1
|
Honour JW. The interpretation of immunometric, chromatographic and mass spectrometric data for steroids in diagnosis of endocrine disorders. Steroids 2024; 211:109502. [PMID: 39214232 DOI: 10.1016/j.steroids.2024.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The analysis of steroids for endocrine disorders is in transition from immunoassay of individual steroids to more specific chromatographic and mass spectrometric methods with simultaneous determination of several steroids. Gas chromatography (GC) and liquid chromatography (LC) coupled with mass spectrometry (MS) offer unrivalled analytical capability for steroid analysis. These specialist techniques were often judged to be valuable only in a research laboratory but this is no longer the case. In a urinary steroid profile up to 30 steroids are identified with concentrations and excretion rates reported in a number of ways. The assays must accommodate the wide range in steroid concentrations in biological fluids from micromolar for dehydroepiandrosterone sulphate (DHEAS) to picomolar for oestradiol and aldosterone. For plasma concentrations, panels of 5-20 steroids are reported. The profile results are complex and interpretation is a real challenge in order to inform clinicians of likely implications. Although artificial intelligence and machine learning will in time generate reports from the analysis this is a way off being adopted into clinical practice. This review offers guidance on current interpretation of the data from steroid determinations in clinical practice. Using this approach more laboratories can use the techniques to answer clinical questions and offer broader interpretation of the results so that the clinician can understand the conclusion for the steroid defect, and can be advised to program further tests if necessary and instigate treatment. The biochemistry is part of the patient workup and a clinician led multidisciplinary team discussion of the results will be required for challenging patients. The laboratory will have to consider cost implications, bearing in mind that staff costs are the highest component. GC-MS and LC-MS/MS analysis of steroids are the choices. Steroid profiling has enormous potential to improve diagnosis of adrenal disorders and should be adopted in more laboratories in favour of the cheap, non-specific immunological methods.
Collapse
Affiliation(s)
- John W Honour
- Institute for Women's Health, University College London, 74 Huntley Street, London WC1E 6AU, UK.
| |
Collapse
|
2
|
Liu J, Yang T, Li Y, Li S, Li Y, Xu S, Xia W. Associations of maternal exposure to 2,4-dichlorophenoxyacetic acid during early pregnancy with steroid hormones among one-month-old infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169414. [PMID: 38114038 DOI: 10.1016/j.scitotenv.2023.169414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Exposure to 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used hormonal herbicide, may disrupt steroid hormone homeostasis. However, evidence from population-based studies is limited, especially for one-month-old infants whose steroid hormones are in a state of adjustment to extrauterine life and can be important indicators of endocrine development. This study aimed to explore the associations between maternal 2,4-D exposure during early pregnancy and infant steroid hormone levels. METHODS The 885 mother-infant pairs were from a birth cohort in Wuhan, China. Maternal exposure to 2,4-D was determined in urine samples from early pregnancy, and nine steroid hormones were determined in infant urine. The associations of maternal 2,4-D exposure with infant steroid hormones and their product-to-precursor ratios were estimated based on generalized linear models, and bioinformatic analysis was conducted with public databases to explore the potential mechanisms involved. RESULTS The detection frequency of 2,4-D was 99.32 %, and the detection frequency of steroid hormones ranged from 98.42 % to 100.00 %. After adjusting for covariates, an interquartile range increase in 2,4-D concentrations was associated with a 7.84 % decrease in 11-deoxycortisol (95 % confidence interval, CI: -14.12 %, -1.10 %), an 8.09 % decrease in corticosterone (95 % CI: -14.56 %, -1.14 %), an 8.67 % decrease in cortisol (95 % CI: -14.43 %, -2.52 %), a 13.00 % decrease in cortisone (95 % CI: -20.64 %, -4.62 %), and an 11.17 % decrease in aldosterone (95 % CI: -19.62 %, -1.83 %). Maternal 2,4-D was also associated with lower infant cortisol/17α-OH-progesterone, cortisol/pregnenolone, and aldosterone/pregnenolone ratios. In bioinformatic analysis, pathways/biological processes related to steroid hormone synthesis and secretion were enriched from target genes of 2,4-D exposure. CONCLUSIONS Maternal urinary 2,4-D during early pregnancy was associated with lower infant urinary 11-deoxycortisol, corticosterone, cortisol, cortisone, and aldosterone, reflecting that 2,4-D exposure may interfere with infant steroid hormone homeostasis. Further efforts are still needed to study the relevant health effects of exposure to 2,4-D, particularly for vulnerable populations.
Collapse
Affiliation(s)
- Jiangtao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
| | - Shulan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Ge Y, Liu M, Deng X, Liao L. Derivatization-Enhanced Analysis of Glucocorticoids for Structural Characterization by Gas Chromatography-Orbitrap High-Resolution Mass Spectrometry. Molecules 2023; 29:200. [PMID: 38202782 PMCID: PMC10780989 DOI: 10.3390/molecules29010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Glucocorticoids are classified in section S9 of the Prohibited List of the World Anti-Doping Agency, due to a potential risk to improving physical performance and causing harm to the health of athletes. Based on the similar physiological actions of glucocorticoids, both differentiating known glucocorticoids and identifying unknown glucocorticoids are important for doping control. Gas chromatography coupled with mass spectrometry plays an important role in structural characterization because of abundant structural diagnostic ions produced by electron ionization. It also provides a chance to study the fragmentation patterns. Thus, an enhanced derivatization procedure was optimized to produce trimethylsilylated glucocorticoids and structural diagnostic ions of nineteen trimethylsilylated glucocorticoids were obtained by gas chromatography-orbitrap high-resolution mass spectrometry. In our study, glucocorticoids were classified as: 3-keto-4-ene, 1,4-diene-3-keto, 3α-hydroxy with saturated A-ring, 21-hydroxy-20-keto and halo substituent glucocorticoids based on their structural difference. Structural diagnostic ions that contributed to structural characterization were specifically presented and the fragment patterns were demonstrated according to the above categories. This study not only gave new insights into the structural characterization of these glucocorticoids but also provided evidence for tracing unknown glucocorticoids or chemically modified molecules.
Collapse
Affiliation(s)
| | | | | | - Lei Liao
- Shanghai Anti-Doping Laboratory, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China; (Y.G.); (M.L.)
| |
Collapse
|
4
|
Cheng JYK, Lo CWS, Chan ASL, Luk YK, Tsui TKC, Ho CS. Simultaneous quantitation of urine aldosterone and tetrahydroaldosterone in healthy Chinese subjects using a validated LC-MS/MS method. Biomed Chromatogr 2023; 37:e5694. [PMID: 37354001 DOI: 10.1002/bmc.5694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023]
Abstract
Aldosterone (ALD) is excreted in urine mainly as glucuronide conjugates of ALD and tetrahydroaldosterone. Measuring these urinary metabolites might be an alternative screening test to plasma ALD for primary aldosteronism. We report a validated LC-MS/MS method to measure both analytes simultaneously. Urine samples underwent enzymatic hydrolysis to release the analytes from their glucuronide conjugates followed by organic solvent extraction and LC-MS/MS. The analytical performance of this method was evaluated. The within-batch and between-batch coefficients of variation for urine ALD and urine THA were all ≤5.2 and ≤3.7%. The lower limit of quantification was 0.5 nmol/L, and the linearity was up to at least 2770 nmol/L for both analytes. No significant matrix interference and carryover were observed. Both analytes in urine were stable for at least 48 h at 10°C and at least 18 months at -80°C. Local reference intervals were established from 126 healthy normotensive Chinese subjects (53% women, age: 20-65 years). Reference intervals for urine ALD and tetrahydroaldosterone were 2-38 and 9-139 nmol/day, respectively. This validated method can be applied to screening and diagnosing primary aldosteronism.
Collapse
Affiliation(s)
- Jenny Yeuk Ki Cheng
- Department of Chemical Pathology, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Clara Wai Shan Lo
- Department of Chemical Pathology, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Alan Shek Lun Chan
- Department of Chemical Pathology, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Yue Kin Luk
- Department of Chemical Pathology, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Teresa Kam Chi Tsui
- Department of Chemical Pathology, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| |
Collapse
|
5
|
Koskivuori J, Voutilainen R, Storvik M, Häkkinen MR, Uusitalo L, Keski-Nisula L, Backman K, Auriola S, Lehtonen M. Comparative steroid profiling of newborn hair and umbilical cord serum highlights the role of fetal adrenals, placenta, and pregnancy outcomes in fetal steroid metabolism. J Steroid Biochem Mol Biol 2023; 232:106357. [PMID: 37390977 DOI: 10.1016/j.jsbmb.2023.106357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Previous steroid hormone studies concerning pregnancy and newborns have mainly focused on glucocorticoids; wider steroid profiles have been less commonly investigated. Here, we performed a comparative analysis of 17 steroids from newborn hair and umbilical cord serum at the time of delivery. The study participants (n = 42, 50% girls) were a part of the Kuopio Birth Cohort and represent usual Finnish pregnancies. The hair and cord serum samples were analyzed with liquid chromatography high resolution mass spectrometry and triple quadrupole tandem mass spectrometry, respectively. We detected high individual variations in steroid hormone concentrations in both sample matrices. The concentrations of cortisol (F), corticosterone (B), estrone (E1), estradiol (E2), dehydroepiandrosterone (DHEA), 11β-hydroxyandostenedione (11bOHA4), 5α-androstanedione (DHA4), and 17α-hydroxypregnenolone (17OHP5) correlated positively between cord serum and newborn hair samples. In addition, F and 11bOHA4 concentrations correlated positively with each other in both newborn hair and cord serum samples. The cortisone-to-cortisol ratio (E/F) was significantly higher in cord serum than in newborn hair samples reflecting high placental 11βHSD2 enzyme activity. Only minor sex differences in steroid concentrations were observed; higher testosterone (T) and 11-deoxycortisol (S) with lower 11bOHA4 in male cord serum, and higher DHEA, androstenedione (A4) and 11bOHA4 in female newborn hair samples. Parity and delivery mode were the most significant pregnancy- and birth-related parameters associating with F and some other adrenocortical steroid concentrations. This study provides novel information about intrauterine steroid metabolism in late pregnancy and typical concentration ranges for several newborn hair steroids, including also 11-oxygenated androgens.
Collapse
Affiliation(s)
- Johanna Koskivuori
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland.
| | - Raimo Voutilainen
- Department of Pediatrics, Kuopio University Hospital, P.O. Box 100, 70029 Kuopio, Finland; Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markus Storvik
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland
| | - Merja R Häkkinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland; Department of Health Security, Finnish Institute for Health and Welfare, Neulaniementie 4, 70210 Kuopio, Finland
| | - Lauri Uusitalo
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - Leea Keski-Nisula
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - Katri Backman
- Department of Pediatrics, Kuopio University Hospital, P.O. Box 100, 70029 Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland
| |
Collapse
|
6
|
Flück CE, Kuiri-Hänninen T, Silvennoinen S, Sankilampi U, Groessl M. The Androgen Metabolome of Preterm Infants Reflects Fetal Adrenal Gland Involution. J Clin Endocrinol Metab 2022; 107:3111-3119. [PMID: 35994776 DOI: 10.1210/clinem/dgac482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT The human adrenal cortex changes with fetal-neonatal transition from the fetal to the adult organ, accompanied by changes in the steroid metabolome. OBJECTIVE As it is unclear how the observed developmental changes differ between preterm and full-term neonates, we investigated whether the involution of the fetal adrenals is following a fixed time course related to postmenstrual age or whether it is triggered by birth. Furthermore, the fetal and postnatal androgen metabolome of preterm infants was characterized in comparison to term babies. METHODS This was a prospective, longitudinal, 2-center study collecting spot urines of preterm and term infants during the first 12 to 18 months of life. Steroid metabolites were measured from spot urines by gas chromatography-mass spectrometry. Data relating were modeled according to established pre- and postnatal pathways. RESULTS Fetal adrenal involution occurs around term-equivalent age in preterm infants and is not triggered by premature birth. Testosterone levels are higher in preterm infants at birth and decline slower until term compared to full-term babies. Dihydrotestosterone levels and the activity of the classic androgen biosynthesis pathway are lower in premature infants as is 5α-reductase activity. No difference was found in the activity of the alternate backdoor pathway for androgen synthesis. CONCLUSION Human adrenal involution follows a strict timing that is not affected by premature birth. By contrast, prematurity is associated with an altered androgen metabolome after birth. Whether this reflects altered androgen biosynthesis in utero remains to be investigated.
Collapse
Affiliation(s)
- Christa E Flück
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Tanja Kuiri-Hänninen
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, 70029 Kuopio, Finland
| | - Sanna Silvennoinen
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, 70029 Kuopio, Finland
| | - Ulla Sankilampi
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, 70029 Kuopio, Finland
| | - Michael Groessl
- Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
7
|
Ljubicic ML, Busch AS, Upners EN, Fischer MB, Petersen JH, Raket LL, Frederiksen H, Johannsen TH, Juul A, Hagen CP. A Biphasic Pattern of Reproductive Hormones in Healthy Female Infants: The COPENHAGEN Minipuberty Study. J Clin Endocrinol Metab 2022; 107:2598-2605. [PMID: 35704034 DOI: 10.1210/clinem/dgac363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Minipuberty, a period of a transient activation of the hypothalamic-pituitary-gonadal (HPG) axis in both sexes, enables evaluation of gonadal function in infants suspected of hypogonadism. However, female minipuberty remains poorly elucidated. OBJECTIVE We aimed to establish continuous reference ranges for the most commonly used reproductive hormones and to evaluate the dynamics of the HPG axis in females aged 0 to 1 year. DESIGN The COPENHAGEN Minipuberty Study (ClinicalTrials.gov ID: NCT02784184), a longitudinal, prospective cohort study. SETTING Healthy infants from Copenhagen. PATIENTS OR OTHER PARTICIPANTS A total of 98 healthy, term female infants followed with 6 examinations including venipuncture during the first year of life. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Serum concentrations of LH, FSH, inhibin B, anti-Müllerian hormone (AMH), estrone (E1), estradiol (E2), and SHBG were quantified using highly sensitive methods in 266 serum samples. RESULTS Reference ranges were established for LH, FSH, inhibin B, AMH, E1, E2, and SHBG. Two peaks were observed in normalized mean curves for all hormones. The first peaks were timed around postnatal days 15 to 27 followed by a general nadir for all hormones around days 58 to 92. The second peaks occurred around days 107 to 125 for inhibin B, AMH, E1, E2, and SHBG and days 164 to 165 for LH and FSH. CONCLUSIONS We present age-related, continuous reference ranges of the most commonly used reproductive hormones and present novel data revealing a biphasic and prolonged female minipuberty. CLINICALTRIALS.GOV ID NCT02784184.
Collapse
Affiliation(s)
- Marie L Ljubicic
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Alexander S Busch
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Emmie N Upners
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Margit B Fischer
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen H Petersen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Biostatistics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lars L Raket
- Department of Clinical Sciences, Lund University, Lund 22100, Sweden
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Trine H Johannsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Casper P Hagen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
8
|
Adrenal steroids reference ranges in infancy determined by LC-MS/MS. Pediatr Res 2022; 92:265-274. [PMID: 34556810 DOI: 10.1038/s41390-021-01739-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Interpretation of the results of steroid hormone measurements is challenging at early infancy. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) method provides a powerful tool for diagnosing steroidogenesis disorders. We aimed to develop normative data for a 14-steroid panel and four adrenal enzyme activity indices, determined by LC-MS/MS from 3 days to 6 months of age. METHODS Age- and sex-specific plasma steroid concentrations were calculated in 324 healthy full-term neonates and infants (151 females). Percentile curves were devised. Steroid ratios were evaluated as biomarkers of adrenal enzyme activities. The steroid profiles of four patients with adrenal enzyme deficiencies were included to test the diagnostic efficiency. RESULTS Nine steroids showed age, but none showed sex specificity. The concentrations of progestins and androgens were higher at 7-14 days than at 3-7 days. After the first month, adrenal androgen concentrations decreased significantly. Adrenal enzyme activities changed towards increasing cortisol over the first 6 months. There were several-fold differences in diagnostic steroids and related adrenal enzyme activity indices between the patients and the healthy group. CONCLUSIONS The majority of adrenal steroids show age-related variations in the neonatal period and early infancy. Our data will enable accurate interpretation of steroid measurements for etiologic diagnosis of disorders of steroidogenesis. IMPACT LC-MS/MS method is capable of quantitating numerous analytes simultaneously, which provides an integrated picture of adrenal steroidogenesis in a small amount of sample. The development of LC-MS/MS-based normative data of steroid hormones in healthy infants is crucial to differentiate physiologic alterations from steroidogenic defects during the first 3-6 months of infancy. Previous studies had limitations due to the small numbers of samples available by sex and by age groups. Our detailed normative data and percentile curves will enable accurate interpretation of steroid measurements for etiologic diagnosis of disorders of steroidogenesis without the need for further invasive testing.
Collapse
|
9
|
Urinary tetrahydroaldosterone is associated with circulating FGF23 in kidney stone formers. Urolithiasis 2022; 50:333-340. [PMID: 35201364 PMCID: PMC9110437 DOI: 10.1007/s00240-022-01317-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The spectrum of diseases with overactive renin–angiotensin–aldosterone system (RAS) or elevated circulating FGF23 overlaps, but the relationship between aldosterone and FGF23 remains unclarified. Here, we report that systemic RAS activation sensitively assessed by urinary tetrahydroaldosterone excretion is associated with circulating C-terminal FGF23. We performed a retrospective analysis in the Bern Kidney Stone Registry, a single-center observational cohort of kidney stone formers. Urinary excretion of the main aldosterone metabolite tetrahydroaldosterone was measured by gas chromatography–mass spectrometry. Plasma FGF23 concentrations were measured using a C-terminal assay. Regression models were calculated to assess the association of plasma FGF23 with 24 h urinary tetrahydroaldosterone excretion. We included 625 participants in the analysis. Mean age was 47 ± 14 years and 71% were male. Mean estimated GFR was 94 ml/min per 1.73 m2. In unadjusted analyses, we found a positive association between plasma FGF23 and 24 h urinary tetrahydroaldosterone excretion (β: 0.0027; p = 4.2 × 10–7). In multivariable regression models adjusting for age, sex, body mass index and GFR, this association remained robust (β: 0.0022; p = 2.1 × 10–5). Mineralotropic hormones, 24 h urinary sodium and potassium excretion as surrogates for sodium and potassium intake or antihypertensive drugs did not affect this association. Our data reveal a robust association of RAS activity with circulating FGF23 levels in kidney stone formers. These findings are in line with previous studies in rodents and suggest a physiological link between RAS system activation and FGF23 secretion.
Collapse
|
10
|
du Toit T, Swart AC. Turning the spotlight on the C11-oxy androgens in human fetal development. J Steroid Biochem Mol Biol 2021; 212:105946. [PMID: 34171490 DOI: 10.1016/j.jsbmb.2021.105946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
Research into the biosynthesis of C11-oxy C19 steroids during human fetal development, specifically fetal adrenal development and during the critical period of sex differentiation, is currently lacking. Cortisol, which possesses a C11-hydroxyl moiety has, however, been firmly established in this context. Compelling questions are whether the C11-oxy C19 steroids (11β-hydroxyandrostenedione, 11β-hydroxytestosterone, 11-ketoandrostenedione and 11-ketotestosterone [11KT]) and the C11-oxy C21 steroids (11β-hydroxyprogesterone and 11-ketoprogesterone) are biosynthesised during gestation, and whether these hormones circulate between the placenta and the developing fetus, and between the placenta and the mother. This review will consider the role of cortisol, 11KT and 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) in determining the sex of teleost fish, while these hormones and 11βHSD2 will also be discussed with regards to murine mammals. The focus of the review will shift to highlight the potential role of C11-oxy steroids in human fetal development based on the timely expression of steroidogenic enzymes in the adrenal, testes and ovary, as well as in the placenta; summarising reported evidence of C11-oxy steroids in neonatal life.
Collapse
Affiliation(s)
- Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
11
|
Rousson V, Ackermann D, Ponte B, Pruijm M, Guessous I, d’Uscio CH, Ehret G, Escher G, Pechère-Bertschi A, Groessl M, Martin PY, Burnier M, Dick B, Bochud M, Vogt B, Dhayat NA. Sex- and age-specific reference intervals for diagnostic ratios reflecting relative activity of steroidogenic enzymes and pathways in adults. PLoS One 2021; 16:e0253975. [PMID: 34237094 PMCID: PMC8266106 DOI: 10.1371/journal.pone.0253975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Diagnostic ratios calculated from urinary steroid hormone metabolites are used as a measure for the relative activity of steroidogenic enzymes or pathways in the clinical investigation of steroid metabolism disorders. However, population-based sex- and age-specific reference intervals and day-night differences in adults are lacking. METHODS Sixty-five diagnostic ratios were calculated from steroid metabolites measured by GC-MS in day- and night-time and in 24-hour urine from 1128 adults recruited within the Swiss Kidney Project on Genes in Hypertension (SKIPOGH), a population-based, multicenter cohort study. Differences related to sex, age and day- and night-time were evaluated and reference curves in function of age and sex were modelled by multivariable linear mixed regression for diagnostic ratios and were compared to values from the literature. RESULTS Most ratios had sex- and age-specific relationships. For each ratio, percentiles were plotted in function of age and sex in order to create reference curves and sex- and age-specific reference intervals derived from 2.5th and 97.5th percentiles were obtained. Most ratios reflected a higher enzyme activity during the day compared to the night. CONCLUSIONS Sex- and age-specific references for 24 hours, day and night urine steroid metabolite ratios may help distinguishing between health and disease when investigating human disorders affecting steroid synthesis and metabolism. The day-night differences observed for most of the diagnostic ratios suggest a circadian rhythm for enzymes involved in human steroid hormones metabolism.
Collapse
Affiliation(s)
- Valentin Rousson
- Department of Epidemiology and Health Systems, Unisanté, Lausanne, Switzerland
| | - Daniel Ackermann
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Belen Ponte
- Department of Specialties of Internal Medicine, Nephrology Service, University Hospital of Geneva, Geneva, Switzerland
| | - Menno Pruijm
- Nephrology Service, University Hospital of Lausanne, Lausanne, Switzerland
| | - Idris Guessous
- Department of Community Medicine, Primary Care and Emergency Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Claudia H. d’Uscio
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georg Ehret
- Department of Specialties of Internal Medicine, Cardiology Service, University Hospital of Geneva, Geneva, Switzerland
| | - Geneviève Escher
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antoinette Pechère-Bertschi
- Department of Internal Medicine Specialties, Endocrinology Service, University Hospital of Geneva, Geneva, Switzerland
| | - Michael Groessl
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pierre-Yves Martin
- Department of Specialties of Internal Medicine, Nephrology Service, University Hospital of Geneva, Geneva, Switzerland
| | - Michel Burnier
- Nephrology Service, University Hospital of Lausanne, Lausanne, Switzerland
| | - Bernhard Dick
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Murielle Bochud
- Department of Epidemiology and Health Systems, Unisanté, Lausanne, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nasser A. Dhayat
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Kariyawasam D, Peries M, Foissac F, Eymard-Duvernay S, Tylleskär T, Singata-Madliki M, Kankasa C, Meda N, Tumwine J, Mwiya M, Engebretsen I, Flück CE, Hartmann MF, Wudy SA, Hirt D, Treluyer JM, Molès JP, Blanche S, Van De Perre P, Polak M, Nagot N. Lopinavir-Ritonavir Impairs Adrenal Function in Infants. Clin Infect Dis 2021; 71:1030-1039. [PMID: 31633158 DOI: 10.1093/cid/ciz888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/05/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Perinatal treatment with lopinavir boosted by ritonavir (LPV/r) is associated with steroidogenic abnormalities. Long-term effects in infants have not been studied. METHODS Adrenal-hormone profiles were compared at weeks 6 and 26 between human immunodeficiency virus (HIV)-1-exposed but uninfected infants randomly assigned at 7 days of life to prophylaxis with LPV/r or lamivudine (3TC) to prevent transmission during breastfeeding. LPV/r in vitro effect on steroidogenesis was assessed in H295R cells. RESULTS At week 6, 159 frozen plasma samples from Burkina Faso and South Africa were assessed (LPV/r group: n = 92; 3TC group: n = 67) and at week 26, 95 samples from Burkina Faso (LPV/r group: n = 47; 3TC group: n = 48). At week 6, LPV/r-treated infants had a higher median dehydroepiandrosterone (DHEA) level than infants from the 3TC arm: 3.91 versus 1.48 ng/mL (P < .001). Higher DHEA levels (>5 ng/mL) at week 6 were associated with higher 17-OH-pregnenolone (7.78 vs 3.71 ng/mL, P = .0004) and lower testosterone (0.05 vs 1.34 ng/mL, P = .009) levels in LPV/r-exposed children. There was a significant correlation between the DHEA and LPV/r AUC levels (ρ = 0.40, P = .019) and Ctrough (ρ = 0.40, P = .017). At week 26, DHEA levels remained higher in the LPV/r arm: 0.45 versus 0.13 ng/mL (P = .002). Lopinavir, but not ritonavir, inhibited CYP17A1 and CYP21A2 activity in H295R cells. CONCLUSIONS Lopinavir was associated with dose-dependent adrenal dysfunction in infants. The impact of long-term exposure and potential clinical consequences require evaluation. CLINICAL TRIALS REGISTRATION NCT00640263.
Collapse
Affiliation(s)
- Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynecology, and Diabetology Unit, Hopital Universitaire Necker-Enfants Malades, Assistance Publique-Hopitaux de Paris (AP-HP), Paris, France.,INSERM U1016, Faculte de Medecine, Universite Paris Descartes, Sorbonne Paris Cite, Paris, France.,IMAGINE Institute, Paris, France
| | - Marianne Peries
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Universite de Montpellier, Etablissement Francais du Sang, Montpellier, France
| | - Frantz Foissac
- Service de Pharmacologie Clinique, Hopital Cochin, AP-HP, Groupe Hospitalier Paris Centre, France.,Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France
| | - Sabrina Eymard-Duvernay
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Universite de Montpellier, Etablissement Francais du Sang, Montpellier, France
| | | | - Mandisa Singata-Madliki
- Effective Care Research Unit, University of Fort Hare, Cecilia Makiwane Hospital, East London, South Africa
| | - Chipepo Kankasa
- University of Zambia, School of Medicine, Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia
| | - Nicolas Meda
- Center of International Research for Health, Faculty of Health Sciences, University of Ouagadougou, Ouagadougou, Burkina Faso
| | - James Tumwine
- Department of Pediatrics and Child Health, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mwiya Mwiya
- University of Zambia, School of Medicine, Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia
| | | | - Christa E Flück
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics and Department of BioMedical Research, University Hospital Inselspital Bern, University of Bern, Bern, Switzerland
| | - Michaela F Hartmann
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Deborah Hirt
- Service de Pharmacologie Clinique, Hopital Cochin, AP-HP, Groupe Hospitalier Paris Centre, France.,Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France
| | - Jean Marc Treluyer
- Service de Pharmacologie Clinique, Hopital Cochin, AP-HP, Groupe Hospitalier Paris Centre, France.,Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Universite de Montpellier, Etablissement Francais du Sang, Montpellier, France
| | - Stéphane Blanche
- Pediatric Immunology-Hematology and Rheumatology Unit, Hopital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Philippe Van De Perre
- Service de Pharmacologie Clinique, Hopital Cochin, AP-HP, Groupe Hospitalier Paris Centre, France.,Centre Hospitalo-Universitaire (CHU) de Montpellier, Montpellier, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology, and Diabetology Unit, Hopital Universitaire Necker-Enfants Malades, Assistance Publique-Hopitaux de Paris (AP-HP), Paris, France.,INSERM U1016, Faculte de Medecine, Universite Paris Descartes, Sorbonne Paris Cite, Paris, France.,IMAGINE Institute, Paris, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Universite de Montpellier, Etablissement Francais du Sang, Montpellier, France.,Centre Hospitalo-Universitaire (CHU) de Montpellier, Montpellier, France
| | | |
Collapse
|
13
|
Barnard L, du Toit T, Swart AC. Back where it belongs: 11β-hydroxyandrostenedione compels the re-assessment of C11-oxy androgens in steroidogenesis. Mol Cell Endocrinol 2021; 525:111189. [PMID: 33539964 DOI: 10.1016/j.mce.2021.111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Adrenal steroidogenesis has, for decades, been depicted as three biosynthesis pathways -the mineralocorticoid, glucocorticoid and androgen pathways with aldosterone, cortisol and androstenedione as the respective end products. 11β-hydroxyandrostenedione was not included as an adrenal steroid despite the adrenal output of this steroid being twice that of androstenedione. While it is the end of the line for aldosterone and cortisol, as it is in these forms that they exhibit their most potent receptor activities prior to inactivation and conjugation, 11β-hydroxyandrostenedione is another matter entirely. The steroid, which is weakly androgenic, has its own designated pathway yielding 11-ketoandrostenedione, 11β-hydroxytestosterone and the potent androgens, 11-ketotestosterone and 11-ketodihydrotestosterone, primarily in the periphery. Over the last decade, these C11-oxy C19 steroids have once again come to the fore with the rising number of studies contradicting the generally accepted notion that testosterone and it's 5α-reduced product, dihydrotestosterone, are the principal potent androgens in humans. These C11-oxy androgens have been shown to contribute to the androgen milieu in adrenal disorders associated with androgen excess and in androgen dependant disease progression. In this review, we will highlight these overlooked C11-oxy C19 steroids as well as the C11-oxy C21 steroids and their contribution to congenital adrenal hyperplasia, polycystic ovarian syndrome and prostate cancer. The focus is on new findings over the past decade which are slowly but surely reshaping our current outlook on human sex steroid biology.
Collapse
Affiliation(s)
- Lise Barnard
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Therina du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
14
|
Fuster DG, Morard GA, Schneider L, Mattmann C, Lüthi D, Vogt B, Dhayat NA. Association of urinary sex steroid hormones with urinary calcium, oxalate and citrate excretion in kidney stone formers. Nephrol Dial Transplant 2020; 37:335-348. [PMID: 33295624 DOI: 10.1093/ndt/gfaa360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Sex-specific differences in nephrolithiasis with respect to both distribution of prevalence and stone composition are widely described and may be influenced by sex hormones. METHODS We conducted a cross-sectional analysis of the relationship between 24-hour urinary sex hormone metabolites measured by gas chromatography-mass spectrometry with urinary calcium, oxalate and citrate excretion in a cohort of 628 kidney stone formers from a tertiary care hospital in Switzerland, taking demographic characteristics, kidney function and dietary factors into account. RESULTS We observed a positive association of urinary calcium with urinary testosterone and 17β-estradiol. Positive associations of urinary calcium with dehydroepiandrosterone, 5α-DH-testosterone, etiocholanolone, androsterone, and estriol were modified by net gastrointestinal alkali absorption or urinary sulfate excretion. As the only sex hormone, dehydroepiandrosterone was inversely associated with urinary oxalate excretion in adjusted analyses. Urinary citrate correlated positively with urinary testosterone. Associations of urinary citrate with urinary androsterone, 17β-estradiol and estriol were modified by urinary sulfate or sodium, or by sex. CONCLUSIONS Urinary androgens and estrogens are significantly associated with urinary calcium and citrate excretion, and associations are in part modified by diet. Our data furthermore reveal dehydroepiandrosterone as a novel factor associated with urinary oxalate excretion in humans.
Collapse
Affiliation(s)
- Daniel G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gaétan A Morard
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lisa Schneider
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cedric Mattmann
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Lüthi
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nasser A Dhayat
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Janner M, Sommer G, Groessl M, Flück CE. Premature Adrenarche in Girls Characterized By Enhanced 17,20-Lyase and 17β-Hydroxysteroid Dehydrogenase Activities. J Clin Endocrinol Metab 2020; 105:5899560. [PMID: 32865200 DOI: 10.1210/clinem/dgaa598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/26/2020] [Indexed: 02/13/2023]
Abstract
CONTEXT Girls with premature adrenarche (PA) may have a higher risk of developing polycystic ovary syndrome (PCOS) and metabolic syndrome. The biological purpose of adrenarche is unknown and the role of novel biosynthetic pathways remains unclear. OBJECTIVE To compare the urinary steroid metabolome and enzyme activities of girls with PA to age-matched control girls and to published steroid values of girls with normal adrenarche and of women with PCOS and their newborn daughters. DESIGN Prospective observational study from 2009 to 2014. SETTING Academic pediatric endocrinology referral center. PARTICIPANTS Twenty-three girls with PA and 22 healthy, age-matched girls. MAIN OUTCOME MEASURES Steroid metabolites in 24-hour urine samples, including 4 progesterones, 5 corticosterones, aldosterone, 13 androgens, 2 estrogens, 14 glucocorticoids, and enzyme activities represented by metabolite ratios. RESULTS Girls with PA had a higher body mass index (mean standard deviation scores 0.9 vs -0.3, P = 0.013). Androgen excretion was higher in PA girls than in control girls (median 3257 nmol/24 hours vs 1627 nmol/24 hours, P < 0.001), in particular metabolites from alternate androgen pathways. The amount of progesterone, corticosterone, aldosterone, estrogen, and cortisol metabolites were similar between groups. Activities of 17β-hydroxysteroid-dehydrogenase and of 17,20-lyase were higher in girls with PA. Activities of 3β-hydroxysteroid-dehydrogenase, 21-hydroxylase, and 5α-reductase activity were not different between groups, in contrast to published results on girls with normal adrenarche or PCOS females. CONCLUSIONS Metabolites and enzymes involved in alternate androgen pathways appear to be markers of PA. Prospective studies should assess whether steroid production in PA also differs from adrenarche at normal timing and persists into adulthood.
Collapse
Affiliation(s)
- Marco Janner
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Grit Sommer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Michael Groessl
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Department of Nephrology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Kamin HS, Bhatt SS, Mulligan CJ, Kertes DA. Dehydroepiandrosterone at birth: Response to stress and relation to demographic, pregnancy and delivery factors. J Neuroendocrinol 2020; 32:e12906. [PMID: 33006172 DOI: 10.1111/jne.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
Enhanced production of dehydroepiandrosterone (DHEA) by the foetal hypothalamic-pituitary-adrenal (HPA) axis enables maturational events critical for labour induction and neonatal adaptation. Despite knowledge of the interconnected nature of maternal and foetal physiology and dramatic changes in DHEA production after birth, few studies have examined DHEA levels in newborns and none have examined DHEA's response to acute stress. Understanding normative patterns of early DHEA activity is needed to accurately assess functioning of the biological stress system with relevance for health and development. The present study analysed DHEA concentrations and change after stress among 93 newborns and associations with pregnancy, delivery and demographic risk factors. Three saliva samples, collected prior to and following a blood draw stressor, were used to determine baseline and stress reactive DHEA levels. Mothers self-reported on health behaviours during pregnancy. Data on obstetric factors were obtained from medical records. DHEA levels declined from pre- to post-stressor assessments. Results also showed that post-stressor DHEA change was significantly associated with administration of medications used to treat pain and accelerate labour. However, there was no significant variation in DHEA pre-stress levels or change after stress as a function of time after birth. By capturing DHEA levels after birth, the present study provides a window into prenatal health of the HPA system. The study also advances knowledge of DHEA in newborns by providing data on reference levels and important covariates. This information on basic adrenal physiology provides a foundation that can be expanded on to enhance understanding of early hypothalamic-pituitary-adrenal axis activity.
Collapse
Affiliation(s)
- Hayley S Kamin
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Samarth S Bhatt
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Darlene A Kertes
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
du Toit T, van Rooyen D, Stander MA, Atkin SL, Swart AC. Analysis of 52 C19 and C21 steroids by UPC2-MS/MS: Characterising the C11-oxy steroid metabolome in serum. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122243. [DOI: 10.1016/j.jchromb.2020.122243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023]
|
18
|
Boag AM, Brown A, Koenigshof A, Homer N, Sooy K, Jamieson PM. Glucocorticoid metabolism in critically ill dogs (Canis lupus familiaris). Domest Anim Endocrinol 2020; 72:106437. [PMID: 32169755 DOI: 10.1016/j.domaniend.2020.106437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/04/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Critical illness due to sepsis is a major global health concern associated with a high burden of mortality and cost. Glucocorticoid dysregulation in human sepsis is associated with poorer outcomes. This study examines glucocorticoid metabolism in septic canine patients to delineate elements of cellular dysregulation in common with critically ill humans and explore potential differences. This was a prospective case-control study conducted in the veterinary specialist critical care departments of two University teaching hospitals. Critically ill canine patients with naturally occurring sepsis or septic shock were compared with an in-hospital control population. Serum total, bound, and free cortisol concentrations were increased in septic shock (P < 0.001), and higher bound cortisol was associated with nonsurvival (P = 0.026). Urinary Gas Chromatography-Tandem Mass Spectrometry was performed to assess urinary glucocorticoid metabolites and estimate intracellular glucocorticoid metabolism. Decreased renal 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity inferred from increased urinary cortisol-to-cortisone ratio was observed in critically ill dogs (P < 0.001). Decreased 11βHSD2 activity (P = 0.019) and increased A-ring reduction of cortisone (P = 0.001) were associated with nonsurvival within the critically ill dogs. Intriguingly, two dogs were identified with low circulating total cortisol (<2 mg/dL) associated with increased A-ring reduction of cortisol, not previously described. Investigation of spontaneous canine sepsis and septic shock reveals dysregulation of cortisol to cortisone conversion similar to that observed in human patients, but with differences in A-ring reduction compared with those reported in humans. In addition, two dogs with high levels of cortisol inactivation associated with low circulating cortisol concentrations were identified.
Collapse
Affiliation(s)
- A M Boag
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK; The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | - A Brown
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - A Koenigshof
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, Lansing, MI, USA
| | - N Homer
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - K Sooy
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - P M Jamieson
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK; The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Pussard E, Travers S, Bouvattier C, Xue QY, Cosson C, Viengchareun S, Martinerie L, Lombès M. Urinary steroidomic profiles by LC-MS/MS to monitor classic 21-Hydroxylase deficiency. J Steroid Biochem Mol Biol 2020; 198:105553. [PMID: 31778802 DOI: 10.1016/j.jsbmb.2019.105553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/26/2022]
Abstract
21-hydroxylase deficiency, the most common enzyme defect associated with congenital adrenal hyperplasia (CAH) is characterized by an impairment of both aldosterone and cortisol biosynthesis. Close clinical and biological monitoring of Hydrocortisone (HC) and 9α-Fludrocortisone (FDR) replacement therapies is required to achieve an optimal treatment. As frequent and repeated reassessments of plasma steroids, 17-hydroxyprogesterone (17-OHP), androstenedione (Δ4-A) and testosterone (TESTO) is needed in childhood, urine steroid profiling could represent an interesting non-invasive alternative. We developed and validated a LC-MS/MS method for the measurement of 23-urinary mineralocorticoids, glucocorticoids and adrenal androgens. The usefulness of steroid profiling was investigated on single 08h00 am-collected spot urine for discriminating between 61 CAH patients and their age- and sex-matched controls. CAH patients were split into two groups according to their 08h00 am-plasma concentrations of 17-OHP: below (controlled patients, n = 26) and above 20 ng/mL (uncontrolled patients, n = 35). The lower limit of quantification and the wide analytical range allows to assay both free and total concentrations of the main urinary adreno-corticoids and their tetra-hydrometabolites. Extraction recoveries higher than 75% and intra-assay precision below 20% were found for most steroids. Urinary steroids upstream of the 21-hydroxylase defect were higher in uncontrolled CAH patients. Among CAH patients, plasma and urinary 17-OHP were closely correlated. As compared to controls, steroids downstream of the enzyme defect collapsed in CAH patients. This fall was more pronounced in controlled than in uncontrolled patients. Androgens (Δ4-A, TESTO and the sum etiocholanolone + androsterone) accumulated in uncontrolled CAH patients. A strong relationship was observed between plasma and urinary levels of androstenedione. Daily doses and urinary excretion of both FDR and HC were similar in both CAH groups. Urinary FDR was inversely related to the sodium-to-potassium ratio in urine. A partial least squares discriminant analysis model allowed to classify the patient's classes unaffected, controlled and un-controlled CAH patients based on urinary steroidomic profiles. Our LC-MS/MS method successfully established steroid profiling in urine and represents a useful and non-invasive tool for discriminating CAH patients according to treatment efficiency.
Collapse
Affiliation(s)
- Eric Pussard
- Inserm, U1185, Le Kremlin-Bicêtre, F-94276, France; Fac Med Paris-Sud, Univ. Paris-Sud, Université Paris Saclay, UMR-S 1185, Le Kremlin-Bicêtre, F-94276, France; Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, F-94275, France.
| | - Simon Travers
- Inserm, U1185, Le Kremlin-Bicêtre, F-94276, France; Fac Med Paris-Sud, Univ. Paris-Sud, Université Paris Saclay, UMR-S 1185, Le Kremlin-Bicêtre, F-94276, France; Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, F-94275, France
| | - Claire Bouvattier
- Département d'Endocrinologie Pédiatrique, Hôpital de Bicêtre, Hôpitaux Universitaires Paris Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, F-94275, France; Centre de Référence des Maladies Rares du Développement Génital (DEVGEN), Le Kremlin Bicêtre, F-94275, France
| | - Qiong-Yao Xue
- Inserm, U1185, Le Kremlin-Bicêtre, F-94276, France; Fac Med Paris-Sud, Univ. Paris-Sud, Université Paris Saclay, UMR-S 1185, Le Kremlin-Bicêtre, F-94276, France; Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, F-94275, France
| | - Claudine Cosson
- Service de Biochimie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Say Viengchareun
- Inserm, U1185, Le Kremlin-Bicêtre, F-94276, France; Fac Med Paris-Sud, Univ. Paris-Sud, Université Paris Saclay, UMR-S 1185, Le Kremlin-Bicêtre, F-94276, France
| | - Laetitia Martinerie
- Inserm, U1185, Le Kremlin-Bicêtre, F-94276, France; Fac Med Paris-Sud, Univ. Paris-Sud, Université Paris Saclay, UMR-S 1185, Le Kremlin-Bicêtre, F-94276, France; Service d'Endocrinologie Pédiatrique, Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris, Paris, F-75019, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75019, France
| | - Marc Lombès
- Inserm, U1185, Le Kremlin-Bicêtre, F-94276, France; Fac Med Paris-Sud, Univ. Paris-Sud, Université Paris Saclay, UMR-S 1185, Le Kremlin-Bicêtre, F-94276, France
| |
Collapse
|
20
|
Malikova J, Zingg T, Fingerhut R, Sluka S, Grössl M, Brixius-Anderko S, Bernhardt R, McDougall J, Pandey AV, Flück CE. HIV Drug Efavirenz Inhibits CYP21A2 Activity with Possible Clinical Implications. Horm Res Paediatr 2020; 91:262-270. [PMID: 31256164 DOI: 10.1159/000500522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/19/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The HIV drugs lopinavir and ritonavir have recently been reported to cause transient adrenal insufficiency in preterm newborns. We, therefore, considered HIV drugs as a cause of transiently elevated 17-hydroxyprogesterone (17OHP) levels in a neonatal screening test for congenital adrenal hyperplasia in a preterm girl exposed to zidovudine, efavirenz, tenofovir, and emtricitabine. OBJECTIVE So far, HIV drugs have not been tested for their effect on steroidogenesis and the steroidogenic enzyme activity of CYP21A2 specifically in an in vitro system. METHODS We tested the effect of efavirenz, tenofovir, emtricitabine, and zidovudine on steroidogenesis of human adrenal H295R cells. Cells were treated with the drugs at different concentrations including concentrations in therapeutic use. The effect on CYP21A2 activity was assessed by testing the conversion of radiolabeled 17OHP to 11-deoxycortisol. Cell viability was tested by an MTT assay. In addition, recombinant human CYP21A2 protein was used to assess direct drug effects on CYP21A2 activity. RESULTS We observed significantly decreased CYP21A2 activity in both in vitro testing systems after treatment with efavirenz at therapeutic concentrations. Moreover, efavirenz affected cell viability. By contrast, the other test drugs did not affect steroidogenesis. Follow-up of our patient revealed elevated 17OHP and androgen levels during the first weeks of life, but values normalized spontaneously. Genetic testing for CYP21A2 mutations was negative. Thus, it remains unsettled whether the transient 17OHP elevation in this baby was due to a drug effect. CONCLUSION The HIV drug efavirenz inhibits CYP21A2 activity in vitro through direct interaction with enzyme catalysis at therapeutic concentrations. This may have clinical implications for HIV treatment in children and adults. However, so far, clinical data are scarce, and further studies are needed to be able to draw clinical conclusions.
Collapse
Affiliation(s)
- Jana Malikova
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Pediatrics, University Hospital Motol, SecondFaculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Tanja Zingg
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Ralph Fingerhut
- Swiss Newborn Screening Laboratory, Children's Research Center (CRC), University Children's Hospital of Zurich, Zurich, Switzerland
| | - Susanna Sluka
- Swiss Newborn Screening Laboratory, Children's Research Center (CRC), University Children's Hospital of Zurich, Zurich, Switzerland
| | - Michael Grössl
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Simone Brixius-Anderko
- Department of Biochemistry, Faculty of Technical and Natural Sciences, Saarland University, Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences, Saarland University, Saarbrücken, Germany
| | - Jane McDougall
- Division of Neonatology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amit V Pandey
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland, .,Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,
| |
Collapse
|
21
|
Olesti E, Garcia A, Rahban R, Rossier MF, Boccard J, Nef S, González-Ruiz V, Rudaz S. Steroid profile analysis by LC-HRMS in human seminal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121929. [DOI: 10.1016/j.jchromb.2019.121929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
|
22
|
Gent R, du Toit T, Swart AC. 11α-Hydroxyprogesterone, a potent 11β-hydroxysteroid dehydrogenase inhibitor, is metabolised by steroid-5α-reductase and cytochrome P450 17α-hydroxylase/17,20-lyase to produce C11α-derivatives of 21-deoxycortisol and 11-hydroxyandrostenedione in vitro. J Steroid Biochem Mol Biol 2019; 191:105369. [PMID: 31039398 DOI: 10.1016/j.jsbmb.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022]
Abstract
11α-Hydroxyprogesterone (11αOHP4) and 11β-hydroxyprogesterone (11βOHP4) have been reported to be inhibitors of 11β-hydroxysteroid dehydrogenase (11βHSD) type 2, together with 11β-hydroxytestosterone and 11β-hydroxyandrostenedione, and their C11-keto derivatives being inhibitors of 11βHSD1. Our in vitro assays in transiently transfected HEK293 cells, however, show that 11αOHP4 is a potent inhibitor of 11βHSD2 and while this steroid does not serve as a substrate for the enzyme, the aforementioned C11-oxy steroids are indeed substrates for both 11βHSD isozymes. 11βOHP4 is metabolised by 11βHSD2 yielding 11-ketoprogesterone with 11βHSD1 catalysing the reverse reaction, similar to the reduction of the other C11-oxy steroids. In the same model system, novel 11αOHP4 metabolites were detected in its conversion by steroid-5α-reductase (SRD5A) types 1 and 2 yielding 11α-hydroxydihydroprogesterone and its conversion by cytochrome P450 17A1 (CYP17A1) yielding the hydroxylase product, 11α,17α-dihydroxyprogesterone, and the 17,20 lyase product, 11α-hydroxyandrostenedione. We also detected both 11αOHP4 and 11βOHP4 in prostate cancer tissue- ∼23 and ∼32 ng/g respectively with 11KP4 levels >300 ng/g. In vitro assays in PC3 and LNCaP prostate cancer cell models, showed that the metabolism of 11αOHP4 and 11βOHP4 was comparable. In LNCaP cells expressing CYP17A1, 11αOHP4 and 11βOHP4 were metabolised with negligible substrate, 4%, remaining after 48 h, while the steroid substrate 11β,17α-dihydroxyprogesterone (21dF) was metabolised to C11-keto C19 steroids yielding 11-ketotestosterone. Despite the fact that 11αOHP4 is not metabolised by 11βHSD2, it is a substrate for SRD5A and CYP17A1, yielding C11α-hydroxy C19 steroids as well as the C11α-hydroxy derivative of 21dF-the latter associated with clinical conditions characterised by androgen excess. With our data showing that 11αOHP4 is present at high levels in prostate cancer tissue, the steroid may serve as a precursor to unique C11α-hydroxy C19 steroids. The potential impact of 11αOHP4 and its metabolites on human pathophysiology can however only be fully assessed once C11α-hydroxyl metabolite levels are comprehensively analysed.
Collapse
Key Words
- 11-hydroxyprogesterone (11OHP4, 4-PREGNEN-11β-OL-3,20-DIONE)
- 11-ketoprogesterone (11KP4, 4-PREGNEN-3,11,20-TRIONE)
- 11-ketotestosterone (11KT, 4-ANDROSTEN-17β-OL-3,11-DIONE)
- 21-deoxycortisol (21-desoxycortisol, 21dF, 4-PREGNEN-11β,17-DIOL-3,20-DIONE)
- 21-hydroxylase deficiency (21OHD, 21-OH CAH)
- Congenital adrenal hyperplasia(CAH)
- Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1, P450c17)
- LNCaP and PC3 prostate cancer cells
Collapse
Affiliation(s)
- Rachelle Gent
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
23
|
Bochud M, Ponte B, Pruijm M, Ackermann D, Guessous I, Ehret G, Escher G, Groessl M, Estoppey Younes S, d'Uscio CH, Burnier M, Martin PY, Pechère-Bertschi A, Vogt B, Dhayat NA. Urinary Sex Steroid and Glucocorticoid Hormones Are Associated With Muscle Mass and Strength in Healthy Adults. J Clin Endocrinol Metab 2019; 104:2195-2215. [PMID: 30690465 DOI: 10.1210/jc.2018-01942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/18/2019] [Indexed: 02/04/2023]
Abstract
CONTEXT Sex steroid hormones exhibit anabolic effects whereas a deficiency engenders sarcopenia. Moreover, supraphysiological levels of glucocorticoids promote skeletal muscle atrophy, whereas physiologic levels of glucocorticoids may improve muscle performance. OBJECTIVE To study the relationship between both groups of steroid hormones at a physiological range with skeletal muscle mass and function in the general population. DESIGN Cross-sectional analysis of the associations between urinary excreted androgens, estrogens, glucocorticoids, and steroid hormone metabolite ratios with lean mass and handgrip strength in a population-based cohort. SETTING Three centers in Switzerland including 1128 participants. MEASURES Urinary steroid hormone metabolite excretion by gas chromatography-mass spectrometry, lean mass by bioimpedance analysis, and isometric handgrip strength by dynamometry. RESULTS For lean mass a strong positive association was found with 11β-OH-androsterone and with most glucocorticoids. Androsterone showed a positive association in middle-aged and older adults. Estriol showed a positive association only in men. For handgrip strength, strong positive associations with androgens were found in middle-aged and older adults, whereas positive associations were found with cortisol metabolites in young to middle-aged adults. CONCLUSIONS Sex steroids and glucocorticoids are strongly positively associated with skeletal muscle mass and strength in the upper limbs. The associations with muscle strength appear to be independent of muscle mass. Steroid hormones exert age-specific anabolic effects on lean mass and handgrip strength. Deficits in physical performance of aged muscles may be attenuated by androgens, whereas glucocorticoids in a physiological range increase skeletal muscle mass at all ages, as well as muscle strength in particular in younger adults.
Collapse
Affiliation(s)
- Murielle Bochud
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Belen Ponte
- Nephrology Service, Department of Specialties of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Menno Pruijm
- Nephrology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniel Ackermann
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Idris Guessous
- Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Georg Ehret
- Cardiology Service, Department of Specialties of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Geneviève Escher
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Groessl
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sandrine Estoppey Younes
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Claudia H d'Uscio
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michel Burnier
- Nephrology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Pierre-Yves Martin
- Nephrology Service, Department of Specialties of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Antoinette Pechère-Bertschi
- Endocrinology Service, Department of Specialties of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nasser A Dhayat
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Bileck A, Verouti SN, Escher G, Vogt B, Groessl M. A comprehensive urinary steroid analysis strategy using two-dimensional gas chromatography - time of flight mass spectrometry. Analyst 2019; 143:4484-4494. [PMID: 30156584 DOI: 10.1039/c7an01990d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Steroids are key players in a high variety of physiological processes and are typically analyzed for the diagnosis of hormonal disorders. Due to their chemical and structural similarity many of these metabolites cannot be separated by conventional techniques such as liquid chromatography. Herein, we present an analysis strategy based on two dimensional gas chromatography (GC×GC) coupled to time-of-flight mass spectrometry (TOF MS) which demonstrates superior separation power and enables comprehensive screening of steroids. We show absolute quantitation of 40 steroids in human urine over three orders of magnitude with limits of detection ≤50 nM and the tentative identification of additional 30 steroids based on accurate mass, isotopic pattern analysis and spectral similarity matching to known steroids. The method displays excellent inter- and intra-day stability, repeatability and recovery and was validated for clinical routine analysis. Additionally, we demonstrate the potential of the approach for untargeted analysis of urinary steroids in mouse and rat.
Collapse
Affiliation(s)
- Andrea Bileck
- Department of Nephrology and Hypertension and Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
Ackermann D, Groessl M, Pruijm M, Ponte B, Escher G, d’Uscio CH, Guessous I, Ehret G, Pechère-Bertschi A, Martin PY, Burnier M, Dick B, Vogt B, Bochud M, Rousson V, Dhayat NA. Reference intervals for the urinary steroid metabolome: The impact of sex, age, day and night time on human adult steroidogenesis. PLoS One 2019; 14:e0214549. [PMID: 30925175 PMCID: PMC6440635 DOI: 10.1371/journal.pone.0214549] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Urinary steroid metabolomics by GC-MS is an established method in both clinical and research settings to describe steroidogenic disorders. However, population-based reference intervals for adults do not exist. METHODS We measured daytime and night time urinary excretion of 40 steroid metabolites by GC-MS in 1128 adult participants of European ancestry, aged 18 to 90 years, within a large population-based, multicentric, cross-sectional study. Age and sex-related patterns in adjacent daytime and night time urine collections over 24 hours were modelled for each steroid metabolite by multivariable linear mixed regression. We compared our results with those obtained through a systematic literature review on reference intervals of urinary steroid excretion. RESULTS Flexible models were created for all urinary steroid metabolites thereby estimating sex- and age-related changes of the urinary steroid metabolome. Most urinary steroid metabolites showed an age-dependence with the exception of 6β-OH-cortisol, 18-OH-cortisol, and β-cortol. Reference intervals for all metabolites excreted during 24 hours were derived from the 2.5th and 97.5th percentile of modelled reference curves. The excretion rate per period of metabolites predominantly derived from the adrenals was mainly higher during the day than at night and the correlation between day and night time metabolite excretion was highly positive for most androgens and moderately positive for glucocorticoids. CONCLUSIONS This study gives unprecedented new insights into sex- and age-specificity of the human adult steroid metabolome and provides further information on the day/night variation of urinary steroid hormone excretion. The population-based reference ranges for 40 GC-MS-measured metabolites will facilitate the interpretation of steroid profiles in clinical practice.
Collapse
Affiliation(s)
- Daniel Ackermann
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Groessl
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Menno Pruijm
- Nephrology Service, University Hospital of Lausanne, Lausanne, Switzerland
| | - Belen Ponte
- Nephrology Service, Department of Specialties of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Geneviève Escher
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudia H. d’Uscio
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Idris Guessous
- Department of Community Medicine, Primary Care and Emergency Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Georg Ehret
- Cardiology Service, Department of Specialties of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Antoinette Pechère-Bertschi
- Endocrinology Service, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Pierre-Yves Martin
- Nephrology Service, Department of Specialties of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Michel Burnier
- Nephrology Service, University Hospital of Lausanne, Lausanne, Switzerland
| | - Bernhard Dick
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Murielle Bochud
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Valentin Rousson
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Nasser A. Dhayat
- Department of Nephrology and Hypertension and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Bileck A, Fluck CE, Dhayat N, Groessl M. How high-resolution techniques enable reliable steroid identification and quantification. J Steroid Biochem Mol Biol 2019; 186:74-78. [PMID: 30268410 DOI: 10.1016/j.jsbmb.2018.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to possible matrix interferences and artefact generation during sample preparation, careful method validation is required for quantitative bioanalytical methods, especially for analytes that are only present in low concentrations. Using the identification and quantification of progesterone metabolites in the urine of newborns as an example, we show how modern high-resolution instruments can be used to verify analyte assignment and avoid pitfalls commonly encountered by the use of low-resolution instruments.
Collapse
Affiliation(s)
- Andrea Bileck
- Department of Nephrology and Hypertension and Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Christa E Fluck
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics and Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Nasser Dhayat
- Department of Nephrology and Hypertension and Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Michael Groessl
- Department of Nephrology and Hypertension and Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
27
|
Urinary steroid profiling in women hints at a diagnostic signature of the polycystic ovary syndrome: A pilot study considering neglected steroid metabolites. PLoS One 2018; 13:e0203903. [PMID: 30308019 PMCID: PMC6181287 DOI: 10.1371/journal.pone.0203903] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although the polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women with vast metabolic consequences, its etiology remains unknown and its diagnosis is still made by exclusion. This study aimed at characterizing a large number of urinary steroid hormone metabolites and enzyme activities in women with and without PCOS in order to test their value for diagnosing PCOS. METHODS Comparative steroid profiling of 24h urine collections using an established in-house gas-chromatography mass spectrometry method. Data were collected mostly prospectively. Patients were recruited in university hospitals in Switzerland. Participants were 41 women diagnosed with PCOS according to the current criteria of the Androgen Excess and PCOS Society Task Force and 66 healthy controls. Steroid profiles of women with PCOS were compared to healthy controls for absolute metabolite excretion and for substrate to product conversion ratios. The AUC for over 1.5 million combinations of metabolites was calculated in order to maximize the diagnostic accuracy in patients with PCOS. Sensitivity, specificity, PPV, and NPV were indicated for the best combinations containing 2, 3 or 4 steroid metabolites. RESULTS The best single discriminating steroid was androstanediol. The best combination to diagnose PCOS contained four of the forty measured metabolites, namely androstanediol, estriol, cortisol and 20βDHcortisone with AUC 0.961 (95% CI 0.926 to 0.995), sensitivity 90.2% (95% CI 76.9 to 97.3), specificity 90.8% (95% CI 81.0 to 96.5), PPV 86.0% (95% CI 72.1 to 94.7), and NPV 93.7% (95% CI 84.5 to 98.2). CONCLUSION PCOS shows a specific 24h urinary steroid profile, if neglected metabolites are included in the analysis and non-conventional data analysis applied. PCOS does not share a profile with hyperandrogenic forms of congenital adrenal hyperplasias due to single steroid enzyme deficiencies. Thus PCOS diagnosis by exclusion may no longer be warranted. Whether these findings also apply to spot urine and serum, remains to be tested as a next step towards routine clinical applicability.
Collapse
|
28
|
du Toit T, Finken MJJ, Hamer HM, Heijboer AC, Swart AC. C11-oxy C 19 and C11-oxy C 21 steroids in neonates: UPC 2-MS/MS quantification of plasma 11β-hydroxyandrostenedione, 11-ketotestosterone and 11-ketoprogesterone. Steroids 2018; 138:1-5. [PMID: 29883615 DOI: 10.1016/j.steroids.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to identify the C11-oxy C19 and C11-oxy C21 steroids in male and female neonate plasma. At birth, the most abundant C11-oxy steroids detected in neonatal plasma were 11β-hydroxyandrostenedione, ∼13 nM, and 11-ketoprogesterone, ∼23 nM. C11-oxy C19 steroids were higher than C19 steroids in neonatal plasma, 22.2 nM vs 5.4 nM. The inclusion of C11-oxy C19 and C21 steroid reference ranges in routine steroid analyses will assist the characterization of disorders associated with impaired steroidogenic enzyme expression and the identification of potential biomarkers.
Collapse
Affiliation(s)
- Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Martijn J J Finken
- Department of Pediatric Endocrinology, VU University Medical Center, Amsterdam, The Netherlands
| | - Henrike M Hamer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
29
|
Cantuaria ML, Usemann J, Proietti E, Blanes-Vidal V, Dick B, Flück CE, Rüedi S, Héritier H, Wunderli JM, Latzin P, Frey U, Röösli M, Vienneau D. Glucocorticoid metabolites in newborns: A marker for traffic noise related stress? ENVIRONMENT INTERNATIONAL 2018; 117:319-326. [PMID: 29778832 DOI: 10.1016/j.envint.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/26/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Traffic noise has been associated with an increased risk for several non-auditory health effects, which may be explained by a noise-induced release of stress hormones (e.g. glucocorticoids). Although several studies in children and adults have indicated an increased secretion of glucocorticoids after exposure to noise, information regarding newborns is scarce. OBJECTIVES To investigate the association between residential exposure to road traffic noise and postnatal stress response, as assessed by the concentration of glucocorticoids at five weeks of age. METHODS Residential noise exposure was estimated for each infant based on spatially detailed modeled data. Adjusted multivariable linear regression models were used to estimate the association between noise exposure and the concentration of nine glucocorticoid metabolites measured in urine of 165 infants from a prospective birth cohort in Bern, Switzerland. Noise exposure (Lden, dB) was categorized into tertiles: low (reference), medium and high. RESULTS Indications of a positive association were found between high road traffic noise and cortisol (% change relative to the reference: 12.1% [95% confidence interval: -10.3, 40.1%]) and cortisone (22.6% [-1.8, 53.0%]), but just the latter was borderline significant. Borderline significant associations were also found between downstream metabolites and higher road traffic noise levels; associations were found to be both positive (i.e. for β-cortolone (51.5% [-0.9, 131.5%])) and negative (i.e. for α-cortolone (-18.3% [-33.6, 0.6%]) and tetrahydrocortisol (-23.7% [-42.8, 1.9%])). CONCLUSIONS Our findings suggest a potential association between exposure to higher road traffic noise levels and changes in glucocorticoid metabolism in early postnatal life. A possible physiological relevance and associations with short- and long-term adverse health effects in a larger study population need to be further investigated.
Collapse
Affiliation(s)
- Manuella Lech Cantuaria
- The Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| | - Jakob Usemann
- University Children's Hospital Basel (UKBB), University of Basel, Switzerland; Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Elena Proietti
- University Children's Hospital Basel (UKBB), University of Basel, Switzerland; Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Victoria Blanes-Vidal
- The Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| | - Bernhard Dick
- Nephrology & Hypertension, University of Bern, Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Bern University Children's Hospital, Bern, Switzerland
| | - Simone Rüedi
- University Children's Hospital Basel (UKBB), University of Basel, Switzerland
| | - Harris Héritier
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | | - Philipp Latzin
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), University of Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
30
|
Shackleton C, Pozo OJ, Marcos J. GC/MS in Recent Years Has Defined the Normal and Clinically Disordered Steroidome: Will It Soon Be Surpassed by LC/Tandem MS in This Role? J Endocr Soc 2018. [PMID: 30094411 DOI: 10.1210/js.2018-00135.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gas chromatography/mass spectrometry (GC/MS) has been used for steroid analysis since the 1960s. The advent of protective derivatization, capillary columns, and inexpensive electron ionization bench-top single quadrupole soon made it the method of choice for studying disorders of steroid synthesis and metabolism. However, the lengthy sample workup prevented GC/MS from becoming routine for steroid hormone measurement, which was dominated by radioimmunoassay. It was the emergence of liquid chromatography/tandem MS (LC/MS/MS) that sparked a renewed interest in GC/MS for the multicomponent analysis of steroids. GC/MS is excellent at providing an integrated picture of a person's steroid metabolome, or steroidome, as we term it. We review the recent work on newly described disorders and discuss the technical advances such as GC coupling to triple quadrupole and ion trap analyzers, two-dimensional GC/MS, and alternative ionization and detection systems such as atmospheric pressure chemical ionization (APCI) and time of flight. We believe that no novel GC/MS-based technique has the power of GC(electron ionization)/MS/MS as a "discovery tool," although APCI might provide ultimate sensitivity, which might be required in tissue steroidomics. Finally, we discuss the role of LC/MS/MS in steroidomics. This remains a challenge but offers shorter analysis times and advantages in the detection and discovery of steroids with a known structure. We describe recent advances in LC/MS steroidomics of hydrolyzed and intact steroid conjugates and suggest the technique is catching up with GC/MS in this area. However, in the end, both techniques will likely remain complementary and both should be available in advanced analytical laboratories.
Collapse
Affiliation(s)
- Cedric Shackleton
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California
| | - Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar Research Institute, Barcelona, Spain
| | - Josep Marcos
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
31
|
Shackleton C, Pozo OJ, Marcos J. GC/MS in Recent Years Has Defined the Normal and Clinically Disordered Steroidome: Will It Soon Be Surpassed by LC/Tandem MS in This Role? J Endocr Soc 2018; 2:974-996. [PMID: 30094411 PMCID: PMC6080058 DOI: 10.1210/js.2018-00135] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Gas chromatography/mass spectrometry (GC/MS) has been used for steroid analysis since the 1960s. The advent of protective derivatization, capillary columns, and inexpensive electron ionization bench-top single quadrupole soon made it the method of choice for studying disorders of steroid synthesis and metabolism. However, the lengthy sample workup prevented GC/MS from becoming routine for steroid hormone measurement, which was dominated by radioimmunoassay. It was the emergence of liquid chromatography/tandem MS (LC/MS/MS) that sparked a renewed interest in GC/MS for the multicomponent analysis of steroids. GC/MS is excellent at providing an integrated picture of a person's steroid metabolome, or steroidome, as we term it. We review the recent work on newly described disorders and discuss the technical advances such as GC coupling to triple quadrupole and ion trap analyzers, two-dimensional GC/MS, and alternative ionization and detection systems such as atmospheric pressure chemical ionization (APCI) and time of flight. We believe that no novel GC/MS-based technique has the power of GC(electron ionization)/MS/MS as a “discovery tool,” although APCI might provide ultimate sensitivity, which might be required in tissue steroidomics. Finally, we discuss the role of LC/MS/MS in steroidomics. This remains a challenge but offers shorter analysis times and advantages in the detection and discovery of steroids with a known structure. We describe recent advances in LC/MS steroidomics of hydrolyzed and intact steroid conjugates and suggest the technique is catching up with GC/MS in this area. However, in the end, both techniques will likely remain complementary and both should be available in advanced analytical laboratories.
Collapse
Affiliation(s)
- Cedric Shackleton
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California
| | - Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar Research Institute, Barcelona, Spain
| | - Josep Marcos
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
32
|
Honour JW, Conway E, Hodkinson R, Lam F. The evolution of methods for urinary steroid metabolomics in clinical investigations particularly in childhood. J Steroid Biochem Mol Biol 2018; 181:28-51. [PMID: 29481855 DOI: 10.1016/j.jsbmb.2018.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
The metabolites of cortisol, and the intermediates in the pathways from cholesterol to cortisol and the adrenal sex steroids can be analysed in a single separation of steroids by gas chromatography (GC) coupled to MS to give a urinary steroid profile (USP). Steroids individually and in profile are now commonly measured in plasma by liquid chromatography (LC) coupled with MS/MS. The steroid conjugates in urine can be determined after hydrolysis and derivative formation and for the first time without hydrolysis using GC-MS, GC-MS/MS and liquid chromatography with mass spectrometry (LC-MS/MS). The evolution of the technology, practicalities and clinical applications are examined in this review. The patterns and quantities of steroids changes through childhood. Information can be obtained on production rates, from which children with steroid excess and deficiency states can be recognised when presenting with obesity, adrenarche, adrenal suppression, hypertension, adrenal tumours, intersex condition and early puberty, as examples. Genetic defects in steroid production and action can be detected by abnormalities from the GC-MS of steroids in urine. New mechanisms of steroid synthesis and metabolism have been recognised through steroid profiling. GC with tandem mass spectrometry (GC-MS/MS) has been used for the tentative identification of unknown steroids in urine from newborn infants with congenital adrenal hyperplasia. Suggestions are made as to areas for future research and for future applications of steroid profiling. As routine hospital laboratories become more familiar with the problems of chromatographic and MS analysis they can consider steroid profiling in their test repertoire although with LC-MS/MS of urinary steroids this is unlikely to become a routine test because of the availability, cost and purity of the internal standards and the complexity of data interpretation. Steroid profiling with quantitative analysis by mass spectrometry (MS) after chromatography now provides the most versatile of tests of adrenal function in childhood.
Collapse
Affiliation(s)
- John W Honour
- Institute for Women's Health, University College London, 74 Huntley Street, London, WC1E 6AU, UK.
| | - E Conway
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| | - R Hodkinson
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| | - F Lam
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| |
Collapse
|
33
|
van Rooyen D, Gent R, Barnard L, Swart AC. The in vitro metabolism of 11β-hydroxyprogesterone and 11-ketoprogesterone to 11-ketodihydrotestosterone in the backdoor pathway. J Steroid Biochem Mol Biol 2018; 178:203-212. [PMID: 29277707 DOI: 10.1016/j.jsbmb.2017.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/24/2023]
Abstract
Increased circulating 11β-hydroxyprogesterone (11OHP4), biosynthesised in the human adrenal, is associated with 21-hydroxylase deficiency in congenital adrenal hyperplasia. 17α-hydroxyprogesterone levels are also increased, with the steroid's metabolism to dihydrotestosterone in the backdoor pathway contributing to hyperandrogenic clinical conditions. In this study we investigated the in vitro biosynthesis and downstream metabolism of 11OHP4. Both cytochrome P450 11β-hydroxylase and aldosterone synthase catalyse the biosynthesis of 11OHP4 from progesterone (P4) which is converted to 11-ketoprogesterone (11KP4) by 11β-hydroxysteroid dehydrogenase type 2, while type 1 readily catalysed the reverse reaction. We showed in HEK-293 cells that these C11-oxy C21 steroids were metabolised by steroidogenic enzymes in the backdoor pathway-5α-reductase (SRD5A) and 3α-hydroxysteroid type 3 (AKR1C2) converted 11OHP4 to 5α-pregnan-11β-ol,3,20-dione and 5α-pregnan-3α,11β-diol-20-one, while 11KP4 was converted to 5α-pregnan-3,11,20-trione and 5α-pregnan-3α-ol-11,20-dione (alfaxalone), respectively. Cytochrome P450 17α-hydroxylase/17,20-lyase catalysed the hydroxylase and lyase reaction to produce the C11-oxy C19 steroids demonstrated in the conversion of alfaxalone to 11-oxy steroids demonstrated in the conversion of alfaxalone to 11ketoandrosterone. In LNCaP cells, a prostate cancer cell model endogenously expressing the relevant enzymes, 11OHP4 and 11KP4 were metabolised to the potent androgen, 11-ketodihydrotestosterone (11KDHT), thus suggesting the C11-oxy C21 steroids contribute to the pool of validating the in vitro biosynthesis of C11-oxy C19 steroids from C11-oxy C21 steroids. The in vitro reduction of 11KP4 at C3 and C5 by AKR1C2 and SRD5A has confirmed the metabolic route of the urinary metabolite, 3α,20α-dihydroxy-5β-pregnan-11-one. Although our assays have demonstrated the conversion of 11OHP4 and 11KP4 by steroidogenic enzymes in the backdoor pathway yielding 11KDHT, thus suggesting the C11-oxy C21 steroids contribute to the pool of potent androgens, the in vivo confirmation of this metabolic route remains challenging.
Collapse
Affiliation(s)
- Desmaré van Rooyen
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rachelle Gent
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Lise Barnard
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Amanda C Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
34
|
du Toit T, Stander MA, Swart AC. A high-throughput UPC2-MS/MS method for the separation and quantification of C19 and C21 steroids and their C11-oxy steroid metabolites in the classical, alternative, backdoor and 11OHA4 steroid pathways. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1080:71-81. [DOI: 10.1016/j.jchromb.2018.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 01/11/2023]
|
35
|
Tran MTC, Tran NAT, Nguyen PM, Vu CD, Tran MD, Ngo DN, Nguyen HH, Greaves RF. 11β-Hydroxylase deficiency detected by urine steroid metabolome profiling using gas chromatography-mass spectrometry. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2018; 7:1-5. [PMID: 39193553 PMCID: PMC11322758 DOI: 10.1016/j.clinms.2017.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
Introduction 11β-hydroxylase deficiency is the second most common form of congenital adrenal hyperplasia (CAH), accounting for 5-8% of all cases. It is an autosomal recessive enzyme defect that impairs the biosynthesis of cortisol and aldosterone. Mutation of the CYP11B1 gene on chromosome 8q22 causes partial or total reduction of enzyme activity. Clinical manifestations of 11β-hydroxylase deficiency include hypertension, and other signs related to overproduction of mineralocorticoids, and virilisation. Here, we report on a case of 11β-hydroxylase deficiency detected by urine steroid metabolome profiling. Case Subject The patient, a 3-month-old male, suffered from truncus arteriosus type I (congenital cardiovascular anomaly) and also presented with hyperpigmentation. An endocrinology consultation was sought and biochemical and molecular testing was conducted. Results The patient's urine steroid metabolome, as analysed by GC-MS, showed high excretion of tetrahydrodeoxycortisol (THS) and a THS/(THE + THF + 5αTHF) ratio of 2.3, which was higher than normal. Diagnosis of 11β-hydroxylase deficiency was confirmed by mutation analysis of the CYP11B1 gene. Conclusion Analysis of the urine steroid metabolome by GC-MS can be used to assist in diagnosis of 11β-hydroxylase deficiency. We recommend consideration of urine steroid analysis as a first-line test in the diagnosis of CAH.
Collapse
Affiliation(s)
- Mai Thi Chi Tran
- National Children’s Hospital, Hanoi, Viet Nam
- Hanoi Medical University, Hanoi, Viet Nam
| | | | | | - Chi Dung Vu
- National Children’s Hospital, Hanoi, Viet Nam
| | | | | | | | - Ronda F. Greaves
- School of Health & Biomedical Sciences, RMIT University, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| |
Collapse
|
36
|
Marti N, Malikova J, Galván JA, Aebischer M, Janner M, Sumnik Z, Obermannova B, Escher G, Perren A, Flück CE. Androgen production in pediatric adrenocortical tumors may occur via both the classic and/or the alternative backdoor pathway. Mol Cell Endocrinol 2017; 452:64-73. [PMID: 28501574 DOI: 10.1016/j.mce.2017.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/24/2017] [Accepted: 05/09/2017] [Indexed: 11/27/2022]
Abstract
Children with adrenocortical tumors (ACTs) often present with virilization due to high tumoral androgen production, with dihydrotestosterone (DHT) as most potent androgen. Recent work revealed two pathways for DHT biosynthesis, the classic and the backdoor pathway. Usage of alternate routes for DHT production has been reported in castration-resistant prostate cancer, CAH and PCOS. To assess whether the backdoor pathway may contribute to the virilization of pediatric ACTs, we investigated seven children suffering from androgen producing tumors using steroid profiling and immunohistochemical expression studies. All cases produced large amounts of androgens of the classic and/or backdoor pathway. Variable expression of steroid enzymes was observed in carcinomas and adenomas. We found no discriminative pattern. This suggests that enhanced androgen production in pediatric ACTs is the result of deregulated steroidogenesis through multiple steroid pathways. Thus future treatments of ACTs targeting androgen overproduction should consider these novel steroid production pathways.
Collapse
Affiliation(s)
- Nesa Marti
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, Switzerland; Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland; Graduate School Bern, University of Bern, Switzerland
| | - Jana Malikova
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, Switzerland; Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Pediatrics, 2(nd) Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - José A Galván
- Institute of Pathology, University of Bern, Switzerland
| | - Maude Aebischer
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, Switzerland
| | - Marco Janner
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, Switzerland
| | - Zdenek Sumnik
- Department of Pediatrics, 2(nd) Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Barbora Obermannova
- Department of Pediatrics, 2(nd) Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Genevieve Escher
- Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, Switzerland; Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
37
|
Teasdale SL, Morton A. Adrenarche unmasks compound heterozygous 3β-hydroxysteroid dehydrogenase deficiency: c.244G>A (p.Ala82Thr) and the novel 931C>T (p.Gln311*) variant in a non-salt wasting, severely undervirilised 46XY. J Pediatr Endocrinol Metab 2017; 30:355-360. [PMID: 28207417 DOI: 10.1515/jpem-2016-0348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/19/2016] [Indexed: 11/15/2022]
Abstract
3β-Hydroxysteroid dehydrogenase type II deficiency (3βHSD2) congenital adrenal hyperplasia is a rare cause of ambiguous genitalia, resulting in abnormal virilisation in both 46XY and 46XX. We describe a case of 46XY ambiguous genitalia that was misdiagnosed as androgen insensitivity syndrome. The correct diagnosis was made after adrenarche. Genotyping demonstrated compound heterozygosity in two alleles, the previously described c.244G>A (p.Ala82Thr), and a novel 931C>T(p.Gln311*) variant. We suggest that adrenarche unmasked the condition by driving cortisol production to rates that caused the mutant 3bHSD2 enzyme to become rate limiting for cortisol production. This case illustrates how markedly different the effects of this condition may be on androgen production compared with glucocorticoid and mineralocorticoid production. It also demonstrates how current guidelines based on urinary steroids and cortisol sufficiency may not arrive at the correct diagnosis, and underlines the importance of gene testing in the work-up of disorders of sexual differentiation.
Collapse
|
38
|
van Rooyen D, du Toit T, Louw-du Toit R, Africander D, Swart P, Swart AC. The metabolic fate and receptor interaction of 16α-hydroxyprogesterone and its 5α-reduced metabolite, 16α-hydroxy-dihydroprogesterone. Mol Cell Endocrinol 2017; 441:86-98. [PMID: 27664517 DOI: 10.1016/j.mce.2016.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023]
Abstract
16α-hydroxyprogesterone (16OHP4) is not well characterised in terms of metabolism and receptor interaction. We therefore investigated its metabolism by adrenal CYP11B and peripheral steroidogenic enzymes, SRD5A and AKR1C2. UHPLC-MS/MS analyses identified novel steroids: the biosynthesis of 4-pregnen-11β,16α-diol-3,20-dione catalysed by CYP11B2; the 5α-reduction of the latter and 16OHP4 catalysed by SRD5A yielding 5α-pregnan-11β,16α-diol-3,20-diovne and 5α-pregnan-16α-ol-3,20-dione (16OH-DHP4); and 16OH-DHP4 converted by AKR1C2 to 5α-pregnan-3α,16α-diol-20-one. Receptor studies showed 16OHP4, 16OH-DHP4, progesterone and dihydroprogesterone (DHP4) were weak partial AR agonists; 16OHP4, 16OH-DHP4 and DHP4 exhibited weak partial agonist activity towards PR-B with DHP4 also exhibiting partial agonist activity towards PR-A. Data showed that while the 5α-reduction of P4 decreased PR activation significantly, 16OHP4 and 16OH-DHP4 exhibited comparable receptor activation. Although the clinical relevance of 16OHP4 remains unclear the elevated 16OHP4 levels characteristic of 21OHD, CAH, PCOS, prostate cancer, testicular feminization syndrome and cryptorchidism likely contribute towards these clinical conditions, inducing receptor-activated target genes.
Collapse
Affiliation(s)
- Desmaré van Rooyen
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Therina du Toit
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Renate Louw-du Toit
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Donita Africander
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Pieter Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Amanda C Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
39
|
Dhayat NA, Dick B, Frey BM, d'Uscio CH, Vogt B, Flück CE. Androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway: Insights into enzyme activities and steroid fluxes in healthy infants during the first year of life from the urinary steroid metabolome. J Steroid Biochem Mol Biol 2017; 165:312-322. [PMID: 27471148 DOI: 10.1016/j.jsbmb.2016.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 11/16/2022]
Abstract
The steroid profile changes dramatically from prenatal to postnatal life. Recently, a novel backdoor pathway for androgen biosynthesis has been discovered. However, its role remains elusive. Therefore, we investigated androgen production from birth to one year of life with a focus on minipuberty and on production of androgens through the backdoor pathway. Additionally, we assessed the development of the specific steroid enzyme activities in early life. To do so, we collected urine specimens from diapers in 43 healthy newborns (22 females) at 13 time points from birth to one year of age in an ambulatory setting, and performed in house GC-MS steroid profiling for 67 steroid metabolites. Data were analyzed for androgen production through the classic and backdoor pathway and calculations of diagnostic ratios for steroid enzyme activities were performed. Analysis revealed that during minipuberty androgen production is much higher in boys than in girls (e.g. androsterone (An)), originates largely from the testis (Anboys-Angirls), and uses predominantly the alternative backdoor pathway (An/Et; Δ5<Δ4 lyase activity). Modelling of steroid enzyme activities showed age-related effects for 21-, 11-, 17-hydroxylase and P450 oxidoreductase activities as well as 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase type 1/2 and 5α-reductase activities. Sex-related characteristics were found for 21-hydroxylase and 5α-reductase activities. Overall, our study shows that androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway. Calculations of specific diagnostic ratios for enzyme activities seem to allow the diagnosis of specific steroid disorders from the urinary steroid metabolome.
Collapse
Affiliation(s)
- Nasser A Dhayat
- Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Bernhard Dick
- Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Brigitte M Frey
- Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Claudia H d'Uscio
- Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland. claudia.d'
| | - Bruno Vogt
- Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Christa E Flück
- Department of Pediatrics (Pediatric Endocrinology and Diabetology, University Children's Hospital) and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15/C845, 3010 Bern, Switzerland.
| |
Collapse
|
40
|
Kyriakou A, Dessens A, Bryce J, Iotova V, Juul A, Krawczynski M, Nordenskjöld A, Rozas M, Sanders C, Hiort O, Ahmed SF. Current models of care for disorders of sex development - results from an International survey of specialist centres. Orphanet J Rare Dis 2016; 11:155. [PMID: 27871307 PMCID: PMC5117601 DOI: 10.1186/s13023-016-0534-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/07/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND To explore the current models of practice in centres delivering specialist care for children with disorders of sex development (DSD), an international survey of 124 clinicians, identified through DSDnet and the I-DSD Registry, was performed in the last quarter of 2014. RESULTS A total of 78 (63 %) clinicians, in 75 centres, from 38 countries responded to the survey. A formal national network for managing DSD was reported to exist in 12 (32 %) countries. The paediatric specialists routinely involved in the initial evaluation of a newborn included: endocrinologist (99 %), surgeon/urologist (95 %), radiologist (93 %), neonatologist (91 %), clinical geneticist (81 %) and clinical psychologist (69 %). A team consisting of paediatric specialists in endocrinology, surgery/urology, clinical psychology, and nursing was only possible in 31 (41 %) centres. Of the 75 centres, 26 (35 %) kept only a local DSD registry and 40 (53 %) shared their data in a multicentre DSD registry. Attendance in local, national and international DSD-related educational programs was reported by 69, 78 and 84 % clinicians, respectively. Participation in audits/quality improvement exercises in DSD care was reported by 14 (19 %) centres. In addition to complex biochemistry and molecular genetic investigations, 40 clinicians (51 %) also had access to next generation sequencing. A genetic test was reported to be more preferable than biochemical tests for diagnosing 5-alpha reductase deficiency and 17-beta hydroxysteroid dehydrogenase 3 deficiency by 50 and 55 % clinicians, respectively. CONCLUSION DSD centres report a high level of interaction at an international level, have access to specialist staff and are increasingly relying on molecular genetics for routine diagnostics. The quality of care provided by these centres locally requires further exploration.
Collapse
Affiliation(s)
- Andreas Kyriakou
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Zone 1, Office Block, RHC & QEUH Campus, 1345 Govan Road, Glasgow, G51 4TF, UK.
| | - Arianne Dessens
- Department of Child and Adolescent Psychiatry, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Jillian Bryce
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Zone 1, Office Block, RHC & QEUH Campus, 1345 Govan Road, Glasgow, G51 4TF, UK
| | - Violeta Iotova
- Department of Paediatrics, Medical University of Varna, Varna, Bulgaria
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Maciej Krawczynski
- Department of Medical Genetics, Poznan University of Medical Science, Poznań, Poland
| | - Agneta Nordenskjöld
- Paediatric Surgery, Astrid Lindgren Children Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Marta Rozas
- GrApSIA (Grupo de Apoyo al Síndrome de Insensibilidad a los Andrógenos), Barcelona, Spain
| | - Caroline Sanders
- University of Northern British Columbia, Canada & Adjunct Alder Hey Children Hospital, NHS Trust UK, Prince George, Canada
| | - Olaf Hiort
- Division of Experimental Paediatric Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Zone 1, Office Block, RHC & QEUH Campus, 1345 Govan Road, Glasgow, G51 4TF, UK
| |
Collapse
|
41
|
Schooling CM, Houghton LC, Terry MB. Potential Intervention Targets in Utero and Early Life for Prevention of Hormone Related Cancers. Pediatrics 2016; 138:S22-S33. [PMID: 27940974 DOI: 10.1542/peds.2015-4268e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 11/24/2022] Open
Abstract
Hormone-related cancers have long been thought to be sensitive to exposures during key periods of sexual development, as shown by the vulnerability to such cancers of women exposed to diethylstilbestrol in utero. In addition to evidence from human studies, animal studies using new techniques, such as gene knockout models, suggest that an increasing number of cancers may be hormonally related, including liver, lung, and bladder cancer. Greater understanding of sexual development has also revealed the "mini-puberty" of early infancy as a key period when some sex hormones reach levels similar to those at puberty. Factors driving sex hormones in utero and early infancy have not been systematically identified as potential targets of intervention for cancer prevention. On the basis of sex hormone pathways, we identify common potentially modifiable drivers of sex hormones, including but not limited to factors such as obesity, alcohol, and possibly nitric oxide. We review the evidence for effects of modifiable drivers of sex hormones during the prenatal period and early infancy, including measured hormones as well as proxies, such as the second-to-fourth digit length ratio. We summarize the gaps in the evidence needed to identify new potential targets of early life intervention for lifelong cancer prevention.
Collapse
Affiliation(s)
- C Mary Schooling
- CUNY School of Public Health and Hunter College, New York, New York; .,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China; and
| | - Lauren C Houghton
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
42
|
Udhane SS, Dick B, Hu Q, Hartmann RW, Pandey AV. Specificity of anti-prostate cancer CYP17A1 inhibitors on androgen biosynthesis. Biochem Biophys Res Commun 2016; 477:1005-1010. [PMID: 27395338 DOI: 10.1016/j.bbrc.2016.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022]
Abstract
The orteronel, abiraterone and galeterone, which were developed to treat castration resistant prostate cancer, inhibit 17,20 lyase activity but little is known about their effects on adrenal androgen biosynthesis. We studied the effect of several inhibitors and found that orteronel was selective towards 17,20 lyase activity than abiraterone and galeterone. Gene expression analysis showed that galeterone altered the expression of HSD3B2 but orteronel did not change the expression of HSD3B2, CYP17A1 and AKR1C3. The CYP19A1 activity was not inhibited except by compound IV which lowered activity by 23%. Surprisingly abiraterone caused complete blockade of CYP21A2 activity. Analysis of steroid metabolome by gas chromatography - mass spectrometry revealed changes in steroid levels caused by different inhibitors. We can conclude that orteronel is a highly specific inhibitor of 17,20 lyase activity. The discovery of these specific drug actions on steroidogenic enzyme activities would be valuable for understanding the regulation of androgens.
Collapse
Affiliation(s)
- Sameer S Udhane
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Bernhard Dick
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland; Department of Nephrology, Hypertension and Clinical Pharmacology, University Hospital of Bern, Bern, Switzerland
| | - Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, Saarbrücken, Germany
| | - Rolf W Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
43
|
Morel Y, Roucher F, Plotton I, Goursaud C, Tardy V, Mallet D. Evolution of steroids during pregnancy: Maternal, placental and fetal synthesis. ANNALES D'ENDOCRINOLOGIE 2016; 77:82-9. [PMID: 27155772 DOI: 10.1016/j.ando.2016.04.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
Abstract
Progesterone, estrogens, androgens and glucocorticoids are involved in pregnancy from implantation to parturition. Their biosynthesis and their metabolism result from complex pathways involving the fetus, the placenta and the mother. The absence of expression of some steroïdogenic enzymes as CYP17 in placenta and in adrenal fetal zone and the better determination of the onset and variation of others especially HSD3B2 during the pregnancy explain the production of the steroid hormones. Moreover the consequences of some disorders of steroidogenesis (especially aromatase, POR, CYP11A1 and 21-hydroxylase deficiencies) in fetus and mother during the pregnancy have permit to elucidate these complex pathways. This better knowledge of steroid hormones production associated with their dosages in maternal plasma/urine or amniotic fluid using new specific assays as LC-MS MS could facilitate the follow-up of normal and pathological pregnancies. Moreover, these advances should be a basis to evaluate the impact of multiple pathologies of the pregnancy and pharmacologic and xenobiotic consequences on their metabolism.
Collapse
Affiliation(s)
- Yves Morel
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France.
| | - Florence Roucher
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Ingrid Plotton
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Claire Goursaud
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Véronique Tardy
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Delphine Mallet
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| |
Collapse
|
44
|
Udhane SS, Flück CE. Regulation of human (adrenal) androgen biosynthesis-New insights from novel throughput technology studies. Biochem Pharmacol 2015; 102:20-33. [PMID: 26498719 DOI: 10.1016/j.bcp.2015.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Abstract
Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.
Collapse
Affiliation(s)
- Sameer S Udhane
- Pediatric Endocrinology and Diabetology of the Department of Pediatrics and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology and Diabetology of the Department of Pediatrics and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|