1
|
Juriol L, Valeff N, Dibo M, Ventimiglia MS, Correale J, Jensen F. Human chorionic gonadotropin regulates cytokine production by lymphocytes from patients with multiple sclerosis. J Reprod Immunol 2024; 164:104280. [PMID: 38908336 DOI: 10.1016/j.jri.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) that primarily affects young adults, predominantly females. This was partially attributed to sex differences in immunity, which are influenced by changes in sex hormones occurring during women's life, among other factors. Furthermore, MS patients experience significant improvement in their symptoms during pregnancy when levels of female sex-hormones significantly increase. This phenomenon was attributed to immune adaptations occurring during gestation which are regulated by paternal antigens and sex hormones. The human chorionic gonadotropin (hCG) was shown to have strong immunosuppressive abilities. We aimed to analyze here the capacity of the hCG to regulate pro- and anti-inflammatory cytokine production by PBMC from MS patients. PBMC isolated from 17 MS patients receiving IFNβ1a treatment were cultured with or without recombinant or urinary hCG. Cytokine production in the supernatants was assessed using a CBA array and cytokine production by lymphocytes and expression of co-stimulatory molecules in B-lymphocytes were evaluated by flow cytometry. hCG reduced the production of TNF by PBMC from MS patients while lowering the percentages of TNF producing T cells and diminishing the production of TNF by B cells. hCG significantly boosted the production of IL-10 by regulatory T cells and CD19high B cells from MS patients. Furthermore, hCG treatment lowered the percentages of CD80+CD86+ expressing B cells within PBMC from MS patients. Overall, our results described a novel and not yet explored mechanisms of action of hCG in the context of MS.
Collapse
Affiliation(s)
- Lorena Juriol
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Graduate School of Medicine, University of Buenos Aires, 2155 Paraguay St. 16th Floor, Ciudad Autónoma de Buenos Aires C1121ABG, Argentina
| | - Natalín Valeff
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Graduate School of Medicine, University of Buenos Aires, 2155 Paraguay St. 16th Floor, Ciudad Autónoma de Buenos Aires C1121ABG, Argentina
| | - Marcos Dibo
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Graduate School of Medicine, University of Buenos Aires, 2155 Paraguay St. 16th Floor, Ciudad Autónoma de Buenos Aires C1121ABG, Argentina
| | - María Silvia Ventimiglia
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Graduate School of Medicine, University of Buenos Aires, 2155 Paraguay St. 16th Floor, Ciudad Autónoma de Buenos Aires C1121ABG, Argentina
| | - Jorge Correale
- Fleni, 2325 Montañeses St., Ciudad Autónoma de Buenos Aires C1428AQK, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB CONICET-UBA), Graduate School of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junin St., Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Federico Jensen
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Graduate School of Medicine, University of Buenos Aires, 2155 Paraguay St. 16th Floor, Ciudad Autónoma de Buenos Aires C1121ABG, Argentina; Centro Integrativo de Biología Y Química Aplicada, Universidad Bernardo O'Higgins, Santiago 8307993, Chile.
| |
Collapse
|
2
|
Spaziani M, Carlomagno F, Tenuta M, Sesti F, Angelini F, Bonaventura I, Ferrari D, Tarantino C, Fiore M, Petrella C, Tarani L, Gianfrilli D, Pozza C. Extra-Gonadal and Non-Canonical Effects of FSH in Males. Pharmaceuticals (Basel) 2023; 16:813. [PMID: 37375761 PMCID: PMC10300833 DOI: 10.3390/ph16060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Recombinant follicle-stimulating hormone (FSH) is commonly used for the treatment of female infertility and is increasingly being used in males as well, as recommended by notable guidelines. FSH is composed of an α subunit, shared with other hormones, and a β subunit, which confers specificity of biological action by interacting with its surface receptor (FSHR), predominantly located in granulosa and Sertoli cells. However, FSHRs also exist in extra-gonadal tissues, indicating potential effects beyond male fertility. Emerging evidence suggests that FSH may have extra-gonadal effects, including on bone metabolism, where it appears to stimulate bone resorption by binding to specific receptors on osteoclasts. Additionally, higher FSH levels have been associated with worse metabolic and cardiovascular outcomes, suggesting a possible impact on the cardiovascular system. FSH has also been implicated in immune response modulation, as FSHRs are expressed on immune cells and may influence inflammatory response. Furthermore, there is growing interest in the role of FSH in prostate cancer progression. This paper aims to provide a comprehensive analysis of the literature on the extra-gonadal effects of FSH in men, with a focus on the often-conflicting results reported in this field. Despite the contradictory findings, the potential for future development in this area is substantial, and further research is needed to elucidate the mechanisms underlying these effects and their clinical implications.
Collapse
Affiliation(s)
- Matteo Spaziani
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Francesco Carlomagno
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Marta Tenuta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Francesco Angelini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Ilaria Bonaventura
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Davide Ferrari
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Chiara Tarantino
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Carlotta Pozza
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
3
|
Chuphal B, Sathoria P, Rai U, Roy B. Crosstalk between reproductive and immune systems: the teleostean perspective. JOURNAL OF FISH BIOLOGY 2023; 102:302-316. [PMID: 36477945 DOI: 10.1111/jfb.15284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The bidirectional interaction between the hypothalamic-pituitary-gonadal (HPG) axis and the immune system plays a crucial role in the adaptation of an organism to its environment, its survival and the continuance of a species. Nonetheless, very little is known about this interaction among teleost, the largest group of extant vertebrates. Fishes being seasonal breeders, their immune system is exposed to seasonally changing levels of HPG hormones. On the contrary, the presence and infiltration of leukocytes, the expression of pattern recognition receptors as well as cytokines in gonads suggest their key role in teleostean gametogenesis as in the case of mammals. Moreover, the modulation of gametogenesis and steroidogenesis by lipopolysaccharide implicates the pathological significance of inflammation on reproduction. Thus, it is important to engage in the understanding of the interaction between these two important physiological systems, not only from a phylogenetic perspective but also due to the importance of fish as an important economic resource. In view of this, the authors have reviewed the crosstalk between the reproductive and immune systems in teleosts and tried to explore the importance of this interaction in their survival and reproductive fitness.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, University of Delhi, Delhi, India
| | - Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| | - Umesh Rai
- University of Jammu, Jammu, Jammu and Kashmir, India
| | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Pan F, Du H, Tian W, Xie H, Zhang B, Fu W, Li Y, Ling Y, Zhang Y, Fang F, Liu Y. Effect of GnRH immunocastration on immune function in male rats. Front Immunol 2023; 13:1023104. [PMID: 36713429 PMCID: PMC9880316 DOI: 10.3389/fimmu.2022.1023104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
The present study aimed to reveal the effects of immunocastration on the development of the immune system in rats. Seventy rats were randomly assigned into two groups: Control (n = 35) and immunized (n = 35). Twenty-day-old rats were immunized with gonadotropin-releasing hormone (GnRH) and booster immunization was administered every two weeks (three immunizations in total). From 20-day-old rats, we collected samples every two weeks, including five immunized rats and five control rats (seven collections in total). We collected blood samples, testicles, thymuses, and spleens. The results showed that GnRH immunization increased the GnRH antibody titers and reduced the testosterone concentration (both P < 0.05). Compared with the control group, the number of CD4+CD8- cells, CD4-CD8+ cells, and CD4+CD8+ cells increased (P < 0.05) whereas the number of CD4-CD8- cells and CD4+CD25+ cells reduced in the immunized group (P < 0.05) over time. GnRH immunization also increased the relative weights of thymus and spleen (P < 0.05), serum concentrations of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17 and Interferon-γ (IFN-γ) over time (P < 0.05), and changed the mRNA levels of IL-2, IL-4, IL-6. IL-10, IL-17, IFN-γ, CD4, D8, CD19 GnRH, and GnRH receptor (GnRH-R) in thymus and spleen. Thus, GnRH immunization enhanced the immune markers in thymus, spleen, and blood immune cytokines in rats.
Collapse
Affiliation(s)
- Fuqiang Pan
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Huiting Du
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Weiguo Tian
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Huihui Xie
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Bochao Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Wanzhen Fu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yunsheng Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Fuyang, Anhui, China
| | - Yinghui Ling
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Fuyang, Anhui, China
| | - Yunhai Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Fuyang, Anhui, China
| | - Fugui Fang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Fuyang, Anhui, China,*Correspondence: Ya Liu, ; Fugui Fang,
| | - Ya Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Fuyang, Anhui, China,*Correspondence: Ya Liu, ; Fugui Fang,
| |
Collapse
|
5
|
Ding J, Maxwell A, Adzibolosu N, Hu A, You Y, Liao A, Mor G. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferon‐stimulated genes signaling during pregnancy*. Immunol Rev 2022; 308:9-24. [DOI: 10.1111/imr.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Jiahui Ding
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| | - Anthony Maxwell
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
- Department of Physiology Wayne State University Detroit Michigan USA
| | - Nicholas Adzibolosu
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
- Department of Physiology Wayne State University Detroit Michigan USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| | - Aihua Liao
- Institute of Reproductive Health Center for Reproductive Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Gil Mor
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| |
Collapse
|
6
|
Human Chorionic Gonadotropin and Early Embryogenesis: Review. Int J Mol Sci 2022; 23:ijms23031380. [PMID: 35163303 PMCID: PMC8835849 DOI: 10.3390/ijms23031380] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022] Open
Abstract
Human chorionic gonadotropin (hCG) has four major isoforms: classical hCG, hyperglycosylated hCG, free β subunit, and sulphated hCG. Classical hCG is the first molecule synthesized by the embryo. Its RNA is transcribed as early as the eight-cell stage and the blastocyst produces the protein before its implantation. This review synthetizes everything currently known on this multi-effect hormone: hCG levels, angiogenetic activity, immunological actions, and effects on miscarriages and thyroid function.
Collapse
|
7
|
Silvano A, Seravalli V, Strambi N, Cecchi M, Tartarotti E, Parenti A, Di Tommaso M. Tryptophan metabolism and immune regulation in the human placenta. J Reprod Immunol 2021; 147:103361. [PMID: 34365162 DOI: 10.1016/j.jri.2021.103361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
The placenta represents the maternal-fetal vascular interface. It is capable of supplying the bioenergetic needs of the developing conceptus. It is composed of different cell types that engage in highly varied functions, ranging from attachment, invasion and vascular remodeling to cell fusion, hormone production, and nutrient transport. A deep knowledge of the immunological mechanisms responsible for maintaining an active tolerance towards an allogeneic fetus and the anti-inflammatory properties of the placenta can be useful to clarify the pathogenesis of adverse events in pregnancy. While the systemic mechanisms of this immunological regulation in pregnancy have been well studied, the metabolic processes involved in the placental immune response are still poorly understood. The aim of this review is to summarize the most important information concerning the immune regulation in pregnancy, focusing on the role of tryptophan (Trp) catabolism performed by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) in the placenta.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Noemi Strambi
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy
| | - Enrico Tartarotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy.
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy; Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy.
| |
Collapse
|
8
|
Ye L, Huang W, Liu S, Cai S, Hong L, Xiao W, Thiele K, Zeng Y, Song M, Diao L. Impacts of Immunometabolism on Male Reproduction. Front Immunol 2021; 12:658432. [PMID: 34367130 PMCID: PMC8334851 DOI: 10.3389/fimmu.2021.658432] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The physiological process of male reproduction relies on the orchestration of neuroendocrine, immune, and energy metabolism. Spermatogenesis is controlled by the hypothalamic-pituitary-testicular (HPT) axis, which modulates the production of gonadal steroid hormones in the testes. The immune cells and cytokines in testes provide a protective microenvironment for the development and maturation of germ cells. The metabolic cellular responses and processes in testes provide energy production and biosynthetic precursors to regulate germ cell development and control testicular immunity and inflammation. The metabolism of immune cells is crucial for both inflammatory and anti-inflammatory responses, which supposes to affect the spermatogenesis in testes. In this review, the role of immunometabolism in male reproduction will be highlighted. Obesity, metabolic dysfunction, such as type 2 diabetes mellitus, are well documented to impact male fertility; thus, their impacts on the immune cells distributed in testes will also be discussed. Finally, the potential significance of the medicine targeting the specific metabolic intermediates or immune metabolism checkpoints to improve male reproduction will also be reassessed.
Collapse
Affiliation(s)
- Lijun Ye
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wensi Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Weiqiang Xiao
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Mingzhe Song
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
9
|
Buska-Mach K, Kedzierska AE, Lepczynski A, Herosimczyk A, Ozgo M, Karpinski P, Gomulkiewicz A, Lorek D, Slawek A, Dziegiel P, Chelmonska-Soyta A. Differential Signals From TNFα-Treated and Untreated Embryos in Uterine Tissues and Splenic CD4 + T Lymphocytes During Preimplantation Pregnancy in Mice. Front Vet Sci 2021; 8:641553. [PMID: 33763465 PMCID: PMC7982469 DOI: 10.3389/fvets.2021.641553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
The main aim of this study was to examine if a female mouse body in preimplantation pregnancy can distinguish between embryos of normal and impaired biological quality in the local and peripheral compartments. Normal (control group) and TNFα (tumor necrosis factor-α)-treated embryos (experimental group) at the morula stage were non-surgically transferred into the uteri of CD-1 strain [Crl:CD1(Icr)] female murine recipients. Twenty-four hours after the embryo transfer, females were euthanised, and uteri and spleens were dissected. In uterine tissues (local compartment), we assessed the expression of 84 genes comprising nine signal transduction pathways, using a modified RT2 Profiler PCR Array. In the spleen (peripheral compartment), we determined the proteome of splenic CD4+ lymphocytes using 2D protein electrophoresis with subsequent protein identification by mass spectrometry. Sample clustering and differential gene expression analyses within individual signal transduction pathways revealed differential expression of genes in the uteri of females after transplantation of normal vs. TNFα-treated embryos. The most affected signal transduction cascade was the NFKB (Nuclear factor NF-kappa-B) pathway, where 87.5% of the examined genes were significantly differentially expressed. Proteomic analysis of splenic CD4+ T lymphocytes revealed significant differential expression of 8 out of 132 protein spots. Identified proteins were classified as proteins influenced by cell stress, proteins engaged in the regulation of cytoskeleton stabilization and cell motility, and proteins having immunomodulatory function. These results support the hypothesis that even before embryo implantation, the body of pregnant female mice can sense the biological quality of an embryo both at the local and peripheral level.
Collapse
Affiliation(s)
- Katarzyna Buska-Mach
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Ewa Kedzierska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Adam Lepczynski
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Małgorzata Ozgo
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Pawel Karpinski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Genetics, Wroclaw Medical University, Wrocław, Poland
| | - Agnieszka Gomulkiewicz
- Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland
| | - Daria Lorek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Slawek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Piotr Dziegiel
- Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland
| | - Anna Chelmonska-Soyta
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,The Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
10
|
Silasi M, You Y, Simpson S, Kaislasuo J, Pal L, Guller S, Peng G, Ramhorst R, Grasso E, Etemad S, Durosier S, Aldo P, Mor G. Human Chorionic Gonadotropin modulates CXCL10 Expression through Histone Methylation in human decidua. Sci Rep 2020; 10:5785. [PMID: 32238853 PMCID: PMC7113245 DOI: 10.1038/s41598-020-62593-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
The process of implantation, trophoblast invasion and placentation demand continuous adaptation and modifications between the trophoblast (embryonic) and the decidua (maternal). Within the decidua, the maternal immune system undergoes continued changes, as the pregnancy progress, in terms of the cell population, phenotype and production of immune factors, cytokines and chemokines. Human chorionic gonadotropin (hCG) is one of the earliest hormones produced by the blastocyst and has potent immune modulatory effects, especially in relation to T cells. We hypothesized that trophoblast-derived hCG modulates the immune population present at the maternal fetal interface by modifying the cytokine profile produced by the stromal/decidual cells. Using in vitro models from decidual samples we demonstrate that hCG inhibits CXCL10 expression by inducing H3K27me3 histone methylation, which binds to Region 4 of the CXCL10 promoter, thereby suppressing its expression. hCG-induced histone methylation is mediated through EZH2, a functional member of the PRC2 complex. Regulation of CXCL10 expression has a major impact on the capacity of endometrial stromal cells to recruit CD8 cells. We demonstrate the existence of a cross talk between the placenta (hCG) and the decidua (CXCL10) in the control of immune cell recruitment. Alterations in this immune regulatory function, such as during infection, will have detrimental effects on the success of the pregnancy.
Collapse
Affiliation(s)
- Michelle Silasi
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Yuan You
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, MI, USA
| | - Samantha Simpson
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Janina Kaislasuo
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
- Department of Obstetrics and Gynecology, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
| | - Lubna Pal
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Seth Guller
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Rosanna Ramhorst
- Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina
| | - Esteban Grasso
- Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina
| | - Shervin Etemad
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Sandy Durosier
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Paulomi Aldo
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Gil Mor
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
11
|
Schumacher A, Zenclussen AC. Human Chorionic Gonadotropin-Mediated Immune Responses That Facilitate Embryo Implantation and Placentation. Front Immunol 2019; 10:2896. [PMID: 31921157 PMCID: PMC6914810 DOI: 10.3389/fimmu.2019.02896] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Human chorionic gonadotropin (hCG) serves as one of the first signals provided by the embryo to the mother. Exactly at the time when the first step of the implantation process is initiated and the blastocyst adheres to the maternal endometrium, the embryonic tissue starts to actively secrete hCG. Shortly thereafter, the hormone can be detected in the maternal circulation where its concentration steadily increases throughout early pregnancy as it is continuously released by the forming placenta. Accumulating evidence underlines the critical function of hCG for embryo implantation and placentation. hCG not only regulates biological aspects of these early pregnancy events but also supports maternal immune cells in their function as helpers in the establishment of an adequate embryo-endometrial relationship. In view of its early presence in the maternal circulation, hCG has the potential to influence both local uterine immune cell populations as well as peripheral ones. The current review aims to summarize recent literature on the participation of innate and adaptive immune cells in embryo implantation and placentation with a specific focus on their regulation by hCG.
Collapse
Affiliation(s)
- Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ana C Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
12
|
Segner H, Verburg-van Kemenade BML, Chadzinska M. The immunomodulatory role of the hypothalamus-pituitary-gonad axis: Proximate mechanism for reproduction-immune trade offs? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:43-60. [PMID: 27404794 DOI: 10.1016/j.dci.2016.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
The present review discusses the communication between the hypothalamic-pituitary-gonad (HPG) axis and the immune system of vertebrates, attempting to situate the HPG-immune interaction into the context of life history trade-offs between reproductive and immune functions. More specifically, (i) we review molecular and cellular interactions between hormones of the HPG axis, and, as far as known, the involved mechanisms on immune functions, (ii) we evaluate whether the HPG-immune crosstalk serves as proximate mechanism mediating reproductive-immune trade-offs, and (iii) we ask whether the nature of the HPG-immune interaction is conserved throughout vertebrate evolution, despite the changes in immune functions, reproductive modes, and life histories. In all vertebrate classes studied so far, HPG hormones have immunomodulatory functions, and indications exist that they contribute to reproduction-immunity resource trade-offs, although the very limited information available for most non-mammalian vertebrates makes it difficult to judge how comparable or different the interactions are. There is good evidence that the HPG-immune crosstalk is part of the proximate mechanisms underlying the reproductive-immune trade-offs of vertebrates, but it is only one factor in a complex network of factors and processes. The fact that the HPG-immune interaction is flexible and can adapt to the functional and physiological requirements of specific life histories. Moreover, the assumption of a relatively fixed pattern of HPG influence on immune functions, with, for example, androgens always leading to immunosuppression and estrogens always being immunoprotective, is probably oversimplified, but the HPG-immune interaction can vary depending on the physiological and envoironmental context. Finally, the HPG-immune interaction is not only driven by resource trade-offs, but additional factors such as, for instance, the evolution of viviparity shape this neuroendocrine-immune relationship.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Dept of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, P.O. Box, CH-3001, Bern, Switzerland.
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
13
|
Kragh M, Larsen JM, Thysen AH, Rasmussen MA, Wolsk HM, Bisgaard H, Brix S. Divergent response profile in activated cord blood T cells from first-born child implies birth-order-associated in utero immune programming. Allergy 2016; 71:323-32. [PMID: 26505887 DOI: 10.1111/all.12799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND First-born children are at higher risk of developing a range of immune-mediated diseases. The underlying mechanism of 'birth-order effects' on disease risk is largely unknown, but in utero programming of the child's immune system may play a role. OBJECTIVE We studied the association between birth order and the functional response of stimulated cord blood T cells. METHOD Purified cord blood T cells were polyclonally activated with anti-CD3-/anti-CD28-coated beads in a subgroup of 28 children enrolled in the COPSAC2010 birth cohort. Expression levels of seven activation markers on helper and cytotoxic T cells as well as the percentage of CD4(+) CD25(+) T cells were assessed by flow cytometry. Production of IFN-γ, TNF-α, IL-17, IL-4, IL-5, IL-13, and IL-10 was measured in the supernatants. RESULTS IL-10 secretion (P = 0.007) and CD25 expression on CD4(+) helper T cells (P = 0.0003) in the activated cord blood T cells were selectively reduced in first-born children, while the percentage of circulating CD4(+) CD25(+) cord blood T cells was independent of birth order. CONCLUSION First-born infants display a reduced anti-inflammatory profile in T cells at birth. This possible in utero 'birth-order' T-cell programming may contribute to later development of immune-mediated diseases by increasing overall immune reactivity in first-born children as compared to younger siblings.
Collapse
Affiliation(s)
- M. Kragh
- Center for Biological Sequence Analysis; Department of Systems Biology; Technical University of Denmark; Lyngby Denmark
| | - J. M. Larsen
- Center for Biological Sequence Analysis; Department of Systems Biology; Technical University of Denmark; Lyngby Denmark
| | - A. H. Thysen
- Copenhagen Prospective Studies on Asthma in Childhood; Herlev and Gentofte Hospital; University of Copenhagen; Copenhagen Denmark
| | - M. A. Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood; Herlev and Gentofte Hospital; University of Copenhagen; Copenhagen Denmark
| | - H. M. Wolsk
- Copenhagen Prospective Studies on Asthma in Childhood; Herlev and Gentofte Hospital; University of Copenhagen; Copenhagen Denmark
| | - H. Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood; Herlev and Gentofte Hospital; University of Copenhagen; Copenhagen Denmark
| | - S. Brix
- Center for Biological Sequence Analysis; Department of Systems Biology; Technical University of Denmark; Lyngby Denmark
| |
Collapse
|
14
|
Yu N, Yan W, Yin T, Wang Y, Guo Y, Zhou D, Xu M, Ding J, Yang J. HCG-Activated Human Peripheral Blood Mononuclear Cells (PBMC) Promote Trophoblast Cell Invasion. PLoS One 2015; 10:e0125589. [PMID: 26087261 PMCID: PMC4472760 DOI: 10.1371/journal.pone.0125589] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/25/2015] [Indexed: 12/31/2022] Open
Abstract
Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG) is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC) that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo-secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β) and leukemia inhibitory factor (LIF) expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR). The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP)-2 (MMP-2), MMP-9, vascular endothelial growth factor (VEGF), tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion.
Collapse
Affiliation(s)
- Nan Yu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wenjie Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yaqin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yue Guo
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Danni Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Mei Xu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Sex-Based Differences in Multiple Sclerosis (Part I): Biology of Disease Incidence. Curr Top Behav Neurosci 2015; 26:29-56. [PMID: 25690593 DOI: 10.1007/7854_2015_371] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease that leads to neuron damage and progressive disability. One major feature of multiple sclerosis (MS) is that it affects women three times more often than men. In this chapter, we overview the evidence that the autoimmune component of MS, which predominates in the early stages of this disease, is more robust in women than in men and undergoes a sharp increase with the onset of puberty. In addition, we discuss the common rodent models of MS that have been used to study the sex-based differences in the development of central nervous system (CNS) autoimmunity. We then address the biological underpinnings of this enhanced MS risk in women by first reviewing the autoimmune mechanisms that are thought to lead to the initiation of this disease and then honing in on how these mechanisms differ between the sexes. Finally, we review what is known about the hormonal and genetic basis of these sex differences in CNS autoimmunity.
Collapse
|
17
|
Hsu P, Nanan R. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells. J Reprod Immunol 2014; 104-105:2-7. [DOI: 10.1016/j.jri.2014.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 01/19/2023]
|
18
|
Liang PY, Yin B, Cai J, Hu XD, Song C, Wu TH, Zhao J, Li GG, Zeng Y. Increased Circulating Th1/Th2 Ratios But Not Other Lymphocyte Subsets During Controlled Ovarian Stimulation are Linked to Subsequent Implantation Failure after Transfer ofIn VitroFertilized Embryos. Am J Reprod Immunol 2014; 73:12-21. [PMID: 25220906 DOI: 10.1111/aji.12320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/20/2014] [Indexed: 01/25/2023] Open
Affiliation(s)
- Pei-Yan Liang
- School of Chemical Biology & Biotechnology; Shenzhen Graduate School; Peking University; Shenzhen China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
- Shenzhen Zhongshan Institute for Reproduction and Genetics; Shenzhen China
| | - Biao Yin
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
- Shenzhen Zhongshan Institute for Reproduction and Genetics; Shenzhen China
| | - Jing Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
- Shenzhen Zhongshan Institute for Reproduction and Genetics; Shenzhen China
| | - Xiao-Dong Hu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
- Shenzhen Zhongshan Institute for Reproduction and Genetics; Shenzhen China
| | - Cheng Song
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
- Shenzhen Zhongshan Institute for Reproduction and Genetics; Shenzhen China
| | - Tong-Hua Wu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
- Shenzhen Zhongshan Institute for Reproduction and Genetics; Shenzhen China
| | - Jing Zhao
- School of Chemical Biology & Biotechnology; Shenzhen Graduate School; Peking University; Shenzhen China
| | - Guan-Gui Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
- Shenzhen Zhongshan Institute for Reproduction and Genetics; Shenzhen China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
- Shenzhen Zhongshan Institute for Reproduction and Genetics; Shenzhen China
| |
Collapse
|
19
|
Santner-Nanan B, Straubinger K, Hsu P, Parnell G, Tang B, Xu B, Makris A, Hennessy A, Peek MJ, Busch DH, da Costa CP, Nanan R. Fetal-maternal alignment of regulatory T cells correlates with IL-10 and Bcl-2 upregulation in pregnancy. THE JOURNAL OF IMMUNOLOGY 2013; 191:145-53. [PMID: 23733877 DOI: 10.4049/jimmunol.1203165] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transplacental immune regulation refers to the concept that during pregnancy, significant cross-talk occurs between the maternal and fetal immune system with potential long-term effects for both the mother and child. In this study, we made the surprising observation that there is a strong correlation of peripheral blood regulatory T (Treg) cells between the mother and the fetus. In contrast, there is no significant Treg cell correlation between paternal fetal dyads (pairs), suggesting that the specific context of pregnancy, rather than the genetic parental similarity to the fetus, is responsible for this correlation. Gene microarray analysis of Treg cells identified a typical IL-10-dependent signature in maternal and fetal Treg cells. In addition, a direct correlation of serum IL-10 protein levels between maternal fetal dyads was observed. Furthermore, we show that maternal serum IL-10 levels correlate with serum estradiol and estriol, implicating hormonal involvement in this alignment. Interestingly, we show that Treg cells possess higher expression of IL-10 receptor α and that Treg cell IL-10 receptor α expression directly correlates with their Bcl-2 expression. Indeed, in vitro data in both humans and mice demonstrate that IL-10 upregulates Bcl-2 specifically in Treg cells but not non-Treg cells. Our results provide evidence for transplacental regulation of cellular immunity and suggest that IL-10 may influence Treg cell homeostasis through its effect on Treg cell Bcl-2 expression. These novel findings have important implications on immune tolerance in pregnancy and beyond in areas of autoimmunity, allergy, and transplantation.
Collapse
Affiliation(s)
- Brigitte Santner-Nanan
- Sydney Medical School Nepean, University of Sydney, Kingswood 2751, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bansal AS, Bora SA, Saso S, Smith JR, Johnson MR, Thum MY. Mechanism of human chorionic gonadotrophin-mediated immunomodulation in pregnancy. Expert Rev Clin Immunol 2013; 8:747-53. [PMID: 23167686 DOI: 10.1586/eci.12.77] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human chorionic gonadotrophin (hCG) is released within hours of fertilization and has a profound ability to downregulate maternal cellular immunity against trophoblastic paternal antigens. It also promotes angiogenic activity of the extravillous trophoblast, and impairment of this function may lead to inadequate placentation and an increased risk of preeclampsia. There is increasing evidence that hCG alters the activity of dendritic cells via an upregulation of indoleamine 2,3-dioxygenase activity. This reduces T-cell activation and cytokine production, as well as encouraging Treg cell recruitment to the fetal-maternal interface. These changes are critical in promoting maternal tolerance. hCG is also able to increase the proliferation of uterine natural killer cells, while reducing the activity of cytotoxic peripheral blood natural killer cells. There are rare reports of autoantibodies directed against hCG or the luteinizing hormone/hCG receptor in women with recurrent miscarriage. These autoantibodies are more frequent in women with thyroid autoimmunity. This may explain the association between thyroid autoimmunity and impaired fertility. Downregulating these anti-hCG and anti-luteinizing hormone/hCG receptor autoantibodies may be helpful in some women with early miscarriage or recurrent failed in vitro fertilization.
Collapse
Affiliation(s)
- Amolak S Bansal
- Department of Immunology and Allergy, St. Helier Hospital, Carshalton, Surrey, SM5 1AA, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Jeurink P, van Bergenhenegouwen J, Jiménez E, Knippels L, Fernández L, Garssen J, Knol J, Rodríguez J, Martín R. Human milk: a source of more life than we imagine. Benef Microbes 2013; 4:17-30. [DOI: 10.3920/bm2012.0040] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The presence of bacteria in human milk has been acknowledged since the seventies. For a long time, microbiological analysis of human milk was only performed in case of infections and therefore the presence of non-pathogenic bacteria was yet unknown. During the last decades, the use of more sophisticated culture-dependent and -independent techniques, and the steady development of the -omic approaches are opening up the new concept of the ‘milk microbiome’, a complex ecosystem with a greater diversity than previously anticipated. In this review, possible mechanisms by which bacteria can reach the mammary gland (contamination versus active migration) are discussed. In addition, the potential roles of human milk for both infant and maternal health are summarised. A better understanding of the link between the milk microbiome and health benefit, the potential factors influencing this relationship and whether or not it can be influenced by nutrition is required to open new avenues in the field of pregnancy and lactation.
Collapse
Affiliation(s)
- P.V. Jeurink
- Danone Research, Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, the Netherlands
| | - J. van Bergenhenegouwen
- Danone Research, Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, the Netherlands
| | - E. Jiménez
- Dpto Nutrición, Bromatología y Tecnología de los Alimentos, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - L.M.J. Knippels
- Danone Research, Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, the Netherlands
| | - L. Fernández
- Dpto Nutrición, Bromatología y Tecnología de los Alimentos, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - J. Garssen
- Danone Research, Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, the Netherlands
| | - J. Knol
- Danone Research, Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, the Netherlands
- Laboratory of Microbiology, Wageningen University, P.O. Box 8033, 6700 EJ Wageningen, the Netherlands
| | - J.M. Rodríguez
- Dpto Nutrición, Bromatología y Tecnología de los Alimentos, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - R. Martín
- Danone Research, Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, the Netherlands
| |
Collapse
|
22
|
Selective capacity of metreleptin administration to reconstitute CD4+ T-cell number in females with acquired hypoleptinemia. Proc Natl Acad Sci U S A 2013; 110:E818-27. [PMID: 23382191 DOI: 10.1073/pnas.1214554110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leptin is an adipocyte-derived hormone that controls food intake and reproductive and immune functions in rodents. In uncontrolled human studies, low leptin levels are associated with impaired immune responses and reduced T-cell counts; however, the effects of leptin replacement on the adaptive immune system have not yet been reported in the context of randomized, controlled studies and/or in conditions of chronic acquired leptin deficiency. To address these questions, we performed a randomized, double-blinded, placebo-controlled trial of recombinant methionyl-human leptin (metreleptin) administration in replacement doses in women experiencing the female triad (hypothalamic amenorrhea) with acquired chronic hypoleptinemia induced by negative energy balance. Metreleptin restored both CD4(+) T-cell counts and their in vitro proliferative responses in these women. These changes were accompanied by a transcriptional signature in which genes relevant to cell survival and hormonal response were up-regulated, and apoptosis genes were down-regulated in circulating immune cells. We also observed that signaling pathways involved in cell growth/survival/proliferation, such as the STAT3, AMPK, mTOR, ERK1/2, and Akt pathways, were activated directly by acute in vivo metreleptin administration in peripheral blood mononuclear cells and CD4(+) T-cells both from subjects with chronic hypoleptinemia and from normoleptinemic, lean female subjects. Our data show that metreleptin administration, in doses that normalize circulating leptin levels, induces transcriptional changes, activates intracellular signaling pathways, and restores CD4(+) T-cell counts. Thus, metreleptin may prove to be a safe and effective therapy for selective CD4(+) T-cell immune reconstitution in hypoleptinemic states such as tuberculosis and HIV infection in which CD4(+) T cells are reduced.
Collapse
|
23
|
Persson M, Ekerfelt C, Jablonowska B, Jonsson Y, Ernerudh J, Jenmalm MC, Berg G. Immunological status in patients undergoing in vitro fertilisation: responses to hormone treatment and relationship to outcome. J Reprod Immunol 2012; 96:58-67. [DOI: 10.1016/j.jri.2012.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/02/2012] [Accepted: 07/14/2012] [Indexed: 10/27/2022]
|
24
|
Lisi F, Caserta D, Montanino M, Berlinghieri V, Bielli W, Carfagna P, Carra MC, Costantino A, Lisi R, Poverini R, Ciardo F, Rago R, Marci R, Moscarini M. Recombinant luteinizing hormone priming in multiple follicular stimulation for in-vitro fertilization in downregulated patients. Gynecol Endocrinol 2012; 28:674-7. [PMID: 22313135 DOI: 10.3109/09513590.2011.652716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Follicle development is controlled amongst other factors by pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) that act in synergy in completing follicle maturation. Exogenous gonadotropins, combined with gonadotropin-releasing hormone agonists, have been successfully used in patients with ovulatory disorders undergoing assisted reproduction. There is some evidence of a beneficial role of androgens or LH administration before FSH stimulation. This study was designed to verify whether the addition of LH in the early follicular phase, in downregulated patients undergoing follicular stimulation for assisted reproduction, would add benefits in terms of general outcomes and pregnancy rates. We compared two groups of patients one of which was treated with recombinant FSH (rFSH) alone and the other with rFSH plus recombinant LH (rLH), in the early follicular phase only. The number of eggs recovered was higher in the group treated with FSH only; however, the number of embryos available at transfer was similar in the two groups and, more importantly, the number of Grades I and II embryos was higher in the group pretreated with LH. Similarly, although biochemical pregnancy rate and clinical pregnancy rates were similar in both groups, a beneficial role of LH priming was demonstrated by the higher implantation rate achieved in these patients.
Collapse
Affiliation(s)
- F Lisi
- Centro Ricerche Medicina della Riproduzione, Casa di Cura Villa Mafalda, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park DW, Yang KM. Hormonal regulation of uterine chemokines and immune cells. Clin Exp Reprod Med 2011; 38:179-85. [PMID: 22384440 PMCID: PMC3283074 DOI: 10.5653/cerm.2011.38.4.179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 12/16/2011] [Accepted: 12/17/2011] [Indexed: 01/08/2023] Open
Abstract
The ultimate function of the endometrium is to allow the implantation of a blastocyst and to support pregnancy. Cycles of tissue remodeling ensure that the endometrium is in a receptive state during the putative 'implantation window', the few days of each menstrual cycle when an appropriately developed blastocyst may be available to implant in the uterus. A successful pregnancy requires strict temporal regulation of maternal immune function to accommodate a semi-allogeneic embryo. To preparing immunological tolerance at the onset of implantation, tight temporal regulations are required between the immune and endocrine networks. This review will discuss about the action of steroid hormones on the human endometrium and particularly their role in regulating the inflammatory processes associated with endometrial receptivity.
Collapse
Affiliation(s)
- Dong-Wook Park
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul, Korea
| | | |
Collapse
|
26
|
Ott TL, Gifford CA. Effects of Early Conceptus Signals on Circulating Immune Cells: Lessons from Domestic Ruminants. Am J Reprod Immunol 2010; 64:245-54. [DOI: 10.1111/j.1600-0897.2010.00912.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|