1
|
Chen CC, Tsai MC, Wu EHK, Sheng SR, Lee JJ, Lu YE, Yeh SC. Fusion Model Using Resting Neurophysiological Data to Help Mass Screening of Methamphetamine Use Disorder. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 13:1-8. [PMID: 39911774 PMCID: PMC11793485 DOI: 10.1109/jtehm.2024.3522356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025]
Abstract
Methamphetamine use disorder (MUD) is a substance use disorder. Because MUD has become more prevalent due to the COVID-19 pandemic, alternative ways to help the efficiency of mass screening of MUD are important. Previous studies used electroencephalogram (EEG), heart rate variability (HRV), and galvanic skin response (GSR) aberrations during the virtual reality (VR) induction of drug craving to accurately separate patients with MUD from the healthy controls. However, whether these abnormalities present without induction of drug-cue reactivity to enable separation between patients and healthy subjects remains unclear. Here, we propose a clinically comparable intelligent system using the fusion of 5-channel EEG, HRV, and GSR data during resting state to aid in detecting MUD. Forty-six patients with MUD and 26 healthy controls were recruited and machine learning methods were employed to systematically compare the classification results of different fusion models. The analytic results revealed that the fusion of HRV and GSR features leads to the most accurate separation rate of 79%. The use of EEG, HRV, and GSR features provides more robust information, leading to relatively similar and enhanced accuracy across different classifiers. In conclusion, we demonstrated that a clinically applicable intelligent system using resting-state EEG, ECG, and GSR features without the induction of drug cue reactivity enhances the detection of MUD. This system is easy to implement in the clinical setting and can save a lot of time on setting up and experimenting while maintaining excellent accuracy to assist in mass screening of MUD.
Collapse
Affiliation(s)
- Chun-Chuan Chen
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan320Taiwan
| | - Meng-Chang Tsai
- Department of PsychiatryKaohsiung Chang Gung Memorial HospitalKaohsiung833Taiwan
- School of MedicineChang Gung UniversityTaoyuan320Taiwan
| | - Eric Hsiao-Kuang Wu
- Computer Science and Information Engineering DepartmentNational Central UniversityTaoyuan320Taiwan
| | - Shao-Rong Sheng
- Computer Science and Information Engineering DepartmentNational Central UniversityTaoyuan320Taiwan
| | - Jia-Jeng Lee
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan320Taiwan
| | - Yung-En Lu
- Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainan701Taiwan
| | - Shih-Ching Yeh
- Computer Science and Information Engineering DepartmentNational Central UniversityTaoyuan320Taiwan
| |
Collapse
|
2
|
Flores-Ramirez FJ, Illenberger JM, Martin-Fardon R. Interaction between corticotropin-releasing factor, orexin, and dynorphin in the infralimbic cortex may mediate exacerbated alcohol-seeking behavior. Neurobiol Stress 2024; 33:100695. [PMID: 39640001 PMCID: PMC11617300 DOI: 10.1016/j.ynstr.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
A major challenge for the treatment of alcohol use disorder (AUD) is relapse to alcohol use, even after protracted periods of self-imposed abstinence. Stress significantly contributes to the chronic relapsing nature of AUD, given its long-lasting ability to elicit intense craving and precipitate relapse. As individuals transition to alcohol dependence, compensatory allostatic mechanisms result in insults to hypothalamic-pituitary-adrenal axis function, mediated by corticotropin-releasing factor (CRF), which is subsequently hypothesized to alter brain reward pathways, influence affect, elicit craving, and ultimately perpetuate problematic drinking and relapse vulnerability. Orexin (OX; also called hypocretin) plays a well-established role in regulating diverse physiological processes, including stress, and has been shown to interact with CRF. Interestingly, most hypothalamic cells that express Ox mRNA also express Pdyn mRNA. Both dynorphin and OX are located in the same synaptic vesicles, and they are co-released. The infralimbic cortex (IL) of the medial prefrontal cortex (mPFC) has emerged as being directly involved in the compulsive nature of alcohol consumption during dependence. The IL is a CRF-rich region that receives OX projections from the hypothalamus and where OX receptor mRNA has been detected. Although not thoroughly understood, anatomical and behavioral pharmacology data suggest that CRF, OX, and dynorphin may interact, particularly in the IL, and that functional interactions between these three systems in the IL may be critical for the etiology and pervasiveness of compulsive alcohol seeking in dependent subjects that may render them vulnerable to relapse. The present review presents evidence of the role of the IL in AUD and discusses functional interactions between CRF, OX, and dynorphin in this structure and how they are related to exacerbated alcohol drinking and seeking.
Collapse
Affiliation(s)
- Francisco J. Flores-Ramirez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychology, California State University, San Marcos, CA, USA
| | | | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
3
|
Li G, Zhong D, Zhang N, Dong J, Yan Y, Xu Q, Xu S, Yang L, Hao D, Li CSR. The inter-related effects of alcohol use severity and sleep deficiency on semantic processing in young adults. Neuroscience 2024; 555:116-124. [PMID: 39059740 DOI: 10.1016/j.neuroscience.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Both alcohol misuse and sleep deficiency are associated with deficits in semantic processing. However, alcohol misuse and sleep deficiency are frequently comorbid and their inter-related effects on semantic processing as well as the underlying neural mechanisms remain to be investigated. METHODS We curated the Human Connectome Project data of 973 young adults (508 women) to examine the neural correlates of semantic processing in link with the severity of alcohol use and sleep deficiency. The latter were each evaluated using the first principal component (PC1) of principal component analysis of all drinking metrics and the Pittsburgh Sleep Quality Index (PSQI). We employed path modeling to elucidate the interplay among clinical, behavioral, and neural variables. RESULTS Among women, we observed a significant negative correlation between the left precentral gyrus (PCG) and PSQI scores. Mediation analysis revealed that the left PCG activity fully mediated the relationship between PSQI scores and word comprehension in language tasks. In women alone also, the right middle frontal gyrus (MFG) exhibited a significant negative correlation with PC1. The best path model illustrated the associations among PC1, PSQI scores, PCG activity, and MFG activation during semantic processing in women. CONCLUSIONS Alcohol misuse may lead to reduced MFG activation while sleep deficiency hinder semantic processing by suppressing PCG activity in women. The pathway model underscores the influence of sleep quality and alcohol consumption severity on semantic processing in women, suggesting that sex differences in these effects need to be further investigated.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dandan Zhong
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Sleep Center, Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Dong
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Sleep Center, Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Yan
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qixiao Xu
- Physical Education Department, Beijing University of Technology, Beijing, China
| | - Shuchun Xu
- Traditional Chinese Medicine Department, the University Hospital of Beijing University of Technology, Beijing, China
| | - Lin Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dongmei Hao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Ekhtiari H, Sangchooli A, Carmichael O, Moeller FG, O'Donnell P, Oquendo M, Paulus MP, Pizzagalli DA, Ramey T, Schacht J, Zare-Bidoky M, Childress AR, Brady K. Neuroimaging Biomarkers in Addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.02.24312084. [PMID: 39281741 PMCID: PMC11398440 DOI: 10.1101/2024.09.02.24312084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
As a neurobiological process, addiction involves pathological patterns of engagement with substances and a range of behaviors with a chronic and relapsing course. Neuroimaging technologies assess brain activity, structure, physiology, and metabolism at scales ranging from neurotransmitter receptors to large-scale brain networks, providing unique windows into the core neural processes implicated in substance use disorders. Identified aberrations in the neural substrates of reward and salience processing, response inhibition, interoception, and executive functions with neuroimaging can inform the development of pharmacological, neuromodulatory, and psychotherapeutic interventions to modulate the disordered neurobiology. Based on our systematic search, 409 protocols registered on ClinicalTrials.gov include the use of one or more neuroimaging paradigms as an outcome measure in addiction, with the majority (N=268) employing functional magnetic resonance imaging (fMRI), followed by positron emission tomography (PET) (N=71), electroencephalography (EEG) (N=50), structural magnetic resonance imaging (MRI) (N=35) and magnetic resonance spectroscopy (MRS) (N=35). Furthermore, in a PubMed systematic review, we identified 61 meta-analyses including 30 fMRI, 22 structural MRI, 8 EEG, 7 PET, and 3 MRS meta-analyses suggesting potential biomarkers in addictions. These studies can facilitate the development of a range of biomarkers that may prove useful in the arsenal of addiction treatments in the coming years. There is evidence that these markers of large-scale brain structure and activity may indicate vulnerability or separate disease subtypes, predict response to treatment, or provide objective measures of treatment response or recovery. Neuroimaging biomarkers can also suggest novel targets for interventions. Closed or open loop interventions can integrate these biomarkers with neuromodulation in real-time or offline to personalize stimulation parameters and deliver the precise intervention. This review provides an overview of neuroimaging modalities in addiction, potential neuroimaging biomarkers, and their physiologic and clinical relevance. Future directions and challenges in bringing these putative biomarkers from the bench to the bedside are also discussed.
Collapse
Affiliation(s)
- Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Arshiya Sangchooli
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Owen Carmichael
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - F Gerard Moeller
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Patricio O'Donnell
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Maria Oquendo
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Martin P Paulus
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Diego A Pizzagalli
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Tatiana Ramey
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Joseph Schacht
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Mehran Zare-Bidoky
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Anna Rose Childress
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Kathleen Brady
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| |
Collapse
|
5
|
Chaudhary S, Roy A, Summers C, Ahles T, Li CSR, Chao HH. Androgen deprivation increases frontopolar cortical thickness in prostate cancer patients: an effect of early neurodegeneration? Am J Cancer Res 2024; 14:3652-3664. [PMID: 39113873 PMCID: PMC11301281 DOI: 10.62347/wola8904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Androgen deprivation therapy (ADT) has been associated with adverse effects on the brain. ADT leads to altered testosterone levels that may affect brain morphology as well as cognition. Considering the reliability of cortical thickness (CT) as a marker of cognitive and brain changes, e.g., in Alzheimer's disease, we assessed the impacts of ADT on CT and working memory. Thirty men with non-metastatic prostate cancer receiving ADT and 32 patients not receiving ADT (controls or CON), matched in age and years of education, participated in N-back task and quality-of-life (QoL) assessments as well as brain imaging at baseline and prospectively at 6 months. Imaging data were processed with published routines to estimate CT and the results of a group by time flexible factorial analysis were evaluated at a corrected threshold. ADT and CON did not differ in N-back performance or QoL across time points. Relative to CON, patients receiving ADT showed significantly higher frontopolar cortex (FPC) CT at 6-month follow-up vs. baseline. Follow-up vs. baseline FPC CT change correlated negatively with changes in 2-back correct response rate and in testosterone levels across all participants. In mediation analysis, FPC CT change mediated the association between testosterone level change and 2-back accuracy rate change. Increases in FPC CT following 6 months of ADT may reflect early neurodegenerative changes in response to androgen deprivation. While no significant impact on working memory or QoL was observed over 6 months, further research of longer duration of treatment is warranted to unravel the full spectrum of cognitive and neural consequences of ADT in prostate cancer patients.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| | - Alicia Roy
- VA Connecticut Healthcare SystemWest Haven, CT, USA
| | | | - Tim Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer CenterNew York, NY, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
- Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of MedicineNew Haven, CT, USA
- Wu Tsai Institute, Yale UniversityNew Haven, CT, USA
| | - Herta H Chao
- VA Connecticut Healthcare SystemWest Haven, CT, USA
- Department of Medicine and Yale Comprehensive Cancer Center, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
6
|
Radoman M, Fogelman N, Lacadie C, Seo D, Sinha R. Neural Correlates of Stress and Alcohol Cue-Induced Alcohol Craving and of Future Heavy Drinking: Evidence of Sex Differences. Am J Psychiatry 2024; 181:412-422. [PMID: 38706332 PMCID: PMC11117176 DOI: 10.1176/appi.ajp.20230849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Stress and alcohol cue reactivity are associated with poor treatment outcomes in alcohol use disorder (AUD), but sex-specific neural correlates of stress and alcohol cue-induced craving compared with neutral cue-induced craving and of heavy drinking outcomes in AUD have not been examined. Thus, this study prospectively examined these associations and assessed sex differences. METHODS Treatment-seeking adults with AUD (N=77; 46 men and 31 women) completed a functional MRI task involving stress, alcohol, and neutral cue exposure with repeated assessments of alcohol craving. Most of these participants (N=72; 43 men and 29 women) then participated in an 8-week standardized behavioral AUD treatment program, during which the percentage of heavy drinking days was assessed. RESULTS Significant increases in both stress and alcohol cue-induced craving relative to neutral cue-induced craving were observed, with a greater alcohol-neutral contrast in craving relative to the stress-neutral contrast among men and equivalent stress-neutral and alcohol-neutral contrasts in craving among women. Whole-brain voxel-based regression analyses showed craving-associated hyperactivation in the neutral condition, but hypoactive prefrontal (ventromedial and lateral prefrontal, supplementary motor, and anterior cingulate regions) and striatal responses during exposure to stressful images (stress-neutral contrast) and alcohol cues (alcohol-neutral contrast), with significant sex differences. Additionally, a higher percentage of heavy drinking days was associated with hypoactivation of the subgenual anterior cingulate cortex and the bed nucleus of the stria terminalis in the stress-neutral contrast among women, hyperactivation of the hypothalamus in the stress-neutral contrast among men, and hyperactivation of the hippocampus in the alcohol-neutral contrast among men. CONCLUSIONS Sex differences in stress- and alcohol cue-induced responses in the cortico-striatal-limbic network related to subjective alcohol craving and to heavy drinking indicated that distinct brain circuits underlie alcohol use outcomes in women and men. These findings underscore the need for sex-specific therapeutics to address this neural dysfunction effectively.
Collapse
Affiliation(s)
- Milena Radoman
- Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, Yale Stress Center, 2 Church Street South, New Haven, CT 06519, USA
| | - Nia Fogelman
- Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, Yale Stress Center, 2 Church Street South, New Haven, CT 06519, USA
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 800 Howard Avenue, New Haven, CT 06519, USA
| | - Dongju Seo
- Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, Yale Stress Center, 2 Church Street South, New Haven, CT 06519, USA
| | - Rajita Sinha
- Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, Yale Stress Center, 2 Church Street South, New Haven, CT 06519, USA
| |
Collapse
|
7
|
Carlini LE, Fernandez AC, Mellinger JL. Sex and gender in alcohol use disorder and alcohol-associated liver disease in the United States: A narrative review. Hepatology 2024:01515467-990000000-00864. [PMID: 38683562 DOI: 10.1097/hep.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Over the last 20 years, there has been an alarming increase in alcohol use and AUD prevalence among women, narrowing the historical gender gap. Concurrently, there has also been a significant rise in alcohol-associated liver disease (ALD) prevalence, severity, and mortality among women. Despite this, there are no recent reviews that have sought to evaluate both sex and gender differences at the intersection of AUD and ALD. In this narrative review, we address the escalating rates of ALD and AUD in the United States, with a specific focus on the disproportionate impact on women. Sex and gender play an important and well-known role in the pathogenesis and epidemiology of ALD. However, sex and gender are also implicated in the development and prevalence of AUD, as well as in the treatment of AUD, all of which have important consequences on the approach to the treatment of patients with ALD and AUD. A better understanding of sex and gender differences in AUD, ALD, and the intersection of the 2 is essential to enhance prevention, diagnosis, and management strategies. These data underscore the urgent need for awareness and preventive efforts to mitigate the potential long-term health consequences.
Collapse
Affiliation(s)
- Lauren E Carlini
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anne C Fernandez
- Department of Psychiatry, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jessica L Mellinger
- Department of Internal Medicine and Psychiatry, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Sangchooli A, Zare-Bidoky M, Fathi Jouzdani A, Schacht J, Bjork JM, Claus ED, Prisciandaro JJ, Wilson SJ, Wüstenberg T, Potvin S, Ahmadi P, Bach P, Baldacchino A, Beck A, Brady KT, Brewer JA, Childress AR, Courtney KE, Ebrahimi M, Filbey FM, Garavan H, Ghahremani DG, Goldstein RZ, Goudriaan AE, Grodin EN, Hanlon CA, Haugg A, Heilig M, Heinz A, Holczer A, Van Holst RJ, Joseph JE, Juliano AC, Kaufman MJ, Kiefer F, Khojasteh Zonoozi A, Kuplicki RT, Leyton M, London ED, Mackey S, McClernon FJ, Mellick WH, Morley K, Noori HR, Oghabian MA, Oliver JA, Owens M, Paulus MP, Perini I, Rafei P, Ray LA, Sinha R, Smolka MN, Soleimani G, Spanagel R, Steele VR, Tapert SF, Vollstädt-Klein S, Wetherill RR, Witkiewitz K, Yuan K, Zhang X, Verdejo-Garcia A, Potenza MN, Janes AC, Kober H, Zilverstand A, Ekhtiari H. Parameter Space and Potential for Biomarker Development in 25 Years of fMRI Drug Cue Reactivity: A Systematic Review. JAMA Psychiatry 2024; 81:414-425. [PMID: 38324323 PMCID: PMC11304510 DOI: 10.1001/jamapsychiatry.2023.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Importance In the last 25 years, functional magnetic resonance imaging drug cue reactivity (FDCR) studies have characterized some core aspects in the neurobiology of drug addiction. However, no FDCR-derived biomarkers have been approved for treatment development or clinical adoption. Traversing this translational gap requires a systematic assessment of the FDCR literature evidence, its heterogeneity, and an evaluation of possible clinical uses of FDCR-derived biomarkers. Objective To summarize the state of the field of FDCR, assess their potential for biomarker development, and outline a clear process for biomarker qualification to guide future research and validation efforts. Evidence Review The PubMed and Medline databases were searched for every original FDCR investigation published from database inception until December 2022. Collected data covered study design, participant characteristics, FDCR task design, and whether each study provided evidence that might potentially help develop susceptibility, diagnostic, response, prognostic, predictive, or severity biomarkers for 1 or more addictive disorders. Findings There were 415 FDCR studies published between 1998 and 2022. Most focused on nicotine (122 [29.6%]), alcohol (120 [29.2%]), or cocaine (46 [11.1%]), and most used visual cues (354 [85.3%]). Together, these studies recruited 19 311 participants, including 13 812 individuals with past or current substance use disorders. Most studies could potentially support biomarker development, including diagnostic (143 [32.7%]), treatment response (141 [32.3%]), severity (84 [19.2%]), prognostic (30 [6.9%]), predictive (25 [5.7%]), monitoring (12 [2.7%]), and susceptibility (2 [0.5%]) biomarkers. A total of 155 interventional studies used FDCR, mostly to investigate pharmacological (67 [43.2%]) or cognitive/behavioral (51 [32.9%]) interventions; 141 studies used FDCR as a response measure, of which 125 (88.7%) reported significant interventional FDCR alterations; and 25 studies used FDCR as an intervention outcome predictor, with 24 (96%) finding significant associations between FDCR markers and treatment outcomes. Conclusions and Relevance Based on this systematic review and the proposed biomarker development framework, there is a pathway for the development and regulatory qualification of FDCR-based biomarkers of addiction and recovery. Further validation could support the use of FDCR-derived measures, potentially accelerating treatment development and improving diagnostic, prognostic, and predictive clinical judgments.
Collapse
Affiliation(s)
- Arshiya Sangchooli
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Mehran Zare-Bidoky
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fathi Jouzdani
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Joseph Schacht
- Department of Psychiatry, University of Colorado School of Medicine, Aurora
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, Richmond
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park
| | - James J Prisciandaro
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, State College
| | - Torsten Wüstenberg
- Field of Focus IV, Core Facility for Neuroscience of Self-Regulation (CNSR), Heidelberg University, Heidelberg, Germany
| | - Stéphane Potvin
- Department of Psychiatry and Addiction, Université de Montréal, Montréal, Quebec, Canada
| | - Pooria Ahmadi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Bach
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alex Baldacchino
- School of Medicine, University of St Andrews, St Andrews, Scotland
| | - Anne Beck
- Faculty of Health, Health and Medical University, Potsdam, Germany
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kathleen T Brady
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Judson A Brewer
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island
| | | | | | - Mohsen Ebrahimi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anneke E Goudriaan
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Erica N Grodin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- BrainsWay Inc, Winston-Salem, North Carolina
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrienn Holczer
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Ruth J Van Holst
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jane E Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston
| | | | - Marc J Kaufman
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arash Khojasteh Zonoozi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington
| | - F Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - William H Mellick
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Kirsten Morley
- Specialty of Addiction Medicine, Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Hamid R Noori
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Jason A Oliver
- TSET Health Promotion Research Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Max Owens
- Department of Psychiatry, University of Vermont, Burlington
| | | | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Parnian Rafei
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Lara A Ray
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, Germany
| | - Vaughn R Steele
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Anhui, China
| | | | - Marc N Potenza
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Amy C Janes
- Cognitive and Pharmacological Neuroimaging Unit, National Institute on Drug Abuse, Baltimore, Maryland
| | - Hedy Kober
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
9
|
Zhang J, Chen M, Yan J, Wang C, Deng H, Wang J, Gu J, Wang D, Li W, Wang C. Effects of virtual reality-based cue exposure therapy on craving and physiological responses in alcohol-dependent patients-a randomised controlled trial. BMC Psychiatry 2023; 23:951. [PMID: 38110900 PMCID: PMC10726483 DOI: 10.1186/s12888-023-05426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cue exposure therapy is used to treat alcohol dependence. However, its effectiveness is controversial due to the limitations of the clinical treatment setting. Virtual reality technology may improve the therapeutic effect. The aim of this study is to explore whether virtual reality-based cue exposure therapy can reduce the psychological craving and physiological responses of patients with alcohol dependence. METHODS Forty-four male alcohol-dependent patients were recruited and divided into the study group (n = 23) and the control group (n = 21) according to a random number table. The control group received only conventional clinical treatment for alcohol dependence. The study group received conventional clinical treatment with the addition of VR cue exposure (treatment). The primary outcome was to assess psychological craving and physiological responses to cues of patients before and after treatment. RESULTS After virtual reality-based cue exposure therapy, the changes in VAS and heart rate before and after cue exposure in the study group were significantly lower than those in the control group (P < 0.05), while the changes in skin conductance and respiration between the study group and the control group were not significantly different (P > 0.05). The changes in VAS and heart rate before and after cue exposure in the study group were significantly lower than those before treatment (P < 0.05), while the changes in skin conductance and respiration were not significantly different from those before treatment (P > 0.05). The changes in VAS, heart rate, skin conductance and respiration before and after cue exposure in the control group were not significantly different from those before treatment (P > 0.05). CONCLUSION Virtual reality-based cue exposure therapy can reduce the psychological craving and part of the physiological responses of alcohol-dependent patients during cue exposure in the short term and may be helpful in the treatment of alcohol dependence. TRIAL REGISTRATION The study protocol was registered at the China Clinical Trial Registry on 26/02/2021 ( www.chictr.org.cn ; ChiCTR ID: ChiCTR2100043680).
Collapse
Affiliation(s)
- Junjun Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, 207# QianJin Road, Xinxiang, Henan, 453000, China
| | - Ming Chen
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, 207# QianJin Road, Xinxiang, Henan, 453000, China
| | - Junli Yan
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, 207# QianJin Road, Xinxiang, Henan, 453000, China
| | - Chaojun Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, 207# QianJin Road, Xinxiang, Henan, 453000, China
| | - Hongdu Deng
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, 207# QianJin Road, Xinxiang, Henan, 453000, China
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Jiali Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, 207# QianJin Road, Xinxiang, Henan, 453000, China
| | - Jiapeng Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, 207# QianJin Road, Xinxiang, Henan, 453000, China
| | - Dan Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, 207# QianJin Road, Xinxiang, Henan, 453000, China
| | - Wenhui Li
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, 207# QianJin Road, Xinxiang, Henan, 453000, China.
| | - Chuansheng Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, 207# QianJin Road, Xinxiang, Henan, 453000, China.
| |
Collapse
|
10
|
Diaz LA, Winder GS, Leggio L, Bajaj JS, Bataller R, Arab JP. New insights into the molecular basis of alcohol abstinence and relapse in alcohol-associated liver disease. Hepatology 2023:01515467-990000000-00605. [PMID: 37862466 DOI: 10.1097/hep.0000000000000645] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Alcohol use disorder remains a significant public health concern, affecting around 5% of adults worldwide. Novel pathways of damage have been described during the last years, providing insight into the mechanism of injury due to alcohol misuse beyond the direct effect of ethanol byproducts on the liver parenchyma and neurobehavioral mechanisms. Thus, the gut-liver-brain axis and immune system involvement could be therapeutic targets for alcohol use disorder. In particular, changes in gut microbiota composition and function, and bile acid homeostasis, have been shown with alcohol consumption and cessation. Alcohol can also directly disrupt intestinal and blood-brain barriers. Activation of the immune system can be triggered by intestinal barrier dysfunction and translocation of bacteria, pathogen-associated molecular patterns (such as lipopolysaccharide), cytokines, and damage-associated molecular patterns. These factors, in turn, promote liver and brain inflammation and the progression of liver fibrosis. Other involved mechanisms include oxidative stress, apoptosis, autophagy, and the release of extracellular vesicles and miRNA from hepatocytes. Potential therapeutic targets include gut microbiota (probiotics and fecal microbiota transplantation), neuroinflammatory pathways, as well as neuroendocrine pathways, for example, the ghrelin system (ghrelin receptor blockade), incretin mimetics (glucagon-like peptide-1 analogs), and the mineralocorticoid receptor system (spironolactone). In addition, support with psychological and behavioral treatments is essential to address the multiple dimensions of alcohol use disorder. In the future, a personalized approach considering these novel targets can contribute to significantly decreasing the alcohol-associated burden of disease.
Collapse
Affiliation(s)
- Luis Antonio Diaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institutes of Health, NIDA and NIAAA, Baltimore, Maryland, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Health Care System, Richmond, Virginia, USA
| | - Ramon Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Medicine, Division of Gastroenterology, Schulich School of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Chaudhary S, Chen Y, Zhornitsky S, Le TM, Zhang S, Chao HH, Dominguez JC, Li CSR. The effects of age on the severity of problem drinking: Mediating effects of positive alcohol expectancy and neural correlates. Addict Biol 2023; 28:e13278. [PMID: 37252876 DOI: 10.1111/adb.13278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 06/01/2023]
Abstract
Aging is associated with reduction in the severity of alcohol misuse. However, the psychological and neural mechanisms underlying the age-related changes remain unclear. Here, we tested the hypothesis that age-related diminution of positive alcohol expectancy (AE) mediated the effects of age on problem drinking and investigated the neural correlates of the mediating effects. Ninety-six drinkers 21-85 years of age, including social drinkers and those with mild/moderate alcohol use disorder (AUD), were assessed for global positive (GP) AE and problem drinking, each with the Alcohol Expectancy Questionnaire and Alcohol Use Disorders Identification Test (AUDIT), and with brain imaging during alcohol cue exposure. We processed imaging data with published routines; identified the correlates shared between whole-brain regression against age, GP and AUDIT scores; and performed mediation and path analyses to explore the interrelationships between the clinical and neural variables. The results showed that age was negatively correlated with both GP and AUDIT scores, with GP score completely mediating the correlation between age and AUDIT score. Lower age and higher GP correlated with shared cue responses in bilateral parahippocampal gyrus and left middle occipital cortex (PHG/OC). Further, higher GP and AUDIT scores were associated with shared cue responses in bilateral rostral anterior cingulate cortex and caudate head (ACC/caudate). Path analyses demonstrated models with significant statistical fit and PHG/OC and ACC/caudate each interrelating age to GP and GP to AUDIT scores. These findings confirmed change in positive AE as a psychological mechanism mitigating alcohol misuse as individuals age and highlighted the neural processes of cue-reactivity interrelating age and alcohol use severity.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H Chao
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Tonetto S, Weikop P, Brudek T, Thomsen M. Behavioral and biochemical effects of alcohol withdrawal in female C3H/HeNRj and C57BL/6JRj mice. Front Behav Neurosci 2023; 17:1143720. [PMID: 36910126 PMCID: PMC9995974 DOI: 10.3389/fnbeh.2023.1143720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Background Alcohol use disorder (AUD) is a major problem of our society and is often characterized and worsened by relapse. Prolonged alcohol exposure leads to numerous biochemical alterations that, upon cessation of alcohol intake, cause an array of immediate and lasting withdrawal symptoms. Acute withdrawal and neuroinflammation can be harmful in themselves, and lasting withdrawal symptoms contribute to relapse. Here, we conducted an initial feasibility study assessing several behavioral and neurochemical factors in female C3H/HeNRj (C3H) and C57BL/6JRj (B6) mice to determine which strain showed the clearest alcohol withdrawal symptoms during long-term abstinence and neurochemical alterations following re-exposure. Methods Female C3H and B6 mice (n = 12 per group/strain) were intermittently exposed to alcohol-containing or control liquid diets for 3 weeks. Acute and prolonged withdrawal symptoms were assessed over a period of 3 weeks using a battery of behavioral test, comprised of alcohol self-administration, anhedonia, hyperalgesia, anxiety-like and depressive-like disturbances. Brain inflammation was measured by multiplex cytokine assay. Monoamine levels in the hippocampus and striatum, as well as exploratory analyses of cations levels in the cerebellum, were assessed by High-Performance Liquid Chromatography (HPLC). Results Both C3H and B6 alcohol-exposed mice displayed decreased saccharin intake or preference and higher stress levels assessed by ultrasonic vocalizations (USVs) recordings. B6 but not C3H alcohol-exposed mice also exhibited a slower decline of alcohol oral self-administration (OSA), hyperalgesia, elevated brain TNF-α and elevated serotonin turnover. Conclusion Our findings highlight the suitability of the B6 strain to study the behavioral and neurochemical alterations caused by alcohol withdrawal and the potential efficacy of experimental treatments, not only in early detoxification, but also in prolonged abstinence. The feasibility of these assays is important because long-lasting withdrawal symptoms are often the main cause of relapse in alcohol-dependent patients.
Collapse
Affiliation(s)
- Simone Tonetto
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, University Hospital of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Brudek
- Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, University Hospital of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Kirsch DE, Le V, Kosted R, Fromme K, Lippard ETC. Neural underpinnings of expecting alcohol: Placebo alcohol administration alters nucleus accumbens resting state functional connectivity. Behav Brain Res 2023; 437:114148. [PMID: 36206822 PMCID: PMC10955555 DOI: 10.1016/j.bbr.2022.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Using balanced placebo designs, seminal alcohol administration research has shown individuals' beliefs about whether they have consumed alcohol, irrespective of the actual presence of alcohol, can determine level of alcohol consumption and impact social behavior. Despite the known effect of expecting alcohol on drinking behavior, few studies have used the placebo manipulation to directly investigate the neural underpinnings of the expectancy-related effects that occur following perceived alcohol consumption in humans. The present paper examined placebo responses in the laboratory to better understand the neural basis for the psychological phenomenon of expectancies. METHODS As part of a larger within-subjects study design, healthy young adults (N = 22, agemean+SD=23 +1) completed resting state fMRI scans and measures of subjective response before and after consuming placebo beverages. Effect of placebo beverage consumption (pre- versus post-beverage consumption) on functional connectivity within prefrontal cortical networks was examined using the CONN Toolbox. Relations between perceived subjective response to alcohol with functional connectivity response following placebo beverage consumption were examined. RESULTS Compared to pre-beverage scan, placebo beverage consumption was associated with increased positive functional connectivity between right nucleus accumbens - ventromedial prefrontal cortex and subcallosal cingulate cortex (pFDR<0.05). Subjective ratings of intoxication (i.e., feeling 'drunk') positively correlated with placebo beverage-related increases in nucleus accumbens - subcallosal cingulate cortex functional connectivity. CONCLUSION Results suggest placebo response to alcohol is associated with increased functional connectivity within a key reward network (nucleus accumbens - ventromedial prefrontal cortex and subcallosal cingulate cortex) and put forth a mechanism by which alcohol expectancies may contribute to the subjective experience of intoxication.
Collapse
Affiliation(s)
- D E Kirsch
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, TX, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA; Institute for Neuroscience, University of Texas, Austin, TX, USA.
| | - V Le
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, TX, USA
| | - R Kosted
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, TX, USA
| | - K Fromme
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA; Department of Psychology, University of Texas, Austin, TX, USA
| | - E T C Lippard
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, TX, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA; Institute for Neuroscience, University of Texas, Austin, TX, USA; Department of Psychology, University of Texas, Austin, TX, USA; Institute of Early Life Adversity Research, University of Texas, Austin, TX, USA.
| |
Collapse
|
14
|
Li G, Chen Y, Chaudhary S, Tang X, Li CSR. Loss and Frontal Striatal Reactivities Characterize Alcohol Use Severity and Rule-Breaking Behavior in Young Adult Drinkers. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1007-1016. [PMID: 35709958 PMCID: PMC10249655 DOI: 10.1016/j.bpsc.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Alcohol misuse is associated with externalizing behaviors, including rule breaking. Studies have implicated altered reward processing in externalizing behaviors and alcohol misuse. Here, we investigated whether reward or punishment reactivity more significantly influenced alcohol use severity and rule-breaking behavior in young adult drinkers. METHODS We curated data from the Human Connectome Project and identified 181 binge (132 men) and 288 nonbinge (97 men) drinkers performing a gambling task during brain imaging. Alcohol use severity was quantified by the first principal component of principal-component analysis of all drinking measures. We analyzed the imaging data using published routines and evaluated the results at a corrected threshold. We examined the interrelationship between imaging and clinical metrics with mediation and path analyses. RESULTS Compared with nonbingers, bingers showed more severe rule-breaking behavior and responded significantly faster during post-loss than during post-win trials. Compared with nonbingers, bingers demonstrated greater inferior/middle frontal gyrus and cerebellum activations in loss-predominating blocks but no differences in regional responses to win-predominating blocks, relative to an interblock baseline. The right caudate body showed loss reactivity that was positively correlated with the rule-breaking score. No regional responses to wins were significantly correlated with the rule-breaking score. Mediation and path analyses demonstrated significant models with inferior/middle frontal gyrus and caudate reactivity to loss interrelating rule breaking and alcohol use severity. CONCLUSIONS Punishment rather than reward reactivity was associated with alcohol use severity and rule breaking in young adults. The findings highlight the roles of negative emotions in psychological models of externalizing behaviors and alcohol misuse.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing, China; Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
15
|
Zhu T, Becquey C, Chen Y, Lejuez CW, Li CSR, Bi J. Identifying alcohol misuse biotypes from neural connectivity markers and concurrent genetic associations. Transl Psychiatry 2022; 12:253. [PMID: 35710901 PMCID: PMC9203552 DOI: 10.1038/s41398-022-01983-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
Alcohol use behaviors are highly heterogeneous, posing significant challenges to etiologic research of alcohol use disorder (AUD). Magnetic resonance imaging (MRI) provides intermediate endophenotypes in characterizing problem alcohol use and assessing the genetic architecture of addictive behavior. We used connectivity features derived from resting state functional MRI to subtype alcohol misuse (AM) behavior. With a machine learning pipeline of feature selection, dimension reduction, clustering, and classification we identified three AM biotypes-mild, comorbid, and moderate AM biotypes (MIA, COA, and MOA)-from a Human Connectome Project (HCP) discovery sample (194 drinkers). The three groups and controls (397 non-drinkers) demonstrated significant differences in alcohol use frequency during the heaviest 12-month drinking period (MOA > MIA; COA > non-drinkers) and were distinguished by connectivity features involving the frontal, parietal, subcortical and default mode networks. Further, COA relative to MIA, MOA and controls endorsed significantly higher scores in antisocial personality. A genetic association study identified that an alcohol use and antisocial behavior related variant rs16930842 from LINC01414 was significantly associated with COA. Using a replication HCP sample (28 drinkers and 46 non-drinkers), we found that subtyping helped in classifying AM from controls (area under the curve or AUC = 0.70, P < 0.005) in comparison to classifiers without subtyping (AUC = 0.60, not significant) and successfully reproduced the genetic association. Together, the results suggest functional connectivities as important features in classifying AM subgroups and the utility of reducing the heterogeneity in connectivity features among AM subgroups in advancing the research of etiological neural markers of AUD.
Collapse
Affiliation(s)
- Tan Zhu
- Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA
| | - Chloe Becquey
- Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA
| | - Yu Chen
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | - Carl W Lejuez
- Department of Psychological Sciences, College of Liberal Arts and Sciences, University of Connecticut, Storrs, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Jinbo Bi
- Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
16
|
Zhang J, Chen S, Jiang Q, Dong H, Zhao Z, Du X, Dong GH. Disturbed craving regulation to gaming cues in internet gaming disorder: Implications for uncontrolled gaming behaviors. J Psychiatr Res 2021; 140:250-259. [PMID: 34119910 DOI: 10.1016/j.jpsychires.2021.05.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/03/2021] [Accepted: 05/21/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ability to control craving for games is very important to abstain from Internet gaming disorder (IGD) and abundant clinical evidence has suggested that craving dysregulation is the essential pathogenesis for IGD. However, the neural mechanism underlying this feature remains unclear. METHODS Subjective evaluation and fMRI data from 44 participants (IGD participants: 21; recreational Internet game users (RGUs): 23) were collected while they were performing a regulation of craving task. We analyzed and compared their brain features while they regulated cravings to gaming stimuli. RESULTS Compared to RGUs, IGD participants showed enhanced brain activation in the right anterior cingulate cortex, posterior cingulate cortex (PCC), orbitofrontal cortex and middle temporal gyrus and in the left dorsolateral prefrontal cortex and thalamus during the regulation of craving task. Generalized psychophysiological interaction (gPPI) analysis revealed that IGD participants showed decreased functional connectivity between the right PCC and right inferior parietal lobule compared to that in RGU participants. CONCLUSIONS The results suggested that deficits of craving regulation in IGD participant were associated with the imbalanced coordination between the reward network and the executive network. Enhanced game-seeking motivation and disturbed executive control are responsible for craving dysregulation in IGD participants. These findings suggest a biological mechanism for IGD that may help in finding potential interventions.
Collapse
Affiliation(s)
- Jialin Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; State Key Laboratory of Cognitive Neuroscience and Learning, Bejing Normal University, Beijing, China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Qing Jiang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Haohao Dong
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Zhen Zhao
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
17
|
Zhornitsky S, Le TM, Wang W, Dhingra I, Chen Y, Li CSR, Zhang S. Midcingulate Cortical Activations Interrelate Chronic Craving and Physiological Responses to Negative Emotions in Cocaine Addiction. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:37-47. [PMID: 35664438 PMCID: PMC9164547 DOI: 10.1016/j.bpsgos.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Cover KK, Mathur BN. Rostral Intralaminar Thalamus Engagement in Cognition and Behavior. Front Behav Neurosci 2021; 15:652764. [PMID: 33935663 PMCID: PMC8082140 DOI: 10.3389/fnbeh.2021.652764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
The thalamic rostral intralaminar nuclei (rILN) are a contiguous band of neurons that include the central medial, paracentral, and central lateral nuclei. The rILN differ from both thalamic relay nuclei, such as the lateral geniculate nucleus, and caudal intralaminar nuclei, such as the parafascicular nucleus, in afferent and efferent connectivity as well as physiological and synaptic properties. rILN activity is associated with a range of neural functions and behaviors, including arousal, pain, executive function, and action control. Here, we review this evidence supporting a role for the rILN in integrating arousal, executive and motor feedback information. In light of rILN projections out to the striatum, amygdala, and sensory as well as executive cortices, we propose that such a function enables the rILN to modulate cognitive and motor resources to meet task-dependent behavioral engagement demands.
Collapse
Affiliation(s)
- Kara K Cover
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Zhao Y, Caffo BS, Wang B, Li CSR, Luo X. A whole-brain modeling approach to identify individual and group variations in functional connectivity. Brain Behav 2021; 11:e01942. [PMID: 33210469 PMCID: PMC7821576 DOI: 10.1002/brb3.1942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
Resting-state functional connectivity is an important and widely used measure of individual and group differences. Yet, extant statistical methods are limited to linking covariates with variations in functional connectivity across subjects, especially at the voxel-wise level of the whole brain. This paper introduces a modeling approach that regresses whole-brain functional connectivity on covariates. Our approach is a mesoscale approach that enables identification of brain subnetworks. These subnetworks are composite of spatially independent components discovered by a dimension reduction approach (such as whole-brain group ICA) and covariate-related projections determined by the covariate-assisted principal regression, a recently introduced covariance matrix regression method. We demonstrate the efficacy of this approach using a resting-state fMRI dataset of a medium-sized cohort of subjects obtained from the Human Connectome Project. The results suggest that the approach may improve statistical power in detecting interaction effects of gender and alcohol on whole-brain functional connectivity, and in identifying the brain areas contributing significantly to the covariate-related differences in functional connectivity.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brian S Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bingkai Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Neuroscience, Yale School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xi Luo
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
20
|
Le TM, Zhornitsky S, Wang W, Zhang S, Li CR. Problem drinking alters gray matter volume and food cue responses of the lateral orbitofrontal cortex. Addict Biol 2021; 26:e12857. [PMID: 31746092 DOI: 10.1111/adb.12857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 01/01/2023]
Abstract
Alcohol misuse is associated with significant energy deficits. As feeding involves multiple sensory, cognitive, and affective processes, low food intake in problem drinkers likely reflects alterations in both regional and inter-regional responses. To investigate the effects of problem drinking on feeding-related neural activities and connectivities, we examined functional magnetic resonance imaging (fMRI) data in 82 drinkers who viewed palatable food and nonfood images in alternating blocks. Drinking severity was assessed with the Alcohol Use Disorders Identification Test (AUDIT). A whole-brain multiple regression with AUDIT scores as the predictor showed a negative correlation between drinking severity and activation to food vs nonfood cues in the lateral orbitofrontal cortex (lOFC). AUDIT scores were also negatively correlated with the gray matter volume (GMV) of the lOFC and regions that responded preferentially to food stimuli, including the left middle frontal gyrus, bilateral middle insula, and occipital cortices. Connectivity strength between the lOFC and these regions was negatively modulated by drinking severity. In contrast, there was no relationship between AUDIT scores and lOFC connectivity with regions that did not show either selectivity to food images or GMV loss. A mediation analysis further suggested that alcohol misuse may have compromised lOFC's structural integrity, which in turn disrupted lOFC interactions with regions that support the processing of visual food cues. Overall, the findings provide evidence for the effects of problem drinking on the brain substrates of feeding, potentially shedding light on the neural mechanisms underlying energy deficits in at-risk drinkers.
Collapse
Affiliation(s)
- Thang M. Le
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
| | - Simon Zhornitsky
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
| | - Wuyi Wang
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
| | - Sheng Zhang
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
| | - Chiang‐Shan R. Li
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
- Department of Neuroscience Yale University School of Medicine New Haven Connecticut
- Interdepartmental Neuroscience Program Yale University School of Medicine New Haven Connecticut
| |
Collapse
|
21
|
Abstract
Sex differences may play a critical role in modulating how chronic or heavy alcohol use impacts the brain to cause the development of alcohol use disorder (AUD). AUD is a multifaceted and complex disorder driven by changes in key neurobiological structures that regulate executive function, memory, and stress. A three-stage framework of addiction (binge/intoxication; withdrawal/negative affect; preoccupation/anticipation) has been useful for conceptualizing the complexities of AUD and other addictions. Initially, alcohol drinking causes short-term effects that involve signaling mediated by several neurotransmitter systems such as dopamine, corticotropin releasing factor, and glutamate. With continued intoxication, alcohol leads to dysfunctional behaviors that are thought to be due in part to alterations of these and other neurotransmitter systems, along with alterations in neural pathways connecting prefrontal and limbic structures. Using the three-stage framework, this review highlights examples of research examining sex differences in drinking and differential modulation of neural systems contributing to the development of AUD. New insights addressing the role of sex differences in AUD are advancing the field forward by uncovering the complex interactions that mediate vulnerability.
Collapse
Affiliation(s)
| | - Heather N Richardson
- Department of Psychological and Brain Sciences at the University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
22
|
Li G, Zhang S, Le TM, Tang X, Li CSR. Neural responses to negative facial emotions: Sex differences in the correlates of individual anger and fear traits. Neuroimage 2020; 221:117171. [PMID: 32682098 PMCID: PMC7789231 DOI: 10.1016/j.neuroimage.2020.117171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Studies have examined sex differences in emotion processing in health and illness. However, it remains unclear how these neural processes may relate to individual differences in affective traits. We addressed this issue with a dataset of 970 subjects (508 women) curated from the Human Connectome Project. Participants were assessed with the NIH Toolbox Emotion Measures and fMRI while identifying negative facial emotion and neutral shape targets in alternating blocks. Imaging data were analyzed with published routines and the results were reported at a corrected threshold. Men scored similarly in Anger- but lower in Fear-Affect, as compared to women. Men as compared with women engaged the occipital-temporal visual cortex, retrosplenial cortex (RSC), and both anterior and posterior cingulate cortex to a greater extent during face versus shape identification. Women relative to men engaged higher activation of bilateral middle frontal cortex. In regional brain responses to face versus shape identification, men relative to women showed more significant modulations by both Anger- and Fear- Affect traits. The left RSC and right RSC/precuneus each demonstrated activities during face vs. shape identification in negative correlation with Anger- and Fear- Affect scores in men only. Anger affect was positively correlated with prolonged RT in identifying face vs. shape target in men but not women. In contrast, women relative to men showed higher Fear-Affect score and higher activation in the right middle frontal cortex, which was more strongly correlated with prolonged RT during face vs. shape identification. Together, men and women with higher Fear-Affect demonstrated lower accuracy in identifying negative facial emotion versus neutral shape target, a relationship mediated by activity of the RSC. These findings add to the literature of sex and trait individual differences in emotion processing and may help research of sex-shared and sex-specific behavioral and neural markers of emotional disorders.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of technology, 715-3 Teaching Building No.5, Beijing Institute of technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of technology, 715-3 Teaching Building No.5, Beijing Institute of technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, Connecticut Mental Health Center S112, 34 Park Street, New Haven, CT 06519-1109, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
23
|
Wang W, Zhornitsky S, Le TM, Zhang S, Li CSR. Heart Rate Variability, Cue-Evoked Ventromedial Prefrontal Cortical Response, and Problem Alcohol Use in Adult Drinkers. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:619-628. [PMID: 32061544 DOI: 10.1016/j.bpsc.2019.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 12/13/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Many studies employed cue exposure paradigms to investigate the neural processes underlying cue-elicited alcohol craving. Cue exposure elicits robust autonomic reactivity. However, whether or how cue-elicited autonomic response relates to the severity of alcohol misuse and the neural bases underlying the potential relationship remain unclear. METHODS We examined cue-related brain activations in association with heart rate variability, as indexed by the root mean square of the successive differences (RMSSD), during alcohol versus neutral cue blocks in 50 adult alcohol drinkers (24 men). Imaging and heart rate variability data were collected and processed with published routines. Mediation analyses were conducted to examine the interrelationship between regional activities, cue-elicited changes in RMSSD, and the severity of problem alcohol use, as assessed with the Alcohol Use Disorders Identification Test (AUDIT). RESULTS The results showed higher RMSSD during alcohol than during neutral cue exposures, with alcohol (vs. neutral) cue-evoked RMSSD positively correlated with AUDIT score. Further, alcohol (vs. neutral) cue-elicited activity in the ventromedial prefrontal cortex was negatively correlated both with increases in RMSSD and with the AUDIT score. Mediation analyses suggested that the RMSSD mediated the relationship between ventromedial prefrontal cortex cue activity and the AUDIT score. CONCLUSIONS These findings substantiate the neural correlates of the presumably parasympathetic response during alcohol cue exposure and the interrelationship among ventromedial prefrontal cortex activity, autonomic response, and problem alcohol use.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut; Department of Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut.
| |
Collapse
|
24
|
Wang W, Zhornitsky S, Chao HH, Levy I, Joormann J, Li CSR. The effects of age on cerebral responses to self-initiated actions during social interactions: An exploratory study. Behav Brain Res 2019; 378:112301. [PMID: 31644928 DOI: 10.1016/j.bbr.2019.112301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
Self-initiated action is critical to social interaction and individuals with social anxiety find it particularly difficult to initiate social interactions. We showed earlier that social exclusion encumbered self-initiated actions in the Cyberball task in young adults. Here, we examined whether the behavioral performance and regional responses during self-initiated actions vary with age in 53 participants (21-74 years; 27 men). Behaviorally, participants were slower in tossing the ball during exclusion (EX) than during fair game (FG) sessions in both men and women. In women but not in men the reaction time (RT) burden (RT_EX - RT_FG; RT prolonged during social exclusion) of ball toss was positively correlated with age despite no observed sex difference in Social Interaction Anxiety Scale scores. The pregenual anterior cingulate cortex, thalamus, left occipital cortex (OC) and left insula/orbitofrontal cortex responded to ball toss in EX vs. FG in negative correlation with age in women but not in men. Further, the activation of left OC fully mediated the relationship between age and RT burden in women. Thus, older women are more encumbered in self-initiated action during social exclusion, although this behavioral burden is not reflected in subjective reports of social anxiety. Age-related diminution in OC activities may reflect the neural processes underlying the difficulty in initiating social interactions in women. Together, the findings identified age-sensitive behavioral and neural processes of self-initiated action in the Cyberball task and suggest the importance of considering age and sex differences in studies of social interaction.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States
| | - Herta H Chao
- Department of Medicine, Yale University, New Haven, CT 06520, United States; VA Connecticut Healthcare System, West Haven, CT 06516, United States
| | - Ifat Levy
- Department of Comparative Medicine, Yale University, New Haven, CT 06520, United States; Department of Neuroscience, Yale University, New Haven, CT 06520, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, United States
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT 06520, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States; Department of Neuroscience, Yale University, New Haven, CT 06520, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
25
|
Zhang S, Zhornitsky S, Le TM, Li CSR. Hypothalamic Responses to Cocaine and Food Cues in Individuals with Cocaine Dependence. Int J Neuropsychopharmacol 2019; 22:754-764. [PMID: 31420667 PMCID: PMC6929672 DOI: 10.1093/ijnp/pyz044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Individuals with cocaine addiction are characterized by under-responsiveness to natural reinforcers. As part of the dopaminergic pathways, the hypothalamus supports motivated behaviors. Rodent studies suggested inter-related roles of the hypothalamus in regulating drug and food intake. However, few studies have investigated hypothalamic responses to drugs and food or related cues in humans. METHODS We examined regional responses in 20 cocaine-dependent and 24 healthy control participants exposed to cocaine/food (cocaine dependent) and food (healthy control) vs neutral cues during functional magnetic resonance imaging. We examined the relationship between imaging findings and clinical variables and performed mediation analyses to examine the inter-relationships between cue-related activations, tonic cocaine craving, and recent cocaine use. RESULTS At a corrected threshold, cocaine-dependent participants demonstrated higher activation to cocaine than to food cues in the hypothalamus, inferior parietal cortex, and visual cortex. Cocaine-dependent participants as compared with healthy control participants also demonstrated higher hypothalamic activation to food cues. Further, the extent of these cue-induced hypothalamic activations was correlated with tonic craving, as assessed by the Cocaine Craving Questionnaire, and days of cocaine use in the prior month. In mediation analyses, hypothalamic activation to cocaine and food cues both completely mediated the relationship between the Cocaine Craving Questionnaire score and days of cocaine use in the past month. CONCLUSIONS The results were consistent with the proposition that the mechanisms of feeding and drug addiction are inter-linked in the hypothalamus and altered in cocaine addiction. The findings provide new evidence in support of hypothalamic dysfunction in cocaine addiction.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Correspondence: Sheng Zhang, PhD, Connecticut Mental Health Center S103, 34 Park Street, New Haven CT 06519 ()
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Department of Neuroscience, Yale University School of Medicine, New Haven, CT,Interdepartmental Neuroscience Program, Yale University, New Haven, CT
| |
Collapse
|