1
|
Islas-Preciado D, Estrada-Camarena E, Galea LAM. Menstrually-related mood disorders and postpartum depression: Convergent aspects in aetiology. Front Neuroendocrinol 2024; 76:101171. [PMID: 39638001 DOI: 10.1016/j.yfrne.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Females diagnosed with Menstrually-related mood disorders (MRMDs) have more risk to develop postpartum depression (PPD). There are overlapping symptoms between MRMDs and PPD such as anxiety, depressed mood, irritability, that can contribute to a lower quality of life. MRMDs and PPD share components in their etiology such as dramatic hormonal oscillations, and alterations in Hypothalamus-Pituitary-Adrenal (HPA) axis activity that may impair GABAergic neurotransmission. As well, stressful events that impact HPA regulation may play an important role in the etiology of MRMDs and PPD. Here we review common hormone fluctuations across the menstrual cycle and pregnancy/postpartum to identify shared pathways that could contribute to greater sensitivity in people with MRMDs and PPD. This review summarizes hormone sensitivity, HPA axis activity and neurosteroids effects on GABAergic transmission and the potential role of chronic stress in developing MRMDs and PPD. In addition, other potential etiopathological factors, such as serotonin and the immune system, are discussed. Investigating the etiopathology of MRMDs and PDD will help to better understand the complexity of factors involved in these disorders that affect females across the reproductive years.
Collapse
Affiliation(s)
- D Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México; Centre for Brain Health, University of British Columbia, Vancouver, Canada; Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México.
| | - E Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México
| | - L A M Galea
- Centre for Brain Health, University of British Columbia, Vancouver, Canada; Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, ON, Canada.
| |
Collapse
|
2
|
Popotas A, Casimir GJ, Corazza F, Lefèvre N. Sex-related immunity: could Toll-like receptors be the answer in acute inflammatory response? Front Immunol 2024; 15:1379754. [PMID: 38835761 PMCID: PMC11148260 DOI: 10.3389/fimmu.2024.1379754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
An increasing number of studies have highlighted the existence of a sex-specific immune response, wherein men experience a worse prognosis in cases of acute inflammatory diseases. Initially, this sex-dependent inflammatory response was attributed to the influence of sex hormones. However, a growing body of evidence has shifted the focus toward the influence of chromosomes rather than sex hormones in shaping these inflammatory sex disparities. Notably, certain pattern recognition receptors, such as Toll-like receptors (TLRs), and their associated immune pathways have been implicated in driving the sex-specific immune response. These receptors are encoded by genes located on the X chromosome. TLRs are pivotal components of the innate immune system, playing crucial roles in responding to infectious diseases, including bacterial and viral pathogens, as well as trauma-related conditions. Importantly, the TLR-mediated inflammatory responses, as indicated by the production of specific proteins and cytokines, exhibit discernible sex-dependent patterns. In this review, we delve into the subject of sex bias in TLR activation and explore its clinical implications relatively to both the X chromosome and the hormonal environment. The overarching objective is to enhance our understanding of the fundamental mechanisms underlying these sex differences.
Collapse
Affiliation(s)
- Alexandros Popotas
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Georges Jacques Casimir
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| | - Francis Corazza
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Immunology, Centre Hospitalier Universitaire (CHU) Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Lefèvre
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| |
Collapse
|
3
|
Xiao L, Zuo Z, Zhao F. Microbiome in Female Reproductive Health: Implications for Fertility and Assisted Reproductive Technologies. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad005. [PMID: 38862423 PMCID: PMC11104452 DOI: 10.1093/gpbjnl/qzad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 06/13/2024]
Abstract
The microbiome plays a critical role in the process of conception and the outcomes of pregnancy. Disruptions in microbiome homeostasis in women of reproductive age can lead to various pregnancy complications, which significantly impact maternal and fetal health. Recent studies have associated the microbiome in the female reproductive tract (FRT) with assisted reproductive technology (ART) outcomes, and restoring microbiome balance has been shown to improve fertility in infertile couples. This review provides an overview of the role of the microbiome in female reproductive health, including its implications for pregnancy outcomes and ARTs. Additionally, recent advances in the use of microbial biomarkers as indicators of pregnancy disorders are summarized. A comprehensive understanding of the characteristics of the microbiome before and during pregnancy and its impact on reproductive health will greatly promote maternal and fetal health. Such knowledge can also contribute to the development of ARTs and microbiome-based interventions.
Collapse
Affiliation(s)
- Liwen Xiao
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Meggyes M, Nagy DU, Feik T, Boros A, Polgar B, Szereday L. Examination of the TIGIT-CD226-CD112-CD155 Immune Checkpoint Network during a Healthy Pregnancy. Int J Mol Sci 2022; 23:10776. [PMID: 36142692 PMCID: PMC9502426 DOI: 10.3390/ijms231810776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The importance of immune checkpoint molecules is well known in tumor and transplantation immunology; however, much less information is available regarding human pregnancy. Despite the significant amount of information about the TIGIT and CD226 immune checkpoint receptors in immune therapies, very little research has been conducted to study the possible role of these surface molecules and their ligands (CD112 and CD155) during the three trimesters of pregnancy. Methods: From peripheral blood, immune cell subpopulations were studied, and the surface expression of immune checkpoint molecules was analyzed by flow cytometry. Soluble immune checkpoint molecule levels were measured by ELISA. Results: Notable changes were observed regarding the percentage of monocyte subpopulation and the expression of CD226 receptor by CD4+ T and NKT cells. Elevated granzyme B content by the intermediate and non-classical monocytes was assessed as pregnancy proceeded. Furthermore, we revealed an important relationship between the CD226 surface expression by NKT cells and the serum CD226 level in the third trimester of pregnancy. Conclusions: Our results confirm the importance of immune checkpoint molecules in immunoregulation during pregnancy. CD226 seems to be a significant regulator, especially in the case of CD4+ T and NKT cells, contributing to the maternal immune tolerance in the late phase of pregnancy.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - David U. Nagy
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Große Steinstraße 79/80, D-06108 Halle, Germany
| | - Timoteus Feik
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Akos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
5
|
Chen D, Wang W, Wu L, Liang L, Wang S, Cheng Y, Zhang T, Chai C, Luo Q, Sun C, Zhao W, Lv Z, Gao Y, Wu X, Sun N, Zhang Y, Zhang J, Chen Y, Tong J, Wang X, Bai Y, Sun C, Jin X, Niu J. Single-cell atlas of peripheral blood mononuclear cells from pregnant women. Clin Transl Med 2022; 12:e821. [PMID: 35522918 PMCID: PMC9076016 DOI: 10.1002/ctm2.821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/09/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Background During pregnancy, mother–child interactions trigger a variety of subtle changes in the maternal body, which may be reflected in the status of peripheral blood mononuclear cells (PBMCs). Although these cells are easy to access and monitor, a PBMC atlas for pregnant women has not yet been constructed. Methods We applied single‐cell RNA sequencing (scRNA‐seq) to profile 198,356 PBMCs derived from 136 pregnant women (gestation weeks 6 to 40) and a control cohort. We also used scRNA‐seq data to establish a transcriptomic clock and thereby predicted the gestational age of normal pregnancy. Results We identified reconfiguration of the peripheral immune cell phenotype during pregnancy, including interferon‐stimulated gene upregulation, activation of RNA splicing‐related pathways and immune activity of cell subpopulations. We also developed a cell‐type‐specific model to predict gestational age of normal pregnancy. Conclusions We constructed a single‐cell atlas of PBMCs in pregnant women spanning the entire gestation period, which should help improve our understanding of PBMC composition turnover in pregnant women.
Collapse
Affiliation(s)
- Dongsheng Chen
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Wu
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Langchao Liang
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyou Wang
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Cheng
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | | | - Chaochao Chai
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Chengcheng Sun
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wandong Zhao
- BGI-Shenzhen, Shenzhen, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhiyuan Lv
- BGI-Shenzhen, Shenzhen, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory for Birth Defects Screening, BGI-Shenzhen, Shenzhen, China
| | - Xiaoxia Wu
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Ning Sun
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yiwei Zhang
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jing Zhang
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yixuan Chen
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jianing Tong
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiangdong Wang
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.,Fudan University Shanghai Medical College, Shanghai, China
| | | | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianmin Niu
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
True H, Blanton M, Sureshchandra S, Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunol Rev 2022; 308:77-92. [PMID: 35451089 DOI: 10.1111/imr.13080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
A successful human pregnancy requires precisely timed adaptations by the maternal immune system to support fetal growth while simultaneously protecting mother and fetus against microbial challenges. The first trimester of pregnancy is characterized by a robust increase in innate immune activity that promotes successful implantation of the blastocyst and placental development. Moreover, early pregnancy is also a state of increased vulnerability to vertically transmitted pathogens notably, human immunodeficiency virus (HIV), Zika virus (ZIKV), SARS-CoV-2, and Listeria monocytogenes. As gestation progresses, the second trimester is marked by the establishment of an immunosuppressive environment that promotes fetal tolerance and growth while preventing preterm birth, spontaneous abortion, and other gestational complications. Finally, the period leading up to labor and parturition is characterized by the reinstatement of an inflammatory milieu triggering childbirth. These dynamic waves of carefully orchestrated changes have been dubbed the "immune clock of pregnancy." Monocytes in maternal circulation and tissue-resident macrophages at the maternal-fetal interface play a critical role in this delicate balance. This review will summarize the current data describing the longitudinal changes in the phenotype and function of monocyte and macrophage populations in healthy and complicated pregnancies.
Collapse
Affiliation(s)
- Heather True
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Madison Blanton
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Gomez-Lopez N, Romero R, Tao L, Gershater M, Leng Y, Zou C, Farias-Jofre M, Galaz J, Miller D, Tarca AL, Arenas-Hernandez M, Bhatti G, Garcia-Flores V, Liu Z, Para R, Kanninen T, Hadaya O, Paredes C, Xu Y. Distinct Cellular Immune Responses to SARS-CoV-2 in Pregnant Women. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1857-1872. [PMID: 35379748 PMCID: PMC9180665 DOI: 10.4049/jimmunol.2101123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022]
Abstract
Pregnant women are at increased risk of adverse outcomes, including preeclampsia and preterm birth, that may result from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Pregnancy imprints specific maternal immune responses that can modulate host susceptibility to microbial infection; therefore, recent studies have focused on the humoral response against SARS-CoV-2 in pregnant women. However, the pregnancy-specific cellular immune responses triggered by SARS-CoV-2 infection are poorly understood. In this study, we undertook an extensive in vitro investigation to determine the cellular immune responses to SARS-CoV-2 particles and proteins/peptides in pregnant women. First, we show that SARS-CoV-2 particles do not alter the pregnancy-specific oxidative burst of neutrophils and monocytes. Yet, SARS-CoV-2 particles/proteins shift monocyte activation from the classical to intermediate states in pregnant, but not in nonpregnant, women. Furthermore, SARS-CoV-2 proteins, but not particles or peptide pools, mildly enhance T cell activation during pregnancy. As expected, B cell phenotypes are heavily modulated by SARS-CoV-2 particles in all women; yet, pregnancy itself further modified such responses in these adaptive immune cells. Lastly, we report that pregnancy itself governs cytokine responses in the maternal circulation, of which IFN-β and IL-8 were diminished upon SARS-CoV-2 challenge. Collectively, these findings highlight the differential in vitro responses to SARS-CoV-2 in pregnant and nonpregnant women and shed light on the immune mechanisms implicated in coronavirus disease 2019 during pregnancy.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI; and
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Chengrui Zou
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Zhenjie Liu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tomi Kanninen
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Ola Hadaya
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Carmen Paredes
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
8
|
Malvik LB, De Pater GH, Dahle GO, Guttormsen AB. Gender-specific decline in perioperative allergic reactions in Norway after withdrawal of pholcodine. Allergy 2022; 77:1317-1319. [PMID: 34963030 DOI: 10.1111/all.15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Lars Berg Malvik
- Haukeland University Hospital Bergen Norway
- Drammen Hospital Drammen Norway
| | | | | | - Anne Berit Guttormsen
- Haukeland University Hospital Bergen Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| |
Collapse
|
9
|
Wu J, Zhang Q, Zhang L, Feng P, Gao M, Zhao Z, Yang L. Toll-like receptor signaling is changed in ovine lymph node during early pregnancy. Anim Sci J 2021; 92:e13541. [PMID: 33728713 DOI: 10.1111/asj.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
Toll-like receptors (TLRs) participate in regulation of adaptive immune responses, and lymph nodes play key roles in the initiation of immune responses. There is a tolerance to the allogenic fetus during pregnancy, but it is unclear that expression of TLR signaling is in ovine lymph node during early pregnancy. In this study, lymph nodes were sampled from day 16 of nonpregnant ewes and days 13, 16, and 25 of pregnant ewes, and the expressions of TLR family (TLR2, TLR3, TLR4, TLR5 and TLR9), adaptor proteins, including myeloid differentiation primary-response protein 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6), and interleukin-1-receptor-associated kinase 1 (IRAK1), were analyzed through real-time quantitative polymerase chain reaction, Western blot, and immunohistochemistry analysis. The results showed that mRNA and protein levels of TLR2, TLR3, TLR4, TRAF6, and MyD88 were upregulated in the maternal lymph node, but TLR5, TLR9, and IRAK1 were downregulated during early pregnancy. In addition, MyD88 protein was located in the subcapsular sinus and lymph sinuses. Therefore, it is suggested that early pregnancy induces changes in TLR signaling in maternal lymph node, which may be involved in regulation of maternal immune responses in sheep.
Collapse
Affiliation(s)
- Jiaxuan Wu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qiongao Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Pengfei Feng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Meihong Gao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zhenyang Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
10
|
Stelzer IA, Ghaemi MS, Han X, Ando K, Hédou JJ, Feyaerts D, Peterson LS, Rumer KK, Tsai ES, Ganio EA, Gaudillière DK, Tsai AS, Choisy B, Gaigne LP, Verdonk F, Jacobsen D, Gavasso S, Traber GM, Ellenberger M, Stanley N, Becker M, Culos A, Fallahzadeh R, Wong RJ, Darmstadt GL, Druzin ML, Winn VD, Gibbs RS, Ling XB, Sylvester K, Carvalho B, Snyder MP, Shaw GM, Stevenson DK, Contrepois K, Angst MS, Aghaeepour N, Gaudillière B. Integrated trajectories of the maternal metabolome, proteome, and immunome predict labor onset. Sci Transl Med 2021; 13:13/592/eabd9898. [PMID: 33952678 DOI: 10.1126/scitranslmed.abd9898] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/01/2020] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10-40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 × 10-7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies.
Collapse
Affiliation(s)
- Ina A Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Mohammad S Ghaemi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Digital Technologies Research Centre, National Research Council Canada, Toronto, ON M5T 3J1, Canada
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA 94103, USA
| | - Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Julien J Hédou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Laura S Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Kristen K Rumer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Eileen S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Dyani K Gaudillière
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Benjamin Choisy
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Lea P Gaigne
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Danielle Jacobsen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Sonia Gavasso
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Neurology, NeuroSys-Med, Haukeland University Hospital, 5021 Bergen, Norway
| | - Gavin M Traber
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Natalie Stanley
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Anthony Culos
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Gary L Darmstadt
- Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Maurice L Druzin
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ronald S Gibbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Xuefeng B Ling
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Karl Sylvester
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Brendan Carvalho
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Gary M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA. .,Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| |
Collapse
|
11
|
Moumne O, Hampe ME, Montoya-Williams D, Carson TL, Neu J, Francois M, Rhoton-Vlasak A, Lemas DJ. Implications of the vaginal microbiome and potential restorative strategies on maternal health: a narrative review. J Perinat Med 2021; 49:402-411. [PMID: 33554571 DOI: 10.1515/jpm-2020-0367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/10/2020] [Indexed: 11/15/2022]
Abstract
The vaginal microbiome undergoes dramatic shifts before and throughout pregnancy. Although the genetic and environmental factors that regulate the vaginal microbiome have yet to be fully elucidated, high-throughput sequencing has provided an unprecedented opportunity to interrogate the vaginal microbiome as a potential source of next-generation therapeutics. Accumulating data demonstrates that vaginal health during pregnancy includes commensal bacteria such as Lactobacillus that serve to reduce pH and prevent pathogenic invasion. Vaginal microbes have been studied as contributors to several conditions occurring before and during pregnancy, and an emerging topic in women's health is finding ways to alter and restore the vaginal microbiome. Among these restorations, perhaps the most significant effect could be preterm labor (PTL) prevention. Since bacterial vaginosis (BV) is known to increase risk of PTL, and vaginal and oral probiotics are effective as supplemental treatments for BV prevention, a potential therapeutic benefit exists for pregnant women at risk of PTL. A new method of restoration, vaginal microbiome transplants (VMTs) involves transfer of one women's cervicovaginal secretions to another. New studies investigating recurrent BV will determine if VMTs can safely establish a healthy Lactobacillus-dominant vaginal microbiome. In most cases, caution must be taken in attributing a disease state and vaginal dysbiosis with a causal relationship, since the underlying reason for dysbiosis is usually unknown. This review focuses on the impact of vaginal microflora on maternal outcomes before and during pregnancy, including PTL, gestational diabetes, preeclampsia, and infertility. It then reviews the clinical evidence focused on vaginal restoration strategies, including VMTs.
Collapse
Affiliation(s)
- Olivia Moumne
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mary E Hampe
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Tiffany L Carson
- Division of Preventive Medicine, Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Josef Neu
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Magda Francois
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alice Rhoton-Vlasak
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dominick J Lemas
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Zhang S, Zhang Y, Gan L, Wei F, Chai B, A Aljaafreh AAH, Liu X, Duan X, Jiang J, Wang X, He M, Huang X, Cai H, Chen T, Chen H. Progesterone Suppresses Neisseria gonorrhoeae-Induced Inflammation Through Inhibition of NLRP3 Inflammasome Pathway in THP-1 Cells and Murine Models. Front Microbiol 2021; 12:570093. [PMID: 33633700 PMCID: PMC7900005 DOI: 10.3389/fmicb.2021.570093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023] Open
Abstract
Asymptomatic/subclinical gonococcal infections in females continue to be prevalent within the general population, thus emerging as a global health problem. However, the reasons for these clinical manifestations are unknown. Our group had previously found out that in females, asymptomatic gonococcal infections correlate with higher serum progesterone (P4) levels and lower IL-1β levels in cervical secretions. We used murine infection model and THP-1 cells to determine whether P4 exerts anti-inflammatory effects on gonococcal infections. In the murine infection model, P4 (1 mg/day) inhibited the inflammatory effects induced by gonococcal infections which led to decreased neutrophil infiltration, reduced polymorphonuclear neutrophils (PMNs) numbers, IL-1β, TNF-α, and IL-6 levels in vaginal secretions. In addition, P4 down-regulated the mRNA and protein levels of NLRP3, associated with lower mRNA levels of pro-IL-1β, repressed caspase-1 activity in genital tissues and THP-1 cells. Moreover, P4 suppressed the phosphorylation levels of NF-κB and attenuated Neisseria gonorrhoeae (N. gonorrhoeae, gonococci or GC)-induced ROS generation. This is consistent with the two signals required for activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome. In conclusion, our result shows that P4 suppresses the gonococci induced-inflammation, especially through the NLRP3 inflammasome pathway, and partially explains the pathogenesis of asymptomatic GC infection in women.
Collapse
Affiliation(s)
- Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Tchnology, Wuhan, China
| | - Lu Gan
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fen Wei
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bao Chai
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Amaneh Abdel Hafez A Aljaafreh
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoru Duan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengwen He
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Huang
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Huahua Cai
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
13
|
Shepherd R, Cheung AS, Pang K, Saffery R, Novakovic B. Sexual Dimorphism in Innate Immunity: The Role of Sex Hormones and Epigenetics. Front Immunol 2021; 11:604000. [PMID: 33584674 PMCID: PMC7873844 DOI: 10.3389/fimmu.2020.604000] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Sexual dimorphism refers to differences between biological sexes that extend beyond sexual characteristics. In humans, sexual dimorphism in the immune response has been well demonstrated, with females exhibiting lower infection rates than males for a variety of bacterial, viral, and parasitic pathogens. There is also a substantially increased incidence of autoimmune disease in females compared to males. Together, these trends indicate that females have a heightened immune reactogenicity to both self and non-self-molecular patterns. However, the molecular mechanisms driving the sexually dimorphic immune response are not fully understood. The female sex hormones estrogen and progesterone, as well as the male androgens, such as testosterone, elicit direct effects on the function and inflammatory capacity of immune cells. Several studies have identified a sex-specific transcriptome and methylome, independent of the well-described phenomenon of X-chromosome inactivation, suggesting that sexual dimorphism also occurs at the epigenetic level. Moreover, distinct alterations to the transcriptome and epigenetic landscape occur in synchrony with periods of hormonal change, such as puberty, pregnancy, menopause, and exogenous hormone therapy. These changes are also mirrored by changes in immune cell function. This review will outline the evidence for sex hormones and pregnancy-associated hormones as drivers of epigenetic change, and how this may contribute to the sexual dimorphism. Determining the effects of sex hormones on innate immune function is important for understanding sexually dimorphic autoimmune diseases, sex-specific responses to pathogens and vaccines, and how innate immunity is altered during periods of hormonal change (endogenous or exogenous).
Collapse
Affiliation(s)
- Rebecca Shepherd
- Epigenetics Group, Infection and Immunity Theme, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Ada S. Cheung
- Department of Medicine (Austin Health), The University of Melbourne, Parkville, VIC, Australia
- Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
| | - Ken Pang
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Brain and Mitochondrial Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Adolescent Medicine, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Richard Saffery
- Epigenetics Group, Infection and Immunity Theme, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Boris Novakovic
- Epigenetics Group, Infection and Immunity Theme, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol 2020; 11:575197. [PMID: 33133091 PMCID: PMC7579415 DOI: 10.3389/fimmu.2020.575197] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
The risk and severity of specific infections are increased during pregnancy due to a combination of physiological and immunological changes. Characterizing the maternal immune system during pregnancy is important to understand how the maternal immune system maintains tolerance towards the allogeneic fetus. This may also inform strategies to prevent maternal fatalities due to infections and optimize maternal vaccination to best protect the mother-fetus dyad and the infant after birth. In this review, we describe what is known about the immunological changes that occur during a normal pregnancy.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christina Michalski
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pascal M Lavoie
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Prenatal stress increases IgA coating of offspring microbiota and exacerbates necrotizing enterocolitis-like injury in a sex-dependent manner. Brain Behav Immun 2020; 89:291-299. [PMID: 32688025 PMCID: PMC7919389 DOI: 10.1016/j.bbi.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is an intestinal inflammatory disease with high morbidity and mortality that affects almost exclusively premature infants. Breast milk feeding is known to substantially lower NEC incidence, and specific components of breast milk, such as immunoglobulin (Ig) A, have been identified as mediating this protective effect. On the other hand, accumulating evidence suggests dysbiosis of the neonatal intestinal microbiome contributes to NEC pathogenesis. In mice, neonates can inherit a dysbiotic microbiome from dams that experience stress during pregnancy. Here we show that while prenatal stress lowers fecal IgA levels in pregnant mice, it does not result in lower levels of IgA in the breast milk. Nevertheless, coating of female, but not male, offspring microbiota by IgA is increased by prenatal stress. Accordingly, prenatal stress was found to alter the bacterial community composition in female neonates but not male neonates. Furthermore, female, but not male, offspring of prenatally stressed mothers exhibited more severe colonic tissue damage in a NEC-like injury model compared to offspring with non-stressed mothers. Our results point to prenatal stress as a possible novel risk factor for NEC and potentially reveal new avenues in NEC prevention and therapy.
Collapse
|
16
|
Qiu W, Hodges TE, Clark EL, Blankers SA, Galea LAM. Perinatal depression: Heterogeneity of disease and in animal models. Front Neuroendocrinol 2020; 59:100854. [PMID: 32750403 DOI: 10.1016/j.yfrne.2020.100854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
Perinatal depression (PND) can have either an antepartum or postpartum onset. Although the greatest risk factor for PND is previous depression history,de novoPND occurs with the majority of cases occurring in the postpartum. Timing of depression can impact etiology, prognosis, and response to treatment. Thus, it is crucial to study the impact of the heterogeneity of PND for better health outcomes. In this review, we outline the differences between antepartum and postpartum depression onset of PND. We discuss maternal physiological changes that differ between pregnancy and postpartum and how these may differentially impact depression susceptibility. We highlight changes in the maternal steroid and peptide hormone levels, immune signalling, serotonergic tone, metabolic factors, brain morphology, and the gut microbiome. Finally, we argue that studying the heterogeneity of PND in clinical and preclinical models can lead to improved knowledge of disease etiopathology and treatment outcomes.
Collapse
Affiliation(s)
- Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Travis E Hodges
- Department of Psychology, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Emily L Clark
- Graduate Program in Neuroscience, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Psychology, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|
17
|
Justina VD, Giachini FR, Sullivan JC, Webb RC. Toll-Like Receptors Contribute to Sex Differences in Blood Pressure Regulation. J Cardiovasc Pharmacol 2020; 76:255-266. [PMID: 32902942 PMCID: PMC7751064 DOI: 10.1097/fjc.0000000000000869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune system, and recently, they have been shown to be involved in the regulation of blood pressure. The incidence of hypertension is higher in men, and it increases in postmenopausal women. In fact, premenopausal women are protected from cardiovascular disease compared with age-matched men, and it is well established that this protective effect is lost with menopause. However, the molecular mechanisms underlying this protection in women are unknown. Whether or not it could be related to differential activation of the innate immune system remains to be elucidated. This review focuses on (1) the differences between men and women in TLR activation and (2) whether TLR activation may influence the regulation of blood pressure in a sex-dependent manner.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra Do Garcas, Brazil
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
| |
Collapse
|
18
|
Moncunill G, Dobaño C, González R, Smolen KK, Manaca MN, Balcells R, Jairoce C, Cisteró P, Vala A, Sevene E, Rupérez M, Aponte JJ, Macete E, Menéndez C, Kollmann TR, Mayor A. Association of Maternal Factors and HIV Infection With Innate Cytokine Responses of Delivering Mothers and Newborns in Mozambique. Front Microbiol 2020; 11:1452. [PMID: 32765436 PMCID: PMC7381182 DOI: 10.3389/fmicb.2020.01452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Maternal factors and exposure to pathogens have an impact on infant health. For instance, HIV exposed but uninfected infants have higher morbidity and mortality than HIV unexposed infants. Innate responses are the first line of defense and orchestrate the subsequent adaptive immune response and are especially relevant in newborns. To determine the association of maternal HIV infection with maternal and newborn innate immunity we analyzed the cytokine responses upon pattern recognition receptor (PRR) stimulations in the triad of maternal peripheral and placental blood as well as in cord blood in a cohort of mother-infant pairs from southern Mozambique. A total of 48 women (35 HIV-uninfected and 13 HIV-infected) were included. Women and infant innate responses positively correlated with each other. Age, gravidity and sex of the fetus had some associations with spontaneous production of cytokines in the maternal peripheral blood. HIV-infected women not receiving antiretroviral therapy (ART) before pregnancy showed decreased IL-8 and IL-6 PRR responses in peripheral blood compared to those HIV-uninfected, and PRR hyporesponsiveness for IL-8 was also found in the corresponding infant’s cord blood. HIV infection had a greater impact on placental blood responses, with significantly increased pro-inflammatory, TH1 and TH17 PRR responses in HIV-infected women not receiving ART before pregnancy compared to HIV-uninfected women. In conclusion, innate response of the mother and her newborn was altered by HIV infection in the women who did not receive ART before pregnancy. As these responses could be related to birth outcomes, targeted innate immune modulation could improve maternal and newborn health.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel González
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Kinga K Smolen
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Maria N Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Reyes Balcells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Anifa Vala
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Esperança Sevene
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Department of Physiological Science, Clinical Pharmacology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - María Rupérez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Tobias R Kollmann
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Pflitsch C, Feldmann CN, Richert L, Hagen S, Diemert A, Goletzke J, Hecher K, Jazbutyte V, Renné T, Arck PC, Altfeld M, Ziegler S. In-depth characterization of monocyte subsets during the course of healthy pregnancy. J Reprod Immunol 2020; 141:103151. [PMID: 32531656 DOI: 10.1016/j.jri.2020.103151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
Pregnancy represents an immunological challenge for the maternal immune system. Pregnancy augments innate immune responses, and particularly monocytes contribute to maintaining the balance between pro- and anti-inflammatory immune responses required for the successful sequence of distinct immunological phases throughout pregnancy. Nonetheless, studies that focus on the heterogeneity of monocytes and analyze the alteration of monocyte subsets in a longitudinal approach throughout healthy pregnancies have remained scarce. In this study, we characterized the gradual phenotypic changes of monocyte subsets and the secretory potential of bulk monocytes in peripheral blood mononuclear cells of healthy pregnant women from a population-based prospective birth cohort study. Blood samples at predefined time points were analyzed using flow cytometry for in-depth characterization of monocyte subsets, which confirmed a shift from classical towards intermediate monocytes throughout pregnancy. Principal component analysis revealed characteristic phenotypic changes on monocyte subsets, especially on the intermediate monocyte subset, throughout pregnancy. Pregnancy-related hormones were measured in serum and β-human chorionic gonadotropin levels were significantly associated with expression of CD11b, CD116 and CCR2 on monocyte subsets. TLR4 and TLR7/8 stimulation of monocytes furthermore showed reduced polycytokine production towards the end of pregnancy. These data provide a comprehensive overview of phenotypic changes and secretory potential of monocytes in healthy pregnant women and establish a selective contribution of different monocyte subsets to healthy pregnancy. The results from this study therefore build a basis for future comparisons and evaluation of women with adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Caroline Pflitsch
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany
| | - Cai Niklaas Feldmann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany
| | - Laura Richert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany; Université Bordeaux, ISPED, Centre INSERM U1219, Inria, SISTM, F-33000, Bordeaux, France; CHU de Bordeaux, pôle de santé publique, F-33000, Bordeaux, France
| | - Sven Hagen
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Janina Goletzke
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Virginija Jazbutyte
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany
| | - Susanne Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany.
| |
Collapse
|
20
|
Lauzon-Joset JF, Scott NM, Mincham KT, Stumbles PA, Holt PG, Strickland DH. Pregnancy Induces a Steady-State Shift in Alveolar Macrophage M1/M2 Phenotype That Is Associated With a Heightened Severity of Influenza Virus Infection: Mechanistic Insight Using Mouse Models. J Infect Dis 2020; 219:1823-1831. [PMID: 30576502 DOI: 10.1093/infdis/jiy732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza virus infection during pregnancy is associated with enhanced disease severity. However, the underlying mechanisms are still not fully understood. We hypothesized that normal alveolar macrophage (AM) functions, which are central to maintaining lung immune homeostasis, are altered during pregnancy and that this dysregulation contributes to the increased inflammatory response to influenza virus infection. METHODS Time-mated BALB/c mice were infected with a low dose of H1N1 influenza A virus at gestation day 9.5. Inflammatory cells in bronchoalveolar lavage (BAL) fluid were assessed by flow cytometry. RESULTS Our findings confirm previous reports of increased severity of influenza virus infection in pregnant mice. The heightened inflammatory response detected in BAL fluid from infected pregnant mice was characterized by neutrophil-rich inflammation with concomitantly reduced numbers of AM, which were slower to return to baseline counts, compared with nonpregnant infected mice. The increased infection severity and inflammatory responses to influenza during pregnancy were associated with a pregnancy-induced shift in AM phenotype at homeostatic baseline, from the M1 (ie, classical activation) state toward the M2 (ie, alternative activation) state, as evidence by increased expression of CD301 and reduced levels of CCR7. CONCLUSION These results show that pregnancy is associated with an alternatively activated phenotype of AM before infection, which may contribute to heightened disease severity.
Collapse
Affiliation(s)
| | - Naomi M Scott
- Telethon Kids Institute, University of Western Australia, Nedlands
| | - Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands.,School of Medicine, University of Western Australia, Crawley
| | - Philip A Stumbles
- Telethon Kids Institute, University of Western Australia, Nedlands.,School of Veterinary and Life Science, Murdoch University, Perth, Australia
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Nedlands
| | | |
Collapse
|
21
|
Fuhler GM. The immune system and microbiome in pregnancy. Best Pract Res Clin Gastroenterol 2020; 44-45:101671. [PMID: 32359685 DOI: 10.1016/j.bpg.2020.101671] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Hormonal changes during pregnancy instigate numerous physiological changes aimed at the growth and delivery of a healthy baby. A careful balance between immunological tolerance against fetal antigens and immunity against infectious agents needs to be maintained. A three-way interaction between pregnancy hormones, the immune system and our microbiota is now emerging. Recent evidence suggests that microbial alterations seen during pregnancy may help maintain homeostasis and aid the required physiological changes occurring in pregnancy. However, these same immunological and microbial alterations may also make women more vulnerable during pregnancy and the post-partum period, especially regarding immunological and infectious diseases. Thus, a further understanding of the host-microbial interactions taking place during pregnancy may improve identification of populations at risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- G M Fuhler
- Erasmus MC University Medical Center Rotterdam, Department of Gastroenterology and Hepatology, Erasmus Medical Center, Gravendijkwal 230, 3015CE, Rotterdam, the Netherlands.
| |
Collapse
|
22
|
Immunological adaptations in pregnancy that modulate rheumatoid arthritis disease activity. Nat Rev Rheumatol 2020; 16:113-122. [PMID: 31932747 DOI: 10.1038/s41584-019-0351-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 02/08/2023]
Abstract
During pregnancy, the fetus that grows within the maternal uterus is not rejected by the maternal immune system. To enable both tolerance towards the fetus and defence against pathogens, modifications of the maternal immune system occur during gestation. These modifications are able to bring about a natural improvement in disease activity of some autoimmune diseases, such as rheumatoid arthritis (RA). Various mechanisms of the immune system contribute to the phenomenon of pregnancy-related improvement of RA, and the cessation of these immunomodulatory mechanisms after delivery correlates with postpartum disease flare. HLA disparity between mother and fetus, glycosylation of IgG, immunoregulatory pathways, and alterations in innate and adaptive immune cells and their cytokines have important roles in pregnancy and in pregnancy-related amelioration of RA.
Collapse
|
23
|
Fuller EA, Younesi S, Xavier S, Sominsky L. Neuroimmune regulation of female reproduction in health and disease. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Solano ME. Decidual immune cells: Guardians of human pregnancies. Best Pract Res Clin Obstet Gynaecol 2019; 60:3-16. [PMID: 31285174 DOI: 10.1016/j.bpobgyn.2019.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022]
Abstract
During human pregnancy, trophoblast cells, the main cellular component of the placenta, invade deeply into uterine blood vessels and the modified endometrium (decidua). Hence, the maternal immune system must adapt to it. A successful pregnancy requires the tolerance of genetically different (allogenic) cells while the mother's immune competence is maintained. This tolerance is ensured through multiple overlapping and occasionally redundant innate and adaptive immune mechanisms. The present article aims to provide a broad overview on uterine immune cell components and the phenotypical and functional changes that they experience during pregnancy. Particularly, we seek to highlight very recent findings in functional adaptations to pregnancy in immune cell populations encountered in the decidua. These adaptations not only ensure tolerance to allogenic trophoblast cells but also promote optimal placental and fetal growth, simultaneously endeavoring to maintain immune surveillance to provide defense against infections.
Collapse
Affiliation(s)
- Maria Emilia Solano
- Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg Germany.
| |
Collapse
|
25
|
Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front Endocrinol (Lausanne) 2019; 10:198. [PMID: 30984115 PMCID: PMC6449726 DOI: 10.3389/fendo.2019.00198] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Pregnancy involves a complex interplay between maternal neuroendocrine and immunological systems in order to establish and sustain a growing fetus. It is thought that the uterus at pregnancy transitions from quiescent to laboring state in response to interactions between maternal and fetal systems at least partly via altered neuroendocrine signaling. Progesterone (P4) is a vital hormone in maternal reproductive tissues and immune cells during pregnancy. As such, P4 is widely used in clinical interventions to improve the chance of embryo implantation, as well as reduce the risk of miscarriage and premature labor. Here we review research to date that focus on the pathways through which P4 mediates its actions on both the maternal reproductive and immune system. We will dissect the role of P4 as a modulator of inflammation, both systemic and intrinsic to the uterus, during human pregnancy and labor.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Pei F. Lai
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|