubMed, Web of Science, and Scopus. The aim of this article is to convey the potential of herbal remedies for the prospect management of Alzheimer's and related diseases. Herbal remedies may be useful in the discovery and advancement of drugs, thus extending new leads for neurodegenerative diseases such as AD. Nanocarriers play a significant role in delivering herbal medicaments to a specific target. Therefore, many drugs have been described for the management of age-linked complaints such as dementia, AD, and the like. Several phytochemicals are capable of managing AD, but their therapeutic claims are restricted due to their lower solubility and metabolism. These limitations of natural therapeutics can be overcome by using a targeted nanocarrier system. This article will provide the primitive remedies as well as the development of herbal remedies for AD management.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Assam 786004, Dibrugarh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, New South Wales, Australia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464, Bucharest, Romania
| | - Sushil Kumar Chaudhary
- Faculty of Pharmacy, DIT University, Mussoorie-Diversion Road, Makkawala, Dehradun 248 009, Uttarakhand, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
33
|
Comparison of Dizziness Factors for Mild Traumatic Brain Injury Patients with and without Dizziness: A Factor Analysis and Propensity Score Model Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5571319. [PMID: 34055038 PMCID: PMC8131139 DOI: 10.1155/2021/5571319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/04/2022]
Abstract
Traumatic brain injury (TBI) causes major socioeconomic problems worldwide. In the United States, nearly three-quarters of patients with TBI have mild TBI (mTBI). 32% of these patients may develop dizziness. In this study, we analyzed the factor structure of the traditional Chinese version of the DHI and evaluate the differences in DHI factors between dizziness and nondizziness groups. In total, 315 patients with mTBI, comprising 158 with self-reported dizziness and 157 without dizziness, were recruited from three hospitals. The responses for Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Epworth Sleepiness Scale (ESS), and Pittsburgh Sleep Quality Index (PSQI) demonstrated between-group differences. The Chinese DHI had internal validity and had four factors that differed from the English version (3 aspects). The group effects for the physical subscale remained significantly different even after adjustments in the propensity score model. For the Chinese version, two of four factors remained significantly different in the effects between self-reported dizziness and nondizziness groups. The factors of our Chinese DHI differed from those of the original English version of DHI. After adjustments using the propensity score model, the physical subscale demonstrated significant differences between the self-reported dizziness and nondizziness groups. Only two factors from our Chinese DHI were significantly different; moreover, it contained only three physical, five functional, and three emotional items.
Collapse
|
34
|
Alzobaidi N, Quasimi H, Emad NA, Alhalmi A, Naqvi M. Bioactive Compounds and Traditional Herbal Medicine: Promising Approaches for the Treatment of Dementia. Degener Neurol Neuromuscul Dis 2021; 11:1-14. [PMID: 33880073 PMCID: PMC8051957 DOI: 10.2147/dnnd.s299589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Dementia is a term that encompasses a group of clinical symptoms affecting memory, thinking and social abilities, characterized by progressive impairment of memory performance and cognitive functions. There are several factors involved in the pathogenesis and progression of dementia, such as old age, brain ischemia, toxin exposure, and oxidative stress. There are extensive similarities between dementia and Alzheimer's disease (AD) either in clinical manifestations or experimental animal models. AD is the most dominant form of dementia, characterized by the accumulation of beta-amyloid protein and cholinergic neurotransmission deficits in the brain. Currently available medications for the treatment of dementia, such as choline esterase inhibitors, N-methyl-D-aspartate (NMDA) antagonists (memantine), have short-term efficacy and only relieve symptoms rather than targeting the main underlying pathogenesis. Several animal studies and clinical trials are being conducted to provide a rational approach to these medicinal plants in the prevention or treatment of memory deficits. This review highlights the potential effects of medicinal plants and their derived lead molecules, and explains the related mechanisms and effects reviewed from published literature as major thrust aspects and hopeful strategies in the prevention or treatment of dementia.
Collapse
Affiliation(s)
- Nafaa Alzobaidi
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| | - Huma Quasimi
- Department of Physiology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| | - Nasr A Emad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, College of Pharmacy, Aden University, Aden, Yemen
| | - Maaz Naqvi
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| |
Collapse
|
35
|
Zhao J, Li K, Wang Y, Li D, Wang Q, Xie S, Wang J, Zuo Z. Enhanced anti-amnestic effect of donepezil by Ginkgo biloba extract (EGb 761) via further improvement in pro-cholinergic and antioxidative activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113711. [PMID: 33352242 DOI: 10.1016/j.jep.2020.113711] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE EGb 761 is a standardized dry extract of Ginkgo biloba L. leaves traditionally used by Eastern Asia and has been associated with beneficial effects on neurodegeneration disorders, including Alzheimer's disease. AIM OF THE STUDY Since beneficial interactions between EGb 761 and donepezil have been observed in previous clinical studies, the current study was proposed aiming to further explore related mechanisms from both pharmacokinetics and pharmacodynamics aspects. MATERIALS AND METHODS Pharmacodynamic interactions were studied in scopolamine-induced cognitive impairment rats received two-weeks treatment of vehicle, EGb 761 and/or donepezil by the Morris water maze test and ex vivo evaluation of biomarkers of cholinergic transmission and oxidative stress in rat brain. In the meantime, pharmacokinetic profiles of donepezil and bilobalide were obtained and compared among all treatment groups. In addition, impact of the bioavailable EGb 761 components on donepezil brain penetration was evaluated with the hCMEC/D3 cell monolayer model. RESULTS Scopolamine-induced rats with co-treatment of EGb 761 and donepezil had significantly improved cognitive function in the Morris water maze test with increased brain levels of superoxide dismutase and decreased brain levels of acetylcholinesterase and malondialdehyde than that with treatment of only EGb 761 or donepezil. Despite such beneficial pharmacodynamics outcomes, the two-week co-treatment of EGb 761 and donepezil did not alter the plasma pharmacokinetics and brain uptake of donepezil or bilobalide, which was further verified in the hCMEC/D3 monolayer model. CONCLUSION Co-administration of EGb 761 and donepezil exerted better anti-amnestic effect via further enhanced pro-cholinergic and antioxidative effects of EGb 761 or donepezil in scopolamine-induced cognitive impairment rat without alteration in their systemic/brain exposure.
Collapse
Affiliation(s)
- Jiajia Zhao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Kun Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Yingying Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| | - Dan Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Qianwen Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Shengsheng Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
36
|
Tomino C, Ilari S, Solfrizzi V, Malafoglia V, Zilio G, Russo P, Proietti S, Marcolongo F, Scapagnini G, Muscoli C, Rossini PM. Mild Cognitive Impairment and Mild Dementia: The Role of Ginkgo biloba (EGb 761 ®). Pharmaceuticals (Basel) 2021; 14:ph14040305. [PMID: 33915701 PMCID: PMC8065464 DOI: 10.3390/ph14040305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
Mild cognitive impairment (MCI) and dementia are clinically prevalent in the elderly. There is a high risk of cognitive decline in patients diagnosed with MCI or dementia. This review describes the effectiveness of Ginkgo biloba leaf special extract EGb 761® for the treatment of dementia syndromes and EGb 761® combination therapy with other medications for symptomatic dementia. This drug has shown convincing results, improving cognitive function, neuropsychiatric symptoms and consequent reduction of caregiver stress and maintenance of autonomy in patients with age-related cognitive decline, MCI and mild to moderate dementia. Currently, there is little evidence to support the combination therapy with anti-dementia drugs and, therefore, more evidence is needed to evaluate the role of EGb 761® in mixed therapy.
Collapse
Affiliation(s)
- Carlo Tomino
- Scientific Direction, IRCCS San Raffaele Roma, 00166 Rome, Italy; (C.T.); (S.P.)
| | - Sara Ilari
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88201 Catanzaro, Italy; (S.I.); (C.M.)
| | - Vincenzo Solfrizzi
- Clinica Medica “Frugoni” and Geriatric Medicine-Memory Unit, University of Bari Aldo Moro, 70122 Bari, Italy;
| | - Valentina Malafoglia
- Institute for Research on Pain, ISAL Foundation, Torre Pedrera, 47922 Rimini, Italy;
| | - Guglielmo Zilio
- Scientific Department, Schwabe Pharma Italia S.r.l., 39044 Egna, Italy;
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00166 Rome, Italy;
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta, 247, 00166 Rome, Italy
- Correspondence: or
| | - Stefania Proietti
- Scientific Direction, IRCCS San Raffaele Roma, 00166 Rome, Italy; (C.T.); (S.P.)
| | - Federica Marcolongo
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00166 Rome, Italy;
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Carolina Muscoli
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88201 Catanzaro, Italy; (S.I.); (C.M.)
| | - Paolo Maria Rossini
- Department of Neuroscience & Neurorehabilitation, IRCCS San Raffaele Roma, 00163 Rome, Italy;
| |
Collapse
|
37
|
Akter R, Rahman MH, Behl T, Chowdhury MAR, Manirujjaman M, Bulbul IJ, Elshenaw SE, Tit DM, Bungau S. Prospective Role of Polyphenolic Compounds in the Treatment of Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:430-450. [DOI: 10.2174/1871527320666210218084444] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023]
Abstract
:
Aging is an important stage of the human life cycle and the primary risk factor for neurodegenerative diseases (ND). The aging process contributes to modifications in cells, which may lead to a lack of nutrient signaling, disrupted cellular activity, increased oxidative pressure, cell homeostasis depletion, genomic instability, misfolded protein aggregation, impaired cellular protection, and telomere reduction. The neuropathologies found in Alzheimer's disease (AD) and Parkinson's disease (PD) are internally and extrinsically compound environmental stressors which may be partially alleviated by using different phytochemicals. The new therapies for ND are restricted as they are primarily targeted at final disease progression, including behavioral shifts, neurological disorders, proteinopathies, and neuronal failure. This review presents the role of phytochemicals-related polyphenolic compounds as an accompanying therapy model to avoid neuropathologies linked to AD, PD and to simultaneously enhance two stochastic stressors, namely inflammation and oxidative stress, promoting their disease pathologies. Therefore, this approach represents a prophylactic way to target risk factors that rely on their action against ND that does not occur through current pharmacological agents over the life of a person.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | - Manirujjaman Manirujjaman
- Institute of Health and Biomedical Innovation (IHBI), School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Kelvin Grove, Australia
| | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Shimaa E. Elshenaw
- Center of stem cell and regenerative medicine, Zewail City for Science, Egypt
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| |
Collapse
|
38
|
Wang Y, Lim YY, He Z, Wong WT, Lai WF. Dietary phytochemicals that influence gut microbiota: Roles and actions as anti-Alzheimer agents. Crit Rev Food Sci Nutr 2021; 62:5140-5166. [PMID: 33559482 DOI: 10.1080/10408398.2021.1882381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The last decide has witnessed a growing research interest in the role of dietary phytochemicals in influencing the gut microbiota. On the other hand, recent evidence reveals that dietary phytochemicals exhibit properties of preventing and tackling symptoms of Alzheimer's disease, which is a neurodegenerative disease that has also been linked with the status of the gut microbiota over the last decade. Till now, little serious discussions, however, have been made to link recent understanding of Alzheimer's disease, dietary phytochemicals and the gut microbiota together and to review the roles played by phytochemicals in gut dysbiosis induced pathologies of Alzheimer's disease. Deciphering these connections can provide insights into the development and future use of dietary phytochemicals as anti-Alzheimer drug candidates. This review aims at presenting latest evidence in the modulating role of phytochemicals in the gut microbiota and its relevance to Alzheimer's disease and summarizing the mechanisms behind the modulative activities. Limitations of current research in this field and potential directions will also be discussed for future research on dietary phytochemicals as anti-Alzheimer agents.
Collapse
Affiliation(s)
- Yi Wang
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia.,School of Dentistry, University of Queensland, Herston, Queensland, Australia
| | - Yau-Yan Lim
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.,School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
39
|
Hor SL, Teoh SL, Lim WL. Plant Polyphenols as Neuroprotective Agents in Parkinson's Disease Targeting Oxidative Stress. Curr Drug Targets 2021; 21:458-476. [PMID: 31625473 DOI: 10.2174/1389450120666191017120505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the human midbrain. Various ongoing research studies are competing to understand the pathology of PD and elucidate the mechanisms underlying neurodegeneration. Current pharmacological treatments primarily focused on improving dopamine metabolism in PD patients, despite the side effects of long-term usage. In recent years, it is recognized that oxidative stress-mediated pathways lead to neurodegeneration in the brain, which is associated with the pathophysiology of PD. The importance of oxidative stress is often less emphasized when developing potential therapeutic approaches. Natural plant antioxidants have been shown to mediate the oxidative stress-induced effects in PD, which has gained considerable attention in both in vitro and in vivo studies. Yet, clinical trials on natural polyphenol compounds are limited, restricting the potential use of these compounds as an alternative treatment for PD. Therefore, this review provides an understanding of the oxidative stress-induced effects in PD by elucidating the underlying events contributing to oxidative stress and explore the potential use of polyphenols in improving the oxidative status in PD. Preclinical findings have supported the potential of polyphenols in providing neuroprotection against oxidative stress-induced toxicity in PD. However, limiting factors, such as safety and bioavailability of polyphenols, warrant further investigations so as to make them the potential target for clinical applications in the treatment and management of PD.
Collapse
Affiliation(s)
- Suet Lee Hor
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| |
Collapse
|
40
|
Kandiah N, Chan YF, Chen C, Dasig D, Dominguez J, Han S, Jia J, Kim S, Limpawattana P, Ng L, Nguyen DT, Ong PA, Raya‐Ampil E, Saedon N, Senanarong V, Setiati S, Singh H, Suthisisang C, Trang TM, Turana Y, Venketasubramanian N, Yong FM, Youn YC, Ihl R. Strategies for the use of Ginkgo biloba extract, EGb 761 ® , in the treatment and management of mild cognitive impairment in Asia: Expert consensus. CNS Neurosci Ther 2021; 27:149-162. [PMID: 33352000 PMCID: PMC7816207 DOI: 10.1111/cns.13536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a neurocognitive state between normal cognitive aging and dementia, with evidence of neuropsychological changes but insufficient functional decline to warrant a diagnosis of dementia. Individuals with MCI are at increased risk for progression to dementia; and an appreciable proportion display neuropsychiatric symptoms (NPS), also a known risk factor for dementia. Cerebrovascular disease (CVD) is thought to be an underdiagnosed contributor to MCI/dementia. The Ginkgo biloba extract, EGb 761® , is increasingly being used for the symptomatic treatment of cognitive disorders with/without CVD, due to its known neuroprotective effects and cerebrovascular benefits. AIMS To present consensus opinion from the ASian Clinical Expert group on Neurocognitive Disorders (ASCEND) regarding the role of EGb 761® in MCI. MATERIALS & METHODS The ASCEND Group reconvened in September 2019 to present and critically assess the current evidence on the general management of MCI, including the efficacy and safety of EGb 761® as a treatment option. RESULTS EGb 761® has demonstrated symptomatic improvement in at least four randomized trials, in terms of cognitive performance, memory, recall and recognition, attention and concentration, anxiety, and NPS. There is also evidence that EGb 761® may help delay progression from MCI to dementia in some individuals. DISCUSSION EGb 761® is currently recommended in multiple guidelines for the symptomatic treatment of MCI. Due to its beneficial effects on cerebrovascular blood flow, it is reasonable to expect that EGb 761® may benefit MCI patients with underlying CVD. CONCLUSION As an expert group, we suggest it is clinically appropriate to incorporate EGb 761® as part of the multidomain intervention for MCI.
Collapse
Affiliation(s)
- Nagaendran Kandiah
- National Neuroscience InstituteSingaporeSingapore
- Duke‐NUSSingaporeSingapore
- Lee Kong Chian‐Imperial CollegeSingaporeSingapore
| | | | - Christopher Chen
- Departments of Pharmacology and Psychological MedicineYong Loo Lin School of MedicineMemory Aging and Cognition CentreNational University of SingaporeSingaporeSingapore
| | | | | | | | - Jianping Jia
- Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - SangYun Kim
- Department of NeurologySeoul National University College of Medicine and Seoul National University Bundang HospitalSeoulKorea
| | - Panita Limpawattana
- Srinakarind HospitalFaculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Li‐Ling Ng
- Changi General HospitalSingaporeSingapore
| | - Dinh Toan Nguyen
- Department of Internal MedicineUniversity of Medicine and PharmacyHue UniversityHue CityVietnam
| | | | | | | | | | - Siti Setiati
- Department of Internal MedicineCipto Mangunkusumo HospitalJakartaIndonesia
| | - Harjot Singh
- Dr Harjot Singh's Neuropsychiatry Centre and HospitalAmritsarIndia
| | | | - Tong Mai Trang
- Department of NeurologyUniversity Medical CenterHo Chi Minh CityVietnam
| | - Yuda Turana
- School of Medicine and Health ScienceAtma Jaya Catholic University of IndonesiaJakartaIndonesia
| | | | | | | | | |
Collapse
|
41
|
Preventing dementia? Interventional approaches in mild cognitive impairment. Neurosci Biobehav Rev 2021; 122:143-164. [PMID: 33440197 DOI: 10.1016/j.neubiorev.2020.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/13/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Mild cognitive impairment (MCI) is defined as an intermediate state between normal cognitive aging and dementia. It describes a status of the subjective impression of cognitive decline and objectively detectible memory impairment beyond normal age-related changes. Activities of daily living are not affected. As the population ages, there is a growing need for early, proactive programs that can delay the consequences of dementia and improve the well-being of people with MCI and their caregivers. Various forms and approaches of intervention for older people with MCI have been suggested to delay cognitive decline. Pharmacological as well as non-pharmacological approaches (cognitive, physiological, nutritional supplementation, electric stimulation, psychosocial therapeutic) and multicomponent interventions have been proposed. Interventional approaches in MCI from 2009 to April 2019 concerning the cognitive performance are presented in this review.
Collapse
|
42
|
Demoret RM, Baker MA, Ohtawa M, Chen S, Lam CC, Khom S, Roberto M, Forli S, Houk KN, Shenvi RA. Synthetic, Mechanistic, and Biological Interrogation of Ginkgo biloba Chemical Space En Route to (-)-Bilobalide. J Am Chem Soc 2020; 142:18599-18618. [PMID: 32991152 PMCID: PMC7727090 DOI: 10.1021/jacs.0c08231] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we interrogate the structurally dense (1.64 mcbits/Å3) GABAA receptor antagonist bilobalide, intermediates en route to its synthesis, and related mechanistic questions. 13C isotope labeling identifies an unexpected bromine migration en route to an α-selective, catalytic asymmetric Reformatsky reaction, ruling out an asymmetric allylation pathway. Experiment and computation converge on the driving forces behind two surprising observations. First, an oxetane acetal persists in concentrated mineral acid (1.5 M DCl in THF-d8/D2O); its longevity is correlated to destabilizing steric clash between substituents upon ring-opening. Second, a regioselective oxidation of des-hydroxybilobalide is found to rely on lactone acidification through lone-pair delocalization, which leads to extremely rapid intermolecular enolate equilibration. We also establish equivalent effects of (-)-bilobalide and the nonconvulsive sesquiterpene (-)-jiadifenolide on action potential-independent inhibitory currents at GABAergic synapses, using (+)-bilobalide as a negative control. The high information density of bilobalide distinguishes it from other scaffolds and may characterize natural product (NP) space more generally. Therefore, we also include a Python script to quickly (ca. 132 000 molecules/min) calculate information content (Böttcher scores), which may prove helpful to identify important features of NP space.
Collapse
Affiliation(s)
- Robert M. Demoret
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Meghan A. Baker
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Masaki Ohtawa
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ching Ching Lam
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Sophia Khom
- Departments of Molecular Medicine and Neuroscience, La Jolla, California 92037, United States
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, La Jolla, California 92037, United States
| | - Stefano Forli
- DISCoBio, Scripps Research, La Jolla, California 92037, United States
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ryan A. Shenvi
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
43
|
Wang M, Peng H, Peng Z, Huang K, Li T, Li L, Wu X, Shi H. Efficacy and safety of ginkgo preparation in patients with vascular dementia: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22209. [PMID: 32925798 PMCID: PMC7489658 DOI: 10.1097/md.0000000000022209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vascular dementia has become the second most common type of dementia after Alzheimer disease. At present, there is no uniform standard for VaD treatment guidelines among countries. The efficacy of ginkgo biloba in the treatment of vascular dementia is still controversial. The purpose of this study is to evaluate the effectiveness and safety of ginkgo biloba in the treatment of vascular dementia through meta-analysis. METHODS Six English databases (PubMed, Web of science, Medline, EBASE, Springer Cochrane Library, and WHO International Clinical Trials Registry Platform) and 4 Chinese databases (Wan fang Database, Chinese Scientific Journal Database, China National Knowledge Infrastructure Database(CNKI) and Chinese Biomedical Literature Database) will be searched normatively according to the rule of each database from the inception to August 1, 2020. Two reviewers will independently conduct article selection, data collection, and risk of bias evaluation. Any disagreement will be resolved by discussion with the third reviewer. Either the fixed-effects or random-effects model will be used for data synthesis based on the heterogeneity test. The change in the scores on mini-mental state examination, activity of daily living scale and Montreal cognitive assement will be used as the main outcome measure, Hamilton depression scale, Hastgawa dementia scale, blessed dementia scale, clinical dmentia rating scale as the secondary outcome. Treatment emergent symptom scale, general physical examination (temperature, pulse, respiration, blood pressure), Routine examination of blood, urine and stool, electrocardiogram, liver and kidney function examination as the security indexs. RevMan5.3.5 will be used for meta-analysis. RESULTS This study will provide high-quality evidence to assess the effectiveness and safety of ginkgo preparation for vascular dementia. CONCLUSION This systematic review will explore whether ginkgo preparation is an effective and safe intervention for vascular dementia. ETHICS AND DISSEMINATION Ethical approval are not required for this study. The systematic review will be published in a peer-reviewed journal, presented at conferences, and will be shared on social media platforms. This review will be disseminated in a peer-reviewed journal or conference presentation. PROSPERO REGISTRATION NUMBER PROSPERO CRD42020167851.
Collapse
Affiliation(s)
- Miyuan Wang
- Beijing University of Chinese Medicine, Beijing
| | - Hongye Peng
- Beijing University of Chinese Medicine, Beijing
| | - Zexu Peng
- Hubei University of Chinese Medicine, Wuhan Hubei, China
| | | | - Tingting Li
- Beijing University of Chinese Medicine, Beijing
| | - Lei Li
- Beijing University of Chinese Medicine, Beijing
| | - Xin Wu
- Beijing University of Chinese Medicine, Beijing
| | - Heyuan Shi
- Hubei University of Chinese Medicine, Wuhan Hubei, China
| |
Collapse
|
44
|
Complementary Medicine and Natural Medications in Psychiatry: A Guide for the Consultation-Liaison Psychiatrist. PSYCHOSOMATICS 2020; 61:508-517. [DOI: 10.1016/j.psym.2020.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
|
45
|
Li XX, Liu SH, Zhuang SJ, Guo SF, Pang SL. Effects of oxiracetam combined with ginkgo biloba extract in the treatment of acute intracerebral hemorrhage: A clinical study. Brain Behav 2020; 10:e01661. [PMID: 32533644 PMCID: PMC7428485 DOI: 10.1002/brb3.1661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The present clinical study was conducted to investigate the effect of oxiracetam combined with ginkgo biloba extract in treating patients with acute intracerebral hemorrhage. METHODS Ninety-eight patients with acute cerebral hemorrhage admitted to our hospital were divided into three groups. The differences of brain edema and cerebral hemorrhage were compared between the three groups after 1 and 2 weeks of treatment, and the recovery of neurological function, serum inflammatory factors, AQP-4, MMP-9, cognitive function, activities of daily living, and adverse reactions were compared between the three groups after 2 weeks of treatment. RESULTS There was no significant difference among the three groups before treatment (p > .05). After treatment, the recovery of neurological function, serum inflammatory factors, AQP-4, MMP-9 levels, cognitive function, and activities of daily living were improved. Among them, the neurological function recovery, serum inflammatory factors, AQP-4, MMP-9 levels, cognitive function, and activities of daily living in the combined treatment group and the control group elicited greater results than those in the routine group. The results of the combined treatment group showed the most significant difference (p < .05). The concentration of IL-6 decreased from 135.98 ± 12.54 to 91.83 ± 7.69 pg/ml, AQP-4 from 227.55 μg/L ± 21.06 to 114.31 ± 9.22 μg/L, and MMP-9 from 172.39 ± 9.81 to 94.98 ± 5.01 ng/ml. In addition, the neurological function recovery, the levels of serum inflammatory factors, cognitive function, and activities of daily living in the combined treatment group were better than those in the control group (p < .05). The mean score of MRS in the combined treatment group decreased from 3.36 ± 0.98 at admission to 1.91 ± 0.38. CONCLUSION Oxiracetam combined with Ginkgo biloba extract in the treatment of acute cerebral hemorrhage has a significant improvement effect.
Collapse
Affiliation(s)
- Xiu-Xiu Li
- Department of Neurology, Linyi Central Hospital, Linyi, China
| | - Shi-Hui Liu
- Department of Neurology, Linyi Central Hospital, Linyi, China
| | - Su-Jing Zhuang
- Department of Neurology, Linyi Central Hospital, Linyi, China
| | - Shi-Feng Guo
- Department of Neurology, Linyi Central Hospital, Linyi, China
| | - Shou-Liang Pang
- Department of Neurology, Linyi Central Hospital, Linyi, China
| |
Collapse
|
46
|
Kandiah N, Ong PA, Yuda T, Ng LL, Mamun K, Merchant RA, Chen C, Dominguez J, Marasigan S, Ampil E, Nguyen VT, Yusoff S, Chan YF, Yong FM, Krairit O, Suthisisang C, Senanarong V, Ji Y, Thukral R, Ihl R. Treatment of dementia and mild cognitive impairment with or without cerebrovascular disease: Expert consensus on the use of Ginkgo biloba extract, EGb 761 ®. CNS Neurosci Ther 2020; 25:288-298. [PMID: 30648358 PMCID: PMC6488894 DOI: 10.1111/cns.13095] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background The Ginkgo biloba special extract, EGb 761® has been widely used in the treatment of neuropsychiatric disorders, including Alzheimer’s disease (AD). Methods To guide clinical practice in the Asian region, the Asian Clinical Expert Group on Neurocognitive Disorders compiled evidence‐based consensus recommendations regarding the use of EGb 761® in neurocognitive disorders with/without cerebrovascular disease. Results Key randomized trials and robust meta‐analyses have demonstrated significant improvement in cognitive function, neuropsychiatric symptoms, activities of daily living (ADL) and quality of life with EGb 761®versus placebo in patients with mild‐to‐moderate dementia. In those with mild cognitive impairment (MCI), EGb 761® has also demonstrated significant symptomatic improvement versus placebo. World Federation of Societies of Biological Psychiatry guidelines list EGb 761® with the same strength of evidence as acetylcholinesterase inhibitors and N‐methyl‐D‐aspartate (NMDA) antagonists e.g. memantine (Grade 3 recommendation; Level B evidence). Only EGb 761® had Level B evidence in improving cognition, behaviour, and ADL in both AD and vascular dementia patients. Safety analyses show EGb 761® to have a positive risk‐benefit profile. While concerns have been raised regarding a possible increased bleeding risk, several randomized trials and two meta‐analyses have not supported this association. Conclusions The Expert Group foresee an important role for EGb 761®, used alone or as an add‐on therapy, in the treatment of MCI and dementias, particularly when patients do not derive benefit from acetylcholinesterase inhibitors or NMDA antagonists. EGb 761® should be used in alignment with local clinical practice guidelines.
Collapse
Affiliation(s)
- Nagaendran Kandiah
- Duke-NUS Singapore, National Neuroscience Institute, Singapore, Singapore
| | | | - Turana Yuda
- School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Li-Ling Ng
- Changi General Hospital, Singapore, Singapore
| | - Kaysar Mamun
- Singapore General Hospital, Singapore, Singapore
| | | | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | - Yong Ji
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Ralf Ihl
- Alexian Hospital, Krefeld, Germany
| |
Collapse
|
47
|
Yamashita H, Surapureddi S, Kovi RC, Bhusari S, Ton TV, Li JL, Shockley KR, Peddada SD, Gerrish KE, Rider CV, Hoenerhoff MJ, Sills RC, Pandiri AR. Unique microRNA alterations in hepatocellular carcinomas arising either spontaneously or due to chronic exposure to Ginkgo biloba extract (GBE) in B6C3F1/N mice. Arch Toxicol 2020; 94:2523-2541. [PMID: 32306082 DOI: 10.1007/s00204-020-02749-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Ginkgo biloba extract (GBE) is used in traditional Chinese medicine as a herbal supplement for improving memory. Exposure of B6C3F1/N mice to GBE in a 2-year National Toxicology Program (NTP) bioassay resulted in a dose-dependent increase in hepatocellular carcinomas (HCC). To identify key microRNAs that modulate GBE-induced hepatocarcinogenesis, we compared the global miRNA expression profiles in GBE-exposed HCC (GBE-HCC) and spontaneous HCC (SPNT-HCC) with age-matched vehicle control normal livers (CNTL) from B6C3F1/N mice. The number of differentially altered miRNAs in GBE-HCC and SPNT-HCC was 74 (52 up and 22 down) and 33 (15 up and 18 down), respectively. Among the uniquely differentially altered miRNAs in GBE-HCC, miR-31 and one of its predicted targets, Cdk1 were selected for functional validation. A potential miRNA response element (MRE) in the 3'-untranslated regions (3'-UTR) of Cdk1 mRNA was revealed by in silico analysis and confirmed by luciferase assays. In mouse hepatoma cell line HEPA-1 cells, we demonstrated an inverse correlation between miR-31 and CDK1 protein levels, but no change in Cdk1 mRNA levels, suggesting a post-transcriptional effect. Additionally, a set of miRNAs (miRs-411, 300, 127, 134, 409-3p, and 433-3p) that were altered in the GBE-HCCs were also altered in non-tumor liver samples from the 90-day GBE-exposed group compared to the vehicle control group, suggesting that some of these miRNAs could serve as potential biomarkers for GBE exposure or hepatocellular carcinogenesis. These data increase our understanding of miRNA-mediated epigenetic regulation of GBE-mediated hepatocellular carcinogenesis in B6C3F1/N mice.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CDC2 Protein Kinase/genetics
- CDC2 Protein Kinase/metabolism
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Epigenesis, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Ginkgo biloba
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Male
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Plant Extracts/toxicity
- Time Factors
- Transcriptome
Collapse
Affiliation(s)
- Haruhiro Yamashita
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- Frontier Research Center, Taisho Pharmaceutical Co. Ltd, Tokyo, 100-6609, Japan
| | - Sailesh Surapureddi
- Signal Transduction Laboratory, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
- United States Environmental Protection Agency, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA
| | - Ramesh C Kovi
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- Experimental Pathology Laboratories Inc, Research Triangle Park, NC, 27709, USA
| | - Sachin Bhusari
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- Global Scientific and Regulatory Affairs, The Coca-Cola Company, 1 Coca Cola Plaza, NW, Atlanta, GA, USA
| | - Thai Vu Ton
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Keith R Shockley
- Biostatistics and Computational Biology Branch, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Shyamal D Peddada
- Biostatistics and Computational Biology Branch, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
- Department of Biostatistics, University of Pittsburgh, 7126 Public Health, 130 DeSoto Street, Pittsburgh, PA, 1526, USA
| | - Kevin E Gerrish
- Molecular Genomics Core Laboratory, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Cynthia V Rider
- Toxicology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Mark J Hoenerhoff
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert C Sills
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Arun R Pandiri
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
48
|
Eisvand F, Razavi BM, Hosseinzadeh H. The effects of
Ginkgo biloba
on metabolic syndrome: A review. Phytother Res 2020; 34:1798-1811. [DOI: 10.1002/ptr.6646] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/22/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology InstituteMashhad University of Medical Sciences Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology InstituteMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
49
|
Liu H, Ye M, Guo H. An Updated Review of Randomized Clinical Trials Testing the Improvement of Cognitive Function of Ginkgo biloba Extract in Healthy People and Alzheimer's Patients. Front Pharmacol 2020; 10:1688. [PMID: 32153388 PMCID: PMC7047126 DOI: 10.3389/fphar.2019.01688] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease, mainly manifested by cognitive dysfunction. It seriously reduces the quality of life, and there is no ideal treatment strategy in clinical practice. Clinical studies on the treatment of AD with Ginkgo biloba L. leaf extract (EGb) have been reported since 1980s, and many clinical studies have been carried out during the following 30 years. However, the benefits of EGb on the treatment of AD are still controversial. In this review, we collected the clinical trial reports of EGb on cognitive function from Pubmed, Elsevier, Europe PMC, and other database since the 1980s. Through analysis and comparison, we consider that EGb may be able to improve the cognitive function in patients who suffered from mild dementia during long-term administration (more than 24 weeks) and appropriate dosage (240 mg per day). The main evidences and existing problems of the negative and positive experimental results were summarized.
Collapse
Affiliation(s)
- Haolong Liu
- School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Min Ye
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongzhu Guo
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| |
Collapse
|
50
|
Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2020; 21:E1250. [PMID: 32070025 PMCID: PMC7072974 DOI: 10.3390/ijms21041250] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
The increasing extension in life expectancy of human beings in developed countries is accompanied by a progressively greater rate of degenerative diseases associated with lifestyle and aging, most of which are still waiting for effective, not merely symptomatic, therapies. Accordingly, at present, the recommendations aimed at reducing the prevalence of these conditions in the population are limited to a safer lifestyle including physical/mental exercise, a reduced caloric intake, and a proper diet in a convivial environment. The claimed health benefits of the Mediterranean and Asian diets have been confirmed in many clinical trials and epidemiological surveys. These diets are characterized by several features, including low meat consumption, the intake of oils instead of fats as lipid sources, moderate amounts of red wine, and significant amounts of fresh fruit and vegetables. In particular, the latter have attracted popular and scientific attention for their content, though in reduced amounts, of a number of molecules increasingly investigated for their healthy properties. Among the latter, plant polyphenols have raised remarkable interest in the scientific community; in fact, several clinical trials have confirmed that many health benefits of the Mediterranean/Asian diets can be traced back to the presence of significant amounts of these molecules, even though, in some cases, contradictory results have been reported, which highlights the need for further investigation. In light of the results of these trials, recent research has sought to provide information on the biochemical, molecular, epigenetic, and cell biology modifications by plant polyphenols in cell, organismal, animal, and human models of cancer, metabolic, and neurodegenerative pathologies, notably Alzheimer's and Parkinson disease. The findings reported in the last decade are starting to help to decipher the complex relations between plant polyphenols and cell homeostatic systems including metabolic and redox equilibrium, proteostasis, and the inflammatory response, establishing an increasingly solid molecular basis for the healthy effects of these molecules. Taken together, the data currently available, though still incomplete, are providing a rationale for the possible use of natural polyphenols, or their molecular scaffolds, as nutraceuticals to contrast aging and to combat many associated pathologies.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, 50139 Florence, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| |
Collapse
|