1
|
Allard JL, Aguirre M, Gupta R, Chua SMH, Shields KA, Lua LHL. Effective parallel evaluation of molecular design, expression and bioactivity of novel recombinant butyrylcholinesterase medical countermeasures. Chem Biol Interact 2024; 403:111219. [PMID: 39222902 DOI: 10.1016/j.cbi.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Current medical countermeasures (MCMs) for nerve agent poisoning have limited efficacy, and can cause serious adverse effects, prompting the requirement for new broad-spectrum therapeutics. Human plasma-derived butyrylcholinseterase (huBChE) is a promising novel bioscavenger MCM which has shown potential in animal studies, however, is economically prohibitive to manufacture at scale. This study addresses current challenges for the economical production of a bioactive and long-acting recombinant huBChE (rBChE) in mammalian cells by being the first to directly compare novel rBChE design strategies. These include co-expression of a proline rich attachment domain (PRAD) and fusion of BChE with a protein partner. Additionally, a pre-purification screening method developed in this study enables parallel comparison of the expression efficiency, activity and broad-spectrum binding to nerve agents for ten novel rBChE molecular designs. All designed rBChE demonstrated functionality to act as broad-spectrum MCMs to G, V and A series nerve agents. Expression using the ExpiCHO™ Max protocol provided greatest expression levels and activity for all constructs, with most rBChE expressing poorly in Expi293™. Fc- or hSA-fused rBChE significantly outperformed constructs designed to mimic huBChE, including PRAD-BChE, and proved an effective strategy to significantly improve enzyme activity and expression. Choice of protein partner, directionality and the addition of a linker also impacted fusion rBChE activity and expression. Overall, hSA fused rBChE provided greatest expression yield and activity, with BChE-hSA the best performing construct. The purified and characterised BChE-hSA demonstrated similar functionality to huBChE to be inhibited by GD, VX and A-234, supporting the findings of the pre-screening study and validating its capacity to assess and streamline the selection process for rBChE constructs in a cost-effective manner. Collectively, these outcomes contribute to risk mitigation in early-stage development, providing a systematic method to compare rBChE designs and a focus for future development.
Collapse
Affiliation(s)
- Joanne L Allard
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia; Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia.
| | - Miguel Aguirre
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| | - Ruchi Gupta
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia
| | - Sheena M H Chua
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| | - Katherine A Shields
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia
| | - Linda H L Lua
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
2
|
Catalano C, Lucier KW, To D, Senko S, Tran NL, Farwell AC, Silva SM, Dip PV, Poweleit N, Scapin G. The CryoEM structure of human serum albumin in complex with ligands. J Struct Biol 2024; 216:108105. [PMID: 38852682 DOI: 10.1016/j.jsb.2024.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Human serum albumin (HSA) is the most prevalent plasma protein in the human body, accounting for 60 % of the total plasma protein. HSA plays a major pharmacokinetic function, serving as a facilitator in the distribution of endobiotics and xenobiotics within the organism. In this paper we report the cryoEM structures of HSA in the apo form and in complex with two ligands (salicylic acid and teniposide) at a resolution of 3.5, 3.7 and 3.4 Å, respectively. We expand upon previously published work and further demonstrate that sub-4 Å maps of ∼60 kDa proteins can be routinely obtained using a 200 kV microscope, employing standard workflows. Most importantly, these maps allowed for the identification of small molecule ligands, emphasizing the practical applicability of this methodology and providing a starting point for subsequent computational modeling and in silico optimization.
Collapse
Affiliation(s)
- Claudio Catalano
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA.
| | - Kyle W Lucier
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Dennis To
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Skerdi Senko
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Nhi L Tran
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Ashlyn C Farwell
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Sabrina M Silva
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Phat V Dip
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Nicole Poweleit
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Giovanna Scapin
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| |
Collapse
|
3
|
Malik NA, Nazir N, Manzoor M, Gull F. Fungicide-albumin interactions: unraveling the complex relationship-a comprehensive review. Biophys Rev 2024; 16:417-439. [PMID: 39309131 PMCID: PMC11415336 DOI: 10.1007/s12551-024-01190-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/03/2024] [Indexed: 09/25/2024] Open
Abstract
This review will give an insight into the interactions of serum albumins, which are proteins found in the blood, with fungicides. There are molecular interactions between several fungicides and two serum albumin proteins: human serum albumin (HSA) and bovine serum albumin (BSA). The main objective of this review is to through some light on the interactions of the fungicides with serum albumins and to highlight their toxicity level. The interactions of serum albumins with fungicides are complex and can be affected by the properties of the proteins themselves. This review provides valuable insight into the interactions between serum albumins and fungicides, which can help to know the efficacy and mechanism of fungicides and may help in designing new fungicides with low or no toxicity.
Collapse
Affiliation(s)
- Nisar Ahmad Malik
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Nighat Nazir
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Mehak Manzoor
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Faizan Gull
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| |
Collapse
|
4
|
Satapathi D, Das M, Das UK, Laha S, Kundu P, Choudhuri I, Bhattacharya N, Samanta BC, Chattopadhyay N, Maity T. Experimental and molecular modelling demonstration of effective DNA and protein binding as well as anticancer potential of two mononuclear Cu(II) and Co(II) complexes with isothiocyanate and azide as anionic residues. Int J Biol Macromol 2024; 275:133716. [PMID: 38977049 DOI: 10.1016/j.ijbiomac.2024.133716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In the present study, one mononuclear Cu(II) [CuL(SCN)] (1) and one mononuclear Co(II) [CoLN3] (2) complexes, with a Schiff base ligand (HL) formed by condensation of 2-picolylamine and salicylaldehyde, have been successfully developed and structurally characterized. The square planer geometry of both complexes is fulfilled by the coordination of one deprotonated ligand and one ancillary ligand SCN-(1) or N3-(2) to the metal centre. Binding affinities of both complexes with deoxyribonucleic acid (DNA) and human serum albumin (HSA) are investigated using several biophysical and spectroscopic techniques. High values of the macromolecule-complex binding constants and other results confirm the effectiveness of both complexes towards binding with DNA and HSA. The determined values of the thermodynamic parameters support spontaneous interactions of both complexes with HSA, while fluorescence displacement and DNA melting studies establish groove-binding interactions with DNA for both complexes 1 and 2. The molecular modelling study validates the experimental findings. Both complexes are subjected to an MTT test establishing the anticancer property of complex 1 with lower risk to normal cells, confirmed by the IC50 values of the complex for HeLa cancer cells and HEK normal cells. Finally, a nuclear staining analysis reveals that the complexes have caused apoptotic cell death.
Collapse
Affiliation(s)
- Dibyendu Satapathi
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, West Bengal 721404, India
| | - Manik Das
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, West Bengal 721404, India
| | - Uttam Kumar Das
- Department of Chemistry, School of Physical Science, Mahatma Gandhi Central University, Bihar, India
| | - Soumik Laha
- Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Pronab Kundu
- Department of Chemistry, Presidency University, Yelahanka, Bengaluru 560064, India
| | - Indranil Choudhuri
- Department of Biotechnology, Panskura Banamali College, Panskura, West Bengal, India
| | - Nandan Bhattacharya
- Department of Biotechnology, Panskura Banamali College, Panskura, West Bengal, India
| | | | | | - Tithi Maity
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, West Bengal 721404, India.
| |
Collapse
|
5
|
Iwamoto N, Kai T, Inuki S, Ohno H, Maeda H, Watanabe H, Maruyama T, Oishi S. Mirror-Image Human Serum Albumin Domain III as a Tool for Analyzing Site II-Dependent Molecular Recognition. Bioconjug Chem 2024; 35:816-825. [PMID: 38781049 DOI: 10.1021/acs.bioconjchem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Human serum albumin (HSA) as a drug carrier can significantly improve the pharmacokinetic profiles of short-lived therapeutics. Conjugation of albumin-binding moieties (ABMs) to therapeutic agents may prolong their serum half-life by promoting their association with endogenous HSA. To discover a new molecular class of ABMs from mirror-image chemical space, a preparation protocol for bioactive HSA domain III and its d-enantiomer (d-HSA domain III) was established. Structural and functional analyses suggested that the synthetic protein enantiomers exhibited mirror-image structures and stereoselective neonatal fragement crystallizable receptor (FcRn) recognition. Additionally, the ligand-binding properties of synthetic l-HSA domain III were comparable with those of site II in native HSA, as confirmed using site II-selective fluorescent probes and an esterase substrate. Synthetic d-HSA domain III is an attractive tool for analyzing the site II-dependent molecular recognition properties of HSA.
Collapse
Affiliation(s)
- Naoya Iwamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo ku, Kyoto 606-8501, Japan
| | - Takuma Kai
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo ku, Kyoto 606-8501, Japan
| | - Hitoshi Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Watanabe
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo ku, Kyoto 606-8501, Japan
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina ku, Kyoto 607-8412, Japan
| |
Collapse
|
6
|
Saletti M, Paolino M, Venditti J, Bonechi C, Giuliani G, Lamponi S, Tassone G, Boccia A, Botta C, Blancafort L, Poggialini F, Vagaggini C, Cappelli A. A Facile Access to Green Fluorescent Albumin Derivatives. Chembiochem 2024; 25:e202300862. [PMID: 38369609 DOI: 10.1002/cbic.202300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 01/24/2024] [Accepted: 12/22/2023] [Indexed: 02/20/2024]
Abstract
A Morita-Baylis-Hillman Adduct (MBHA) derivative bearing a triphenylamine moiety was found to react with human serum albumin (HSA) shifting its emission from the blue to the green-yellow thus leading to green fluorescent albumin (GFA) derivatives and enlarging the platform of probes for aggregation-induced fluorescent-based detection techniques. A possible interaction of MBHA derivative 7 with a lipophilic pocket within the HSA structure was suggested by docking studies. DLS experiments showed that the reaction with HSA induce a conformational change of the protein contributing to the aggregation process of GFA derivatives. The results of investigations on the biological properties suggested that GFA retained the ability of binding drug molecules such as warfarin and diazepam. Finally, cytotoxicity evaluation studies suggested that, although the MBHA derivative 7 at 0.1 μg/mL affected the percentage of cell viability in comparison to the negative control, it cannot be considered cytotoxic, whereas at all the other concentrations≥0.5 μg/mL resulted cytotoxic at different extent.
Collapse
Affiliation(s)
- Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Jacopo Venditti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Claudia Bonechi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Lamponi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giusy Tassone
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Antonella Boccia
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" - SCITEC (CNR), Via A. Corti 12, 20133, Milano, Italy
| | - Chiara Botta
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" - SCITEC (CNR), Via A. Corti 12, 20133, Milano, Italy
| | - Lluís Blancafort
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/M. A. Capmany 69, 17003, Girona, Spain
| | - Federica Poggialini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Chiara Vagaggini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
7
|
Hoogenboezem EN, Patel SS, Lo JH, Cavnar AB, Babb LM, Francini N, Gbur EF, Patil P, Colazo JM, Michell DL, Sanchez VM, McCune JT, Ma J, DeJulius CR, Lee LH, Rosch JC, Allen RM, Stokes LD, Hill JL, Vickers KC, Cook RS, Duvall CL. Structural optimization of siRNA conjugates for albumin binding achieves effective MCL1-directed cancer therapy. Nat Commun 2024; 15:1581. [PMID: 38383524 PMCID: PMC10881965 DOI: 10.1038/s41467-024-45609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
The high potential of siRNAs to silence oncogenic drivers remains largely untapped due to the challenges of tumor cell delivery. Here, divalent lipid-conjugated siRNAs are optimized for in situ binding to albumin to improve pharmacokinetics and tumor delivery. Systematic variation of the siRNA conjugate structure reveals that the location of the linker branching site dictates tendency toward albumin association versus self-assembly, while the lipid hydrophobicity and reversibility of albumin binding also contribute to siRNA intracellular delivery. The lead structure increases tumor siRNA accumulation 12-fold in orthotopic triple negative breast cancer (TNBC) tumors over the parent siRNA. This structure achieves approximately 80% silencing of the anti-apoptotic oncogene MCL1 and yields better survival outcomes in three TNBC models than an MCL-1 small molecule inhibitor. These studies provide new structure-function insights on siRNA-lipid conjugate structures that are intravenously injected, associate in situ with serum albumin, and improve pharmacokinetics and tumor treatment efficacy.
Collapse
Affiliation(s)
- Ella N Hoogenboezem
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shrusti S Patel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Justin H Lo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashley B Cavnar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren M Babb
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eva F Gbur
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danielle L Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Violeta M Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua T McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jinqi Ma
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Linus H Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ryan M Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry D Stokes
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jordan L Hill
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rebecca S Cook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Xu X, Hu J, Xue H, Hu Y, Liu YN, Lin G, Liu L, Xu RA. Applications of human and bovine serum albumins in biomedical engineering: A review. Int J Biol Macromol 2023; 253:126914. [PMID: 37716666 DOI: 10.1016/j.ijbiomac.2023.126914] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Serum albumin, commonly recognized as a predominant major plasma protein, is ubiquitously distributed among vertebrates, demonstrating versatility and widespread accessibility. Numerous studies have discussed the composition and attributes of human and bovine serum albumin; nonetheless, few systematic and comprehensive summaries on human and bovine serum albumin exist. This paper reviews the applications of human and bovine serum albumin in biomedical engineering. First, we introduce the differences in the structure of human and bovine serum albumin. Next, we describe the extraction methods for human and bovine serum albumin (fractionation process separation, magnetic adsorption, reverse micellar (RM) extraction, and genetic engineering) and the advantages and disadvantages of recently developed extraction methods. The characteristics of different processing forms of human and bovine serum albumin are also discussed, concomitantly elucidating their intrinsic properties, functions, and applications in biomedicine. Notably, their pivotal functions as carriers for drugs and tissue-engineered scaffolds, as well as their contributions to cell reproduction and bioimaging, are critically examined. Finally, to provide guidance for researchers in their future work, this review summarizes the current state of human and bovine serum albumin research and outlines potential future research topics.
Collapse
Affiliation(s)
- Xinhao Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
9
|
Stielow M, Witczyńska A, Kubryń N, Fijałkowski Ł, Nowaczyk J, Nowaczyk A. The Bioavailability of Drugs-The Current State of Knowledge. Molecules 2023; 28:8038. [PMID: 38138529 PMCID: PMC10745386 DOI: 10.3390/molecules28248038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Drug bioavailability is a crucial aspect of pharmacology, affecting the effectiveness of drug therapy. Understanding how drugs are absorbed, distributed, metabolized, and eliminated in patients' bodies is essential to ensure proper and safe treatment. This publication aims to highlight the relevance of drug bioavailability research and its importance in therapy. In addition to biochemical activity, bioavailability also plays a critical role in achieving the desired therapeutic effects. This may seem obvious, but it is worth noting that a drug can only produce the expected effect if the proper level of concentration can be achieved at the desired point in a patient's body. Given the differences between patients, drug dosages, and administration forms, understanding and controlling bioavailability has become a priority in pharmacology. This publication discusses the basic concepts of bioavailability and the factors affecting it. We also looked at various methods of assessing bioavailability, both in the laboratory and in the clinic. Notably, the introduction of new technologies and tools in this field is vital to achieve advances in drug bioavailability research. This publication also discusses cases of drugs with poorly described bioavailability, providing a deeper understanding of the complex challenges they pose to medical researchers and practitioners. Simultaneously, the article focuses on the perspectives and trends that may shape the future of research regarding bioavailability, which is crucial to the development of modern pharmacology and drug therapy. In this context, the publication offers an essential, meaningful contribution toward understanding and highlighting bioavailability's role in reliable patient treatment. The text also identifies areas that require further research and exploration.
Collapse
Affiliation(s)
| | - Adrianna Witczyńska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 Jurasza Street, 85-089 Bydgoszcz, Poland; (A.W.); (N.K.); (Ł.F.)
| | - Natalia Kubryń
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 Jurasza Street, 85-089 Bydgoszcz, Poland; (A.W.); (N.K.); (Ł.F.)
| | - Łukasz Fijałkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 Jurasza Street, 85-089 Bydgoszcz, Poland; (A.W.); (N.K.); (Ł.F.)
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland;
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 Jurasza Street, 85-089 Bydgoszcz, Poland; (A.W.); (N.K.); (Ł.F.)
| |
Collapse
|
10
|
Mudi A, Ray S, Bera M, Dolai M, Das M, Kundu P, Laha S, Choudhuri I, Chandra Samanta B, Bhattacharyya N, Maity T. A multi-spectroscopic and molecular docking approach for DNA/protein binding study and cell viability assay of first-time reported pendent azide bearing Cu(II)-quercetin and dicyanamide bearing Zn(II)-quercetin complexes. Heliyon 2023; 9:e22712. [PMID: 38125469 PMCID: PMC10731082 DOI: 10.1016/j.heliyon.2023.e22712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
In the current study, one new quercetin-based Zn(II) complex [Zn(Qr)(CNNCN)(H2O)2] (Complex 1) which is developed by condensation of quercetin with ZnCl2 in the presence of NaN(CN)2 and Cu(II) complex [Cu(Qr)N3(CH3OH)(H2O)] (complex 2) which is developed by the condensation reaction of quercetin and CuCl2 in presence of NaN3, are thoroughly examined in relation to their use in biomedicine. The results of several spectroscopic studied confirm the structure of both the complexes and the Density Functional Theory (DFT) study helps to optimize the structure of complex 1 and 2. After completion of the identification process, DNA and Human Serum Albumin (HSA) binding efficacy of both the investigated complexes are performed by implementing a long range of biophysical studies and a thorough analysis of the results unveils that complex 1 has better interaction efficacy with the macromolecules than complex 2. The binding efficacy of complex 1 is comparatively higher towards both macromolecules because of its pure groove binding mode during interaction with DNA and the presence of an extra H-bond during connection with HSA. The experimental host-guest binding results is fully validated by molecular docking study. Interestingly complex 1 shows better antioxidant properties than complex 2, as well as quercetin, and it has strong anticancer property with minimal damage to normal cells, which is proved by the MTT assay study. Better DNA and HSA binding efficacy of 1 may be the reason for the better anticancer property of complex 1.
Collapse
Affiliation(s)
- Anupam Mudi
- Department of Botany, Behala College, Behala, India
| | - Shubham Ray
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, 721404, India
| | - Manjushree Bera
- Department of Nutrition, Prabhat Kumar College, Contai, Contai, Purba Medinipur, 721404, India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, 721404, India
| | - Manik Das
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, 721404, India
| | - Pronab Kundu
- Department of Chemistry, Presidency University, Yelahanka, Bengaluru, 560064, India
| | | | | | | | | | - Tithi Maity
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, 721404, India
| |
Collapse
|
11
|
Milusheva M, Todorova M, Gledacheva V, Stefanova I, Feizi-Dehnayebi M, Pencheva M, Nedialkov P, Tumbarski Y, Yanakieva V, Tsoneva S, Nikolova S. Novel Anthranilic Acid Hybrids-An Alternative Weapon against Inflammatory Diseases. Pharmaceuticals (Basel) 2023; 16:1660. [PMID: 38139787 PMCID: PMC10747134 DOI: 10.3390/ph16121660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Anti-inflammatory drugs are used to relieve pain, fever, and inflammation while protecting the cardiovascular system. However, the side effects of currently available medications have limited their usage. Due to these adverse effects, there is a significant need for new drugs. The current trend of research has shifted towards the synthesis of novel anthranilic acid hybrids as anti-inflammatory agents. Phenyl- or benzyl-substituted hybrids exerted very good anti-inflammatory effects in preventing albumin denaturation. To confirm their anti-inflammatory effects, additional ex vivo tests were conducted. These immunohistochemical studies explicated the same compounds with better anti-inflammatory potential. To determine the binding affinity and interaction mode, as well as to explain the anti-inflammatory activities, the molecular docking simulation of the compounds was investigated against human serum albumin. The biological evaluation of the compounds was completed, assessing their antimicrobial activity and spasmolytic effect. Based on the experimental data, we can conclude that a collection of novel hybrids was successfully synthesized, and they can be considered anti-inflammatory drug candidates-alternatives to current therapeutics.
Collapse
Affiliation(s)
- Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan P.O. Box 98135-674, Iran;
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Yulian Tumbarski
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Velichka Yanakieva
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| |
Collapse
|
12
|
Rajendran D, Chandrasekaran N. Unveiling the Modification of Esterase-like Activity of Serum Albumin by Nanoplastics and Their Cocontaminants. ACS OMEGA 2023; 8:43719-43731. [PMID: 38027364 PMCID: PMC10666218 DOI: 10.1021/acsomega.3c05447] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023]
Abstract
Nanoplastics and other cocontaminants have raised concerns due to their widespread presence in the environment and their potential to enter the food chain. The harmful effects of these particles depend on various factors, such as nanoparticle size, shape, surface charge, and the nature of the cocontaminants involved. On entering the human body, human serum albumin (HSA) molecules bind and transport these particles in the blood system. The esterase-like activity of HSA, which plays a role in metabolizing drug/toxic compounds, was taken as a representative to portray the effects of these particles on HSA. Polystyrene nanoplastics (PSNPs) with different surface functionalization (plain (PS), amine (PS-NH2), and carboxy (PS-COOH)), different sizes (100 and 500 nm), and PS with cocontaminant metformin hydrochloride (Met-HCl), a widely used antidiabetic drug, were investigated in this study. Fluorescence emission spectra of HSA revealed that PS-NH2 exhibits a greater effect on protein conformation, smaller NPs have a greater influence on protein structure than larger NPs, and Met-HCl lowers PSNPs' affinity for HSA by coating the surface of the NPs, which may result in direct NP distribution to the drug's target organs and toxicity. Circular dichroism spectra also supported these results in terms of secondary structural changes. Esterase activity of HSA was inhibited by all the particles (except Met-HCl) by competitive inhibition as concluded from constant Vmax and increasing Km. Greater reduction in enzyme activity was observed for PS-NH2 among functionalizations and for 100 nm PS among sizes. Furthermore, Met-HCl lowers the inhibitory impact of PSNPs on HSA since the drug binds weakly to HSA, and so they can serve as a vector delivering PSNPs to their target organs, resulting in serious implications.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT University), Vellore 632014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT University), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
13
|
Wang Y, Luo Z, Morelli X, Xu P, Jiang L, Shi X, Huang M. Crystal structures of human serum albumin in complex with lysophosphatidylcholine. Biophys J 2023; 122:4135-4143. [PMID: 37731243 PMCID: PMC10645546 DOI: 10.1016/j.bpj.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Lysophospholipids (lysoPLs) are crucial metabolites involved in various physiological and pathological cellular processes. Understanding their binding interactions, particularly with human serum albumin (HSA), is essential due to their role in regulating lysoPLs-induced cytotoxicity. However, the precise mechanism of lysoPLs binding to HSA remains elusive. In this study, we employed fluorescence quenching and optical interferometry assays to demonstrate direct binding between lysophosphatidylcholine (LPC) and HSA (KD = 25 μM). Furthermore, we determined crystal structures of HSA in complex with LPC, both in the absence and the presence of the endogenous fatty acid myristate (14:0). The crystal structure of binary HSA:LPC revealed that six LPC molecules are bound to HSA at the primary fatty acid binding sites. Interestingly, the ternary HSA:Myr:LPC structure demonstrated the continued binding of three LPC molecules to HSA at binding sites 1, 3, and 5 in the presence of myristate. These findings support HSA's role as a carrier protein for lysoPLs in blood plasma and provide valuable insights into the structural basis of their binding mechanisms.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemistry, Fuzhou University, Fuzhou, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Xavier Morelli
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, University Aix-Marseill1715e, Marseille, France
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | | | - Xiaoli Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | | |
Collapse
|
14
|
Kumar P, Vuyyuru SK, Das P, Kante B, Ranjan MK, Thomas DM, Mundhra S, Sahu P, Venigalla PM, Jain S, Goyal S, Golla R, Virmani S, Singh MK, Sachdeva K, Sharma R, Dash NR, Makharia G, Kedia S, Ahuja V. Serum albumin is the strongest predictor of anti-tumor necrosis factor nonresponse in inflammatory bowel disease in resource-constrained regions lacking therapeutic drug monitoring. Intest Res 2023; 21:460-470. [PMID: 36926698 PMCID: PMC10626021 DOI: 10.5217/ir.2022.00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND/AIMS Evidence on predictors of primary nonresponse (PNR), and secondary loss of response (SLR) to anti-tumor necrosis factor (anti-TNF) agents in inflammatory bowel disease is scarce from Asia. We evaluated clinical/biochemical/molecular markers of PNR/SLR in ulcerative colitis (UC) and Crohn's disease (CD). METHODS Inflammatory bowel disease patients treated with anti-TNF agents (January 2005-October 2020) were ambispectively included. Data concerning clinical and biochemical predictors was retrieved from a prospectively maintained database. Immunohistochemistry for expression of oncostatin M (OSM), OSM receptor (OSM-R), and interleukin-7 receptor (IL-7R) were done on pre anti-TNF initiation mucosal biopsies. RESULTS One-hundred eighty-six patients (118 CD, 68 UC: mean age, 34.1±13.7 years; median disease duration at anti-TNF initiation, 60 months; interquartile range, 28-100.5 months) were included. PNR was seen in 17% and 26.5% and SLR in 47% and 28% CD and UC patients, respectively. In CD, predictors of PNR were low albumin (P<0.001), postoperative recurrence (P=0.001) and high IL-7R expression (P<0.027) on univariate; and low albumin alone (hazard ratio [HR], 0.09; 95% confidence interval [CI], 0.03-0.28; P<0.001) on multivariate analysis respectively. Low albumin (HR, 0.31; 95% CI, 0.15-0.62; P=0.001) also predicted SLR. In UC, predictors of PNR were low albumin (P<0.001), and high C-reactive protein (P<0.001), OSM (P<0.04) and OSM-R (P=0.07) stromal expression on univariate; and low albumin alone (HR, 0.11; 95% CI, 0.03-0.39; P=0.001) on multivariate analysis respectively. CONCLUSIONS Low serum albumin at baseline significantly predicted PNR in UC and PNR/SLR in CD patients. Mucosal markers of PNR were high stromal OSM/OSM-R in UC and high IL-7R in CD patients.
Collapse
Affiliation(s)
- Peeyush Kumar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Sudheer K. Vuyyuru
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhaskar Kante
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar Ranjan
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - David Mathew Thomas
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Mundhra
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Pabitra Sahu
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Pratap Mouli Venigalla
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Saransh Jain
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Goyal
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Rithvik Golla
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Shubi Virmani
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh K. Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Karan Sachdeva
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Raju Sharma
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Nihar Ranjan Dash
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Govind Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Hoogenboezem EN, Patel SS, Cavnar AB, Lo JH, Babb LM, Francini N, Patil P, Colazo JM, Michell DL, Sanchez VM, McCune JT, Ma J, DeJulius CR, Lee LH, Rosch JC, Allen RM, Stokes LD, Hill JL, Vickers KC, Cook RS, Duvall CL. Structural Optimization of siRNA Conjugates for Albumin Binding Achieves Effective MCL1-Targeted Cancer Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528574. [PMID: 36824780 PMCID: PMC9948981 DOI: 10.1101/2023.02.14.528574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The high potential for therapeutic application of siRNAs to silence traditionally undruggable oncogenic drivers remains largely untapped due to the challenges of tumor cell delivery. Here, siRNAs were optimized for in situ binding to albumin through C18 lipid modifications to improve pharmacokinetics and tumor delivery. Systematic variation of siRNA conjugates revealed a lead structure with divalent C18 lipids each linked through three repeats of hexaethylene glycol connected by phosphorothioate bonds. Importantly, we discovered that locating the branch site of the divalent lipid structure proximally (adjacent to the RNA) rather than at a more distal site (after the linker segment) promotes association with albumin, while minimizing self-assembly and lipoprotein association. Comparison to higher albumin affinity (diacid) lipid variants and siRNA directly conjugated to albumin underscored the importance of conjugate hydrophobicity and reversibility of albumin binding for siRNA delivery and bioactivity in tumors. The lead conjugate increased tumor siRNA accumulation 12-fold in orthotopic mouse models of triple negative breast cancer over the parent siRNA. When applied for silencing of the anti-apoptotic oncogene MCL-1, this structure achieved approximately 80% MCL1 silencing in orthotopic breast tumors. Furthermore, application of the lead conjugate structure to target MCL1 yielded better survival outcomes in three independent, orthotopic, triple negative breast cancer models than an MCL1 small molecule inhibitor. These studies provide new structure-function insights on optimally leveraging siRNA-lipid conjugate structures that associate in situ with plasma albumin for molecular-targeted cancer therapy.
Collapse
Affiliation(s)
| | - Shrusti S. Patel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Ashley B. Cavnar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Justin H. Lo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lauren M. Babb
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Juan M. Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Violeta M. Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joshua T. McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Jinqi Ma
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | | | | | - Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Ryan M. Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Larry D. Stokes
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Jordan L. Hill
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Rebecca S. Cook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| |
Collapse
|
16
|
Jithinraj TK, Saheer VC, Chakkumkumarath L. Chiral 8-aminoBODIPY-based fluorescent probes with site selectivity for the quantitative detection of HSA in biological samples. Analyst 2023; 148:286-296. [PMID: 36533779 DOI: 10.1039/d2an01525k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Human serum albumin (HSA) is one of the vital proteins in blood serum, and its optimum level is a reflection of the physiological well-being of an individual. Any abnormalities in serum HSA levels could often be a sign of disguised physiological disorders. The importance of fast and accurate determination of serum HSA levels has led to the development of various quantification methods. Among these, fluorescence-based methods employ molecular probes capable of producing selective responses on interaction with HSA. Herein, we report chiral 8-aminoBODIPY-based probes having blue emission for the quantitative detection of HSA in buffer and human blood serum. A pair of 8-aminoBODIPY enantiomers, namely R-PEB and S-PEB, were synthesized. They exhibited a fast 'turn-on' fluorescence response towards HSA, allowing its detection and quantification. In PBS buffer, R-PEB and S-PEB showed very good sensitivity with a limit of detection (LoD) of 25 nM (KD = 9.84 ± 0.14 μM) and 39 nM (KD = 18.67 ± 0.21 μM), respectively. The linear relationship observed between the fluorescence intensity of R-PEB/S-PEB and the HSA concentration in serum samples allowed us to generate a reference curve for HSA estimation for practical applications. Examination of unknown serum samples showed a good correlation with the results obtained by the benchmark BCG method. Interestingly, the difference in these probes' dissociation constants and LoD indicated their differential binding to HSA. Considering the availability of multiple ligand binding sites in HSA, their binding preferences were investigated in detail by displacement assays using site-specific drugs. These studies showed the preferential affinity of R-PEB towards site II, which was further substantiated using molecular docking studies. However, these displacement assays could not identify the preferred binding site of S-PEB. Blind docking studies indicated that S-PEB occupied a site closer to FA5. Selective binding of R-PEB to site II and its characteristic photophysical response can be utilized to quickly screen potential site II binding drugs.
Collapse
Affiliation(s)
| | | | - Lakshmi Chakkumkumarath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| |
Collapse
|
17
|
Fan J, Gilmartin K, Octaviano S, Villar F, Remache B, Regan J. Using Human Serum Albumin Binding Affinities as a Proactive Strategy to Affect the Pharmacodynamics and Pharmacokinetics of Preclinical Drug Candidates. ACS Pharmacol Transl Sci 2022; 5:803-810. [PMID: 36110380 PMCID: PMC9469496 DOI: 10.1021/acsptsci.2c00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 10/15/2022]
Abstract
We report on a new preclinical drug optimization strategy that measures drug candidates' binding affinity with human serum albumin (HSA) as an assessment of increasing or decreasing serum T1/2. Three common scaffolds were used as drug prototypes. Common polar and nonpolar substituents attached to the scaffolds have been identified as opportunities for increasing or decreasing the HSA binding affinity. This approach of adjusting HSA binding could be proactively established for preclinical drug candidates by appending functionality to sites on the drug scaffold not involved in biological target interactions. This strategy complements other medicinal chemistry efforts to identify longer or shorter human dosing regimens.
Collapse
Affiliation(s)
- Jianwei Fan
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - Katherine Gilmartin
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - Steven Octaviano
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - Francisca Villar
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - Brianna Remache
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - John Regan
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| |
Collapse
|
18
|
Chen S, Yuan C, Jiang L, Luo Z, Huang M. Crystallographic analysis of interaction between cisplatin and human serum albumin: Effect of fatty acid. Int J Biol Macromol 2022; 216:172-178. [PMID: 35788007 DOI: 10.1016/j.ijbiomac.2022.06.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
Metallodrugs are important for anticancer treatments. They bind mainly to human serum albumin (HSA) in blood circulation, greatly modulating their pharmacokinetics and anticancer efficacy. Fatty acid (FA) is one of the most important endogenous ligands of HSA with tight binding to HSA and affecting its conformation. However, the effect of fatty acids on metallodrugs interaction with HSA is unknown. Here we identify the binding sites of a widely used metallodrug, cisplatin, in HSA in the presence or absence of a representative fatty acid, myristate, by X-ray crystallography. Our crystal structures indicate that the sidechain of residue Met548 becomes more exposed to solvent in the presence of fatty acid, and is the main Pt binding site together with Met329 in HSA:Myr:cisplatin ternary structure. An undoubted new Pt binding site is detected at His338 in the presence of fatty acid, and additional two sites are also identified at His146 and His440 + K436. In addition, we revealed the mechanism of cisplatin-induced HSA aggregation, which is due to the crosslinking between Met298 and His510 of two HSA molecules.
Collapse
Affiliation(s)
- Shanli Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
19
|
Wu Y, Deng X, Ye L, Zhang W, Xu H, Zhang B. A TCF-Based Carbon Monoxide NIR-Probe without the Interference of BSA and Its Application in Living Cells. Molecules 2022; 27:4155. [PMID: 35807401 PMCID: PMC9268636 DOI: 10.3390/molecules27134155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
As toxic gaseous pollution, carbon monoxide (CO) plays an essential role in many pathological and physiological processes, well-known as the third gasotransmitter. Owning to the reducibility of CO, the Pd0-mediated Tsuji-Trost reaction has drawn much attention in CO detection in vitro and in vivo, using allyl ester and allyl ether caged fluorophores as probes and PdCl2 as co-probes. Because of its higher decaging reactivity than allyl ether in the Pd0-mediated Tsuji-Trost reaction, the allyl ester group is more popular in CO probe design. However, during the application of allyl ester caged probes, it was found that bovine serum albumin (BSA) in the fetal bovine serum (FBS), an irreplaceable nutrient in cell culture media, could hydrolyze the allyl ester bond, and thus give erroneous imaging results. In this work, dicyanomethylenedihydrofuran (TCF) and dicyanoisophorone (DCI) were selected as electron acceptors for constructing near-infrared-emission fluorophores with electron donor phenolic OH. An allyl ester and allyl ether group were installed onto TCF-OH and DCI-OH, constructing four potential CO fluorescent probes, TCF-ester, TCF-ether, DCI-ester, and DCI-ether. Our data revealed that ester bonds of TCF-ester and DCI-ester could completely hydrolyze in 20 min, but ether bonds in TCF-ether and DCI-ether tolerate the hydrolysis of BSA and no released fluorescence was observed even up to 2 h. Moreover, passing through the screen, it was concluded that TCF-ether is superior to DCI-ether due to its higher reactivity in a Pd0-mediated Tsuji-Trost reaction. Also, the large stokes shift of TCF-OH, absorption and emission at 408 nm and 618 nm respectively, make TCF-ether desirable for fluorescent imaging because of differentiating signals from the excitation light source. Lastly, TCF-ether has been successfully applied to the detection of CO in H9C2 cells.
Collapse
Affiliation(s)
- Yingxu Wu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (Y.W.); (X.D.)
| | - Xiaojing Deng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (Y.W.); (X.D.)
| | - Lan Ye
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Wei Zhang
- Department of Spine Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China;
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (Y.W.); (X.D.)
| |
Collapse
|
20
|
Xiang C, Xiang J, Yang X, Zhu B, Mo Q, Zhou L, Gong P. An easily available endoplasmic reticulum targeting near-infrared fluorescent probe for esterase imaging in vitro and in vivo. Analyst 2022; 147:789-793. [PMID: 35107444 DOI: 10.1039/d1an02260a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we report an easily available endoplasmic reticulum-targeting near-infrared fluorescent probe (ER-CE), which can detect esterase in the endoplasmic reticulum and monitor the changes in the esterase amount in tumors in mice in real time. These results indicate that ER-CE is expected to become a powerful analysis tool for the research of endoplasmic reticulum esterase-related diseases.
Collapse
Affiliation(s)
- Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baode Zhu
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Quanyi Mo
- School of Applied Biology, Shenzhen Institute of Technology, No. 1 Jiangjunmao, Shenzhen 518116, P. R. China.
| | - Lihua Zhou
- School of Applied Biology, Shenzhen Institute of Technology, No. 1 Jiangjunmao, Shenzhen 518116, P. R. China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
21
|
Huang Z, Lin H, Yu S, Li H, Zhou Y, Cheng Y, Chen S, Yuan C, Huang M. A versatile insertion point on albumin to accommodate peptides and maintain their activities. Int J Biol Macromol 2022; 205:49-54. [PMID: 35134454 DOI: 10.1016/j.ijbiomac.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
Abstract
Genetic fusion of human serum albumin to peptides is an important strategy to enhance the plasma half-life of the peptide. An inherent challenge of such method is the reduction of specific activity of the cargo peptides upon connecting at N- or C-termini of albumin. Here, we report a finding that residue 363-364 of albumin can be inserted with a peptide while maintaining the peptide activities. We insert a peptide inhibitor into this site, and at the N-terminus of albumin, for comparison. The chimeric protein displays potent inhibition (IC50 value of 30 nM) to its target (uPAR), but not the N-terminally fused construct. We also study the chimera of HSA with a cyclic peptide inhibitor of murine urokinase-type plasminogen activator grafted at either the internal site or the N-terminus. The internally peptide-grafted protein possesses a much more potent inhibition compared to the N-terminally located fusion (IC50 value of 32 nM vs 19 μM). We further demonstrate that such internal fusion does not affect albumin expression, secondary structure, and inherent drug binding activity. Thus, this work identifies a versatile insertion point inside albumin for maintaining fusion peptide activity, and opens a new avenue to expand the applications of albumin fusion technology.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huajian Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hanlin Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuan Cheng
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shanli Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
22
|
Structural and evolutionary analysis unveil functional adaptations in the promiscuous behavior of serum albumins. Biochimie 2022; 197:113-120. [DOI: 10.1016/j.biochi.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022]
|
23
|
|
24
|
Chao X, Yao D, Qi Y, Yuan C, Huang D. A fluorescent sensor recognized by the FA1 site for highly sensitive detection of HSA. Anal Chim Acta 2021; 1188:339201. [PMID: 34794581 DOI: 10.1016/j.aca.2021.339201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Human serum albumin (HSA), as the most abundant protein in blood plasma, plays a crucial role in many physiological processes. The abnormal HSA level in serum or in urine is often associated with various diseases. Therefore, to achieve highly sensitive and selective quantification of HSA is of great importance for disease diagnosis and preventive medicine. Herein, an HSA-selective light-up fluorescent sensor, DCM-ML, was successfully developed for quantitative detection of HSA. DCM-ML exhibited good (photo-) stability and strong fluorescence enhancement around 630 nm in the presence of HSA in complex samples containing numerous biological analytes. Upon addition of HSA into DCM-ML containing solution, a good linear relationship (R2 > 0.99) between the fluorescence intensity of DCM-ML and HSA concentration from 0 to 0.08 mg/mL was obtained with the detection limit of 0.25 μg/mL. The sensing mechanism of the sensor towards HSA was demonstrated to be via recognition in the fatty acid site 1 (FA1), instead of the most reported binding sites (Sudlow I and II) in HSA, for the first time, by both the displacement experiments and molecular docking simulation. Thus, DCM-ML can also be assumed as a potential FA1 site-binding marker for examining drugs binding to the FA1 site in HSA. At last, the utilization of sensor DCM-ML for quantification and validation of HSA in urine samples and cell culture medium was effectively demonstrated. Therefore, the development of DCM-ML should find great application potentials in the fields of analytical chemistry and clinical medicine as a highly sensitive HSA sensor.
Collapse
Affiliation(s)
- Xijuan Chao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Dezhi Yao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
25
|
Serum Albumin: A Multifaced Enzyme. Int J Mol Sci 2021; 22:ijms221810086. [PMID: 34576249 PMCID: PMC8466385 DOI: 10.3390/ijms221810086] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs. Catalytic properties of HSA are modulated by allosteric effectors, competitive inhibitors, chemical modifications, pathological conditions, and aging. HSA displays anti-oxidant properties and is critical for plasma detoxification from toxic agents and for pro-drugs activation. The enzymatic properties of HSA can be also exploited by chemical industries as a scaffold to produce libraries of catalysts with improved proficiency and stereoselectivity for water decontamination from poisonous agents and environmental contaminants, in the so called “green chemistry” field. Here, an overview of the intrinsic and metal dependent (pseudo-)enzymatic properties of HSA is reported to highlight the roles played by this multifaced protein.
Collapse
|
26
|
Ribeiro AG, Alves JEF, Soares JCS, dos Santos KL, Jacob ÍTT, da Silva Ferreira CJ, dos Santos JC, de Azevedo RDS, de Almeida SMV, de Lima MDCA. Albumin roles in developing anticancer compounds. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02748-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Asif A, Park SH, Manzoor Soomro A, Khalid MAU, Salih ARC, Kang B, Ahmed F, Kim KH, Choi KH. Microphysiological system with continuous analysis of albumin for hepatotoxicity modeling and drug screening. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Liang Y, Zhang T, Sun Y, Diao M, Zhang J, Ren L. Multi-spectroscopic and molecular modeling studies on the interactions of serum albumin with 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol that inhibit HCT-116 cells proliferation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Bashir M, Yousuf I, Arjmand F, Tabassum S. Deciphering the effect of hydrophobicity on protein binding interaction in cobalt(II) complexes by multispectroscopic and computational methods. J Biomol Struct Dyn 2021; 40:7381-7393. [PMID: 33685362 DOI: 10.1080/07391102.2021.1897678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present work, we report the synthesis, characterization of two cobalt complexes (1 and 2) and their HSA binding studies by multispectroscopic methods. Hirshfeld surfaces analysis and fingerprint plot analysis were carried out to identify intermolecular interactions viz., N-H···O, O-H···O and C-H···O linkages in crystal framework of the complexes. Density functional theory (DFT) studies were carried out to ascertain the electronic structure and molecular geometry of the complexes 1 and 2, and determine the localization of HOMO and LUMO in the complexes. A comparative in vitro interaction study of complex 1 and 2 with human serum albumin protein was carried out by employing UV-vis, fluorescence, circular dichroism, FTIR and molecular docking techniques. Interestingly, the HSA binding affinity of complex 2 was found to be more than complex 1 which was evidenced from the higher binding constant values owing to its strong hydrophobic topology. Further, a significant conformational change in microenvironment of HSA was noticed upon binding with complexes 1 and 2, nevertheless more perturbations were noticed in presence of complex 1. Molecular docking studies were carried out to validate the spectroscopic results and ascertain the preferential binding mode of complexes at the specific target site of HSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Masrat Bashir
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Imtiyaz Yousuf
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
30
|
Revealing the structural dynamics of feline serum albumin. Struct Chem 2021. [DOI: 10.1007/s11224-020-01619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Song Y, Sun K, Liu R. An exploration of the interaction mechanism of Direct Red 80 with α-Amylase at the molecular level. J Mol Recognit 2020; 34:e2883. [PMID: 33331039 DOI: 10.1002/jmr.2883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
The use and production of Direct Red 80 (DR80) dye are growing rapidly, and a large amount of dye wastewater is discharged into the soil without treatment. DR80 accumulated in soil or sludge can lead to enzyme poisoning, inhibit microbial activity, and affect the transformation of substances in the soil. In this research, the interaction mechanism between DR80 and α-Amylase (a typical enzyme in soil and sludge) was investigated by multi-spectra, molecular docking, thermodynamics analysis and enzyme activity experiment. The results of UV-visible and resonance light scattering (RLS) spectra showed that the skeleton of α-Amylase became loosened and unfolded under the exposure of Direct Red. The size of α-Amylase was smaller and α-Amylase became dispersed under high concentration of DR80. Molecular docking and thermodynamic analysis showed that DR80 bound to the surface of domain A rather than the active site of α-Amylase in the form of hydrogen bonds, and the binding process was an exothermic reaction. In addition, the inhibition of α-Amylase activity by DR80 was verified by enzyme activity experiment. These results indicate that DR80 has an effect on the structure and function of α-Amylase at molecular level, which means that the toxicity of DR80 should receive more attention.
Collapse
Affiliation(s)
- Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Qingdao, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Qingdao, China
| |
Collapse
|
32
|
Wang J, Teng Z, Zhang L, Yang Y, Qian J, Cao T, Cao Y, Qin W, Liu Y, Guo H. Multifunctional Near-Infrared Fluorescent Probes with Different Ring-Structure Trigger Groups for Cell Health Monitoring and In Vivo Esterase Activity Detection. ACS Sens 2020; 5:3264-3273. [PMID: 32969648 DOI: 10.1021/acssensors.0c01734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of multifunctional ratiometric near-infrared fluorescent probes (CYOH-3, CYOH-4, CYOH-5, and CYOH-6) for esterase detection are designed by gradually changing the deflection of the plane twist in the molecule. These probes are composed of different ring-structure trigger groups (from three-membered ring to six-membered ring) and the same luminescent group CYOH. These probes show maximum absorption at ∼585 nm and a fluorescence emission peak at ∼655 ± 5 nm. In the presence of esterase, the probes were hydrolyzed to expose the fluorophore CYOH (λabs = 690 nm, λem = 710 ± 5 nm), thus exhibiting ratiometric near-infrared fluorescence. The probe CYOH-6 has lower plane deflection angle and better ratiometric (R = I710±5nm/I657±4nm) fluorescence properties than probes CYOH-3, CYOH-4, and CYOH-5. CYOH-6 (six-membered ring) has been successfully used to target esterase in mitochondria and distinguish between dead cells (esterase inactivation) and live cells. In addition, CYOH-6 has been well used for monitoring of esterase activity in zebrafish and mice, which proves that these probes have good prospects for clinical biomedical applications.
Collapse
Affiliation(s)
- Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu Province 730046, P. R. China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Yuexia Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jing Qian
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ting Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu Province 730046, P. R. China
| |
Collapse
|
33
|
Shaktah R, Vardanyan L, David E, Aleman A, Orr D, Shaktah LA, Tamae D, Minehan T. Synthesis and Stereochemical Assignment of Conioidine A: DNA- and HSA-Binding Studies of the Four Diastereomers. JOURNAL OF NATURAL PRODUCTS 2020; 83:3191-3198. [PMID: 33034450 DOI: 10.1021/acs.jnatprod.0c00871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conioidine A (1), isolated in 1993 with unknown relative and absolute configuration, was suggested to be a DNA-binding compound by an indirect technique. Four stereoisomers of conioidine A have been synthesized from d- and l-proline, and the natural product has been identified as possessing (4R,6R) absolute configuration. Binding of the conioidine diastereomers to calf thymus DNA (CT DNA) and human serum albumin (HSA) has been investigated by fluorescence spectroscopy and isothermal titration calorimetry (ITC). All stereoisomers display at least an order of magnitude weaker binding to DNA than the control compound netropsin; however, a strong association with HSA was observed for the (4R,6S) stereoisomer.
Collapse
Affiliation(s)
- Ryan Shaktah
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Laura Vardanyan
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Elroma David
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Alexis Aleman
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Dupre Orr
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Lawrence A Shaktah
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Daniel Tamae
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Thomas Minehan
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| |
Collapse
|
34
|
Haeri HH, Tomaszewski J, Phytides B, Schimm H, Möslein G, Niedergethmann M, Hinderberger D, Gelos M. Identification of Patients with Pancreatic Cancer by Electron Paramagnetic Resonance Spectroscopy of Fatty Acid Binding to Human Serum Albumin. ACS Pharmacol Transl Sci 2020; 3:1188-1198. [PMID: 33344896 DOI: 10.1021/acsptsci.0c00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/11/2022]
Abstract
An effective biological marker for pancreatic adenocarcinoma (PAC) is not available so far. Here, we investigate how electron paramagnetic resonance (EPR) spectroscopy of spin-labeled fatty acid (FA) molecules binding to human serum albumin (HSA) in human serum is a suitable method for the identification of patients with PAC through detection of PAC-induced changes of FA binding to albumin. The functionality of HSA to bind FA is investigated in serum samples of 35 patients with PAC, 26 patients with benign pancreatic tumors (BPD), and 24 healthy individuals by continuous wave (CW) EPR spectroscopy by simply dissolving 16-DOXYL stearic acid as spin-labeled FA. It is found that FA binding to HSA in PAC is significantly modified when compared with healthy and BPD individuals. The PAC group could best be discriminated from the healthy group based on EPR characteristics at the loading ratio of 1:4 (HSA:FA), while patients with PAC and BPD are distinguishable at a loading ratio of 1:6. Using nanoscale distance measurements through double electron-electron resonance (DEER), it is found that the distribution of FAs in the HSA of one PAC patient is similar to that of FAs in healthy individuals. Combining all EPR spectroscopic data, this leads to a tentative molecular interpretation of only small changes in hydration at the protein's surface as origin of the detectable characteristics for PAC patients. Thus, EPR of FA/HSA binding is a simple and promising tool for clinical detection of patients with PAC and needs to be tested with larger ensembles of different patient groups.
Collapse
Affiliation(s)
- Haleh H Haeri
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jörg Tomaszewski
- Department of General and Visceral Surgery, Alfried Krupp Krankenhaus Essen, Essen, Nordrhein-Westfalen 45276, Germany
| | - Bettina Phytides
- Department of General and Visceral Surgery, Alfried Krupp Krankenhaus Essen, Essen, Nordrhein-Westfalen 45276, Germany
| | - Heike Schimm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gabriela Möslein
- Faculty of Health Sciences, University of Witten/Herdecke, Witten, Nordrhein-Westfalen 58448, Germany
| | - Marco Niedergethmann
- Department of General and Visceral Surgery, Alfried Krupp Krankenhaus Essen, Essen, Nordrhein-Westfalen 45276, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcos Gelos
- Faculty of Health Sciences, University of Witten/Herdecke, Witten, Nordrhein-Westfalen 58448, Germany
| |
Collapse
|
35
|
Leboffe L, di Masi A, Polticelli F, Trezza V, Ascenzi P. Structural Basis of Drug Recognition by Human Serum Albumin. Curr Med Chem 2020; 27:4907-4931. [DOI: 10.2174/0929867326666190320105316] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
Background:
Human serum albumin (HSA), the most abundant protein in plasma,
is a monomeric multi-domain macromolecule with at least nine binding sites for endogenous
and exogenous ligands. HSA displays an extraordinary ligand binding capacity as a depot and
carrier for many compounds including most acidic drugs. Consequently, HSA has the potential
to influence the pharmacokinetics and pharmacodynamics of drugs.
Objective:
In this review, the structural determinants of drug binding to the multiple sites of
HSA are analyzed and discussed in detail. Moreover, insight into the allosteric and competitive
mechanisms underpinning drug recognition, delivery, and efficacy are analyzed and discussed.
Conclusion:
As several factors can modulate drug binding to HSA (e.g., concurrent administration
of drugs competing for the same binding site, ligand binding to allosteric-coupled
clefts, genetic inherited diseases, and post-translational modifications), ligand binding to HSA
is relevant not only under physiological conditions, but also in the pharmacological therapy
management.
Collapse
Affiliation(s)
- Loris Leboffe
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Viviana Trezza
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I- 00146 Roma, Italy
| |
Collapse
|
36
|
Czub MP, Handing KB, Venkataramany BS, Cooper DR, Shabalin IG, Minor W. Albumin-Based Transport of Nonsteroidal Anti-Inflammatory Drugs in Mammalian Blood Plasma. J Med Chem 2020; 63:6847-6862. [PMID: 32469516 DOI: 10.1021/acs.jmedchem.0c00225] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Every day, hundreds of millions of people worldwide take nonsteroidal anti-inflammatory drugs (NSAIDs), often in conjunction with multiple other medications. In the bloodstream, NSAIDs are mostly bound to serum albumin (SA). We report the crystal structures of equine serum albumin complexed with four NSAIDs (ibuprofen, ketoprofen, etodolac, and nabumetone) and the active metabolite of nabumetone (6-methoxy-2-naphthylacetic acid, 6-MNA). These compounds bind to seven drug-binding sites on SA. These sites are generally well-conserved between equine and human SAs, but ibuprofen binds to both SAs in two drug-binding sites, only one of which is common. We also compare the binding of ketoprofen by equine SA to binding of it by bovine and leporine SAs. Our comparative analysis of known SA complexes with FDA-approved drugs clearly shows that multiple medications compete for the same binding sites, indicating possibilities for undesirable physiological effects caused by drug-drug displacement or competition with common metabolites. We discuss the consequences of NSAID binding to SA in a broader scientific and medical context, particularly regarding achieving desired therapeutic effects based on an individual's drug regimen.
Collapse
Affiliation(s)
- Mateusz P Czub
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States.,Center for Structural Genomics of Infectious Diseases (CSGID), University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Katarzyna B Handing
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Barat S Venkataramany
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - David R Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States.,Center for Structural Genomics of Infectious Diseases (CSGID), University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Ivan G Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States.,Center for Structural Genomics of Infectious Diseases (CSGID), University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States.,Center for Structural Genomics of Infectious Diseases (CSGID), University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| |
Collapse
|
37
|
Abstract
Heme constitutes a major iron source for microorganisms and particularly for pathogenic microbes; to overcome the iron scarcity in the animal host, many pathogenic bacteria and fungi have developed systems to extract and take up heme from host proteins such as hemoglobin. Microbial heme uptake mechanisms are usually studied using growth media containing free heme or hemoglobin as a sole iron source. However, the animal host contains heme-scavenging proteins that could prevent this uptake. In the human host in particular, the most abundant serum heme-binding protein is albumin. Surprisingly, however, we found that in the case of fungi of the Candida species family, albumin promoted rather than prevented heme utilization. Albumin thus constitutes a human-specific factor that can affect heme-iron utilization and could serve as target for preventing heme-iron utilization by fungal pathogens. As a proof of principle, we identify two drugs that can inhibit albumin-stimulated heme utilization. A large portion of biological iron is found in the form of an iron-protoporphyrin IX complex, or heme. In the human host environment, which is exceptionally poor in free iron, heme iron, particularly from hemoglobin, constitutes a major source of iron for invading microbial pathogens. Several fungi were shown to utilize free heme, and Candida albicans, a major opportunistic pathogen, is able both to capture free heme and to extract heme from hemoglobin using a network of extracellular hemophores. Human serum albumin (HSA) is the most abundant host heme-scavenging protein. Tight binding of heme by HSA restricts its toxic chemical reactivity and could diminish its availability as an iron source for pathogenic microbes. We found, however, that rather than inhibiting heme utilization, HSA greatly increases availability of heme as an iron source for C. albicans and other fungi. In contrast, hemopexin, a low-abundance but high-affinity heme-scavenging serum protein, does inhibit heme utilization by C. albicans. However, inhibition by hemopexin is mitigated in the presence of HSA. Utilization of albumin-bound heme requires the same hemophore cascade as that which mediates hemoglobin-iron utilization. Accordingly, we found that the C. albicans hemophores are able to extract heme bound to HSA in vitro. Since many common drugs are known to bind to HSA, we tested whether they could interfere with heme-iron utilization. We show that utilization of albumin-bound heme by C. albicans can be inhibited by the anti-inflammatory drugs naproxen and salicylic acid.
Collapse
|
38
|
Grinman AB, de Souza MDGC, Bouskela E, Carvalho ATP, de Souza HSP. Clinical and laboratory markers associated with anti-TNF-alpha trough levels and anti-drug antibodies in patients with inflammatory bowel diseases. Medicine (Baltimore) 2020; 99:e19359. [PMID: 32150077 PMCID: PMC7478556 DOI: 10.1097/md.0000000000019359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Monitoring anti-TNF agents in inflammatory bowel disease (IBD) patients may be helpful in optimizing outcomes. We aimed to evaluate potential correlations among demographic, clinical, laboratory, or imaging parameters, as well as serum levels of infliximab (IFX) and adalimumab (ADA) and their respective antibodies, in the clinical management of IBD patients.A cross-sectional study of 95 patients with Crohn's disease (CD) or ulcerative colitis (UC) in maintenance therapy with infliximab or adalimumab was performed. Drug trough levels and anti-drug levels were determined using ELISA-based assays.Regarding the serum IFX dosage, patients with higher relative C-reactive protein (CRP) levels had significantly lower relative serum IFX levels (<3 μg/mL) (P = .028). In contrast, higher concentrations of anti-IFX antibodies were found in patients who were not on concomitant immunomodulators (P = .022) and who had more biological-related adverse events (P = .001) and higher levels of CRP (P = .042). Serum CRP levels were also negatively correlated with IFX (CC = -0.315; P = .033) but positively correlated with the presence of IFX antibodies (CC = 0.327; P = .027). Serum albumin dosage showed a positive correlation with levels of both IFX (CC = 0.379; P = .004) and ADA (CC = 0.699; P = .003).Although anti-TNF-α trough levels and immunogenicity do not show a significant correlation with disease outcome, our results reinforce the use of combination therapy for patients treated with infliximab. Moreover, we confirmed the presence of significant associations between anti-TNF-α trough levels and immunogenicity with body mass index (BMI), the concomitant use of immunomodulators, the rates of side effects, and laboratory markers, including serum albumin and CRP.
Collapse
Affiliation(s)
| | | | - Eliete Bouskela
- Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-900, Brazil
| | | | - Heitor S. P. de Souza
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, 1. Rio de Janeiro, Rio de Janeiro, RJ, 21941-913
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| |
Collapse
|
39
|
Tormyshev VM, Chubarov AS, Krumkacheva OA, Trukhin DV, Rogozhnikova OY, Spitsyna AS, Kuzhelev AA, Koval VV, Fedin MV, Godovikova TS, Bowman MK, Bagryanskaya EG. Methanethiosulfonate Derivative of OX063 Trityl: A Promising and Efficient Reagent for Side-Directed Spin Labeling of Proteins. Chemistry 2020; 26:2705-2712. [PMID: 31851392 DOI: 10.1002/chem.201904587] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Indexed: 12/20/2022]
Abstract
Trityl radicals (TAMs) have recently appeared as an alternative source of spin labels for measuring long distances in biological systems. Finland trityl radical (FTAM) served as the basis for this new generation of spin labels, but FTAM is rather lipophilic and susceptible to self-aggregation, noncovalent binding with lipophilic sites of proteins, and noncovalent docking at the termini of duplex DNA. In this paper the very hydrophilic OX063 TAM with very low toxicity and little tendency for aggregation is used as the basis for a spin label. Human serum albumin (HSA) labeled with OX063 has an intense narrow line typical of TAM radicals in solution, whereas HSA labeled with FTAM shows broad lines and extensive aggregation. In pulse EPR measurements, the measured phase memory time TM for HSA labeled with OX063 is 6.3 μs at 50 K, the longest yet obtained with a TAM-based spin label. The lowered lipophilicity also decreases side products in the labeling reaction.
Collapse
Affiliation(s)
- Victor M Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Olesya A Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk, 630090, Russia
| | - Dmitry V Trukhin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Olga Yu Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Anna S Spitsyna
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Andrey A Kuzhelev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk, 630090, Russia
| | - Tatyana S Godovikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Michael K Bowman
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama, 35487-0336, USA
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| |
Collapse
|
40
|
Najaran A, Divsalar A, Saboury AA, Roodbari NH. Probing the Interaction of Newly Synthesized Pt(II) Complex on Human Serum Albumin Using Competitive Binding Site Markers. J Fluoresc 2019; 29:827-835. [DOI: 10.1007/s10895-019-02383-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
|
41
|
Renaud J, Martinoli MG. Considerations for the Use of Polyphenols as Therapies in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:E1883. [PMID: 30995776 PMCID: PMC6514961 DOI: 10.3390/ijms20081883] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 12/29/2022] Open
Abstract
Over the last two decades, the increase in the incidence of neurodegenerative diseases due to the increasingly ageing population has resulted in a major social and economic burden. At present, a large body of literature supports the potential use of functional nutrients, which exhibit potential neuroprotective properties to mitigate these diseases. Among the most studied dietary molecules, polyphenols stand out because of their multiple and often overlapping reported modes of action. However, ambiguity still exists as to the significance of their influence on human health. This review discusses the characteristics and functions of polyphenols that shape their potential therapeutic actions in neurodegenerative diseases while the less-explored gaps in knowledge of these nutrients will also be highlighted.
Collapse
Affiliation(s)
- Justine Renaud
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, Québec, QC G9A5H7, Canada.
| | - Maria-Grazia Martinoli
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, Québec, QC G9A5H7, Canada.
- Department of Psychiatry & Neuroscience, Université Laval and CHU Research Center, Ste-Foy, QC G1V 4G2, Canada.
| |
Collapse
|
42
|
Jaunet-Lahary T, Vercauteren DP, Fleury F, Laurent AD. Computational simulations determining disulfonic stilbene derivative bioavailability within human serum albumin. Phys Chem Chem Phys 2019; 20:18020-18030. [PMID: 29931001 DOI: 10.1039/c8cp00704g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Disulfonic stilbene (DS) derivatives are a member of the large family of compounds widely employed in medicine and biology as modulators for membrane transporters or inhibitors of a protein involved in DNA repair. They constitute interesting compounds that have not yet been investigated within the bioavailability framework. No crystallographic structures exist involving such compounds embedded in the most common drug carrier, human serum albumin (HSA). The present work studies, for the first time, the physico-chemical features driving the inclusion of three DS derivatives (amino, nitro and acetamido, named DADS, DNDS and DATDS, respectively) within the four common HSA binding sites using combined molecular docking and molecular dynamics simulations. A careful analysis of each ligand within each of the studied binding sites is carried out, highlighting specific interactions and key residues playing a role in stabilizing the ligand within each pocket. The comparison between DADS, DNDS and DATDS reveals that depending on the binding site, the conclusions are rather different. For instance, the IB binding site shows a specificity to DADS compounds while IIIA is the most favorable site for DNDS and DATDS.
Collapse
Affiliation(s)
- Titouan Jaunet-Lahary
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | | | | | | |
Collapse
|
43
|
Cao S, Slack SD, Levy CN, Hughes SM, Jiang Y, Yogodzinski C, Roychoudhury P, Jerome KR, Schiffer JT, Hladik F, Woodrow KA. Hybrid nanocarriers incorporating mechanistically distinct drugs for lymphatic CD4 + T cell activation and HIV-1 latency reversal. SCIENCE ADVANCES 2019; 5:eaav6322. [PMID: 30944862 PMCID: PMC6436934 DOI: 10.1126/sciadv.aav6322] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/06/2019] [Indexed: 05/10/2023]
Abstract
A proposed strategy to cure HIV uses latency-reversing agents (LRAs) to reactivate latent proviruses for purging HIV reservoirs. A variety of LRAs have been identified, but none has yet proven effective in reducing the reservoir size in vivo. Nanocarriers could address some major challenges by improving drug solubility and safety, providing sustained drug release, and simultaneously delivering multiple drugs to target tissues and cells. Here, we formulated hybrid nanocarriers that incorporate physicochemically diverse LRAs and target lymphatic CD4+ T cells. We identified one LRA combination that displayed synergistic latency reversal and low cytotoxicity in a cell model of HIV and in CD4+ T cells from virologically suppressed patients. Furthermore, our targeted nanocarriers selectively activated CD4+ T cells in nonhuman primate peripheral blood mononuclear cells as well as in murine lymph nodes, and substantially reduced local toxicity. This nanocarrier platform may enable new solutions for delivering anti-HIV agents for an HIV cure.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sarah D. Slack
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Claire N. Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Yonghou Jiang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kim A. Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
44
|
Bhunia S, Kumar S, Purkayastha P. Application of Photoinduced Electron Transfer with Copper Nanoclusters toward Finding Characteristics of Protein Pockets. ACS OMEGA 2019; 4:2523-2532. [PMID: 31459491 PMCID: PMC6648241 DOI: 10.1021/acsomega.8b03213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/18/2019] [Indexed: 05/30/2023]
Abstract
Proteins possess various domains and subdomain pockets with varying hydrophobicity/hydrophilicity. The local polarities of these domains play a major role in oxidation-reduction-based biological processes. Herein, we have synthesized ultrasmall fluorescent copper nanoclusters (Cu NCs) that are directed to bind to the different domain-specific pockets of the model protein bovine serum albumins (BSA). Potential electron acceptors, methyl viologen (MV) derivatives, were chosen such that they specifically reach the various domains following their hydrophobicity/hydrophilicity. Here, we have used MV2+, HMV+, and DHMV2+, possessing hydrophilic, intermediate, and hydrophobic specificities. Being electron acceptors, these derivatives draw electrons from the Cu NCs through photoinduced electron transfer (PET). The rate of PET varies at the different domains of BSA based on the local environment which has been analyzed. Here, PET is confirmed by steady state as well as time-resolved fluorescence spectroscopy. This study would provide a measurable way to identify the location of the different domains of a protein which is scalable by changing the superficial conditions without unfolding the protein.
Collapse
Affiliation(s)
- Soumyadip Bhunia
- Department
of Chemical Sciences and Center for Advanced Functional
Materials (CAFM), Indian Institute of Chemical
Sciences (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Sumit Kumar
- Department
of Chemical Sciences and Center for Advanced Functional
Materials (CAFM), Indian Institute of Chemical
Sciences (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Pradipta Purkayastha
- Department
of Chemical Sciences and Center for Advanced Functional
Materials (CAFM), Indian Institute of Chemical
Sciences (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
45
|
Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol 2019; 123:979-990. [DOI: 10.1016/j.ijbiomac.2018.11.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/07/2018] [Accepted: 11/11/2018] [Indexed: 12/26/2022]
|
46
|
Zhang H, Sun S, Wang Y, Fei Z, Cao J. Binding mechanism of five typical sweeteners with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:40-47. [PMID: 30015031 DOI: 10.1016/j.saa.2018.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
In this work, the interactions between bovine serum albumin (BSA) and five sweeteners including aspartame (APM), acesulfame (AK), sucralose (TGS), sodium cyclamate (SC), and rebaudioside-A (REB-A) have been studied by multispectroscopic techniques, and molecular simulation in order to provide much useful information for the application of new and safer artificial sweeteners. Fluorescence quenching assays indicated that the formation of complexes between sweeteners and BSA mainly induced the fluorescence quenching of protein and the binding site number were about 1 indicting that there is one mainly binding site of APM, AK, TGS, SC, or REB-A in domain of BSA with relatively weak interactions. Molecular modeling results indicated that hydrogen bonding interactions were the mainly binding forces of sweeteners with BSA. Circular dichroism spectra indicated that APM and REB-A obviously induced the secondary structure changes of BSA. The presence of APM increased the fraction of α-Helix of BSA from 65.4% to 73.8%, while the presence of REB-A resulted in decreasing the fraction of α-helix of BSA from 65.4% to 51.2%. The melting temperature studies showed that these five sweeteners except REB-A act as stabilizers to increase the thermal stability of BSA during the thermal denaturation process. In addition, AK, TGS, and SC obviously increased the esterase-like activity of BSA, and such loss of activity of BSA induced by APM and REB-A.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Shixin Sun
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| | - Zhenghao Fei
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Jian Cao
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
47
|
Wang J, Xu W, Yang Z, Yan Y, Xie X, Qu N, Wang Y, Wang C, Hua J. New Diketopyrrolopyrrole-Based Ratiometric Fluorescent Probe for Intracellular Esterase Detection and Discrimination of Live and Dead Cells in Different Fluorescence Channels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31088-31095. [PMID: 30129745 DOI: 10.1021/acsami.8b11365] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new diketopyrrolopyrrole-based fluorescent probe (DPP-AM) was designed and synthesized for ratiometric detection of esterase and for imaging of live and dead cells in different modes. DPP-AM showed red fluorescence because of the intramolecular charge transfer (ICT) process from the DPP moiety to the pyridinium cation and gave remarkable ratio changes (about 70 folds), with the fluorescence changing from red to yellow, after treating with esterase because of the broken ICT process. Besides, the detection limit of DPP-AM toward esterase in vitro was 9.51 × 10-5 U/mL. After pretreating with H2O2 and ultraviolet light radiation, the health status of TPC1 cells was successfully imaged. More importantly, DPP-AM showed yellow fluorescence in live cells and a red fluorescent signal in dead cells, indicating that DPP-AM has great potential applications for assessing esterase activity as well as for discriminating live and dead cells.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Weibo Xu
- Department of Oncology , Shanghai Medical College, Fudan University , Shanghai 200032 , China
- Department of Head and Neck Surgery , Fudan University Shanghai Cancer Center , Shanghai 200032 , China
| | - Zhicheng Yang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Yongchao Yan
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Xiaoxu Xie
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Ning Qu
- Department of Oncology , Shanghai Medical College, Fudan University , Shanghai 200032 , China
- Department of Head and Neck Surgery , Fudan University Shanghai Cancer Center , Shanghai 200032 , China
| | - Yu Wang
- Department of Oncology , Shanghai Medical College, Fudan University , Shanghai 200032 , China
- Department of Head and Neck Surgery , Fudan University Shanghai Cancer Center , Shanghai 200032 , China
| | - Chengyun Wang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Jianli Hua
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
48
|
Development of an Ionic Liquid Based Method for the Preparation of Albumin Nanoparticles. ChemistrySelect 2018. [DOI: 10.1002/slct.201801648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Save SN, Choudhary S. Elucidation of energetics and mode of recognition of green tea polyphenols by human serum albumin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Kundu P, Chattopadhyay N. Unraveling the binding interaction of a bioactive pyrazole-based probe with serum proteins: Relative concentration dependent 1:1 and 2:1 probe-protein stoichiometries. Biophys Chem 2018; 240:70-81. [DOI: 10.1016/j.bpc.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 11/17/2022]
|