1
|
Jendraszak M, Skibińska I, Kotwicka M, Andrusiewicz M. The elusive male microbiome: revealing the link between the genital microbiota and fertility. Critical review and future perspectives. Crit Rev Clin Lab Sci 2024; 61:559-587. [PMID: 38523477 DOI: 10.1080/10408363.2024.2331489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
There is a growing focus on understanding the role of the male microbiome in fertility issues. Although research on the bacterial communities within the male reproductive system is in its initial phases, recent discoveries highlight notable variations in the microbiome's composition and abundance across distinct anatomical regions like the skin, foreskin, urethra, and coronary sulcus. To assess the relationship between male genitourinary microbiome and reproduction, we queried various databases, including MEDLINE (available via PubMed), SCOPUS, and Web of Science to obtain evidence-based data. The literature search was conducted using the following terms "gut/intestines microbiome," "genitourinary system microbiome," "microbiome and female/male infertility," "external genital tract microbiome," "internal genital tract microbiome," and "semen microbiome." Fifty-one relevant papers were analyzed, and eleven were strictly semen quality or male fertility related. The male microbiome, especially in the accessory glands like the prostate, seminal vesicles, and bulbourethral glands, has garnered significant interest because of its potential link to male fertility and reproduction. Studies have also found differences in bacterial diversity present in the testicular tissue of normozoospermic men compared to azoospermic suggesting a possible role of bacterial dysbiosis and reproduction. Correlation between the bacterial taxa in the genital microbiota of sexual partners has also been found, and sexual activity can influence the composition of the urogenital microbiota. Exploring the microbial world within the male reproductive system and its influence on fertility opens doors to developing ways to prevent, diagnose, and treat infertility. The present work emphasizes the importance of using consistent methods, conducting long-term studies, and deepening our understanding of how the reproductive tract microbiome works. This helps make research comparable, pinpoint potential interventions, and smoothly apply microbiome insights to real-world clinical practices.
Collapse
Affiliation(s)
- Magdalena Jendraszak
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Izabela Skibińska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Bryan ER, McRae J, Kumar V, Trim LK, Maidment TI, Tickner JAD, Sweeney EL, Williams ED, Whiley DM, Beagley KW. A novel murine model mimicking male genital Neisseria species infection using Neisseria musculi†. Biol Reprod 2024; 111:613-624. [PMID: 38972067 DOI: 10.1093/biolre/ioae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/25/2024] [Indexed: 07/09/2024] Open
Abstract
With ~78 million cases yearly, the sexually transmitted bacterium Neisseria gonorrhoeae is an urgent threat to global public health due to continued emergence of antimicrobial resistance. In the male reproductive tract, untreated infections may cause permanent damage, poor sperm quality, and subsequently subfertility. Currently, few animal models exist for N. gonorrhoeae infection, which has strict human tropism, and available models have limited translatability to human disease. The absence of appropriate models inhibits the development of vital new diagnostics and treatments. However, the discovery of Neisseria musculi, a mouse oral cavity bacterium, offers much promise. This bacterium has already been used to develop an oral Neisseria infection model, but the feasibility of establishing urogenital gonococcal models is unexplored. We inoculated mice via the intrapenile route with N. musculi. We assessed bacterial burden throughout the male reproductive tract, the systemic and tissue-specific immune response 2-weeks postinfection, and the effect of infection on sperm health. Neisseria musculi was found in penis (2/5) and vas deferens (3/5) tissues. Infection altered immune cell counts: CD19+ (spleen, lymph node, penis), F4/80+ (spleen, lymph node, epididymus), and Gr1+ (penis) compared with noninfected mice. This culminated in sperm from infected mice having poor viability, motility, and morphology. We hypothesize that in the absence of testis infection, infection and inflammation in other reproductive is sufficient to damage sperm quality. Many results herein are consistent with outcomes of gonorrhoea infection, indicating the potential of this model as a tool for enhancing the understanding of Neisseria infections of the human male reproductive tract.
Collapse
Affiliation(s)
- Emily R Bryan
- Faculty of Health, School of Biomedical Science, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland 4006, Australia
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Julia McRae
- Faculty of Health, School of Biomedical Science, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland 4006, Australia
| | - Vishnu Kumar
- Justus-Liebig-University Giessen, Institute for Anatomy and Cell Biology, 35385 Giessen, Germany
| | - Logan K Trim
- Faculty of Health, School of Biomedical Science, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland 4006, Australia
| | - Toby I Maidment
- Faculty of Health, School of Biomedical Science, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland 4006, Australia
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Jacob A D Tickner
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Emma L Sweeney
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Elizabeth D Williams
- Faculty of Health, School of Biomedical Science at Translational Research Institute, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4102, Australia
| | - David M Whiley
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Kenneth W Beagley
- Faculty of Health, School of Biomedical Science, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland 4006, Australia
| |
Collapse
|
3
|
Jalilvand N, Baghcheghi Y, Fani M, Beheshti F, Ebrahimzadeh-Bideskan A, Marefati N, Moghimian M, Hosseini M. The effects of olibanum on male reproductive system damage in a lipopolysaccharide induced systemic inflammation model in rat. Heliyon 2024; 10:e36033. [PMID: 39224335 PMCID: PMC11366910 DOI: 10.1016/j.heliyon.2024.e36033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Background Lipopolysaccharide (LPS) as a particle of Gram-negative bacteria is a main contributer in the pathogenesis of the male reproductive system infectious. Male infertility due to LPS is reported to be related to overproduction reactive oxygen species. This study aimed to investigate the effects of olibanum on oxidative stress and apoptosis in testes and sperm dysfunction induced by LPS. Methods The male (n = 28) rats were allocated in four groups: control, LPS (1 mg/kg, i.p., 14 days), LPS + Olibanum 100 (100 mg/kg, i.p., 14 days), and LPS + Olibanum 200 (200 mg/kg, i.p., 14 days). Germ cell apoptosis was determined by TUNEL assays and computed using the stereological method. Additionally, semen samples of the animals were analyzed for sperm count and morphology. Oxidative stress indicators were also determined. Results The count of TUNEL-positive germ cells in LPS-treated rats was more than that in the controls. Treatment of the animals with olibanum significantly attenuated the number of apoptotic cells compared to the LPS group. The sperm count and those with a normal morphology in LPS-treated rats was lower than that in the controls. Administration of olibanum significantly improved the sperms with normal morphology and sperm count. Olibanum treatment also improved superoxide dismutase, catalase, and total thiol in testicular tissue and decreased malondialdehyde. Conclusion Administering both doses of olibanum in LPS-treated rats had potentially a therapeutic value in reducing germ cell apoptosis, as well as improving sperm parameters.
Collapse
Affiliation(s)
- Narjes Jalilvand
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Masoumeh Fani
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Moghimian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
- Department of Physiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Zhang G, Zhi W, Ye F, Xiong D, Zhang Y, Liu F, Zhao Y, Du X, Wu Y, Hou M, Liu J, Wei J, Silang Y, Xu W, Zeng J, Chen S, Liu W. Systematic analyses of the factors influencing sperm quality in patients with SARS-CoV-2 infection. Sci Rep 2024; 14:8132. [PMID: 38584153 PMCID: PMC10999436 DOI: 10.1038/s41598-024-58797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
To figure out how does SARS-CoV-2 affect sperm parameters and what influencing factors affect the recovery of sperm quality after infection? We conducted a prospective cohort study and initially included 122 men with SARS-CoV-2 infection. The longest time to track semen quality after infection is 112 days and 58 eligible patients were included in our study eventually. We subsequently exploited a linear mixed-effects model to statistically analyze their semen parameters at different time points before and after SARS-CoV-2 infection. Semen parameters were significantly reduced after SARS-CoV-2 infection, including total sperm count (211 [147; 347] to 167 [65.0; 258], P < 0.001), sperm concentration (69.0 [38.8; 97.0] to 51.0 [25.5; 71.5], P < 0.001), total sperm motility (57.5 [52.3; 65.0] to 51.0 [38.5; 56.8], P < 0.001), progressive motility (50.0 [46.2; 58.0] to 45.0 [31.5; 52.8], P < 0.001). The parameters displayed the greatest diminution within 30 days after SARS-CoV-2 infection, gradually recovered thereafter, and exhibited no significant difference after 90 days compared with prior to COVID-19 infection. In addition, the patients in the group with a low-grade fever showed a declining tendency in semen parameters, but not to a significant degree, whereas those men with a moderate or high fever produced a significant drop in the same parameters. Semen parameters were significantly reduced after SARS-CoV-2 infection, and fever severity during SARS-CoV-2 infection may constitute the main influencing factor in reducing semen parameters in patients after recovery, but the effect is reversible and the semen parameters gradually return to normal with the realization of a new spermatogenic cycle.
Collapse
Affiliation(s)
- Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China
| | - Dongsheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China
| | - Yanan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China
| | - Fulin Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Yuhong Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xinrong Du
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yang Wu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China
| | - Mingxia Hou
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China
| | - Jiu Liu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China
| | - Jiajing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China
| | - Yangzhong Silang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China
| | - Wenming Xu
- Department of Obstetrics and Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiuzhi Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China.
| | - Shiqi Chen
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China.
| | - Weixin Liu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, China.
| |
Collapse
|
5
|
Hasan H, Bhushan S, Fijak M, Meinhardt A. Mechanism of Inflammatory Associated Impairment of Sperm Function, Spermatogenesis and Steroidogenesis. Front Endocrinol (Lausanne) 2022; 13:897029. [PMID: 35574022 PMCID: PMC9096214 DOI: 10.3389/fendo.2022.897029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Infection and inflammation are relevant entities of male reproductive disorders that can lead to sub-/infertility. Associated damage of the testis of affected men and in rodent models include leukocytic infiltration, edema formation, fibrosis, germ cell loss and reduced androgen levels. Negative effects on spermatogenesis are thought to be elicited by oxidative stress sustained mostly by increased levels of ROS and pro-inflammatory cytokines. Under normal conditions these cytokines have physiological functions. However, increased levels as seen in inflammation and infection, but also in obesity and cancer are harmful for germ cells and impair steroidogenesis. As a summary, there is mounting evidence that the activation of inflammatory pathways is a rather common feature in various forms of male testicular disorders that extends beyond established infectious/inflammatory cues. This mini review will focus on relevant entities and the mechanisms of how a dysbalance of local testicular factors contributes to disturbances of spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
| | | | - Monika Fijak
- *Correspondence: Andreas Meinhardt, ; Monika Fijak,
| | | |
Collapse
|
6
|
Sarkar D, Dutta S, Roychoudhury S, Poduval P, Jha NK, Dhal PK, Roychoudhury S, Kesari KK. Pathogenesis of Viral Infections and Male Reproductive Health: An Evidence-Based Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:325-343. [DOI: 10.1007/978-3-030-89340-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Khanmohammad KR, Khalili MB, Sadeh M, Talebi AR, Astani A, Shams A, Zare F. The effect of lipopolysaccharide from uropathogenic Escherichia coli on the immune system, testis tissue, and spermatozoa of BALB/c mice. Clin Exp Reprod Med 2021; 48:105-110. [PMID: 34024084 PMCID: PMC8176160 DOI: 10.5653/cerm.2020.03888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
Objective Uropathogenic Escherichia coli is known to cause urinary tract infections, and the endotoxin (lipopolysaccharide [LPS]) of this bacterium may cause deficiencies of sperm quality and morphology. In the present study, the effects of LPS on mouse sperm were studied, and the levels of interleukin (IL)-17A and possible changes in testis tissue were evaluated. Methods LPS of uropathogenic E. coli was extracted using the methanol-chloroform method, followed confirmation using sodium dodecyl sulfate-polyacrylamide electrophoresis. Purified LPS (100 µg/kg) or phosphate-buffered saline was injected intraperitoneally into BALB/c mice for 7 days consecutively in the test and control groups, mice were sacrificed on days 3, 7, and 42 after the first injection. Blood was tested for levels of IL-17A using the enzyme-linked immunosorbent assay method. Testis tissue and sperm were collected from each mouse and were studied according to standard protocols. Results The mean sperm count and motility significantly decreased (p=0.03) at 3, 7, and 42 days after the injections. The level of IL-17A in the test groups increased, but not significantly (p=0.8, p=0.11, and p=0.15, respectively). Microscopic studies showed no obvious changes in the morphology of the testis tissue; however, significant changes were observed in the cellular parenchyma on day 42. Conclusion LPS can stimulate the immune system to produce proinflammatory cytokines, resulting in an immune response in the testis and ultimately leading to deficiency in sperm parameters and testis tissue damage. In addition, the presence of LPS could significantly impair sperm parameters, as shown by the finding of decreased motility.
Collapse
Affiliation(s)
- Khadije Rezai Khanmohammad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Bagher Khalili
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Sadeh
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Reza Talebi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Astani
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Shams
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Carneiro F, Teixeira TA, Bernardes FS, Pereira MS, Milani G, Duarte-Neto AN, Kallas EG, Saldiva PHN, Chammas MC, Hallak J. Radiological patterns of incidental epididymitis in mild-to-moderate COVID-19 patients revealed by colour Doppler ultrasound. Andrologia 2021; 53:e13973. [PMID: 33565141 PMCID: PMC7994978 DOI: 10.1111/and.13973] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
The testis is a potential target organ for SARS-CoV-2 infection. Our study intended to investigate any testicular involvement in mild-to-moderate COVID-19 men. We conduct a cross-sectional study in 18 to 55-year-old men hospitalised for confirmed COVID-19. A senior radiologist executed the ultrasound with multi-frequency linear probe in all participants, regardless of any scrotal complaints. Exclusion criteria involved any situation that could impair testicular function. Statistical analysis compared independent groups, classified by any pathological change. Categorical and numerical outcome hypotheses were tested by Fisher's Exact and Mann-Whitney tests, using the Excel for Mac, version 16.29 (p < .05). The sample size was 26 men (mean 33.7 ± 6.2 years; range: 21-42 years), all without scrotal complaints. No orchitis was seen. Eleven men (32.6 ± 5.8 years) had epididymitis (42.3%), bilateral in 19.2%. More than half of men with epididymitis displayed epididymal head augmentation > 1.2 cm (p = .002). Two distinct epididymitis' patterns were reported: (a) disseminated micro-abscesses (n = 6) and (b) inhomogeneous echogenicity with reactional hydrocele (n = 5). Both patterns revealed increased epididymal head, augmented Doppler flow and scrotal skin thickening. The use of colour Doppler ultrasound in mild-to-moderate COVID-19 men, even in the absence of testicular complaints, might be useful to diagnose epididymitis that could elicit fertility complications.
Collapse
Affiliation(s)
- Felipe Carneiro
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, Sao Paulo, Brazil.,Department of Radiology, University of São Paulo, Sao Paulo, Brazil
| | - Thiago A Teixeira
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, Sao Paulo, Brazil.,Division of Urology, University of São Paulo, Sao Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, Sao Paulo, Brazil.,Division of Urology, School of Medicine, Federal University of Amapa, Macapa, Brazil
| | - Felipe S Bernardes
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, Sao Paulo, Brazil.,Division of Urology, University of São Paulo, Sao Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, Sao Paulo, Brazil
| | | | - Giovanna Milani
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, Sao Paulo, Brazil.,ABC School of Medicine, Santo Andre, Brazil
| | - Amaro N Duarte-Neto
- BIAS - Brazilian Image Autopsy Study Group, Department of Pathology, University of Sao Paulo, Sao Paulo, Brazil
| | - Esper G Kallas
- Department of Infectious and Parasitic Diseases, University of São Paulo, Sao Paulo, Brazil
| | - Paulo H N Saldiva
- BIAS - Brazilian Image Autopsy Study Group, Department of Pathology, University of Sao Paulo, Sao Paulo, Brazil.,Reproductive Toxicology Unit, Department of Pathology, University of São Paulo, Sao Paulo, Brazil
| | - Maria C Chammas
- Department of Radiology, University of São Paulo, Sao Paulo, Brazil
| | - Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, Sao Paulo, Brazil.,Division of Urology, University of São Paulo, Sao Paulo, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, Sao Paulo, Brazil.,Reproductive Toxicology Unit, Department of Pathology, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Teixeira TA, Oliveira YC, Bernardes FS, Kallas EG, Duarte-Neto AN, Esteves SC, Drevet JR, Hallak J. Viral infections and implications for male reproductive health. Asian J Androl 2021; 23:335-347. [PMID: 33473014 PMCID: PMC8269834 DOI: 10.4103/aja.aja_82_20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral infections have haunted humankind since times immemorial. Overpopulation, globalization, and extensive deforestation have created an ideal environment for a viral spread with unknown and multiple shedding routes. Many viruses can infect the male reproductive tract, with potential adverse consequences to male reproductive health, including infertility and cancer. Moreover, some genital tract viral infections can be sexually transmitted, potentially impacting the resulting offspring's health. We have summarized the evidence concerning the presence and adverse effects of the relevant viruses on the reproductive tract (mumps virus, human immunodeficiency virus, herpes virus, human papillomavirus, hepatitis B and C viruses, Ebola virus, Zika virus, influenza virus, and coronaviruses), their routes of infection, target organs and cells, prevalence and pattern of virus shedding in semen, as well as diagnosis/testing and treatment strategies. The pathophysiological understanding in the male genital tract is essential to assess its clinical impact on male reproductive health and guide future research.
Collapse
Affiliation(s)
- Thiago A Teixeira
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, University of São Paulo, São Paulo 05403-000, SP, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo 05508-060, SP, Brazil.,Division of Urology, School of Medicine, Federal University of Amapa, Macapa 68903-419, AP, Brazil
| | - Yasmin C Oliveira
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, School of Medicine, Federal University of Amapa, Macapa 68903-419, AP, Brazil
| | - Felipe S Bernardes
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, University of São Paulo, São Paulo 05403-000, SP, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo 05508-060, SP, Brazil
| | - Esper G Kallas
- Department of Infectious and Parasitic Diseases, University of São Paulo, São Paulo 05403-000, SP, Brazil
| | - Amaro N Duarte-Neto
- BIAS - Brazilian Image Autopsy Study Group, Department of Pathology, University of São Paulo, São Paulo 05403-000, SP, Brazil
| | - Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas 13075-460, SP, Brazil.,Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas 13083-968, SP, Brazil.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus 8000, Denmark
| | - Joël R Drevet
- GReD Institute, CNRS-INSERM-Université Clermont Auvergne, Faculty of Medicine, Clermont-Ferrand 63000, France
| | - Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, São Paulo 04534-011, SP, Brazil.,Division of Urology, University of São Paulo, São Paulo 05403-000, SP, Brazil.,Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo 05508-060, SP, Brazil.,Reproductive Toxicology Unit, Department of Pathology, University of São Paulo, São Paulo 05403-000, SP, Brazil
| |
Collapse
|
10
|
Abstract
Mammalian spermatogenesis is a carefully orchestrated male germ cell differentiation process by which spermatogonia differentiate to spermatozoa in the testis. A highly organized testicular microenvironment is therefore necessary to support spermatogenesis. Regarding immunologic aspects, the testis adapts a specialized immune environment for the protection of male germ cells and testicular functions. The mammalian testis possesses two immunologic features: (1) it is an immunoprivileged organ where immunogenic germ cells do not induce deleterious immune responses under physiologic conditions; and (2) it creates its own effective innate defense system against microbial infection. Various pathologic conditions may disrupt testicular immune homeostasis, thereby resulting in a detrimental immune response and perturbing testicular functions, one of the etiologic factors of male infertility. Understanding the mechanisms underlying immunoregulation in the testis can aid in establishing strategies for the prevention and therapy of immunologic testicular dysfunction and male infertility. This chapter focuses on the mechanisms underlying immune privilege, local innate immunity, and immunologic diseases of the testis.
Collapse
|
11
|
Bryan ER, Kim J, Beagley KW, Carey AJ. Testicular inflammation and infertility: Could chlamydial infections be contributing? Am J Reprod Immunol 2020; 84:e13286. [DOI: 10.1111/aji.13286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emily R. Bryan
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Jay Kim
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Kenneth W. Beagley
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Alison J. Carey
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| |
Collapse
|
12
|
The Cellular Impact of the ZIKA Virus on Male Reproductive Tract Immunology and Physiology. Cells 2020; 9:cells9041006. [PMID: 32325652 PMCID: PMC7226248 DOI: 10.3390/cells9041006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Zika virus (ZIKV) has been reported by several groups as an important virus causing pathological damage in the male reproductive tract. ZIKV can infect and persist in testicular somatic and germ cells, as well as spermatozoa, leading to cell death and testicular atrophy. ZIKV has also been detected in semen samples from ZIKV-infected patients. This has huge implications for human reproduction. Global scientific efforts are being applied to understand the mechanisms related to arboviruses persistency, pathogenesis, and host cellular response to suggest a potential target to develop robust antiviral therapeutics and vaccines. Here, we discuss the cellular modulation of the immunologic and physiologic properties of the male reproductive tract environment caused by arboviruses infection, focusing on ZIKV. We also present an overview of the current vaccine effects and therapeutic targets against ZIKV infection that may impact the testis and male fertility.
Collapse
|
13
|
Liu W, Han R, Wu H, Han D. Viral threat to male fertility. Andrologia 2019; 50:e13140. [PMID: 30569651 DOI: 10.1111/and.13140] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
The detrimental effects of Zika virus (ZIKV) infection on mouse testicular functions have reminded a viral threat to male fertility. A broad range of virus families has tropism for male reproductive system, particularly the testes. Certain virus types of these viruses, such as mumps virus and human immunodeficiency virus (HIV), may severely damage the testes and consequently lead to male infertility. ZIKV has been recently found to damage testicular functions and lead to male infertility in mice. Many other viruses also have detrimental effects on host reproduction. Public attention has been paid to sexually transmitted viruses, such as HIV and hepatitis B and C viruses in humans and likewise in economically important farm animals. This article provides an overview on main viruses affecting the male reproductive system and their detrimental effects on fertility, and outlines some important issues for future study.
Collapse
Affiliation(s)
- Weihua Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ruiqin Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Han Wu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Daishu Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Meinhardt A, Wang M, Schulz C, Bhushan S. Microenvironmental signals govern the cellular identity of testicular macrophages. J Leukoc Biol 2019; 104:757-766. [PMID: 30265772 DOI: 10.1002/jlb.3mr0318-086rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022] Open
Abstract
Testicular macrophages (TM) comprise the largest immune cell population in the mammalian testis. They are characterized by a subdued proinflammatory response upon adequate stimulation, and a polarization toward the immunoregulatory and immunotolerant M2 phenotype. This enables them to play a relevant role in supporting the archetypical functions of the testis, namely spermatogenesis and steroidogenesis. During infection, the characteristic blunted immune response of TM reflects the need for a delicate balance between a sufficiently strong reaction to counteract invading pathogens, and the prevention of excessive proinflammatory cytokine levels with the potential to disturb or destroy spermatogenesis. Local microenvironmental factors that determine the special phenotype of TM have just begun to be unraveled, and are discussed in this review.
Collapse
Affiliation(s)
- Andreas Meinhardt
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ming Wang
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sudhanshu Bhushan
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
15
|
Filardo S, Skilton RJ, O'Neill CE, Di Pietro M, Sessa R, Clarke IN. Growth kinetics of Chlamydia trachomatis in primary human Sertoli cells. Sci Rep 2019; 9:5847. [PMID: 30971744 PMCID: PMC6458130 DOI: 10.1038/s41598-019-42396-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/26/2019] [Indexed: 01/19/2023] Open
Abstract
Chlamydia trachomatis (Ct) is the leading cause of bacterial sexually transmitted infections worldwide and has been associated with male infertility. Recently, it was hypothesized that Ct may infect the epithelium of the seminiferous tubule, formed by Sertoli cells, thus leading to impaired spermatogenesis. To date, there is a lack of data on Ct infection of the seminiferous epithelium; therefore, we aimed to characterize, for the first time, an in vitro infection model of primary human Sertoli cells. We compared Ct inclusion size, morphology and growth kinetics with those in McCoy cells and we studied F-actin fibres, Vimentin-based intermediate filaments and α-tubulin microtubules in Sertoli and McCoy cells. Our main finding highlighted the ability of Ct to infect Sertoli cells, although with a unique growth profile and the inability to exit host cells. Furthermore, we observed alterations in the cytoskeletal fibres of infected Sertoli cells. Our results suggest that Ct struggles to generate a productive infection in Sertoli cells, limiting its dissemination in the host. Nevertheless, the adverse effect on the cytoskeleton supports the notion that Ct may compromise the blood-testis barrier, impairing spermatogenesis.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, Rome, Italy.
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.
| | - Rachel J Skilton
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Colette E O'Neill
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, Rome, Italy
| | - Ian N Clarke
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
16
|
da Silva LRC. Zika Virus Trafficking and Interactions in the Human Male Reproductive Tract. Pathogens 2018; 7:E51. [PMID: 29751638 PMCID: PMC6027493 DOI: 10.3390/pathogens7020051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022] Open
Abstract
Sexual transmission of Zika virus (ZIKV) is a matter of great concern. Infectious viral particles can be shed in semen for as long as six months after infection and can be transferred to male and female sexual partners during unprotected sexual intercourse. The virus can be found inside spermatozoa and could be directly transferred to the oocyte during fertilization. Sexual transmission of ZIKV can contribute to the rise in number of infected individuals in endemic areas as well as in countries where the mosquito vector does not thrive. There is also the possibility, as has been demonstrated in mouse models, that the vaginal deposition of ZIKV particles present in semen could lead to congenital syndrome. In this paper, we review the current literature to understand ZIKV trafficking from the bloodstream to the human male reproductive tract and viral interactions with host cells in interstitial spaces, tubule walls, annexed glands and semen. We hope to highlight gaps to be filled by future research and potential routes for vaccine and antiviral development.
Collapse
|
17
|
Lu Y, Rafiq A, Zhang Z, Aslani F, Fijak M, Lei T, Wang M, Kumar S, Klug J, Bergmann M, Chakraborty T, Meinhardt A, Bhushan S. Uropathogenic Escherichia coli virulence factor hemolysin A causes programmed cell necrosis by altering mitochondrial dynamics. FASEB J 2018; 32:4107-4120. [PMID: 29490169 DOI: 10.1096/fj.201700768r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infections. In this study, UPEC strains harboring hemolysin A (HlyA) did not induce programmed cell death pathways by the activation of caspases. Instead, the UPEC pore-forming toxin HlyA triggered an increase in mitochondrial Ca2+ levels and manipulated mitochondrial dynamics by causing fragmentation of the mitochondrial network. Alterations in mitochondrial dynamics resulted in severe impairment of mitochondrial functions by loss of membrane potential, increase in reactive oxygen species production, and ATP depletion. Moreover, HlyA caused disruption of plasma membrane integrity that was accompanied by extracellular release of the danger-associated molecules high-mobility group box 1 (HMGB1) and histone 3 (H3). Our results indicate that UPEC induced programmed cell necrosis by irreversibly impairing mitochondrial function. This finding suggests a strategy devised by UPEC at the onset of infection to escape early innate immune response and silently propagate inside host cells.-Lu, Y., Rafiq, A., Zhang, Z., Aslani, F., Fijak, M., Lei, T., Wang, M., Kumar, S., Klug, J., Bergmann, M., Chakraborty, T., Meinhardt, A., Bhushan, S. Uropathogenic Escherichia coli virulence factor hemolysin A causes programmed cell necrosis by altering mitochondrial dynamics.
Collapse
Affiliation(s)
- Yongning Lu
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Amir Rafiq
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Zhengguo Zhang
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ferial Aslani
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tao Lei
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ming Wang
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sanjeev Kumar
- Department of Medical Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology, and Embryology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Department of Medical Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
18
|
Jafari O, Babaei H, Kheirandish R, Samimi AS, Zahmatkesh A. Histomorphometric evaluation of mice testicular tissue following short- and long-term effects of lipopolysaccharide-induced endotoxemia. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:47-52. [PMID: 29372036 PMCID: PMC5776436 DOI: 10.22038/ijbms.2017.24415.6083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objective(s):: Lipopolysaccharide (LPS)-induced endotoxemia is known to cause male infertility. This study was designed to explore the effects of bacterial LPS on histomorphometric changes of mice testicular tissues. Materials and Methods: In experiment 1, a pilot dose responsive study was performed with mice that were divided into five groups, receiving 36000, 18000, 9000, and 6750 µg/kg body weight (B.W) of LPS or only saline (control). White blood cells (WBC) were observed for 3 days after LPS inoculation. In experiment 2, two groups of mice were treated with 6750 µg/kg B.W of LPS or only saline (control). Five cases from each experimental group were sacrificed at 3, 30, and 60 days after LPS inoculation. Left testes were fixed in Bouin’s solution, and stained for morphometrical assays. Results: Time-course changes of WBC obtained from different doses of LPS-treated mice showed that inoculation of 6750 µg/kg B.W produced a reversible endotoxemia that lasts for 72 hr and so it was used in the second experiment. In experiment 2, during the first 3 days, no significant changes were observed in the evaluated parameters instead of seminiferous tubules diameter. Spermatogenesis, Johnsen’s score, meiotic index, and epithelial height were significantly affected at 30th day. However, complete recovery was only observed for the spermatogenesis at day 60. Interestingly, deleterious effects of LPS on spermatogonia were only seen at 60th day (P<0.05). Conclusion: Endotoxemia induced by LPS has long-term detrimental effects on spermatogonia and later stage germ cells, which are reversible at the next spermatogenic cycle.
Collapse
Affiliation(s)
- Oveis Jafari
- Graduate Student of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Homayoon Babaei
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Kheirandish
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Amir-Saied Samimi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Zahmatkesh
- Graduate Student of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
19
|
Kenny LC, Kell DB. Immunological Tolerance, Pregnancy, and Preeclampsia: The Roles of Semen Microbes and the Father. Front Med (Lausanne) 2018; 4:239. [PMID: 29354635 PMCID: PMC5758600 DOI: 10.3389/fmed.2017.00239] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Although it is widely considered, in many cases, to involve two separable stages (poor placentation followed by oxidative stress/inflammation), the precise originating causes of preeclampsia (PE) remain elusive. We have previously brought together some of the considerable evidence that a (dormant) microbial component is commonly a significant part of its etiology. However, apart from recognizing, consistent with this view, that the many inflammatory markers of PE are also increased in infection, we had little to say about immunity, whether innate or adaptive. In addition, we focused on the gut, oral and female urinary tract microbiomes as the main sources of the infection. We here marshall further evidence for an infectious component in PE, focusing on the immunological tolerance characteristic of pregnancy, and the well-established fact that increased exposure to the father's semen assists this immunological tolerance. As well as these benefits, however, semen is not sterile, microbial tolerance mechanisms may exist, and we also review the evidence that semen may be responsible for inoculating the developing conceptus (and maybe the placenta) with microbes, not all of which are benign. It is suggested that when they are not, this may be a significant cause of PE. A variety of epidemiological and other evidence is entirely consistent with this, not least correlations between semen infection, infertility and PE. Our view also leads to a series of other, testable predictions. Overall, we argue for a significant paternal role in the development of PE through microbial infection of the mother via insemination.
Collapse
Affiliation(s)
- Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Chen Q, Deng T, Han D. Testicular immunoregulation and spermatogenesis. Semin Cell Dev Biol 2016; 59:157-165. [DOI: 10.1016/j.semcdb.2016.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/22/2022]
|
21
|
Bhushan S, Meinhardt A. The macrophages in testis function. J Reprod Immunol 2016; 119:107-112. [PMID: 27422223 DOI: 10.1016/j.jri.2016.06.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 01/16/2023]
Abstract
Testicular macrophages are the largest leukocyte population in the testis. Their environment is characterized by the seemingly contradictory needs for tolerance against the autoantigenic germ cells and the capacity to mount pro-inflammatory innate immune responses against invading pathogens. During the past years considerable progress has been made in our understanding how intracellular signaling events enable testicular macrophages to adequately respond to inflammatory stimuli with the capacity to clear pathogens, but avoid excessive tissue damage to maintain fertility. Moreover, new data add to our understanding that testicular macrophages play essential roles in normal testis homeostasis and fetal testicular development.
Collapse
Affiliation(s)
- Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Germany.
| |
Collapse
|
22
|
Schagdarsurengin U, Western P, Steger K, Meinhardt A. Developmental origins of male subfertility: role of infection, inflammation, and environmental factors. Semin Immunopathol 2016; 38:765-781. [PMID: 27315198 DOI: 10.1007/s00281-016-0576-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022]
Abstract
Male gamete development begins with the specification of primordial cells in the epiblast of the early embryo and is not complete until spermatozoa mature in the epididymis of adult males. This protracted developmental process involves extensive alteration of the paternal germline epigenome. Initially, epigenetic reprogramming in fetal germ cells results in removal of most DNA methylation, including parent-specific epigenetic information. The germ cells then establish sex-specific epigenetic information through de novo methylation and undergo spermatogenesis. Chromatin in haploid germ cells is repackaged into protamines during spermiogenesis, providing further widespread epigenetic reorganization. Finally, after fertilization, epigenetic reprogramming in the preimplantation embryo is necessary for regaining totipotency. These events provide substantial windows during which epigenetic errors either may be corrected or may occur in the germline. There is now increasing evidence that environmental factors such as exposure to toxicants, the parents' and individual's diet, and even infectious and inflammatory events in the male reproductive tract may influence epigenetic reprogramming. This, together with other damage inflicted on the germline chromatin, may result in negative consequences for fertility and health. Large epidemiological birth cohort studies have yielded insight into possible causative environmental factors. Together with experimental animal studies, a clearer view of environmental impacts on fetal development and their intergenerational and even transgenerational effects on reproductive health has emerged and is reviewed in this article.
Collapse
Affiliation(s)
- Undraga Schagdarsurengin
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Patrick Western
- Centre for Genetic Diseases, Hudson Institute for Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig University of Giessen, Aulweg 123, 35385, Giessen, Germany.
| |
Collapse
|
23
|
Revay T, Quach AT, Maignel L, Sullivan B, King WA. Copy number variations in high and low fertility breeding boars. BMC Genomics 2015; 16:280. [PMID: 25888238 PMCID: PMC4404230 DOI: 10.1186/s12864-015-1473-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/20/2015] [Indexed: 01/17/2023] Open
Abstract
Background In this study we applied the extreme groups/selective genotyping approach for identifying copy number variations in high and low fertility breeding boars. The fertility indicator was the calculated Direct Boar Effect on litter size (DBE) that was obtained as a by-product of the national genetic evaluation for litter size (BLUP). The two groups of animals had DBE values at the upper (high fertility) and lower (low fertility) end of the distribution from a population of more than 38,000 boars. Animals from these two diverse phenotypes were genotyped with the Porcine SNP60K chip and compared by several approaches in order to prove the feasibility of our CNV analysis and to identify putative markers of fertility. Results We have identified 35 CNVRs covering 36.5 Mb or ~1.3% of the porcine genome. Among these 35 CNVRs, 14 were specific to the high fertility group, while 19 CNVRs were specific to the low fertility group which overlap with 137 QTLs of various reproductive traits. The identified 35 CNVRs encompassed 50 genes, among them 40 were specific to the low fertility group, seven to the high fertility group, while three were found in regions that were present in both groups but with opposite gain/loss status. A functional analysis of several databases revealed that the genes found in CNVRs from the low fertility group have been significantly enriched in members of the innate immune system, Toll-like receptor and RIG-I-like receptor signaling and fatty acid oxidation pathways. Conclusions We have demonstrated that our analysis pipeline could identify putative CNV markers of fertility, especially in case of low fertility boars. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1473-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamas Revay
- University of Guelph, Ontario Veterinary College, Department of Biomedical Sciences, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - Anh T Quach
- University of Guelph, Ontario Veterinary College, Department of Biomedical Sciences, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - Laurence Maignel
- Canadian Centre for Swine Improvement Inc. (CCSI), Central Experimental Farm, Building #75, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| | - Brian Sullivan
- Canadian Centre for Swine Improvement Inc. (CCSI), Central Experimental Farm, Building #75, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| | - W Allan King
- University of Guelph, Ontario Veterinary College, Department of Biomedical Sciences, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
24
|
Biswas B, Bhushan S, Rajesh A, Suraj SK, Lu Y, Meinhardt A, Yenugu S. UropathogenicEscherichia coli(UPEC) induced antimicrobial gene expression in the male reproductive tract of rat: evaluation of the potential of Defensin 21 to limit infection. Andrology 2015; 3:368-75. [DOI: 10.1111/andr.12012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 12/25/2014] [Accepted: 12/30/2014] [Indexed: 01/19/2023]
Affiliation(s)
- B. Biswas
- Department of Animal Biology; School of Life Sciences; University of Hyderabad; Hyderabad Andhra Pradesh India
| | - S. Bhushan
- Department of Anatomy and Cell Biology; Justus-Liebig-University Giessen; Giessen Germany
| | - A. Rajesh
- Department of Animal Biology; School of Life Sciences; University of Hyderabad; Hyderabad Andhra Pradesh India
| | - S. K. Suraj
- Department of Biotechnology; School of Life Sciences; University of Hyderabad; Hyderabad Andhra Pradesh India
| | - Y. Lu
- Department of Anatomy and Cell Biology; Justus-Liebig-University Giessen; Giessen Germany
| | - A. Meinhardt
- Department of Anatomy and Cell Biology; Justus-Liebig-University Giessen; Giessen Germany
| | - S. Yenugu
- Department of Animal Biology; School of Life Sciences; University of Hyderabad; Hyderabad Andhra Pradesh India
| |
Collapse
|
25
|
Malolina EA, Kulibin AY, Naumenko VA, Gushchina EA, Zavalishina LE, Kushch AA. Herpes simplex virus inoculation in murine rete testis results in irreversible testicular damage. Int J Exp Pathol 2014; 95:120-30. [PMID: 24673915 PMCID: PMC3960039 DOI: 10.1111/iep.12071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/05/2014] [Indexed: 01/15/2023] Open
Abstract
This study aimed to establish the influence of herpes simplex virus (HSV) on testis morphology and germ cell development using a model of ascending urogenital HSV infection in mice. Adult C57BL/6J mice were inoculated with 100 plaque-forming units of HSV1 in rete testis. Viral proteins and HSV DNA were detected from 3 days postinoculation (DPI), while capsids and virions could be visualized at 6 DPI. Infectious activity of HSV was revealed by rapid culture method in testes from 3 to 14 DPI, and virus DNA by PCR - from 3 to 100 DPI. Germ and Sertoli cells were infected during the early stages of the infection, whereas interstitial cells only occasionally contained the virus at 21 and 45 DPI. Microscopic analysis revealed severe degeneration of the germinal epithelium in the infected testes. By 21 DPI, testes became atrophic and most Sertoli cells were destroyed. No testicular regeneration and no spermatozoa in the epididymis were observed at 45 and 100 DPI. From 3 DPI, inflammatory cells accumulated in the interstitium between damaged tubules; a significant increase in the number of CD4(+), CD8(+) T lymphocytes and F4/80(+) cells was observed in the infected testes. This study shows that in the case of HSV retrograde ascent into seminiferous tubules, the acute viral infection results in irreversible atrophy of the germinal epithelium, orchitis and infertility. These results may be used to further study viral orchitis and the influence of HSV on spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Ekaterina A Malolina
- Ivanovsky Institute of Virology, Ministry of Health of Russian Federation, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
26
|
Narciandi F, Lloyd A, Meade KG, O'Farrelly C. A novel subclass of bovine β-defensins links reproduction and immunology. Reprod Fertil Dev 2014; 26:769-77. [DOI: 10.1071/rd13153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/06/2013] [Indexed: 12/14/2022] Open
Abstract
β-defensins are effector molecules of the innate immune system, found in many diverse species. Their presence in invertebrates as well as vertebrates suggests highly conserved functional roles. Most β-defensins are believed to act as antimicrobial agents at epithelial surfaces, although additional functions have also been described, including immune regulatory activity, wound repair and a role in coat-colour determination. High expression of β-defensins have been found in testis and epididymidal epithelium as well as in the seminal fluid of humans, macaque, rat, mouse and cow. Human and macaque β-defensins have recently been shown to affect sperm motility while a mutation in β-defensin 126 is associated with reduced fertility in men. Genetic variation in bovine defensin genes may explain the increased incidence of low fertility in cattle. Here, we present a summary of the known functions of β-defensins as well as their emerging role in reproduction and their potential to improve fertility in cattle.
Collapse
|
27
|
Abstract
This article provides an overview of infectious and inflammatory conditions associated with male infertility. These conditions may affect several components of the male reproductive tract and therefore have the ability to potentially alter sperm function. The effect of these conditions on male fertility is poorly understood and often underestimated.
Collapse
|
28
|
Necrosis is the dominant cell death pathway in uropathogenic Escherichia coli elicited epididymo-orchitis and is responsible for damage of rat testis. PLoS One 2013; 8:e52919. [PMID: 23301002 PMCID: PMC3534655 DOI: 10.1371/journal.pone.0052919] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
Male infertility is a frequent medical condition, compromising approximately one in twenty men, with infections of the reproductive tract constituting a major etiological factor. Bacterial epididymo-orchitis results in acute inflammation most often caused by ascending canalicular infections from the urethra via the continuous male excurrent ductal system. Uropathogenic Escherichia coli (UPEC) represent a relevant pathogen in urogenital tract infections. To explore how bacteria can cause damage and cell loss and thus impair fertility, an in vivo epididymo-orchitis model was employed in rats by injecting UPEC strain CFT073 into the vas deference in close proximity to the epididymis. Seven days post infection bacteria were found predominantly in the testicular interstitial space. UPEC infection resulted in severe impairment of spermatogenesis by germ cell loss, damage of testicular somatic cells, a decrease in sperm numbers and a significant increase in TUNEL (+) cells. Activation of caspase-8 (extrinsic apoptotic pathway), caspase-3/−6 (intrinsic apoptotic pathway), caspase-1 (pyroptosis pathway) and the presence of 180 bp DNA fragments, all of which serve as indicators of the classical apoptotic pathway, were not observed in infected testis. Notably, electron microscopical examination revealed degenerative features of Sertoli cells (SC) in UPEC infected testis. Furthermore, the passive release of high mobility group protein B1 (HMGB1), as an indication of necrosis, was observed in vivo in infected testis. Thus, necrosis appears to be the dominant cell death pathway in UPEC infected testis. Substantial necrotic changes seen in Sertoli cells will contribute to impaired spermatogenesis by loss of function in supporting the dependent germ cells.
Collapse
|
29
|
Collodel G, Castellini C, del Vecchio MT, Cardinali R, Geminiani M, Rossi B, Spreafico A, Moretti E. Effect of a Bacterial Lipopolysaccharide Treatment on Rabbit Testis and Ejaculated Sperm. Reprod Domest Anim 2011; 47:372-8. [DOI: 10.1111/j.1439-0531.2011.01882.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|