1
|
Heilberg IP, Carvalho AB, Denburg MR. Between a Rock and a Short Place-The Impact of Nephrolithiasis on Skeletal Growth and Development Across the Lifespan. Curr Osteoporos Rep 2024; 22:576-589. [PMID: 39356465 DOI: 10.1007/s11914-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE OF REVIEW The impact of nephrolithiasis on skeletal growth and bone health across the life span of kidney stone formers is reviewed. MAIN FINDINGS Bone disease is an early event among kidney stone formers (SF), with distinct phenotypes according to each age, sex, menopausal status, dietary, hormonal and genetic factors. Nephrolithiasis-associated bone disorder is characterized by reduced bone mineral density (BMD) and histologically discloses low bone formation, high bone resorption and abnormal mineralization. Although hypercalciuria has been presumed to be pathogenic for bone loss in SF, the association of BMD with urinary calcium is not uniform in all studies. Hypocitraturia, metabolic disturbances, cytokines and receptors, growth factors and acid-base status may all influence skeletal outcomes. The potential link of bone disease with vascular calcification and cardiovascular disease among SF is discussed. The unique vulnerability of the younger skeleton to the effects of nephrolithiasis on attainment of peak bone mass and strength is highlighted and the association of bone loss with kidney stone formation early in life indicate the opportunity for intervention to reduce the risk of future bone fractures.
Collapse
Affiliation(s)
- Ita Pfeferman Heilberg
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Botucatu 740 - Vila Clementino, São Paulo, 04023-900, Brazil.
| | - Aluizio Barbosa Carvalho
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Botucatu 740 - Vila Clementino, São Paulo, 04023-900, Brazil
| | - Michelle R Denburg
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Division of Pediatric Nephrology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Giustina A, Bilezikian JP, Adler RA, Banfi G, Bikle DD, Binkley NC, Bollerslev J, Bouillon R, Brandi ML, Casanueva FF, di Filippo L, Donini LM, Ebeling PR, Fuleihan GEH, Fassio A, Frara S, Jones G, Marcocci C, Martineau AR, Minisola S, Napoli N, Procopio M, Rizzoli R, Schafer AL, Sempos CT, Ulivieri FM, Virtanen JK. Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. Endocr Rev 2024; 45:625-654. [PMID: 38676447 PMCID: PMC11405507 DOI: 10.1210/endrev/bnae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 04/28/2024]
Abstract
The 6th International Conference, "Controversies in Vitamin D," was convened to discuss controversial topics, such as vitamin D metabolism, assessment, actions, and supplementation. Novel insights into vitamin D mechanisms of action suggest links with conditions that do not depend only on reduced solar exposure or diet intake and that can be detected with distinctive noncanonical vitamin D metabolites. Optimal 25-hydroxyvitamin D (25(OH)D) levels remain debated. Varying recommendations from different societies arise from evaluating different clinical or public health approaches. The lack of assay standardization also poses challenges in interpreting data from available studies, hindering rational data pooling and meta-analyses. Beyond the well-known skeletal features, interest in vitamin D's extraskeletal effects has led to clinical trials on cancer, cardiovascular risk, respiratory effects, autoimmune diseases, diabetes, and mortality. The initial negative results are likely due to enrollment of vitamin D-replete individuals. Subsequent post hoc analyses have suggested, nevertheless, potential benefits in reducing cancer incidence, autoimmune diseases, cardiovascular events, and diabetes. Oral administration of vitamin D is the preferred route. Parenteral administration is reserved for specific clinical situations. Cholecalciferol is favored due to safety and minimal monitoring requirements. Calcifediol may be used in certain conditions, while calcitriol should be limited to specific disorders in which the active metabolite is not readily produced in vivo. Further studies are needed to investigate vitamin D effects in relation to the different recommended 25(OH)D levels and the efficacy of the different supplementary formulations in achieving biochemical and clinical outcomes within the multifaced skeletal and extraskeletal potential effects of vitamin D.
Collapse
Affiliation(s)
- Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - John P Bilezikian
- Department of Medicine, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Robert A Adler
- Richmond Veterans Affairs Medical Center and Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Giuseppe Banfi
- IRCCS Galeazzi Sant’Ambrogio Hospital, Milano 20161, Italy
- San Raffaele Vita–Salute University, Milan 20132, Italy
| | - Daniel D Bikle
- Department of Medicine, University of California and San Francisco Veterans Affairs Health Center, San Francisco, CA 94121-1545, USA
- Department of Endocrinology, University of California and San Francisco Veterans Affairs Health Center, San Francisco, CA 94121-1545, USA
| | - Neil C Binkley
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53726, USA
| | | | - Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Maria Luisa Brandi
- Italian Foundation for the Research on Bone Diseases (F.I.R.M.O.), Florence 50129, Italy
| | - Felipe F Casanueva
- Department of Medicine, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario and CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela University, Santiago de Compostela 15706, Spain
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - Lorenzo M Donini
- Department of Experimental Medicine, Sapienza University, Rome 00161, Italy
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton 3168, Australia
| | - Ghada El-Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program, WHO CC for Metabolic Bone Disorders, Division of Endocrinology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Verona 37129, Italy
| | - Stefano Frara
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, ON K7L 3N6, Canada
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Adrian R Martineau
- Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Salvatore Minisola
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome 00161, Italy
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes Campus Bio-Medico, University of Rome, Rome 00128, Italy
| | - Massimo Procopio
- Division of Endocrinology, Diabetology and Metabolic Diseases, “Molinette” Hospital, University of Turin, Turin 10126, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva 1205, Switzerland
| | - Anne L Schafer
- Department of Medicine, University of California and San Francisco Veterans Affairs Health Center, San Francisco, CA 94121-1545, USA
| | | | - Fabio Massimo Ulivieri
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
3
|
Romero-Córdoba S, Chirinos M, Noyola-Martínez N, Torres-Ramírez N, García-Olivares M, Aragón-Hernández JP, Ramírez-Camacho I, Zúñiga R, Larrea F, Halhali A, Barrera D. Transcriptional landscape of human trophoblast cells treated with calcitriol and TGF-β1. Mol Cell Endocrinol 2024; 579:112088. [PMID: 37832930 DOI: 10.1016/j.mce.2023.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Calcitriol and transforming growth factor beta 1 (TGF-β1) are unrelated molecules that regulate biological processes according to the genetic target, cell type, and context. Several studies have shown independent effects of calcitriol and TGF-βs on the placenta, but there is no information regarding the impact of their combination on these cells. Therefore, this study analyzed the effects of calcitriol, TGF-β1, and their combination in primary cultures of human trophoblast cells using a whole genome expression microarray. Data analysis revealed a set of differentially expressed genes induced by each treatment. Enrichment pathway analysis identified modulatory effects of calcitriol on genes related to metabolic processes such as vitamin D, steroid, and fat-soluble vitamins as well as antimicrobial and immune responses. In relation to TGF-β1, the analysis showed a few differentially expressed genes that were mainly associated with the neutrophil immune response. Lastly, the analysis revealed that the combination of calcitriol and TGF-β1 up-regulated genes involving both immunologic processes and the biosynthesis of unsaturated fatty acids, eicosanoids, and lipoxins, among others. In contrast, pathways down-regulated by the combination were mostly associated with the catabolic process of acylglycerols and peptides, PPAR signaling pathway, cellular response to low-density lipoprotein stimulus, renin angiotensin system and digestion, mobilization and transport of lipids. Consistent with these results, the combined treatment on human trophoblast cells induced the accumulation of intracellular neutral lipid droplets and stimulated both gene and protein expression of 15-hydroxyprostaglandin dehydrogenase. In conclusion, the results revealed that differentially expressed genes induced by the combination modified the transcriptional landscape compared to each treatment alone, mainly altering the storage, activity and metabolism of lipids, which might have an impact on placental development.
Collapse
Affiliation(s)
- Sandra Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico; Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, Mexico
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Nancy Noyola-Martínez
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México, 04510, Mexico
| | - Mitzi García-Olivares
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Juan Pablo Aragón-Hernández
- Departamento de la Unidad Tocoquirúrgica, Hospital General "Dr. Manuel Gea González", Ciudad de México, 14080, Mexico
| | - Ixchel Ramírez-Camacho
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Rosa Zúñiga
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Ali Halhali
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - David Barrera
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico.
| |
Collapse
|
4
|
Paliu IA, Olinca MV, Ianosi SL, Georgescu CV, Turcu-Stiolica A, Diaconu M, Dumitrescu CI, Tica AA. CYP27B1 Enzyme in Psoriasis: A Preliminary Study of Immunohistochemical Observations. Life (Basel) 2023; 14:15. [PMID: 38276264 PMCID: PMC10817706 DOI: 10.3390/life14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Connections between vitamin D and psoriasis have been a matter of interest for the past decades, with its active metabolite, 1,25(OH)2 vitamin D, being valued for antiproliferative and immunomodulatory effects. However, none of vitamin D's actions could be possible without the CYP27B1 enzyme that bio-activates this metabolite of interest. In order to see if there is any link between the enzyme expression and the disease's particularities, we conducted a preliminary study that involved 11 skin biopsies of patients with mild (n = 4) or moderate to severe psoriasis (n = 7). The cell proliferation antigen Ki67 and the CD45RO+ marker were also assessed. Compared with healthy skin, in psoriasis, it is reported that the enzyme's expression seems to be more ubiquitous, but a clear correlation between the disease's severity and the CYP27B1 expression was, to our knowledge, lacking. We found that, in patients with very mild psoriasis, the enzyme expression was observed in the epidermal stratum basale in a similar manner as in healthy skin specimens. Contrary, for higher severity scores, a divergent result was observed, with the enzyme being either variably spread in the epidermal stratum spinosum or completely absent. Unlike malignant diseases, a significant connection between CYP27B1 and Ki67 (p = 0.313) or CYP27B1 and CD45RO+ (p = 0.657) does not seem to be relevant in psoriasis.
Collapse
Affiliation(s)
- Iulia-Alexandra Paliu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.P.); (M.D.); (C.-I.D.); (A.-A.T.)
| | - Maria-Victoria Olinca
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Simona-Laura Ianosi
- Department of Dermatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Magdalena Diaconu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.P.); (M.D.); (C.-I.D.); (A.-A.T.)
| | - Cristiana-Iulia Dumitrescu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.P.); (M.D.); (C.-I.D.); (A.-A.T.)
| | - Andrei-Adrian Tica
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.P.); (M.D.); (C.-I.D.); (A.-A.T.)
| |
Collapse
|
5
|
Wherry TLT, Stabel JR. Bovine Immunity and Vitamin D 3: An Emerging Association in Johne's Disease. Microorganisms 2022; 10:1865. [PMID: 36144467 PMCID: PMC9500906 DOI: 10.3390/microorganisms10091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is an environmentally hardy pathogen of ruminants that plagues the dairy industry. Hallmark clinical symptoms include granulomatous enteritis, watery diarrhea, and significant loss of body condition. Transition from subclinical to clinical infection is a dynamic process led by MAP which resides in host macrophages. Clinical stage disease is accompanied by dysfunctional immune responses and a reduction in circulating vitamin D3. The immunomodulatory role of vitamin D3 in infectious disease has been well established in humans, particularly in Mycobacterium tuberculosis infection. However, significant species differences exist between the immune system of humans and bovines, including effects induced by vitamin D3. This fact highlights the need for continued study of the relationship between vitamin D3 and bovine immunity, especially during different stages of paratuberculosis.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Department of Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| | - Judith R. Stabel
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| |
Collapse
|
6
|
Poniedziałek-Czajkowska E, Mierzyński R. Could Vitamin D Be Effective in Prevention of Preeclampsia? Nutrients 2021; 13:nu13113854. [PMID: 34836111 PMCID: PMC8621759 DOI: 10.3390/nu13113854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Prevention of preeclampsia (PE) remains one of the most significant problems in perinatal medicine. Due to the possible unpredictable course of hypertension in pregnancy, primarily PE and the high complication rate for the mother and fetus/newborn, it is urgent to offer pregnant women in high-risk groups effective methods of preventing the PE development or delaying its appearance. In addition, due to the association of PE with an increased risk of developing cardiovascular diseases (CVD) in later life, effective preeclampsia prevention could also be important in reducing their incidence. Ideal PE prophylaxis should target the pathogenetic changes leading to the development of PE and be safe for the mother and fetus, inexpensive and freely available. Currently, the only recognized method of PE prevention recommended by many institutions around the world is the use of a small dose of acetylsalicylic acid in pregnant women with risk factors. Unfortunately, some cases of PE are diagnosed in women without recognized risk factors and in those in whom prophylaxis with acetylsalicylic acid is not adequate. Hence, new drugs which would target pathogenetic elements in the development of preeclampsia are studied. Vitamin D (Vit D) seems to be a promising agent due to its beneficial effect on placental implantation, the immune system, and angiogenic factors. Studies published so far emphasize the relationship of its deficiency with the development of PE, but the data on the benefits of its supplementation to reduce the risk of PE are inconclusive. In the light of current research, the key issue is determining the protective concentration of Vit D in a pregnant woman. The study aims to present the possibility of using Vit D to prevent PE, emphasizing its impact on the pathogenetic elements of preeclampsia development.
Collapse
|
7
|
Travica N, Ried K, Hudson I, Scholey A, Pipingas A, Sali A. The effects of cardiovascular and orthopaedic surgery on vitamin concentrations: a narrative review of the literature and mechanisms of action. Crit Rev Food Sci Nutr 2021:1-31. [PMID: 34619992 DOI: 10.1080/10408398.2021.1983762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Given the rise in worldwide chronic diseases, supplemented by an aging population, the volume of global major surgeries, encompassing cardiac and orthopedic procedures is anticipated to surge significantly. Surgical trauma can be accompanied by numerous postoperative complications and metabolic changes. The present review summarized the results from studies assessing the effects of orthopedic and cardiovascular surgery on vitamin concentrations, in addition to exploring the possible mechanisms associated with changes in concentrations. Studies have revealed a potentially severe depletion in plasma/serum concentrations of numerous vitamins following these surgeries acutely. Vitamins C, D and B1 appear particularly vulnerable to significant depletions, with vitamin C and D depletions consistently transpiring into inadequate and deficient concentrations, respectively. The possible multifactorial mechanisms impacting postoperative vitamin concentrations include changes in hemodilution and vitamin utilization, redistribution, circulatory transport and absorption. For a majority of vitamins, there has been a lack of investigation into the effects of both, cardiac and orthopedic surgery. Additionally, studies were predominantly restricted to short-term postoperative investigations, primarily performed within the first postoperative week of surgery. Overall, results indicated that further examination is necessary to determine the severity and clinical significance of the possible depletions in vitamin concentrations that ensue cardiovascular and orthopedic surgery.
Collapse
Affiliation(s)
- Nikolaj Travica
- Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, the Institute for Mental and Physical Health and Clinical Translation (IMPACT), Geelong, Australia.,Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia.,The National Institute of Integrative Medicine, Melbourne, Australia
| | - Karin Ried
- The National Institute of Integrative Medicine, Melbourne, Australia.,Honorary Associate Professor, Discipline of General Practice, University of Adelaide, South Australia, Australia.,Torrens University, Melbourne, Australia
| | - Irene Hudson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia.,Digital Health, CRC, College of STEM, Mathematical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, Australia.,School of Mathematical and Physical Science, University of Newcastle, Newcastle, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Avni Sali
- The National Institute of Integrative Medicine, Melbourne, Australia
| |
Collapse
|
8
|
Olmos-Ortiz A, Olivares-Huerta A, García-Quiroz J, Avila E, Halhali A, Quesada-Reyna B, Larrea F, Zaga-Clavellina V, Díaz L. Cord Serum Calcitriol Inversely Correlates with Maternal Blood Pressure in Urinary Tract Infection-Affected Pregnancies: Sex-Dependent Immune Implications. Nutrients 2021; 13:3114. [PMID: 34578991 PMCID: PMC8467737 DOI: 10.3390/nu13093114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022] Open
Abstract
Urinary tract infections (UTI) during pregnancy are frequently associated with hypertensive disorders, increasing the risk of perinatal morbidity. Calcitriol, vitamin D3's most active metabolite, has been involved in blood pressure regulation and prevention of UTIs, partially through modulating vasoactive peptides and antimicrobial peptides, like cathelicidin. However, nothing is known regarding the interplay between placental calcitriol, cathelicidin, and maternal blood pressure in UTI-complicated pregnancies. Here, we analyzed the correlation between these parameters in pregnant women with UTI and with normal pregnancy (NP). Umbilical venous serum calcitriol and its precursor calcidiol were significantly elevated in UTI. Regardless of newborn's sex, we found strong negative correlations between calcitriol and maternal systolic and diastolic blood pressure in the UTI cohort (p < 0.002). In NP, this relationship was observed only in female-carrying mothers. UTI-female placentas showed higher expression of cathelicidin and CYP27B1, the calcitriol activating-enzyme, compared to male and NP samples. Accordingly, cord-serum calcitriol from UTI-female neonates negatively correlated with maternal bacteriuria. Cathelicidin gene expression positively correlated with gestational age in UTI and with newborn anthropometric parameters. Our results suggest that vitamin D deficiency might predispose to maternal cardiovascular risk and perinatal infections especially in male-carrying pregnancies, probably due to lower placental CYP27B1 and cathelicidin expression.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas-Virreyes, Lomas de Chapultepec IV Sección, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Alberto Olivares-Huerta
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| | - Euclides Avila
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| | - Ali Halhali
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| | - Braulio Quesada-Reyna
- División de Obstetricia, UMAE Hospital de Gineco-Obstetricia No. 4 “Luis Castelazo Ayala”, IMSS, Rio de la Magdalena 289, Tizapán San Ángel, Progreso Tizapán, Álvaro Obregón, Ciudad de Mexico 01090, Mexico;
| | - Fernando Larrea
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas-Virreyes, Lomas de Chapultepec IV Sección, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de Mexico 14080, Mexico; (A.O.-O.); (A.O.-H.); (J.G.-Q.); (E.A.); (A.H.); (F.L.)
| |
Collapse
|
9
|
Lower placental 25-hydroxyvitamin D 3 (25(OH)D 3) and higher placental CYP27B1 and 25(OH)D 3 ratio in preterm birth. J Nutr Sci 2020; 9:e50. [PMID: 33244402 PMCID: PMC7681105 DOI: 10.1017/jns.2020.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 01/04/2023] Open
Abstract
Neonatal mortality rates in Indonesia are still at an alarming rate, with preterm birth as one of the causes. Nutritional deficiencies such as low level of vitamin D is suspected to be the risk factors of preterm birth but still a little knowledge about it. Vitamin D metabolism includes 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), as the inactive and active form, with the help of 1α-hydroxylase (CYP27B1) enzyme. Our study aims to determine the differences of 25(OH)D3, 1,25(OH)2D3 and CYP27B1 enzyme in term and preterm birth. A cross-sectional study was performed in Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia, in January–June 2017. The blood sample was taken soon after delivery, to examine maternal 25(OH)D3 and 1,25(OH)2D3 in serum and tissue placenta, as well as placental CYP27B1 enzyme. Statistical analysis using SPPS version 20 was used to find significances. There were a total of sixty subjects in this study, with term-preterm birth group ratio 1:1. We found that placental 25(OH)D3 was significantly low (P = 0⋅001), and CYP27B1/25(OH)D3 ratio was high in preterm birth. Also, there were significant negative correlations found in CYP27B1 level and both placental 25(OH)D3 (r 0⋅481, P < 0⋅001) and 1,25(OH)2D3 (r −0⋅365, P = 0⋅004) levels. Our study concludes that preterm birth showed lower placental 25(OH)D3 status, and higher CYP27B1/25(OH)D3 ratio compared to term pregnancy.
Collapse
|
10
|
Schrumpf JA, van der Does AM, Hiemstra PS. Impact of the Local Inflammatory Environment on Mucosal Vitamin D Metabolism and Signaling in Chronic Inflammatory Lung Diseases. Front Immunol 2020; 11:1433. [PMID: 32754156 PMCID: PMC7366846 DOI: 10.3389/fimmu.2020.01433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D plays an active role in the modulation of innate and adaptive immune responses as well as in the protection against respiratory pathogens. Evidence for this immunomodulatory and protective role is derived from observational studies showing an association between vitamin D deficiency, chronic airway diseases and respiratory infections, and is supported by a range of experimental studies using cell culture and animal models. Furthermore, recent intervention studies have now shown that vitamin D supplementation reduces exacerbation rates in vitamin D-deficient patients with chronic obstructive pulmonary disease (COPD) or asthma and decreases the incidence of acute respiratory tract infections. The active vitamin D metabolite, 1,25-dihydroxy-vitamin D (1,25(OH)2D), is known to contribute to the integrity of the mucosal barrier, promote killing of pathogens (via the induction of antimicrobial peptides), and to modulate inflammation and immune responses. These mechanisms may partly explain its protective role against infections and exacerbations in COPD and asthma patients. The respiratory mucosa is an important site of local 1,25(OH)2D synthesis, degradation and signaling, a process that can be affected by exposure to inflammatory mediators. As a consequence, mucosal inflammation and other disease-associated factors, as observed in e.g., COPD and asthma, may modulate the protective actions of 1,25(OH)2D. Here, we discuss the potential consequences of various disease-associated processes such as inflammation and exposure to pathogens and inhaled toxicants on vitamin D metabolism and local responses to 1,25(OH)2D in both immune- and epithelial cells. We furthermore discuss potential consequences of disturbed local levels of 25(OH)D and 1,25(OH)2D for chronic lung diseases. Additional insight into the relationship between disease-associated mechanisms and local effects of 1,25(OH)2D is expected to contribute to the design of future strategies aimed at improving local levels of 1,25(OH)2D and signaling in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Clarke J, Yaqubi M, Futhey NC, Sedaghat S, Baufeld C, Blain M, Baranzini S, Butovsky O, Antel J, White JH, Healy LM. Vitamin D Regulates MerTK-Dependent Phagocytosis in Human Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:398-406. [PMID: 32540991 DOI: 10.4049/jimmunol.2000129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
Vitamin D deficiency is a major environmental risk factor for the development of multiple sclerosis. The major circulating metabolite of vitamin D (25-hydroxyvitamin D) is converted to the active form (calcitriol) by the hydroxylase enzyme CYP27B1 In multiple sclerosis lesions, the tyrosine kinase MerTK expressed by myeloid cells regulates phagocytosis of myelin debris and apoptotic cells that can accumulate and inhibit tissue repair and remyelination. In this study, we explored the effect of calcitriol on homeostatic (M-CSF, TGF-β-treated) and proinflammatory (GM-CSF-treated) human monocyte-derived macrophages and microglia using RNA sequencing. Transcriptomic analysis revealed significant calcitriol-mediated effects on both Ag presentation and phagocytosis pathways. Calcitriol downregulated MerTK mRNA and protein expression in both myeloid populations, resulting in reduced capacity of these cells to phagocytose myelin and apoptotic T cells. Proinflammatory myeloid cells expressed high levels of CYP27B1 compared with homeostatic myeloid cells. Only proinflammatory cells in the presence of TNF-α generated calcitriol from 25-hydroxyvitamin D, resulting in repression of MerTK expression and function. This selective production of calcitriol in proinflammatory myeloid cells has the potential to reduce the risk for autoantigen presentation while retaining the phagocytic ability of homeostatic myeloid cells.
Collapse
Affiliation(s)
- Jelani Clarke
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Naomi C Futhey
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Sara Sedaghat
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Caroline Baufeld
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Manon Blain
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Sergio Baranzini
- Department of Neurology, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA 94115
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jack Antel
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - John H White
- Departments of Physiology and Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada; and.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Luke M Healy
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada;
| |
Collapse
|
12
|
Traglia M, Windham GC, Pearl M, Poon V, Eyles D, Jones KL, Lyall K, Kharrazi M, Croen LA, Weiss LA. Genetic Contributions to Maternal and Neonatal Vitamin D Levels. Genetics 2020; 214:1091-1102. [PMID: 32047095 PMCID: PMC7153928 DOI: 10.1534/genetics.119.302792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/05/2020] [Indexed: 02/08/2023] Open
Abstract
Vitamin D is essential for several physiological functions and biological processes. Increasing levels of maternal vitamin D are required throughout pregnancy as a unique source of vitamin D for the fetus, and consequently maternal vitamin D deficiency may result in several adverse outcomes in newborns. However, the genetic regulation of vitamin D in pregnancy and at birth is not yet well understood. We performed genome-wide association studies of maternal midgestational serum-derived and neonatal blood-spot-derived total 25-hydroxyvitamin D from a case-control study of autism spectrum disorder (ASD). We identified one fetal locus (rs4588) significantly associated with neonatal vitamin D levels in the GC gene, encoding the binding protein for the transport and function of vitamin D. We also found suggestive cross-associated loci for neonatal and maternal vitamin D near immune genes, such as CXCL6-IL8 and ACKR1 We found no interactions with ASD. However, when including a set of cases with intellectual disability but not ASD (N = 179), we observed a suggestive interaction between decreased levels of neonatal vitamin D and a specific maternal genotype near the PKN2 gene. Our results suggest that genetic variation influences total vitamin D levels during pregnancy and at birth via proteins in the vitamin D pathway, but also potentially via distinct mechanisms involving loci with known roles in immune function that might be involved in vitamin D pathophysiology in pregnancy.
Collapse
Affiliation(s)
- Michela Traglia
- Department of Psychiatry, Institute for Human Genetics, University of California, San Francisco, California 94143
| | - Gayle C Windham
- California Department of Public Health, Environmental Health Investigations Branch, Richmond, California 94804
| | - Michelle Pearl
- California Department of Public Health, Environmental Health Investigations Branch, Richmond, California 94804
| | - Victor Poon
- Sequoia Foundation, La Jolla, California 92037
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Karen L Jones
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California 95616
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania 191044
| | - Martin Kharrazi
- California Department of Public Health, Environmental Health Investigations Branch, Richmond, California 94804
| | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, California 94612
| | - Lauren A Weiss
- Department of Psychiatry, Institute for Human Genetics, University of California, San Francisco, California 94143
| |
Collapse
|
13
|
Lacroix M, Lizotte F, Hivert MF, Geraldes P, Perron P. Calcifediol Decreases Interleukin-6 Secretion by Cultured Human Trophoblasts From GDM Pregnancies. J Endocr Soc 2019; 3:2165-2178. [PMID: 31701079 PMCID: PMC6825515 DOI: 10.1210/js.2019-00181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is often characterized by low maternal calcifediol (25OHD) and high inflammation levels. This study aimed to determine whether placental protein expressions of CYP27B1, vitamin D receptor (VDR), and CYP24A1 are impaired in GDM and to investigate the effect of a 25OHD treatment on IL-6 secretion by GDM trophoblasts compared with normoglycemic (NG) trophoblasts. Placental tissue samples were harvested to determine protein expression of CYP27B1, VDR, and CYP24A1 by immunoblots. Isolated trophoblasts were stimulated with 25OHD concentrations (25 to 2000 nM) once a day for 3 days and IL-6 secretion was quantified (ELISA). We recruited 17 NG women, 19 women with GDM treated with diet and exercise alone (GDM-d) and 9 women with GDM who necessitated insulin therapy (GDM-i). Protein expressions of CYP27B1 and VDR were significantly higher in placental tissue from GDM-d women compared with NG women (both P = 0.02), whereas no differences were detected between GDM-i and NG placental tissues. In cultured trophoblasts (two groups; n = 5 NG and n = 5 GDM-d), exposure to increasing 25OHD concentrations significantly decreased IL-6 secretion in the GDM-d group only (P = 0.006). After treatment with 25OHD (2000 nM), IL-6 secretion was lower in the GDM-d group compared with the NG group (P = 0.03). Our results suggest an upregulation of the VDR-1,25(OH)2D complex bioavailability in GDM-d placentas, possibly reflecting a compensatory mechanism aiming to ensure that vitamin D can exert its genomic and nongenomic effects in the target cells of the placental-fetal unit. Our findings support an anti-inflammatory effect of vitamin D at the feto-maternal interface in GDM-d pregnancies.
Collapse
Affiliation(s)
- Marilyn Lacroix
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Farah Lizotte
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-France Hivert
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Patrice Perron
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
14
|
Fukuda-Tatano S, Yamamoto H, Nakahashi O, Yoshikawa R, Hayashi M, Kishimoto M, Imi Y, Yamanaka-Okumura H, Ohnishi K, Masuda M, Taketani Y. Regulation of α-Klotho Expression by Dietary Phosphate During Growth Periods. Calcif Tissue Int 2019; 104:667-678. [PMID: 30671592 DOI: 10.1007/s00223-019-00525-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
Inorganic phosphate (Pi) is an essential nutrient for maintaining various biological functions, particularly during growth periods. Excess intake of dietary Pi increases the secretion of fibroblast growth factor 23 (FGF23) and parathyroid hormone to maintain plasma Pi levels. FGF23 is a potent phosphaturic factor that binds to the α-klotho/FGFR complex in the kidney to promote excretion of Pi into the urine. In addition, excess intake of dietary Pi decreases renal α-klotho expression. Down-regulation or lack of α-klotho induces a premature aging-like phenotype, resulting from hyperphosphatemia, and leading to conditions such as ectopic calcification and osteoporosis. However, it remains unclear what effects dietary Pi has on α-klotho expression at different life stages, especially during growth periods. To investigate this, we used C57BL/6J mice in two life stages during growing period. Weaned (3 weeks old) and periadolescent (7 weeks old) were randomly divided into seven experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8% Pi diets for 7 days. As a result, elevated plasma Pi and FGF23 levels and decreased renal α-klotho expression were observed in weaned mice fed with a high Pi diet. In addition, a high Pi diet clearly induced renal calcification in the weaned mice. However, in the periadolescent group, renal calcification was not observed, even in the 1.8% Pi diet group. The present study indicates that a high Pi diet in weaned mice has much greater adverse effects on renal α-klotho expression and pathogenesis of renal calcification compared with periadolescent mice.
Collapse
Affiliation(s)
- Shiori Fukuda-Tatano
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, 151 Nishihayashigi, Izumo, Shimane, 693-8550, Japan
| | - Hironori Yamamoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, Ohde-cho 3-1-1, Echizen, Fukui, 915-8586, Japan
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Otoki Nakahashi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Division of Functional Food Chemistry, Institute for Health Science, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima, Tokushima, 770-8514, Japan
| | - Ryouhei Yoshikawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mayu Hayashi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Maki Kishimoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yukiko Imi
- Department of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Hisami Yamanaka-Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
15
|
Xu Y, Cheng Y, Baylink DJ, Wasnik S, Goel G, Huang M, Cao H, Qin X, Lau KHW, Chan C, Koch A, Pham LH, Zhang J, Li CH, Wang X, Berumen EC, Smith J, Tang X. In Vivo Generation of Gut-Homing Regulatory T Cells for the Suppression of Colitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:3447-3457. [PMID: 31053627 PMCID: PMC10234421 DOI: 10.4049/jimmunol.1800018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Current therapies for gut inflammation have not reached the desired specificity and are attended by unintended immune suppression. This study aimed to provide evidence for supporting a hypothesis that direct in vivo augmentation of the induction of gut-homing regulatory T (Treg) cells is a strategy of expected specificity for the treatment of chronic intestinal inflammation (e.g., inflammatory bowel disease). We showed that dendritic cells (DCs), engineered to de novo produce high concentrations of both 1,25-dihydroxyvitamin D, the active vitamin D metabolite, and retinoic acid, an active vitamin A metabolite, augmented the induction of T cells that express both the regulatory molecule Foxp3 and the gut-homing receptor CCR9 in vitro and in vivo. In vivo, the newly generated Ag-specific Foxp3+ T cells homed to intestines. Additionally, transfer of such engineered DCs robustly suppressed ongoing experimental colitis. Moreover, CD4+ T cells from spleens of the mice transferred with the engineered DCs suppressed experimental colitis in syngeneic hosts. The data suggest that the engineered DCs enhance regulatory function in CD4+ T cell population in peripheral lymphoid tissues. Finally, we showed that colitis suppression following in vivo transfer of the engineered DCs was significantly reduced when Foxp3+ Treg cells were depleted. The data indicate that maximal colitis suppression mediated by the engineered DCs requires Treg cells. Collectively, our data support that DCs de novo overproducing both 1,25-dihydroxyvitamin D and retinoic acid are a promising novel therapy for chronic intestinal inflammation.
Collapse
Affiliation(s)
- Yi Xu
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Department of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354
| | - Yanmei Cheng
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Gastroenterology Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Gati Goel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Mei Huang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huynh Cao
- Department of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354
| | - Xuezhong Qin
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357
| | - Kin-Hing William Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357
| | - Christian Chan
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Adam Koch
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Linh H Pham
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Jintao Zhang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan 450052, China
| | - Chih-Huang Li
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Department of Emergency Medicine, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Xiaohua Wang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354.,Jinan Infectious Disease Hospital, Shandong University, Shandong 250014, China; and
| | - Edmundo Carreon Berumen
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - James Smith
- X Cell Laboratories Inc., Redlands, CA 92373
| | - Xiaolei Tang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354;
| |
Collapse
|
16
|
Olmos-Ortiz A, García-Quiroz J, Halhali A, Avila E, Zaga-Clavellina V, Chavira-Ramírez R, García-Becerra R, Caldiño-Soto F, Larrea F, Díaz L. Negative correlation between testosterone and TNF-α in umbilical cord serum favors a weakened immune milieu in the human male fetoplacental unit. J Steroid Biochem Mol Biol 2019; 186:154-160. [PMID: 30359690 DOI: 10.1016/j.jsbmb.2018.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/10/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022]
Abstract
Clinical and epidemiological evidence supports that pregnancies carrying a male fetus are more vulnerable to infections and preterm birth, probably due to testosterone immunosuppressive properties. In human placentas, testosterone lowers the expression of CYP27B1, the vitamin D (VD)-activating enzyme, diminishing cathelicidin synthesis, a potent VD-dependent antimicrobial peptide (AMP). VD also stimulates other AMPs, including defensins. To get insights into the increased male vulnerability mechanisms, we investigated the relationship between fetal sex and the immunoendocrine milieu at the fetoplacental unit. For this, umbilical vein serum and placental samples were collected from healthy newborns. In males' serum, testosterone levels were significantly higher and negatively associated with TNF-α, a cytokine that strengthens the immune response. Males showed lower serum TNF-α and increased levels and gene expression of the immunosuppressive cytokine IL-10. Only in female samples there was a positive association (P < 0.05) between AMPs and both TNF-α and CYP27B1 and between 25-hydroxyvitamin D3 and IL-1β serum levels. Accordingly, VD-metabolites (25-hydroxyvitamin D3, calcitriol) significantly stimulated IL-1β gene expression in cultured trophoblasts. Interestingly, IL-1β mRNA correlated positively with defensins (P < 0.05) in males, but not with cathelicidin expression, which was significantly diminished in comparison to females. Our data suggest that high umbilical serum testosterone and IL-10 in males could explain reduced TNF-α levels and lack of association between VD-dependent innate immunity markers and proinflammatory cytokines expression in the fetoplacental unit. Altogether, our observations imply a restricted basal immune milieu in males compared to females, which may help understand the higher male susceptibility to adverse perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico; Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales No. 800, Lomas de Virreyes, C.P. 11000, Ciudad de México, Mexico
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Ali Halhali
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales No. 800, Lomas de Virreyes, C.P. 11000, Ciudad de México, Mexico
| | - Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán 04360, Ciudad de México, Mexico
| | - Felipe Caldiño-Soto
- Jefatura de UTQ, UMAE Hospital de Gineco Obstetricia No. 4 "Luis Castelazo Ayala", IMSS, Av. Río Magdalena No. 289, Tizapán San Angel, C.P. 01090, Ciudad de México, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, C.P. 14080, Ciudad de México, Mexico.
| |
Collapse
|
17
|
Dorsch MA, de Yaniz MG, Fiorani F, Hecker YP, Odeón AC, Morrell EL, Campero CM, Barbeito CG, Moore DP. A Descriptive Study of Lectin Histochemistry of the Placenta in Cattle following Inoculation of Neospora caninum. J Comp Pathol 2018; 166:45-53. [PMID: 30691605 DOI: 10.1016/j.jcpa.2018.10.172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/29/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022]
Abstract
The aim of this study was to describe the lectin-binding pattern in the placentas of cows infected experimentally with Neospora caninum. Four cows were inoculated intravenously with 1 × 108 tachyzoites of the NC-1 strain of N. caninum at 150 ± 7 days of pregnancy. Two control cows were administered a placebo. An indirect fluorescence antibody test (IFAT) was performed on serum samples obtained before and after the inoculation. The cows were killed at 30 and 37 days post inoculation. Samples of placenta were taken for histopathology and lectin histochemistry. Fetal tissues and fluids were collected for histopathology and IFAT, respectively. All infected cows had high antibody titres. All fetuses had characteristic histopathological lesions, including non-suppurative meningoencephalitis, myocarditis, hepatitis and myositis, suggesting N. caninum infection. Only two infected fetuses developed specific antibodies. Mild non-suppurative inflammatory infiltrates were recorded in the placentae. Differences in the lectin-binding pattern were observed between infected animals and controls in the glycocalyx (CON-A and WGA) and apical cytoplasm (RCA-I and CON-A) of the trophoblastic cells; giant trophoblastic cells (CON-A and DBA); glycocalyx (PNA, WGA) and apical cytoplasm (CON-A, WGA, PNA, DBA and RCA-I) of endometrial cells; trophoblast of the interplacentomal region (WGA); endothelium (CON-A, SBA, RCA-1 and WGA); and finally, mesenchyme (CON-A, RCA-1, SBA, PNA and DBA). These findings indicate that there is a distinctive pattern of lectin binding in the placenta of cattle infected with N. caninum. The direct effect of the presence of the protozoa as well as the altered expression of cytokines could explain these changes in the maternofetal interface.
Collapse
Affiliation(s)
- M A Dorsch
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - M G de Yaniz
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - F Fiorani
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Y P Hecker
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - A C Odeón
- Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina
| | - E L Morrell
- Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina
| | - C M Campero
- Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina
| | - C G Barbeito
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - D P Moore
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
18
|
Ganguly A, Tamblyn JA, Finn-Sell S, Chan SY, Westwood M, Gupta J, Kilby MD, Gross SR, Hewison M. Vitamin D, the placenta and early pregnancy: effects on trophoblast function. J Endocrinol 2018; 236:R93-R103. [PMID: 29109081 DOI: 10.1530/joe-17-0491] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Abstract
Pregnancy is associated with significant changes in vitamin D metabolism, notably increased maternal serum levels of active vitamin D, 1,25-dihydroxyvitamin (1,25(OH)2D). This appears to be due primarily to increased renal activity of the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) that catalyzes synthesis of 1,25(OH)2D, but CYP27B1 expression is also prominent in both the maternal decidua and fetal trophoblast components of the placenta. The precise function of placental synthesis of 1,25(OH)2D remains unclear, but is likely to involve localized tissue-specific responses with both decidua and trophoblast also expressing the vitamin D receptor (VDR) for 1,25(OH)2D. We have previously described immunomodulatory responses to 1,25(OH)2D by diverse populations of VDR-expressing cells within the decidua. The aim of the current review is to detail the role of vitamin D in pregnancy from a trophoblast perspective, with particular emphasis on the potential role of 1,25(OH)2D as a regulator of trophoblast invasion in early pregnancy. Vitamin D deficiency is common in pregnant women, and a wide range of studies have linked low vitamin D status to adverse events in pregnancy. To date, most of these studies have focused on adverse events later in pregnancy, but the current review will explore the potential impact of vitamin D on early pregnancy, and how this may influence implantation and miscarriage.
Collapse
Affiliation(s)
- Ankana Ganguly
- Institute of Metabolism and Systems ResearchThe University of Birmingham, Birmingham, UK
| | - Jennifer A Tamblyn
- Institute of Metabolism and Systems ResearchThe University of Birmingham, Birmingham, UK
- Fetal Medicine CentreBirmingham Women's NHS Foundation Trust, Birmingham, UK
- CEDAMBirmingham Health Partners, The University of Birmingham, Birmingham, UK
| | - Sarah Finn-Sell
- Division of Developmental Biology and MedicineMaternal and Fetal Health Research Centre, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shiao-Y Chan
- Department of Obstetrics and GynaecologyYong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Melissa Westwood
- Division of Developmental Biology and MedicineMaternal and Fetal Health Research Centre, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Janesh Gupta
- Institute of Metabolism and Systems ResearchThe University of Birmingham, Birmingham, UK
- Fetal Medicine CentreBirmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Mark D Kilby
- Institute of Metabolism and Systems ResearchThe University of Birmingham, Birmingham, UK
- Fetal Medicine CentreBirmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Stephane R Gross
- School of Life and Health SciencesAston University, Birmingham, UK
| | - Martin Hewison
- Institute of Metabolism and Systems ResearchThe University of Birmingham, Birmingham, UK
- CEDAMBirmingham Health Partners, The University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Longtine MS, Cvitic S, Colvin BN, Chen B, Desoye G, Nelson DM. Calcitriol regulates immune genes CD14 and CD180 to modulate LPS responses in human trophoblasts. Reproduction 2017; 154:735-744. [DOI: 10.1530/rep-17-0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/17/2017] [Accepted: 09/04/2017] [Indexed: 11/08/2022]
Abstract
We assessed the response of primary cultures of placental villous mononucleated trophoblasts and multinucleated syncytiotrophoblast to calcitriol, the most biologically active form of vitamin D. Whole-genome microarray data showed that calcitriol modulates the expression of many genes in trophoblasts within 6 hours of exposure and RT-qPCR revealed similar responses in cytotrophoblasts, syncytiotrophoblasts and villous explants. Both cytotrophoblasts and syncytiotrophoblasts expressed genes for the vitamin D receptor, for LRP2 and CUBN that mediate internalization of calcidiol, forCYP27B1that encodes the enzyme that converts calcidiol into active calcitriol, and forCYP24A1that encodes the enzyme that modifies calcitriol and calcidiol to inactive calcitetrol. Notably, we found an inverse effect of calcitriol on expression of CD14 and CD180/RP105, proteins that differentially regulate toll-like receptor 4-mediated immune responses. Supported by gene ontology analysis, we tested the hypothesis that CD14 and CD180 modulate the inflammatory response of syncytiotrophoblast to bacterial lipopolysaccharide (LPS). These cells showed a robust response to a wide range of LPS concentrations, with induction of active NF-κB and increased secretion of IL-6 and IL-8. SiRNA-mediated knockdown ofCD14reduced the secretion of IL-6 and IL-8 in response to LPS. Collectively, our data showed that calcitriol has a rapid and widespread effect on villous trophoblast gene expression in general, and a specific effect on the innate immune response by syncytiotrophoblast.
Collapse
|
20
|
Schrumpf JA, Amatngalim GD, Veldkamp JB, Verhoosel RM, Ninaber DK, Ordonez SR, van der Does AM, Haagsman HP, Hiemstra PS. Proinflammatory Cytokines Impair Vitamin D-Induced Host Defense in Cultured Airway Epithelial Cells. Am J Respir Cell Mol Biol 2017; 56:749-761. [PMID: 28231019 DOI: 10.1165/rcmb.2016-0289oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells to proinflammatory cytokines alters their vitamin D metabolism, antibacterial activity, and expression of hCAP18/LL-37. To investigate this, primary bronchial epithelial cells were differentiated at the air-liquid interface for 14 days in the presence of the proinflammatory cytokines, TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor, and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using quantitative PCR, Western blot, and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using nontypeable Haemophilus influenzae. We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of nontypeable H. influenzae. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and vitamin D receptor expression remained unaffected. Furthermore, we have demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was, at least in part, mediated by the transcription factor specific protein 1, and the epidermal growth factor receptor-mitogen-activated protein kinase pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1 and suggest that chronic inflammation impairs protective responses induced by vitamin D.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Gimano D Amatngalim
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Joris B Veldkamp
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Renate M Verhoosel
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Dennis K Ninaber
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Soledad R Ordonez
- 2 Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Anne M van der Does
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Henk P Haagsman
- 2 Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Pieter S Hiemstra
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| |
Collapse
|
21
|
Al-Enazy S, Ali S, Albekairi N, El-Tawil M, Rytting E. Placental control of drug delivery. Adv Drug Deliv Rev 2017; 116:63-72. [PMID: 27527665 DOI: 10.1016/j.addr.2016.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 01/04/2023]
Abstract
The placenta serves as the interface between the maternal and fetal circulations and regulates the transfer of oxygen, nutrients, and waste products. When exogenous substances are present in the maternal bloodstream-whether from environmental contact, occupational exposure, medication, or drug abuse-the extent to which this exposure affects the fetus is determined by transport and biotransformation processes in the placental barrier. Advances in drug delivery strategies are expected to improve the treatment of maternal and fetal diseases encountered during pregnancy.
Collapse
|
22
|
Akoh CC, Pressman EK, Cooper E, Queenan RA, Pillittere J, O'Brien KO. Low Vitamin D is Associated With Infections and Proinflammatory Cytokines During Pregnancy. Reprod Sci 2017; 25:414-423. [PMID: 28618852 DOI: 10.1177/1933719117715124] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vitamin D is known to regulate innate and adaptive immune processes at the cellular level, but the role of vitamin D status on associated inflammatory processes across pregnancy is unclear. Our primary objective was to evaluate the relationships between serum biomarkers of inflammation (interleukin [IL]-6, IL-10, tumor necrosis factor [TNF]-α), acute-phase proteins (C-reactive protein and hepcidin) and vitamin D status, 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D), measured across pregnancy and in the neonate at birth. A second objective was to identify associations between vitamin D status and clinically diagnosed infections. In this study, 158 racially and ethnically diverse pregnant adolescents were recruited from the Rochester Adolescent Maternity Program (RAMP) in Rochester, NY. Serum 1,25(OH)2D was significantly lower in adolescents and neonates with IL-6 concentrations above the 75th percentile at delivery ( P = .04) and at birth ( P = .004), respectively. After adjusting for other potential covariates of inflammation, maternal serum 1,25(OH)2D was significantly positively associated with TNF-α during pregnancy ( P = .02), but at delivery 1,25(OH)2D and TNF-α were inversely associated with one another ( P = .02). Teens with 25(OH)D concentrations <30 ng/mL were more likely to test positive for candida ( P = .002) and bacterial vaginosis ( P = .02) during pregnancy. African Americans exhibited significantly lower TNF-α concentrations at both mid-gestation ( P = .009) and delivery ( P = .001) compared to the Caucasian adolescents. These results suggest that lower maternal vitamin D status may increase risk of infection across gestation.
Collapse
Affiliation(s)
- Christine C Akoh
- 1 Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Eva K Pressman
- 2 Department of Obstetrics and Gynecology, The University of Rochester School of Medicine, Rochester, NY, USA
| | - Elizabeth Cooper
- 2 Department of Obstetrics and Gynecology, The University of Rochester School of Medicine, Rochester, NY, USA
| | - Ruth Anne Queenan
- 2 Department of Obstetrics and Gynecology, The University of Rochester School of Medicine, Rochester, NY, USA
| | - Julie Pillittere
- 1 Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
23
|
Torremadé N, Bozic M, Panizo S, Barrio-Vazquez S, Fernandez-Martín JL, Encinas M, Goltzman D, Arcidiacono MV, Fernandez E, Valdivielso JM. Vascular Calcification Induced by Chronic Kidney Disease Is Mediated by an Increase of 1α-Hydroxylase Expression in Vascular Smooth Muscle Cells. J Bone Miner Res 2016; 31:1865-1876. [PMID: 27074284 DOI: 10.1002/jbmr.2852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023]
Abstract
Vascular calcification (VC) is a complication of chronic kidney disease that predicts morbidity and mortality. Uremic serum promotes VC, but the mechanism involved is unknown. A role for 1,25(OH)2 D3 in VC has been proposed, but the mechanism is unclear because both low and high levels have been shown to increase it. In this work we investigate the role of 1,25(OH)2 D3 produced in vascular smooth muscle cells (VSMCs) in VC. Rats with subtotal nephrectomy and kidney recipient patients showed increased arterial expression of 1α-hydroxylase in vivo. VSMCs exposed in vitro to serum obtained from uremic rats also showed increased 1α-hydroxylase expression. Those increases were parallel to an increase in VC. After 6 days with high phosphate media, VSMCs overexpressing 1α-hydroxylase show significantly higher calcium content and RUNX2 expression than control cells. 1α-hydroxylase null mice (KO) with subtotal nephrectomy and treated with calcitriol (400 ng/kg) for 2 weeks showed significantly lower levels of vascular calcium content, Alizarin red staining, and RUNX2 expression than wild-type (WT) littermates. Serum calcium, phosphorus, blood urea nitrogen (BUN), PTH, and 1,25(OH)2 D3 levels were similar in both calcitriol-treated groups. In vitro, WT VSMCs treated with uremic serum also showed a significant increase in 1α-hydroxylase expression and higher calcification that was not observed in KO cells. We conclude that local activation of 1α-hydroxylase in the artery mediates VC observed in uremia. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Noelia Torremadé
- Nephrology Research Department, REDinREN del ISCIII, IRBLleida, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Milica Bozic
- Nephrology Research Department, REDinREN del ISCIII, IRBLleida, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Sara Barrio-Vazquez
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jose L Fernandez-Martín
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mario Encinas
- Oncogenic Signaling and Development group. IRBLleida, University of Lleida, Spain
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Center and Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Maria V Arcidiacono
- Nephrology Research Department, REDinREN del ISCIII, IRBLleida, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Elvira Fernandez
- Nephrology Research Department, REDinREN del ISCIII, IRBLleida, University Hospital Arnau de Vilanova, Lleida, Spain
| | - José M Valdivielso
- Nephrology Research Department, REDinREN del ISCIII, IRBLleida, University Hospital Arnau de Vilanova, Lleida, Spain.
| |
Collapse
|
24
|
Schlosser RJ, Carroll WW, Soler ZM, Pasquini WN, Mulligan JK. Reduced sinonasal levels of 1α-hydroxylase are associated with worse quality of life in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2015; 6:58-65. [PMID: 26575398 DOI: 10.1002/alr.21576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) have deficiencies in circulating and sinonasal levels of the inactive form of vitamin D3, 25-hydroxycholecalciferol (25VD3). Moreover, CRSwNP patients have reduced epithelial cell-specific expression of 1α-hydroxylase; the enzyme responsible for the conversion of 25VD3 to its metabolically active form, 1α,25-dihydroxyvitamin D3 (1,25VD3). The objective of this work was to determine the impact of sinonasal 1α-hydroxylase levels combined from all cellular sources on subjective disease severity and to identify variables influencing its expression. METHODS Blood and sinus tissue explants were collected at the time of surgery from control, chronic rhinosinusitis without nasal polyps (CRSsNP), CRSwNP, and allergic fungal rhinosinusitis (AFRS) patients. 1α-Hydroxylase was measured by immunostaining with flow cytometric analysis. Subjective disease severity was measured by the 22-item Sino-Nasal Outcomes Test (SNOT-22). 1,25VD3 and 25VD3 were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Patients with CRSwNP or AFRS have reduced 1α-hydroxylase and 1,25VD3 compared to controls or CRSsNP. Circulating 1,25VD3 levels were the same among all groups. No differences in sinonasal 1α-hydroxylase or 1,25VD3 were found between CRSwNP and AFRS. Gender, age, race, atopy, and systemic 25VD3 had no impact on sinonasal 1α-hydroxylase levels in any group. However, CRSwNP patients with asthma had higher 1α-hydroxylase than those without asthma. Total 1α-hydroxylase levels inversely correlated with SNOT-22 in CRSwNP, but not CRSsNP. CONCLUSION Patients with CRSwNP and AFRS both have reduced sinonasal 1α-hydroxylase and 1,25VD3 compared to controls or CRSsNP. Reductions in intracellular 1α-hydroxylase combined from all sinonasal cell types were associated with more severe subjective disease severity in CRSwNP.
Collapse
Affiliation(s)
- Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| | - William W Carroll
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Zachary M Soler
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Whitney N Pasquini
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Jennifer K Mulligan
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC.,Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
25
|
Margulies SL, Kurian D, Elliott MS, Han Z. Vitamin D deficiency in patients with intestinal malabsorption syndromes--think in and outside the gut. J Dig Dis 2015; 16:617-33. [PMID: 26316334 DOI: 10.1111/1751-2980.12283] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/26/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022]
Abstract
There is a very high prevalence of vitamin D deficiency, which is defined by a serum level of 25-hydroxyvitamin D [25(OH)D] of lower than 20 ng/mL, in all populations of the world. Unfortunately, the prevalence of vitamin D deficiency in patients with intestinal malabsorption syndromes, including cystic fibrosis (CF), celiac disease (CD), short bowel syndrome and inflammatory bowel disease (IBD), is higher than that in the general population, indicating the presence of disease-specific causative factors. In this review, we aimed to present clinical findings to highlight the roles of insufficient exposure to sunlight and inflammation in the development of vitamin D deficiency in patients with intestinal malabsorption syndromes. Furthermore, we aimed to present experimental evidence that supported a role of vitamin D deficiency in the pathogenesis of IBD. Finally, we reviewed clinical intervention strategies aiming to normalize vitamin D status in and even to improve the conditions of patients and to discuss certain issues that needed to be addressed in future research.
Collapse
Affiliation(s)
- Samantha L Margulies
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Divya Kurian
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Mark S Elliott
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zhiyong Han
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
26
|
Barrera D, Díaz L, Noyola-Martínez N, Halhali A. Vitamin D and Inflammatory Cytokines in Healthy and Preeclamptic Pregnancies. Nutrients 2015; 7:6465-90. [PMID: 26247971 PMCID: PMC4555132 DOI: 10.3390/nu7085293] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 01/08/2023] Open
Abstract
Preeclampsia is a pregnancy disease characterized by hypertension and proteinuria. Among several disorders, the imbalance of inflammatory cytokines and the alteration of vitamin D metabolism have been reported in preeclampsia. The effects of calcitriol upon inflammatory cytokines has been demonstrated. In healthy pregnant women there is a shift toward a Th2 cytokine profile, which is necessary for an adequate pregnancy outcome. As compared with normal pregnancy, high pro-inflammatory and low anti-inflammatory cytokine levels have been observed in preeclamptic women. Preeclampsia has been associated with low calcitriol levels and vitamin D deficiency is correlated with a higher risk of the development of this disease. It has been demonstrated that placenta is a source as well as the target of calcitriol and cytokines and placental dysfunction has been associated with preeclampsia. Therefore, the present manuscript includes a review about serum calcitriol levels in non-pregnant, pregnant, and preeclamptic women as well as a review on the fetoplacental vitamin D metabolism in healthy and preeclamptic pregnancies. In addition, circulating and fetoplacental inflammatory cytokines in healthy and preeclamptic pregnancies are reviewed. Finally, the effects of calcitriol upon placental pro-inflammatory cytokines are also explored. In conclusion, maternal and placental calcitriol levels are low in preeclampsia which may explain, at least in part, high pro-inflammatory cytokine levels in this disease.
Collapse
Affiliation(s)
- David Barrera
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, México D.F. 14000, México.
| | - Lorenza Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, México D.F. 14000, México.
| | - Nancy Noyola-Martínez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, México D.F. 14000, México.
| | - Ali Halhali
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, México D.F. 14000, México.
| |
Collapse
|
27
|
Gröschel C, Tennakoon S, Kállay E. Cytochrome P450 Vitamin D Hydroxylases in Inflammation and Cancer. ADVANCES IN PHARMACOLOGY 2015; 74:413-58. [PMID: 26233913 DOI: 10.1016/bs.apha.2015.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vitamin D insufficiency correlates with increased incidence of inflammatory disorders and cancer of the colon, breast, liver, and prostate. Preclinical studies demonstrated that the hormonally active form of vitamin D, 1,25(OH)2D3, has antiproliferative, proapoptotic, anti-inflammatory, and immunomodulatory effects. Tissue levels of 1,25(OH)2D3 are determined by expression and activity of specific vitamin D hydroxylases expressed at renal and extrarenal sites. In order to understand how perturbations in the vitamin D system affect human health, we need to understand the steps involved in the synthesis and catabolism of the active metabolite. This review provides an overview about recent findings on the altered vitamin D metabolism in inflammatory conditions and carcinogenesis. We will summarize existing data on the pathophysiological regulation of vitamin D hydroxylases and outline the role of adequate levels of 1,25(OH)2D3 on tissue homeostasis.
Collapse
Affiliation(s)
- Charlotte Gröschel
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Währinger Gürtel, Vienna, Austria
| | - Samawansha Tennakoon
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Währinger Gürtel, Vienna, Austria
| | - Enikö Kállay
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Währinger Gürtel, Vienna, Austria.
| |
Collapse
|
28
|
Olmos-Ortiz A, Avila E, Durand-Carbajal M, Díaz L. Regulation of calcitriol biosynthesis and activity: focus on gestational vitamin D deficiency and adverse pregnancy outcomes. Nutrients 2015; 7:443-80. [PMID: 25584965 PMCID: PMC4303849 DOI: 10.3390/nu7010443] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
Vitamin D has garnered a great deal of attention in recent years due to a global prevalence of vitamin D deficiency associated with an increased risk of a variety of human diseases. Specifically, hypovitaminosis D in pregnant women is highly common and has important implications for the mother and lifelong health of the child, since it has been linked to maternal and child infections, small-for-gestational age, preterm delivery, preeclampsia, gestational diabetes, as well as imprinting on the infant for life chronic diseases. Therefore, factors that regulate vitamin D metabolism are of main importance, especially during pregnancy. The hormonal form and most active metabolite of vitamin D is calcitriol. This hormone mediates its biological effects through a specific nuclear receptor, which is found in many tissues including the placenta. Calcitriol synthesis and degradation depend on the expression and activity of CYP27B1 and CYP24A1 cytochromes, respectively, for which regulation is tissue specific. Among the factors that modify these cytochromes expression and/or activity are calcitriol itself, parathyroid hormone, fibroblast growth factor 23, cytokines, calcium and phosphate. This review provides a current overview on the regulation of vitamin D metabolism, focusing on vitamin D deficiency during gestation and its impact on pregnancy outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan 14000, Mexico City, Mexico.
| | - Euclides Avila
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan 14000, Mexico City, Mexico.
| | - Marta Durand-Carbajal
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan 14000, Mexico City, Mexico.
| | - Lorenza Díaz
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan 14000, Mexico City, Mexico.
| |
Collapse
|