1
|
Macedo PE, Batista JES, Souza LR, Dafre AL, Farina M, Kuca K, Posser T, Pinto PM, Boldo JT, Franco JL. Drosophila melanogaster as a model organism for screening acetylcholinesterase reactivators. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:953-972. [PMID: 39292449 DOI: 10.1080/15287394.2024.2401382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The widely used insecticide chlorpyrifos (CP) is known to inhibit acetylcholinesterase (AChE) activity attributed to result in various neurological disorders and acetylcholine-dependent organ functions including heart, skeletal muscle, lung, gastrointestinal tract, and central nervous systems. Enzyme reactivators, such as oximes, are known to restore AChE activity and mitigate adverse effects. The identification of compounds that reactivate AChE constitute agents with important therapeutic beneficial effects in cases of pesticide poisoning. However, the screening of novel drugs using traditional models may raise ethical concerns. This study aimed to investigate the potential of Drosophila melanogaster as a model organism for screening AChE reactivators, with a focus on organophosphate poisoning. The efficacy of several oximes, including pralidoxime, trimedoxime, obidoxime, methoxime, HI-6, K027, and K048, against CP-induced AChE activity inhibition in D. melanogaster was determined in silico, in vitro, and in vivo experiments. Molecular docking studies indicated a strong interaction between studied oximes and the active-site gorge of AChE. Data showed that selected oximes (100 μM) are effective in the reactivation of AChE inhibited by CP (10 μM) in vitro. Finally, in vivo investigations demonstrated that selected oximes, pralidoxime and K048 (1.5 ppm), reversed the locomotor deficits, inhibition of AChE activity as well as lowered the mortality rates induced by CP (0.75 ppm). Our findings contribute to utilization of D. melanogaster as a robust model for determination of actions of identified new AChE inhibitory agents with more effective therapeutic properties that those currently in use in the clinical practice in treatment of AChE associated disorders.
Collapse
Affiliation(s)
- Pablo Echeverria Macedo
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | | | - Lorena Raspanti Souza
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Thais Posser
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Paulo Marcos Pinto
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Juliano Tomazzoni Boldo
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| |
Collapse
|
2
|
Neagu AN, Josan CL, Jayaweera TM, Weraduwage K, Nuru N, Darie CC. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. Int J Mol Sci 2024; 25:11078. [PMID: 39456858 PMCID: PMC11508170 DOI: 10.3390/ijms252011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental exposure to a mixture of chemical xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis and the development of breast cancer (BC). Before anything else, we are what we eat. In this review, we highlight both "the good" and "the bad" sides of the daily human diet and dietary patterns that could influence BC risk (BCR) and incidence. Thus, regularly eating new, diversified, colorful, clean, nutrient-rich, energy-boosting, and raw food, increases apoptosis and autophagy, antioxidation, cell cycle arrest, anti-inflammation, and the immune response against BC cells. Moreover, a healthy diet could lead to a reduction in or the inhibition of genomic instability, BC cell stemness, growth, proliferation, invasion, migration, and distant metastasis. We also emphasize that, in addition to beneficial compounds, our food is more and more contaminated by chemicals with harmful effects, which interact with each other and with endogenous proteins and lipids, resulting in synergistic or antagonistic effects. Thus, a healthy and diverse diet, combined with appropriate nutritional behaviors, can exert anti-carcinogenic effects and improve treatment efficacy, BC patient outcomes, and the overall quality of life of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| |
Collapse
|
3
|
Lori G, Coppola L, Casella M, Tinari A, Masciola I, Tait S. Chlorpyrifos induces autophagy by suppressing the mTOR pathway in immortalized GnRH neurons. CHEMOSPHERE 2024; 362:142723. [PMID: 38945228 DOI: 10.1016/j.chemosphere.2024.142723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Chlorpyrifos (CPF) is a widely used pesticide inducing adverse neurodevelopmental and reproductive effects. However, knowledge of the underlying mechanisms is limited, particularly in the hypothalamus. We investigated the mode of action of CPF at human relevant concentrations (1 nM-100 nM) in immortalized mouse hypothalamic GnRH neurons (GT1-7), an elective model for studying disruption of the hypothalamus-pituitary-gonads (HPG) axis. We firstly examined cell vitality, proliferation, and apoptosis/necrosis. At not-cytotoxic concentrations, we evaluated neuron functionality, gene expression, Transmission Electron Microscopy (TEM) and proteomics profiles, validating results by immunofluorescence and western blotting (WB). CPF decreased cell vitality with a dose-response but did not affect cell proliferation. At 100 nM, CPF inhibited gene expression and secretion of GnRH; in addition, CPF reduced the immunoreactivity of the neuronal marker Map2 in a dose-dependent manner. The gene expression of Estrogen Receptor α and β (Erα, Erβ), Androgen Receptor (Ar), aromatase and oxytocin receptor was induced by CPF with different trends. Functional analysis of differentially expressed proteins identified Autophagy, mTOR signaling and Neutrophil extracellular traps (NETs) formation as significant pathways affected at all concentrations. This finding was phenotypically supported by the TEM analysis, showing marked autophagy and damage of mitochondria, as well as by protein analysis demonstrating a dose-dependent decrease of mTOR and its direct target pUlk1 (Ser 757). The bioinformatics network analysis identified a core module of interacting proteins, including Erα, Ar, mTOR and Sirt1, whose down-regulation was confirmed by WB analysis. Overall, our results demonstrate that CPF is an inhibitor of the mTOR pathway leading to autophagy in GnRH neurons; a possible involvement of the Erα/Ar signaling is also suggested. The evidence for adverse effects of CPF in the hypothalamus in the nanomolar range, as occurs in human exposure, increases concern on potential adverse outcomes induced by this pesticide on the HPG axis.
Collapse
Affiliation(s)
- Gabriele Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Antonella Tinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Irene Masciola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Buján S, Pontillo C, Miret N, Leguizamón MA, Chiappini F, Cocca C, Randi A. Triple negative breast cancer cells exposed to aryl hydrocarbon receptor ligands hexachlorobenzene and chlorpyrifos activate endothelial cells. Chem Biol Interact 2024; 398:111096. [PMID: 38844257 DOI: 10.1016/j.cbi.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/17/2024]
Abstract
Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 μM) and CPF (0.05, 0.5, 5 and 50 μM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.
Collapse
Affiliation(s)
- Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - María Agustina Leguizamón
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Panis C, Lemos B. Pesticide exposure and increased breast cancer risk in women population studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172988. [PMID: 38710391 DOI: 10.1016/j.scitotenv.2024.172988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Pesticide exposure is emerging as a risk factor for various human diseases. Breast cancer (BC) is a multifactorial disease with known genetic and non-genetic risk factors. Most BC cases are attibutable to non-genetic risk factors, with a history of adverse environmental exposures playing a significant role. Pesticide exposure can occur at higher levels in female populations participating in rural activities such as spraying of pesticides in the field, unprotected handling of pesticides at home, and washing of contaminated clothes. Exposure can also be significant in the drinking water of certain populations. Here, we reviewed the literature on women's exposure to pesticides and the risk of BC. We summarize the main links between pesticide exposure and BC and discuss the role of dose and exposure context, as well as potential mechanisms of toxicity. Overall, reports reviewed here have documented stronger associations between higher levels of exposure and BC risk, including documenting direct and acute pesticide exposure in certain female populations. However, discrepancies among studies regarding dose and mode of exposure may result in misunderstandings about the risks posed by pesticide exposure. Plausible mechanisms linking pesticides to breast cancer risk include their impacts as endocrine disruptors, as well as their roles as genotoxic agents, and modulators of the epigenome. Besides establishing links between pesticide exposure and breast cancer, the literature also highlights the critical need to understand the routes and doses of women's exposure to pesticides and the specific associations and mechanisms that are determinants of disease etiology and prognosis.
Collapse
Affiliation(s)
- Carolina Panis
- R Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States; Laboratory of Tumor Biology, State University of Western Paraná, UNIOESTE, Francisco Beltrão, Paraná, Brazil.
| | - Bernardo Lemos
- R Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States; Coit Center for Longevity and Neurotherapeutics, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
6
|
Sundararaman S, Kumar KS, Siddharth U, Prabu D, Karthikeyan M, Rajasimman M, Thamarai P, Saravanan A, Kumar JA, Vasseghian Y. Sustainable approach for the expulsion of metaldehyde: risk, interactions, and mitigation: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:248. [PMID: 38874631 DOI: 10.1007/s10653-024-02001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
All pests can be eliminated with the help of pesticides, which can be either natural or synthetic. Because of the excessive use of pesticides, it is harmful to both ecology and people's health. Pesticides are categorised according to several criteria: their chemical composition, method of action, effects, timing of use, source of manufacture, and formulations. Many aquatic animals, birds, and critters live in danger owing to hazardous pesticides. Metaldehyde is available in various forms and causes significant impact even when small amounts are ingested. Metaldehyde can harm wildlife, including dogs, cats, and birds. This review discusses pesticides, their types and potential environmental issues, and metaldehyde's long-term effects. In addition, it examines ways to eliminate metaldehyde from the aquatic ecosystem before concluding by anticipating how pesticides may affect society. The metal-organic framework and other biosorbents have been appropriately synthesized and subsequently represent the amazing removal of pesticides from effluent as an enhanced adsorbent, such as magnetic nano adsorbents. A revision of the risk assessment for metaldehyde residuals in aqueous sources is also attempted.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - K Satish Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - U Siddharth
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Karthikeyan
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, Chidambaram, 608002, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, India
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms of breast cancer progression induced by environment-polluting aryl hydrocarbon receptor agonists. Biochem Pharmacol 2023; 216:115773. [PMID: 37659737 DOI: 10.1016/j.bcp.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Breast cancer is the most common invasive malignancy among women worldwide and constitutes a complex and heterogeneous disease. Interest has recently grown in the role of the aryl hydrocarbon receptor (AhR) in breast cancer and the contribution of environment-polluting AhR agonists. Here, we present a literature review addressing AhR ligands, including pesticides hexachlorobenzene and chlorpyrifos, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, parabens, and phthalates. The objectives of this review are a) to summarize recent original experimental, preclinical, and clinical studies on the biological mechanisms of AhR agonists which interfere with the regulation of breast endocrine functions, and b) to examine the biological effects of AhR ligands and their impact on breast cancer development and progression. We discuss biological mechanisms of action in cell viability, cell cycle, proliferation, epigenetic changes, epithelial to mesenchymal transition, and cell migration and invasion. In addition, we examine the effects of AhR ligands on angiogenic processes, metastasis, chemoresistance, and stem cell renewal. We conclude that exposure to AhR agonists stimulates pathways that promote breast cancer development and may contribute to tumor progression. Given the massive use of industrial and agricultural chemicals, ongoing evaluation of their effects in laboratory assays and preclinical studies in breast cancer at environmentally relevant doses is deemed essential. Likewise, awareness should be raised in the population regarding the most harmful toxicants to eradicate or minimize their use.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Ashraf SA, Mahmood D, Elkhalifa AEO, Siddiqui AJ, Khan MI, Ashfaq F, Patel M, Snoussi M, Kieliszek M, Adnan M. Exposure to pesticide residues in honey and its potential cancer risk assessment. Food Chem Toxicol 2023; 180:114014. [PMID: 37659576 DOI: 10.1016/j.fct.2023.114014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Honey is the most recognized natural food by-product derived from flower nectar and the upper aero-digestive tract of the honeybees. Significance of honey for its medicinal importance are well-documented in the world's oldest medical literatures. However, the current urbanization, environmental contaminations and changes in agricultural, as well as apiculture practices has led to various types of contaminations in honey. Among all, pesticide contamination has become one of the major issues worldwide. This review focuses on the recent updates concerning pesticides occurrence in honey, as well as how the repeated use and long-term exposure to honey contaminated with pesticide residues could affect the human physiological functions, possibly leading to the development of various cancers. Our findings suggests that uncontrolled use of pesticides in farming and apiculture practices leads to the occurrence of pesticides residues in honey. Therefore, regular consumption of such honey will pose a serious threat to human health, since most of the pesticides has been reported as potential carcinogens. This review will draw the attention of honey consumers, scientific communities, apiculture farmers, as well as governing bodies to strictly monitor the pesticide usage in floriculture, agriculture as well as other related practices.
Collapse
Affiliation(s)
- Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia.
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, P.O. Box 5888, Unaizah, 51911, Saudi Arabia
| | - Abd Elmoneim O Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, ArRass, 51921, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia.
| |
Collapse
|
9
|
Ataei M, Abdollahi M. A systematic review of mechanistic studies on the relationship between pesticide exposure and cancer induction. Toxicol Appl Pharmacol 2022; 456:116280. [DOI: 10.1016/j.taap.2022.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 01/01/2023]
|
10
|
Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Mehra NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release 2022; 352:1024-1047. [PMID: 36379278 DOI: 10.1016/j.jconrel.2022.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Breast cancer is the most prevalent non-cutaneous malignancy in women, with greater than a million new cases every year. In the last decennium, numerous diagnostic and treatment approaches have been enormously studied for Breast cancer. Among the different approaches, nanotechnology has appeared as a promising approach in preclinical and clinical studies for early diagnosis of primary tumors and metastases and eradicating tumor cells. Each of these nanocarriers has its particular advantages and drawbacks. Combining two or more than two constituents in a single nanocarrier system leads to the generation of novel multifunctional Hybrid Nanocarriers with improved structural and biological properties. These novel Hybrid Nanocarriers have the capability to overcome the drawbacks of individual constituents while having the advantages of those components. Various hybrid nanocarriers such as lipid polymer hybrid nanoparticles, inorganic hybrid nanoparticles, metal-organic hybrid nanoparticles, and hybrid carbon nanocarriers are utilized for the diagnosis and treatment of various cancers. Certainly, Hybrid Nanocarriers have the capability to encapsulate multiple cargos, targeting agents, enhancement in encapsulation, stability, circulation time, and structural disintegration compared to non-hybrid nanocarriers. Many studies have been conducted to investigate the utilization of Hybrid nanocarriers in breast cancer for imaging platforms, photothermal and photodynamic therapy, chemotherapy, gene therapy, and combinational therapy. In this review, we mainly discussed in detailed about of preparation techniques and toxicological considerations of hybrid nanoparticles. This review also discussed the role of hybrid nanocarriers as a diagnostic and therapeutic agent for the treatment of breast cancer along with alternative treatment approaches apart from chemotherapy including photothermal and photodynamic therapy, gene therapy, and combinational therapy.
Collapse
Affiliation(s)
- Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aare Mounika
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anuradha Urati
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Khatri
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
11
|
Kumar V, Yadav CS, Banerjee BD. Xeno-Estrogenic Pesticides and the Risk of Related Human Cancers. J Xenobiot 2022; 12:344-355. [PMID: 36412768 PMCID: PMC9680220 DOI: 10.3390/jox12040024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
In recent decades, "environmental xenobiotic-mediated endocrine disruption", especially by xeno-estrogens, has gained a lot of interest from toxicologists and environmental researchers. These estrogen-mimicking chemicals are known to cause various human disorders. Pesticides are the most heavily used harmful xenobiotic chemicals around the world. The estrogen-mimicking potential of the most widely used organochlorine pesticides is well established. However, their effect is not as clearly understood among the plethora of effects these persistent xenobiotics are known to pose on our physiological system. Estrogens are one of the principal risk modifiers of various disorders, including cancer, not only in women but in men as well. Despite the ban on these xenobiotics in some parts of the world, humans are still at apparent risk of exposure to these harmful chemicals as they are still widely persistent and likely to stay in our environment for a long time owing to their high chemical stability. The present work intends to understand how these harmful chemicals may affect the risk of the development of estrogen-mediated human cancer.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, IMS Engineering College, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India
| | - Chandra Shekhar Yadav
- School of Forensic Science, National Forensic Sciences University, Gandhinagar 382010, India
| | - Basu Dev Banerjee
- Environmental Biochemistry & Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences & GTB Hospital, University of Delhi, Delhi 110095, India
- Department of Medical Elementology & Toxicology, School of Chemical & Life Sciences, Hamdard University, New Delhi 110062, India
- Correspondence:
| |
Collapse
|
12
|
Goyal R, Bishnoi S, Sharma A, Singhal R, Gupta P. Electrochemical sensing of chlorpyrifos, a carcinogen responsible for breast cancer, in milk and plasma of lactating mothers. ELECTROANAL 2022. [DOI: 10.1002/elan.202200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Moyano P, Garcia JM, García J, Pelayo A, Muñoz-Calero P, Frejo MT, Flores A, Del Pino J. Aryl Hydrocarbon Receptor Activation Produces Heat Shock Protein 90 and 70 Overexpression, Prostaglandin E2/Wnt/β-Catenin Signaling Disruption, and Cell Proliferation in MCF-7 and MDA-MB-231 Cells after 24 h and 14 Days of Chlorpyrifos Treatment. Chem Res Toxicol 2021; 34:2019-2023. [PMID: 34424684 PMCID: PMC9132385 DOI: 10.1021/acs.chemrestox.1c00258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The biocide chlorpyrifos (CPF) was
described to increase breast
cancer risk in humans, to produce breast cancer in animals, and to
induce cell proliferation in MCF-7 and MDA-MB-231 cells after 1 and
14 days of treatment. The entire mechanisms related to these CPF actions
remain unknown. CPF induced cell proliferation in MCF-7 and MDA-MB-231
cells after 1 and 14 days of treatment by AhR activation through the
PGE2/Wnt/β-catenin pathway and HSP90 and HSP70 overexpression.
Our results reveal new information on CPF toxic mechanisms induced
in human breast cancer cell lines, which could assist in elucidating
its involvement in breast cancer.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Manuel Garcia
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691 Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pilar Muñoz-Calero
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
15
|
Chronic exposure to low concentrations of chlorpyrifos affects normal cyclicity and histology of the uterus in female rats. Food Chem Toxicol 2021; 156:112515. [PMID: 34400204 DOI: 10.1016/j.fct.2021.112515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2023]
Abstract
Chlorpyrifos (CPF), the most used insecticide in Argentina, can act as an endocrine disruptor at low doses. We previously demonstrated that chronic exposure to CPF induces hormonal imbalance in vivo. The aim of this work was to study the effects of low concentrations of CPF (0.01 and 1 mg/kg/day) on the reproductive system of virgin adult rats. In the ovary, we studied the effects of CPF on steroidogenesis by determining steroid hormone content by RIA and CYP11 and CYP19 enzyme expression by qRT-PCR. The estrous cycle was evaluated by microscopic observation of vaginal smear, as well as by changes in uterine histology. In endometrium, we determined the fractal dimension and expression of PCNA, ERα and PR by IHC. Our results showed that chronic exposure to CPF affects ovarian steroid synthesis, causing alterations in the normal cyclicity of animals. In addition, CPF induced proliferative changes in the uterus, suggesting that it could affect reproduction or act as a risk factor in the development of uterine proliferative pathologies.
Collapse
|
16
|
Murphy CY, Burrows ME. Management of the Wheat Curl Mite and Wheat Streak Mosaic Virus With Insecticides on Spring and Winter Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:682631. [PMID: 34168670 PMCID: PMC8217877 DOI: 10.3389/fpls.2021.682631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
The wheat curl mite (WCM, Aceria tosichella, Keifer) is an eriophyid mite species complex that causes damage to cereal crops in the Northern Great Plains by feeding damage and through the transmission of plant viruses, such as wheat streak mosaic virus. Insecticide treatments were evaluated in the greenhouse and field for efficacy at managing the WCM complex on wheat. Treatments tested were carbamates, organophosphates, pyrethroids, a neonicotinoid seed treatment, mite growth inhibitors, and Organic Materials Review Institute-approved biocontrols, soaps, and oils. Treatment with carbamates, organophosphates, and pyrethroids decreased WCM in greenhouse trials compared with untreated controls 14 days after infestation. The seed treatment, mite growth inhibitors, and organic pesticides did not reduce WCM populations effectively and consistently. The timing of application was tested using a sulfur solution as the experimental treatment. Treating plants with sulfur seven days after mite infestation reduced mites compared with the untreated control. In contrast, prophylactically applied sulfur and sulfur applied 14 days after mite infestation were not effective. When tested under field conditions with plots infested with viruliferous mites, there was no yield difference detected between untreated control plots and plots sprayed with insecticides. Select carbamates, organophosphates, and pyrethroids have a potential for use in greenhouse mite management when appropriate.
Collapse
|
17
|
Sheikhi S, Dehghanzadeh R, Aslani H. Advanced oxidation processes for chlorpyrifos removal from aqueous solution: a systematic review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1249-1262. [PMID: 34150308 PMCID: PMC8172757 DOI: 10.1007/s40201-021-00674-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CPF), an organophosphate insecticide, due to its high efficiency and low cost is widely used in the agricultural industry. CPF may lead to lung deficiency, central nervous system damage, developmental and autoimmune disorders. In recent decades, the advanced oxidation processes (AOPs) have been considered in water and wastewater treatment due to their high efficiency in decomposition of organic and inorganic compounds, specially hardly biodegradable or non-biodegradable compounds. In the present review study, the most common AOPs (such as Fenton and Photo-Fenton processes, UV/H2O2 photolysis, UV/TiO2 heterogeneous photo catalysis, electrochemical processes, sonolysis technology, gamma irradiation technology and sulfate-based AOPs) applied for CPF removal from aqueous matrices has been investigated. It can be concluded that the use of AOPs are effective for CPF removal from aqueous media. In addition, Fenton and photocatalytic processes appear to be the most common techniques for CPF degradation.
Collapse
Affiliation(s)
- Samira Sheikhi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Dehghanzadeh
- Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Aslani
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Moyano P, García JM, García J, Pelayo A, Muñoz-Calero P, Frejo MT, Anadon MJ, Naval MV, Flores A, Mirat VA, Del Pino J. Chlorpyrifos induces cell proliferation in MCF-7 and MDA-MB-231 cells, through cholinergic and Wnt/β-catenin signaling disruption, AChE-R upregulation and oxidative stress generation after single and repeated treatment. Food Chem Toxicol 2021; 152:112241. [PMID: 33930485 DOI: 10.1016/j.fct.2021.112241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Chlorpyrifos (CPF) biocide, is associated with breast cancer. The processes underlying this association have not been elucidated to date. CPF increases MCF-7 and MDA-MB-231 cell proliferation after acute and long-term treatment, partially through KIAA1363 overexpression and aryl-hydrocarbon receptor activation but also through estrogen receptor-alpha activation after 24 h exposure in MCF-7 cells, suggesting other mechanisms may be involved. CPF induces reactive oxygen species (ROS) generation, acetylcholine accumulation, and overexpression of acetylcholinesterase-R/S (AChE-R/S) variants, while it also alters the Wnt/β-catenin pathway, both in vitro and in vivo, in processes different from cancer. These latter mechanisms are also linked to cell proliferation and could mediate this effect induced by CPF. Our results show that CPF (0.01-100 μM), following one-day and fourteen-days treatment, respectively, induced ROS generation and lipid peroxidation, and acetylcholine accumulation due to AChE inhibition, Wnt/β-catenin up- or downregulation depending on the CPF treatment concentration, and AChE-R and AChE-S overexpression, with the latter being mediated through GSK-3β activity alteration. Finally, CPF promoted cell division through ACh and ROS accumulation, AChE-R overexpression, and Wnt/β-catenin signaling disruption. Our results provide novel information on the effect of CPF on human breast cancer cell lines that may help to explain its involvement in breast cancer.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | | | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Maria Jose Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Maria Victoria Naval
- Department of Pharmacology, Pharmacognosy and Botany, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Vega Alejandra Mirat
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
19
|
Rebouillat P, Vidal R, Cravedi JP, Taupier-Letage B, Debrauwer L, Gamet-Payrastre L, Touvier M, Deschasaux-Tanguy M, Latino-Martel P, Hercberg S, Lairon D, Baudry J, Kesse-Guyot E. Prospective association between dietary pesticide exposure profiles and postmenopausal breast-cancer risk in the NutriNet-Santé cohort. Int J Epidemiol 2021; 50:1184-1198. [PMID: 33720364 DOI: 10.1093/ije/dyab015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Some pesticides, used in large quantities in current agricultural practices all over Europe, are suspected of adverse effects on human reproductive health (breast and prostate cancers), through mechanisms of endocrine disruption and possible carcinogenic properties, as observed in agricultural settings. However, evidence on dietary pesticide exposure and breast cancer (BC) is lacking for the general population. We aimed to assess the associations between dietary exposure to pesticides and BC risk among postmenopausal women of the NutriNet-Santé cohort. METHODS In 2014, participants completed a self-administered semi-quantitative food-frequency questionnaire distinguishing conventional and organic foods. Exposures to 25 active substances used in EU plant-protection products were estimated using a pesticide-residue database accounting for farming practices, from Chemisches und Veterinäruntersuchungsamt Stuttgart, Germany. Non-negative matrix factorization (NMF), adapted for data with excess zeros, was used to establish exposure profiles. The four extracted NMF components' quintiles were introduced into Cox models estimating hazard ratio (HR) and 95% confidence interval (95% CI), adjusted for known confounding factors. RESULTS A total of 13 149 postmenopausal women were included in the analysis (169 BC cases, median follow-up = 4.83 years). Negative associations between Component 3, reflecting low exposure to synthetic pesticides, and postmenopausal BC risk were found [HRQ5 = 0.57; 95% CI (0.34; 0.93), p-trend = 0.006]. Positive association between Component 1 score (highly correlated to chlorpyrifos, imazalil, malathion, thiabendazole) and postmenopausal BC risk was found specifically among overweight and obese women [HRQ5 = 4.13; 95% CI (1.50; 11.44), p-trend = 0.006]. No associations were detected for the other components. CONCLUSION These associations suggest a potential role of dietary pesticide exposure on BC risk. Further research is needed to investigate the mechanisms and confirm these results in other populations.
Collapse
Affiliation(s)
- Pauline Rebouillat
- Sorbonne Paris Nord University, INSERM, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), 93017, Bobigny, France
| | - Rodolphe Vidal
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), Paris, France
| | - Jean-Pierre Cravedi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Bruno Taupier-Letage
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), Paris, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Mathilde Touvier
- Sorbonne Paris Nord University, INSERM, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), 93017, Bobigny, France
| | - Mélanie Deschasaux-Tanguy
- Sorbonne Paris Nord University, INSERM, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), 93017, Bobigny, France
| | - Paule Latino-Martel
- Sorbonne Paris Nord University, INSERM, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), 93017, Bobigny, France
| | - Serge Hercberg
- Sorbonne Paris Nord University, INSERM, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), 93017, Bobigny, France.,Département de Santé Publique, Hôpital Avicenne, 93017 Bobigny, France
| | - Denis Lairon
- Aix Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Julia Baudry
- Sorbonne Paris Nord University, INSERM, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), 93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris Nord University, INSERM, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), 93017, Bobigny, France
| |
Collapse
|
20
|
Ubaid Ur Rahman H, Asghar W, Nazir W, Sandhu MA, Ahmed A, Khalid N. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142649. [PMID: 33059141 DOI: 10.1016/j.scitotenv.2020.142649] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 04/15/2023]
Abstract
Chlorpyrifos (CPF) is a broad-spectrum chlorinated organophosphate (OP) pesticide used for the control of a variety of insects and pathogens in crops, fruits, vegetables, as well as households, and various other locations. The toxicity of CPF has been associated with neurological dysfunctions, endocrine disruption, and cardiovascular diseases (CVDs). It can also induce developmental and behavioral anomalies, hematological malignancies, genotoxicity, histopathological aberrations, immunotoxicity, and oxidative stress as evidenced by animal modeling. Moreover, eye irritation and dermatological defects are also reported due to CPF toxicity. The mechanism of action of CPF involves blocking the active sites of the enzyme, acetylcholinesterase (AChE), thereby producing adverse nervous system effects. Although CPF has low persistence in the body, its active metabolites, 3,5,6-trichloro-2-pyridinol (TCP), and chlorpyrifos-oxon (CPO) are comparatively more persistent, albeit equally toxic, and thus produce serious health complications. The present review has been compiled taking into account the work related to CPF toxicity and provides a brief compilation of CPF-induced defects in animals and humans, emphasizing the abnormalities leading to endocrine disruption, neurotoxicity, reproductive carcinogenesis, and disruptive mammary gland functionality. Moreover, the clinical signs and symptoms associated with the CPF exposure along with the possible pharmacological treatment are reported in this treatise. Additionally, the effect of food processing methods in reducing CPF residues from different agricultural commodities and dietary interventions to curtail the toxicity of CPF has also been discussed.
Collapse
Affiliation(s)
- Hafiz Ubaid Ur Rahman
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Waqas Asghar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Wahab Nazir
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Mansur Abdullah Sandhu
- Department of Biomedical Sciences, Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Anwaar Ahmed
- Institute of Food and Nutrition Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
21
|
Echeverri-Jaramillo G, Jaramillo-Colorado B, Sabater-Marco C, Castillo-López MÁ. Cytotoxic and estrogenic activity of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol. Study of marine yeasts as potential toxicity indicators. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:104-117. [PMID: 33249537 DOI: 10.1007/s10646-020-02315-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CP) is one of the organophosphate insecticides most used worldwide today. Although the main target organ for CP is the nervous system triggering predominantly neurotoxic effects, it has suggested other mechanisms of action as cytotoxicity and endocrine disruption. The risk posed by the pesticide metabolites on non-target organisms is increasingly recognized by regulatory agencies and natural resource managers. In the present study, cytotoxicity and estrogenic activity of CP, and its principal metabolite 3,5,6-trichloro-2-pyridinol (TCP) have been evaluated by in vitro assays, using two mammalian cell lines (HEK293 and N2a), and a recombinant yeast. Results indicate that TCP is more toxic than CP for the two cell lines assayed, being N2a cells more sensitive to both compounds. Both compounds show a similar estrogenic activity being between 2500 and 3000 times less estrogenic than 17β-estradiol. In order to find new toxicity measurement models, yeasts isolated from marine sediments containing CP residues have been tested against CP and TCP by cell viability assay. Of the 12 yeast strains tested, 6 of them showed certain sensitivity, and a concentration-dependent response to the tested compounds, so they could be considered as future models for toxicity tests, although further investigations and proves are necessary.
Collapse
Affiliation(s)
- Gustavo Echeverri-Jaramillo
- Grupo de Investigación Microbiología y Ambiente, GIMA. Programa de Bacteriología, Universidad de San Buenaventura, Cartagena, Colombia
- Grupo de Investigaciones Agroquímicas, GIA. Programa de Química, Universidad de Cartagena, 130014, Cartagena, Colombia
| | - Beatriz Jaramillo-Colorado
- Grupo de Investigaciones Agroquímicas, GIA. Programa de Química, Universidad de Cartagena, 130014, Cartagena, Colombia.
| | - Consuelo Sabater-Marco
- Departamento de Biotecnología, Universidad Politécnica de Valencia, 46022, Valencia, España
| | | |
Collapse
|
22
|
Lasagna M, Hielpos MS, Ventura C, Mardirosian MN, Martín G, Miret N, Randi A, Núñez M, Cocca C. Chlorpyrifos subthreshold exposure induces epithelial-mesenchymal transition in breast cancer cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111312. [PMID: 32956863 DOI: 10.1016/j.ecoenv.2020.111312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos (CPF) is one of the most frequently used pesticide in extensive agriculture around the world and can be incorporated by humans and animals with possible consequences on health. The effects of this pesticide on carcinogenesis are not clear and there is no consensus concerning the risks of this compound. In previous work, we demonstrated that CPF induces proliferation of breast cancer cells both in vivo and in vitro. In this work we investigate whether CPF promotes the epithelial-mesenchymal transition (EMT) in breast cancer cells. Herein, we demonstrate that 50 μM CFP induces invasion in MCF-7 and MDA-MB-231 cells. In addition, 0.05 and 50 μM CPF increases migration in both cell lines. In MCF-7 cells, 0.05 and 50 μM CPF increase the metalloprotease MMP2 expression and decrease E-Cadherin and β-Catenin expression diminishing their membrane location. Furthermore, 50 μM CPF induces Vimentin expression and Slug nuclear translocation in MCF-7 cells. 0.05 and 50 μM CPF increase MMP2 gelatinolytic activity and expression, decrease β-Catenin expression and increase Vimentin expression in MDA-MB-231 cells. Inhibition of the oncoprotein c-Src reverses all the effects induced by CPF in MDA-MB-231 but not in MCF-7 indicating that c-Src is a kinase with a crucial role in the cells which grow in an estrogen-independent way. In MCF-7 cells both c-Src and estrogen receptor alpha must be blocked to completly inhibit the CPF-mediated effects. Our results show for the first time that the exposure to subthreshold concentrations of CPF promotes the modulation of EMT-molecular markers and pathways. These results, together with the ubiquitous distribution of the pesticide CPF, make it of utmost importance to take measures to minimize the risk of exposure to this compound.
Collapse
Affiliation(s)
- M Lasagna
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina; Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M S Hielpos
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Ventura
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP) CONICET-UNLP, La Plata, Argentina
| | - M N Mardirosian
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina
| | - G Martín
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - N Miret
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A Randi
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Núñez
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Cocca
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina; Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Zárate LV, Pontillo CA, Español A, Miret NV, Chiappini F, Cocca C, Álvarez L, de Pisarev DK, Sales ME, Randi AS. Angiogenesis signaling in breast cancer models is induced by hexachlorobenzene and chlorpyrifos, pesticide ligands of the aryl hydrocarbon receptor. Toxicol Appl Pharmacol 2020; 401:115093. [PMID: 32526215 DOI: 10.1016/j.taap.2020.115093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
Abstract
Breast cancer incidence is increasing globally and pesticides exposure may impact risk of developing this disease. Hexachlorobenzene (HCB) and chlorpyrifos (CPF) act as endocrine disruptors, inducing proliferation in breast cancer cells. Vascular endothelial growth factor-A (VEGF-A), cyclooxygenase-2 (COX-2) and nitric oxide (NO) are associated with angiogenesis. Our aim was to evaluate HCB and CPF action, both weak aryl hydrocarbon receptor (AhR) ligands, on angiogenesis in breast cancer models. We used: (1) in vivo xenograft model with MCF-7 cells, (2) in vitro breast cancer model with MCF-7, and (3) in vitro neovasculogenesis model with endothelial cells exposed to conditioned medium from MCF-7. Results show that HCB (3 mg/kg) and CPF (0.1 mg/kg) stimulated vascular density in the in vivo model. HCB and CPF low doses enhanced VEGF-A and COX-2 expression, accompanied by increased levels of nitric oxide synthases (NOS), and NO release in MCF-7. HCB and CPF high doses intensified VEGF-A and COX-2 levels but rendered different effects on NOS, however, both pesticides reduced NO production. Moreover, our data indicate that HCB and CPF-induced VEGF-A expression is mediated by estrogen receptor and NO, while the increase in COX-2 is through AhR and NO pathways in MCF-7. In conclusion, we demonstrate that HCB and CPF environmental concentrations stimulate angiogenic switch in vivo. Besides, pesticides induce VEGF-A and COX-2 expression, as well as NO production in MCF-7, promoting tubulogenesis in endothelial cells. These findings show that pesticide exposure could stimulate angiogenesis, a process that has been demonstrated to contribute to breast cancer progression.
Collapse
Affiliation(s)
- Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Alejandro Español
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Paraguay 2155, 16 piso, (CP1121), Buenos Aires, Argentina.
| | - Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Junín 954, subsuelo, (CP1113), Buenos Aires, Argentina.
| | - Laura Álvarez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - María E Sales
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Paraguay 2155, 16 piso, (CP1121), Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Organophosphate Pesticide Exposure and Breast Cancer Risk: A Rapid Review of Human, Animal, and Cell-Based Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145030. [PMID: 32668751 PMCID: PMC7399930 DOI: 10.3390/ijerph17145030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Organophosphate pesticides (OPs) are one of the most commonly used classes of insecticides in the U.S., and metabolites of OPs have been detected in the urine of >75% of the U.S. POPULATION While studies have shown that OP exposure is associated with risk of neurological diseases and some cancers, the relationship between OP exposure and breast cancer risk is not well understood. METHODS The aim of this rapid review was to systematically evaluate published literature on the relationship between OP exposure and breast cancer risk, including both epidemiologic and laboratory studies. Twenty-seven full-text articles were reviewed by searching on Pubmed, EMBASE, and Cochrane databases. RESULTS Some human studies showed that malathion, terbufos, and chlorpyrifos were positively associated with human breast cancer risk, and some laboratory studies demonstrated that malathion and chlorpyrifos have estrogenic potential and other cancer-promoting properties. However, the human studies were limited in number, mostly included agricultural settings in several geographical areas in the U.S., and did not address cumulative exposure. CONCLUSIONS Given the mixed results found in both human and laboratory studies, more research is needed to further examine the relationship between OP exposure and breast cancer risk, especially in humans in non-agricultural settings.
Collapse
|
25
|
Moyano P, García J, García JM, Pelayo A, Muñoz-Calero P, Frejo MT, Anadon MJ, Lobo M, Del Pino J. Chlorpyrifos-induced cell proliferation in human breast cancer cell lines differentially mediated by estrogen and aryl hydrocarbon receptors and KIAA1363 enzyme after 24 h and 14 days exposure. CHEMOSPHERE 2020; 251:126426. [PMID: 32171938 DOI: 10.1016/j.chemosphere.2020.126426] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 05/28/2023]
Abstract
Organophosphate biocide chlorpyrifos (CPF) is involved with breast cancer. However, the mechanisms remain unknown. CPF increases cell division in MCF-7 cells, by estrogen receptor alpha (ERα) activation, although it is a weak ERα agonist, suggesting other mechanisms should be involved. Aromatic hydrocarbon receptor (AhR) activation increases cell division in human breast cancer cells, and CPF strongly activates it. Finally, the KIAA1363 enzyme, which is regulated by CPF, is overexpressed in cancer cells. Accordingly, we hypothesized that CPF or its metabolite chlorpyrifos-oxon (CPFO) could induce cell viability promotion in MCF-7 and MDA-MB-231 cell lines, through mechanisms related to ERα, AhR, and KIAA1363, after 24 h and 14 days treatment. Results show that, after acute and long-term treatment, CPF and CPFO alter differently KIAA1363, AhR, ER and cytochrome P450 isoenzyme 1A1 (CYP1A1) expression. In addition, they induced cell proliferation through ERα activation after 24 h exposure in MCF-7 cells and through KIAA1363 overexpression and AhR activation in MCF-7 and MDA-MB-231 cells after acute and long-term treatment. The results obtained in this work provide new information relative to the mechanisms involved in the CPF toxic effects that could lead to breast cancer disease.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | | | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Maria Jose Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
26
|
Farkhondeh T, Mehrpour O, Buhrmann C, Pourbagher-Shahri AM, Shakibaei M, Samarghandian S. Organophosphorus Compounds and MAPK Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124258. [PMID: 32549389 PMCID: PMC7352539 DOI: 10.3390/ijms21124258] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The molecular signaling pathways that lead to cell survival/death after exposure to organophosphate compounds (OPCs) are not yet fully understood. Mitogen-activated protein kinases (MAPKs) including the extracellular signal-regulated protein kinase (ERK), the c-Jun NH2-terminal kinase (JNK), and the p38-MAPK play the leading roles in the transmission of extracellular signals into the cell nucleus, leading to cell differentiation, cell growth, and apoptosis. Moreover, exposure to OPCs induces ERK, JNK, and p38-MAPK activation, which leads to oxidative stress and apoptosis in various tissues. However, the activation of MAPK signaling pathways may differ depending on the type of OPCs and the type of cell exposed. Finally, different cell responses can be induced by different types of MAPK signaling pathways after exposure to OPCs.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand 9717853577, Iran; (T.F.); (O.M.); (A.M.P.-S.)
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand 9717853577, Iran; (T.F.); (O.M.); (A.M.P.-S.)
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO 80204, USA
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand 9717853577, Iran; (T.F.); (O.M.); (A.M.P.-S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
- Correspondence: (M.S.); (S.S.)
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
- Correspondence: (M.S.); (S.S.)
| |
Collapse
|
27
|
Xiong Y, Wen X, Liu H, Zhang M, Zhang Y. Bisphenol a affects endometrial stromal cells decidualization, involvement of epigenetic regulation. J Steroid Biochem Mol Biol 2020; 200:105640. [PMID: 32087250 DOI: 10.1016/j.jsbmb.2020.105640] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
Abstract
Bisphenol A(BPA) is one of the most widespread endocrine disruptors in the environment and is associated with reproductive diseases. In this study, we focused on the correlation between environmentally relevant levels of BPA exposure and histone modification during endometrial stromal cells decidualization. BPA exposure changed the morphology of decidualized endometrial stromal cells, with inhibition of mixed-lineage leukemia 1(MLL1) and induction of enhancer of zeste homolog2 (EZH2) during in vitro decidualization. The expression of HOXA10, PRL and IGFBP-1 was down-regulated upon BPA treatment. Furthermore, chromatin immunoprecipitation quantitative PCR(ChIP-qPCR) was performed to evaluate the recruitment of histone-3, lysine-4 trimethylation (H3K4me3) and histone-3, lysine-27 trimethylation (H3K27me3) at the gene promoters. The decreased H3K4me3 and the increased H3K27me3 at HOXA10, PRL and IGFBP-1 promoter regions were consistent with the expression of MLL1 and EZH2 respectively. The effect of BPA on MLL1 and EZH2 could be abrogated by ICI 182,780. Our study provides the first indication that environmentally relevant levels of BPA exposure can regulate the expression of decidualization-related genes by affecting histone modification, impairing endometrial decidualization.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Xue Wen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Huimin Liu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Ming Zhang
- Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China; Reroductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China.
| |
Collapse
|
28
|
Costa C, Teodoro M, Rugolo CA, Alibrando C, Giambò F, Briguglio G, Fenga C. MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol Rep 2020; 7:759-767. [PMID: 32612936 PMCID: PMC7322123 DOI: 10.1016/j.toxrep.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Current knowledge linking pesticide exposure, cancer and neuro-degenerative diseases to dysregulation of microRNA network was summarized. Literature indicates differential miRNA expression targeting biomolecules and pathways involved in cancer and neurodegenerative diseases. Evaluation of miRNA expression may be used to develop new non-invasive strategies for the prediction and prognosis of diseases including cancer. The application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
This review summarizes the current knowledge linking cancer and neuro-degenerative diseases to dysregulation of microRNA network following pesticide exposure. Most findings revealed differential miRNA expression targeting biomolecules and pathways involved in various neoplastic localizations and neurodegenerative diseases. A growing body of evidence in recent literature indicates that alteration of specific miRNAs can represent an early biomarker of disease following exposure to chemical agents, including pesticides. Different miRNAs seem to regulate cell proliferation, apoptosis, migration, invasion, and metastasis via many biological pathways through modulation of the expression of target mRNAs. The evaluation of miRNA expression levels may be used to develop new non-invasive strategies for the prediction and prognosis of many diseases, including cancer. However, the application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
Collapse
Affiliation(s)
- Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina 98125, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alessandra Rugolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alibrando
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
- Corresponding author at: Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section, University of Messina, Policlinico Universitario “G. Martino” – pad. H, Via Consolare Valeria 1, 98125, Messina, Italy.
| |
Collapse
|
29
|
Kass L, Gomez AL, Altamirano GA. Relationship between agrochemical compounds and mammary gland development and breast cancer. Mol Cell Endocrinol 2020; 508:110789. [PMID: 32165172 DOI: 10.1016/j.mce.2020.110789] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
The exposure to agrochemical pesticides has been associated with several chronic diseases, including different types of cancer and reproductive disorders. In addition, because agrochemical pesticides may act as endocrine disrupting chemicals (EDCs) during different windows of susceptibility, they can increase the risk of impairing the normal development of the mammary gland and/or of developing mammary lesions. Therefore, the aim of this review is to summarize how exposure to different agrochemical pesticides suspected of being EDCs can interfere with the normal development of the mammary gland and the possible association with breast cancer. It has been shown that the mammary glands of male and female rats and mice are susceptible to exposure to non-organochlorine (vinclozolin, atrazine, glyphosate, chlorpyrifos) and organochlorine (endosulfan, methoxychlor, hexachlorobenzene) pesticides. Some of the effects of these compounds in experimental models include increased or decreased mammary development, impaired cell proliferation and steroid receptor expression and signaling, increased malignant cellular transformation and tumor development and angiogenesis. Contradictory findings have been found as to whether there is a causal link between the exposure or the pesticide body burden and breast cancer in humans. However, an association has been observed between pesticides (especially organochlorine compounds) and specific subtypes of breast cancer. Further studies are needed in both humans and experimental models to understand how agrochemical pesticides can induce or promote changes in the development, differentiation and/or malignant transformation of the mammary gland.
Collapse
Affiliation(s)
- Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
30
|
Miret N, Zappia CD, Altamirano G, Pontillo C, Zárate L, Gómez A, Lasagna M, Cocca C, Kass L, Monczor F, Randi A. AhR ligands reactivate LINE-1 retrotransposon in triple-negative breast cancer cells MDA-MB-231 and non-tumorigenic mammary epithelial cells NMuMG. Biochem Pharmacol 2020; 175:113904. [PMID: 32156659 DOI: 10.1016/j.bcp.2020.113904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer type in females worldwide. Environmental exposure to pesticides affecting hormonal homeostasis does not necessarily induce DNA mutations but may influence gene expression by disturbances in epigenetic regulation. Expression of long interspersed nuclear element-1 (LINE-1) has been associated with tumorigenesis in several cancers. In nearly all somatic cells, LINE-1 is silenced by DNA methylation in the 5́'UTR and reactivated during disease initiation and/or progression. Strong ligands of aryl hydrocarbon receptor (AhR) activate LINE-1 through the transforming growth factor-β1 (TGF-β1)/Smad pathway. Hexachlorobenzene (HCB) and chlorpyrifos (CPF), both weak AhR ligands, promote cell proliferation and migration in breast cancer cells, as well as tumor growth in rat models. In this context, our aim was to examine the effect of these pesticides on LINE-1 expression and ORF1p localization in the triple-negative breast cancer cell line MDA-MB-231 and the non-tumorigenic epithelial breast cell line NMuMG, and to evaluate the role of TGF-β1 and AhR pathways. Results show that 0.5 μM CPF and 0.005 μM HCB increased LINE-1 mRNA expression through Smad and AhR signaling in MDA-MB-231. In addition, the methylation of the first sites in 5́'UTR of LINE-1 was reduced by pesticide exposure, although the farther sites remained unaffected. Pesticides modulated ORF1p localization in MDA-MB-231: 0.005 μM HCB and 50 μM CPF increased nuclear translocation, while both induced cytoplasmic retention at 0.5 and 5 μM. Moreover, both stimulated double-strand breaks, enhancing H2AX phosphorylation, coincidentally with ORF1p nuclear localization. In NMuMG similar results were observed, since they heighten LINE-1 mRNA levels. CPF effect was through AhR and TGF-β1 signaling, whereas HCB action depends only of AhR. In addition, both pesticides increase ORF1p expression and nuclear localization. Our results provide experimental evidence that HCB and CPF exposure modify LINE-1 methylation levels and induce LINE-1 reactivation, suggesting that epigenetic mechanisms could contribute to pesticide-induced breast cancer progression.
Collapse
Affiliation(s)
- Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - C Daniel Zappia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptores, Junín 954, planta baja (CP1113), Buenos Aires, Argentina
| | - Gabriela Altamirano
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - Lorena Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - Ayelén Gómez
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Marianela Lasagna
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina
| | - Laura Kass
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Federico Monczor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptores, Junín 954, planta baja (CP1113), Buenos Aires, Argentina
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
31
|
Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110680. [PMID: 31838026 PMCID: PMC6942667 DOI: 10.1016/j.mce.2019.110680] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Alison M Neff
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States.
| |
Collapse
|
32
|
Alves AA, Franco FC, Godoy FR, Aguiar Ramos JS, Nunes HF, Soares TN, de Melo E Silva D. The importance of understanding the distribution of GSTM1 and GSTT1 genotypes and haplotypes in a region with intense agriculture activity. Heliyon 2019; 5:e02815. [PMID: 31872100 PMCID: PMC6911878 DOI: 10.1016/j.heliyon.2019.e02815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/09/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Brazil is one of the largest pesticide consumers in the world, mainly due to its intense agricultural activity. The State of Goias, situated in Central Brazil, is a region recognized as an essential producer of soy, corn, beans, sorghum, sugar cane, and cotton. In this study, we evaluated 602 unrelated individuals, distributed in central and southern regions in Goias, presenting combined frequencies (haplotypes) of the GSTT1 and GSTM1 genes. In all municipalities, the frequency of the GSTT1 null genotype was 38.2% and of the GSTM1 null genotype was 50.3%. Goiania, the capital of Goias, presented the highest frequencies of GSTT1 and GSTM1 null genotypes, probably due to a founder effect of non-representative colonizing ancestors. So, the ancestral population adapted to the environment, with the frequencies observed in Goiania. However, nowadays, as there is excessive use of pesticides, the community becomes susceptible to the harmful effects of xenobiotics exposure, mainly due to the high frequency of GSTT1 and GSTM1 null genotypes. As in Goias, the consumption of pesticides has shown considerable growth, haplotypes with null alleles are of high risk for the population. Our results indicated that it is essential to understand the frequencies of the GSTT1 and GSTM1 genes for the monitoring of risk groups, like farmers, who have contact with pesticides, directly or indirectly, as well as assisting in the development of preventive medicine practices.
Collapse
Affiliation(s)
- Alessandro Arruda Alves
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brasil
| | - Fernanda Craveiro Franco
- Laboratório de Virologia Animal, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, Goiás, Brasil
| | - Fernanda Ribeiro Godoy
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brasil.,Escola de Ciências Biológicas e Agrárias, Campus II, Núcleo de Pesquisas Replicon, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brasil
| | - Jheneffer Sonara Aguiar Ramos
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brasil
| | - Hugo Freire Nunes
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brasil
| | - Thannya Nascimento Soares
- Laboratório de Genética e Biodiversidade, Programa de Pós-Graduação em Genética e Biologia Molecular. Universidade Federal de Goiás, Goiânia, Goiás, Brasil
| | - Daniela de Melo E Silva
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brasil.,Laboratório de Genética e Biodiversidade, Programa de Pós-Graduação em Genética e Biologia Molecular. Universidade Federal de Goiás, Goiânia, Goiás, Brasil
| |
Collapse
|
33
|
Thong T, Forté CA, Hill EM, Colacino JA. Environmental exposures, stem cells, and cancer. Pharmacol Ther 2019; 204:107398. [PMID: 31376432 PMCID: PMC6881547 DOI: 10.1016/j.pharmthera.2019.107398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
An estimated 70-90% of all cancers are linked to exposure to environmental risk factors. In parallel, the number of stem cells in a tissue has been shown to be a strong predictor of risk of developing cancer in that tissue. Tumors themselves are characterized by an acquisition of "stem cell" characteristics, and a growing body of evidence points to tumors themselves being sustained and propagated by a stem cell-like population. Here, we review our understanding of the interplay between environmental exposures, stem cell biology, and cancer. We provide an overview of the role of stem cells in development, tissue homeostasis, and wound repair. We discuss the pathways and mechanisms governing stem cell plasticity and regulation of the stem cell state, and describe experimental methods for assessment of stem cells. We then review the current understanding of how environmental exposures impact stem cell function relevant to carcinogenesis and cancer prevention, with a focus on environmental and occupational exposures to chemical, physical, and biological hazards. We also highlight key areas for future research in this area, including defining whether the biological basis for cancer disparities is related to effects of complex exposure mixtures on stem cell biology.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Chanese A Forté
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Hill
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
A case-control study of breast cancer risk and ambient exposure to pesticides. Environ Epidemiol 2019; 3:e070. [PMID: 32166211 PMCID: PMC7028467 DOI: 10.1097/ee9.0000000000000070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/05/2019] [Indexed: 01/23/2023] Open
Abstract
Background: While the estrogenic properties of certain pesticides have been established, associations between pesticide exposure and risk of breast cancer have been inconsistently observed. We investigated the relation between pesticide exposure and breast cancer risk using methods capable of objectively assessing exposure to specific pesticides occurring decades before diagnosis. Methods: A case–control study was conducted to evaluate the risk of postmenopausal breast cancer associated with historic pesticide exposure in California’s Central Valley, the most agriculturally productive region in the United States where pesticide drift poses a major source of nonoccupational exposure. Residential and occupational histories were linked to commercial pesticide reports and land use data to determine exposure to specific chemicals. Cases (N = 155) were recruited from a population-based cancer registry, and controls (N = 150) were obtained from tax assessor and Medicare list mailings. Results: There was no association between breast cancer and exposure to a selected group of organochlorine pesticides thought to have synergistic endocrine-disrupting potential; however, breast cancer was three times as likely to occur among women exposed to chlorpyrifos compared with those not exposed, after adjusting for exposure to other pesticides including organochlorines (OR = 3.22; 95% CI = 1.38, 7.53). Conclusions: Organophosphate pesticides, such as chlorpyrifos, have rarely been evaluated in studies of breast cancer risk. Additional research is needed to confirm these findings and to better understand the underlying mechanisms given that chlorpyrifos has been detected in local air monitoring at levels of concern for residents living in the agricultural regions where it is used.
Collapse
|