1
|
Zhang Q, Gonelle-Gispert C, Li Y, Geng Z, Gerber-Lemaire S, Wang Y, Buhler L. Islet Encapsulation: New Developments for the Treatment of Type 1 Diabetes. Front Immunol 2022; 13:869984. [PMID: 35493496 PMCID: PMC9046662 DOI: 10.3389/fimmu.2022.869984] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Islet transplantation is a promising approach for the treatment of type 1 diabetes (T1D). Currently, clinical islet transplantation is limited by allo - and autoimmunity that may cause partial or complete loss of islet function within a short period of time, and long-term immunosuppression is required to prevent rejection. Encapsulation into semipermeable biomaterials provides a strategy that allows nutrients, oxygen and secreted hormones to diffuse through the membrane while blocking immune cells and the like out of the capsule, allowing long-term graft survival and avoiding long-term use of immunosuppression. In recent years, a variety of engineering strategies have been developed to improve the composition and properties of encapsulation materials and to explore the clinical practicality of islet cell transplantation from different sources. In particular, the encapsulation of porcine islet and the co-encapsulation of islet cells with other by-standing cells or active ingredients for promoting long-term functionality, attracted significant research efforts. Hydrogels have been widely used for cell encapsulation as well as other therapeutic applications including tissue engineering, cell carriers or drug delivery. Here, we review the current status of various hydrogel biomaterials, natural and synthetic, with particular focus on islet transplantation applications. Natural hydrophilic polymers include polysaccharides (starch, cellulose, alginic acid, hyaluronic acid, chitosan) and peptides (collagen, poly-L-lysine, poly-L-glutamic acid). Synthetic hydrophilic polymers include alcohol, acrylic acid and their derivatives [poly (acrylic acid), poly (methacrylic acid), poly(acrylamide)]. By understanding the advantages and disadvantages of materials from different sources and types, appropriate materials and encapsuling methods can be designed and selected as needed to improve the efficacy and duration of islet. Islet capsule transplantation is emerging as a promising future treatment for T1D.
Collapse
Affiliation(s)
- Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Yanjiao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Geng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| | - Leo Buhler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| |
Collapse
|
2
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Li T, Chen X, Qian Y, Shao J, Li X, Liu S, Zhu L, Zhao Y, Ye H, Yang Y. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun 2021; 12:615. [PMID: 33504786 PMCID: PMC7840992 DOI: 10.1038/s41467-021-20913-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Pulsing cellular dynamics in genetic circuits have been shown to provide critical capabilities to cells in stress response, signaling and development. Despite the fascinating discoveries made in the past few years, the mechanisms and functional capabilities of most pulsing systems remain unclear, and one of the critical challenges is the lack of a technology that allows pulsatile regulation of transgene expression both in vitro and in vivo. Here, we describe the development of a synthetic BRET-based transgene expression (LuminON) system based on a luminescent transcription factor, termed luminGAVPO, by fusing NanoLuc luciferase to the light-switchable transcription factor GAVPO. luminGAVPO allows pulsatile and quantitative activation of transgene expression via both chemogenetic and optogenetic approaches in mammalian cells and mice. Both the pulse amplitude and duration of transgene expression are highly tunable via adjustment of the amount of furimazine. We further demonstrated LuminON-mediated blood-glucose homeostasis in type 1 diabetic mice. We believe that the BRET-based LuminON system with the pulsatile dynamics of transgene expression provides a highly sensitive tool for precise manipulation in biological systems that has strong potential for application in diverse basic biological studies and gene- and cell-based precision therapies in the future.
Collapse
Affiliation(s)
- Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajie Qian
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jiawei Shao
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
4
|
Tahbaz M, Yoshihara E. Immune Protection of Stem Cell-Derived Islet Cell Therapy for Treating Diabetes. Front Endocrinol (Lausanne) 2021; 12:716625. [PMID: 34447354 PMCID: PMC8382875 DOI: 10.3389/fendo.2021.716625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin injection is currently the main therapy for type 1 diabetes (T1D) or late stage of severe type 2 diabetes (T2D). Human pancreatic islet transplantation confers a significant improvement in glycemic control and prevents life-threatening severe hypoglycemia in T1D patients. However, the shortage of cadaveric human islets limits their therapeutic potential. In addition, chronic immunosuppression, which is required to avoid rejection of transplanted islets, is associated with severe complications, such as an increased risk of malignancies and infections. Thus, there is a significant need for novel approaches to the large-scale generation of functional human islets protected from autoimmune rejection in order to ensure durable graft acceptance without immunosuppression. An important step in addressing this need is to strengthen our understanding of transplant immune tolerance mechanisms for both graft rejection and autoimmune rejection. Engineering of functional human pancreatic islets that can avoid attacks from host immune cells would provide an alternative safe resource for transplantation therapy. Human pluripotent stem cells (hPSCs) offer a potentially limitless supply of cells because of their self-renewal ability and pluripotency. Therefore, studying immune tolerance induction in hPSC-derived human pancreatic islets will directly contribute toward the goal of generating a functional cure for insulin-dependent diabetes. In this review, we will discuss the current progress in the immune protection of stem cell-derived islet cell therapy for treating diabetes.
Collapse
Affiliation(s)
- Meghan Tahbaz
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|
5
|
Ghoneim MA, Refaie AF, Elbassiouny BL, Gabr MM, Zakaria MM. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Progress and Challenges. Stem Cell Rev Rep 2020; 16:1156-1172. [PMID: 32880857 PMCID: PMC7667138 DOI: 10.1007/s12015-020-10036-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are an attractive option for cell therapy for type 1 diabetes mellitus (DM). These cells can be obtained from many sources, but bone marrow and adipose tissue are the most studied. MSCs have distinct advantages since they are nonteratogenic, nonimmunogenic and have immunomodulatory functions. Insulin-producing cells (IPCs) can be generated from MSCs by gene transfection, gene editing or directed differentiation. For directed differentiation, MSCs are usually cultured in a glucose-rich medium with various growth and activation factors. The resulting IPCs can control chemically-induced diabetes in immune-deficient mice. These findings are comparable to those obtained from pluripotent cells. PD-L1 and PD-L2 expression by MSCs is upregulated under inflammatory conditions. Immunomodulation occurs due to the interaction between these ligands and PD-1 receptors on T lymphocytes. If this function is maintained after differentiation, life-long immunosuppression or encapsulation could be avoided. In the clinical setting, two sites can be used for transplantation of IPCs: the subcutaneous tissue and the omentum. A 2-stage procedure is required for the former and a laparoscopic procedure for the latter. For either site, cells should be transplanted within a scaffold, preferably one from fibrin. Several questions remain unanswered. Will the transplanted cells be affected by the antibodies involved in the pathogenesis of type 1 DM? What is the functional longevity of these cells following their transplantation? These issues have to be addressed before clinical translation is attempted. Graphical Abstract Bone marrow MSCs are isolated from the long bone of SD rats. Then they are expanded and through directed differentiation insulin-producing cells are formed. The differentiated cells are loaded onto a collagen scaffold. If one-stage transplantation is planned, a drug delivery system must be incorporated to ensure immediate oxygenation, promote vascularization and provide some growth factors. Some mechanisms involved in the immunomodulatory function of MSCs. These are implemented either by cell to cell contact or by the release of soluble factors. Collectively, these pathways results in an increase in T-regulatory cells.
Collapse
|
6
|
Kupikowska-Stobba B, Lewińska D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater Sci 2020; 8:1536-1574. [PMID: 32110789 DOI: 10.1039/c9bm01337g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer microcarriers are being extensively explored as cell delivery vehicles in cell-based therapies and hybrid tissue and organ engineering. Spherical microcarriers are of particular interest due to easy fabrication and injectability. They include microbeads, composed of a porous matrix, and microcapsules, where matrix core is additionally covered with a semipermeable membrane. Microcarriers provide cell containment at implantation site and protect the cells from host immunoresponse, degradation and shear stress. Immobilized cells may be genetically altered to release a specific therapeutic product directly at the target site, eliminating side effects of systemic therapies. Cell microcarriers need to fulfil a number of extremely high standards regarding their biocompatibility, cytocompatibility, immunoisolating capacity, transport, mechanical and chemical properties. To obtain cell microcarriers of specified parameters, a wide variety of polymers, both natural and synthetic, and immobilization methods can be applied. Yet so far, only a few approaches based on cell-laden microcarriers have reached clinical trials. The main issue that still impedes progress of these systems towards clinical application is limited cell survival in vivo. Herein, we review polymer biomaterials and methods used for fabrication of cell microcarriers for in vivo biomedical applications. We describe their key limitations and modifications aiming at improvement of microcarrier in vivo performance. We also present the main applications of polymer cell microcarriers in regenerative medicine, pancreatic islet and hepatocyte transplantation and in the treatment of cancer. Lastly, we outline the main challenges in cell microimmobilization for biomedical purposes, the strategies to overcome these issues and potential future improvements in this area.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| | - Dorota Lewińska
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
7
|
Legøy TA, Vethe H, Abadpour S, Strand BL, Scholz H, Paulo JA, Ræder H, Ghila L, Chera S. Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling. Sci Rep 2020; 10:414. [PMID: 31942009 PMCID: PMC6962451 DOI: 10.1038/s41598-019-57305-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
Cell replacement therapies hold great therapeutic potential. Nevertheless, our knowledge of the mechanisms governing the developmental processes is limited, impeding the quality of differentiation protocols. Generating insulin-expressing cells in vitro is no exception, with the guided series of differentiation events producing heterogeneous cell populations that display mixed pancreatic islet phenotypes and immaturity. The achievement of terminal differentiation ultimately requires the in vivo transplantation of, usually, encapsulated cells. Here we show the impact of cell confinement on the pancreatic islet signature during the guided differentiation of alginate encapsulated human induced pluripotent stem cells (hiPSCs). Our results show that encapsulation improves differentiation by significantly reshaping the proteome landscape of the cells towards an islet-like signature. Pathway analysis is suggestive of integrins transducing the encapsulation effect into intracellular signalling cascades promoting differentiation. These analyses provide a molecular framework for understanding the confinement effects on hiPSCs differentiation while confirming its importance for this process.
Collapse
Affiliation(s)
- Thomas Aga Legøy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
8
|
Chen Y, Nguyen DT, Kokil GR, Wong YX, Dang TT. Microencapsulated islet-like microtissues with toroid geometry for enhanced cellular viability. Acta Biomater 2019; 97:260-271. [PMID: 31404714 DOI: 10.1016/j.actbio.2019.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Abstract
Transplantation of immuno-isolated islets is a promising strategy to restore insulin-secreting function in patients with Type 1 diabetes. However, the clinical translation of this treatment approach remains elusive due to the loss of islet viability resulting from hypoxia at the avascular transplantation site. To address this challenge, we designed non-spherical islet-like microtissues and investigated the effect of their geometries on cellular viability. Insulin-secreting microtissues with different shapes were fabricated by assembly of monodispersed rat insulinoma beta cells on micromolded nonadhesive hydrogels. Our study quantitatively demonstrated that toroid microtissues exhibited enhanced cellular viability and metabolic activity compared to rod and spheroid microtissues with the same volume. At a similar level of cellular viability, toroid geometry facilitated efficient packing of more cells into each microtissue than rod and spheroid geometries. In addition, toroid microtissues maintained the characteristic glucose-responsive insulin secretion of rat insulinoma beta cells. Furthermore, toroid microtissues preserved their geometry and structural integrity following their microencapsulation in immuno-isolatory alginate hydrogel. Our study suggests that adopting toroid geometry in designing therapeutic microtissues potentially reduces mass loss of cellular grafts and thereby may improve the performance of transplanted islets towards a clinically viable cure for Type 1 diabetes. STATEMENT OF SIGNIFICANCE: Transplantation of therapeutic cells is a promising strategy for the treatment of a wide range of hormone or protein-deficiency diseases. However, the clinical application of this approach is hindered by the loss of cell viability and function at the avascular transplantation site. To address this challenge, we fabricated hydrogel-encapsulated islet-like microtissues with non-spheroidal geometry and optimal surface-to-volume ratio. This study demonstrated that the viability of therapeutic cells can be significantly increased solely by redesigning the microtissue configuration without requiring any additional biochemical or operational accessories. This study suggests that the adoption of toroid geometry provides a possible avenue to improve the long-term survival of transplanted therapeutic cells and expedite the translation of cell-based therapy towards clinical application.
Collapse
Affiliation(s)
- Yang Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Dang T Nguyen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Ganesh R Kokil
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Yun Xuan Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Tram T Dang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
9
|
Gooch A, Zhang P, Hu Z, Loy Son N, Avila N, Fischer J, Roberts G, Sellon R, Westenfelder C. Interim report on the effective intraperitoneal therapy of insulin-dependent diabetes mellitus in pet dogs using "Neo-Islets," aggregates of adipose stem and pancreatic islet cells (INAD 012-776). PLoS One 2019; 14:e0218688. [PMID: 31536503 PMCID: PMC6752848 DOI: 10.1371/journal.pone.0218688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022] Open
Abstract
We previously reported that allogeneic, intraperitoneally administered “Neo-Islets,” composed of cultured pancreatic islet cells co-aggregated with high numbers of immunoprotective and cytoprotective Adipose-derived Stem Cells, reestablished, through omental engraftment, redifferentiation and splenic and omental up-regulation of regulatory T-cells, normoglycemia in autoimmune Type-1 Diabetic Non-Obese Diabetic (NOD) mice without the use of immunosuppressive agents or encapsulation devices. Based on these observations, we are currently testing this Neo-Islet technology in an FDA guided pilot study (INAD 012–776) in insulin-dependent, spontaneously diabetic pet dogs by ultrasound-guided, intraperitoneal administration of 2x10e5 Neo-Islets/kilogram body weight to metabolically controlled (blood glucose, triglycerides, thyroid and adrenal functions) and sedated animals. We report here interim observations on the first 4 canine Neo-Islet-treated, insulin-dependent pet dogs that are now in the early to intermediate-term follow-up phase of the planned 3 year study (> 6 months post treatment). Current results from this translational study indicate that in dogs, Neo-Islets appear to engraft, redifferentiate and physiologically produce insulin, and are rejected by neither auto- nor allo-immune responses, as evidenced by (a) an absent IgG response to the allogeneic cells contained in the administered Neo-Islets, and (b) progressively improved glycemic control that achieves up to a 50% reduction in daily insulin needs paralleled by a statistically significant decrease in serum glucose concentrations. This is accomplished without the use of anti-rejection drugs or encapsulation devices. No adverse or serious adverse events related to the Neo-Islet administration have been observed to date. We conclude that this minimally invasive therapy has significant translational relevance to veterinary and clinical Type 1 diabetes mellitus by achieving complete and at this point partial glycemic control in two species, i.e., diabetic mice and dogs, respectively.
Collapse
Affiliation(s)
- Anna Gooch
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Ping Zhang
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Zhuma Hu
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Natasha Loy Son
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Nicole Avila
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Julie Fischer
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Gregory Roberts
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Rance Sellon
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Christof Westenfelder
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
10
|
Leal-Lopes C, Grazioli G, Mares-Guia TR, Coelho-Sampaio T, Sogayar MC. Polymerized laminin incorporation into alginate-based microcapsules reduces pericapsular overgrowth and inflammation. J Tissue Eng Regen Med 2019; 13:1912-1922. [PMID: 31348601 DOI: 10.1002/term.2942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022]
Abstract
Cell encapsulation coats cells with an artificial membrane to preserve their physical and functional integrity. Different approaches try to develop more functional and biocompatible materials to avoid cell loss after transplantation due to inflammatory reaction, one of the main causes for graft failure. In this study, the LN-Biodritin biomaterial, based on alginate, chondroitin sulfate, and laminin, previously developed by our group, was further improved by replacing laminin by polylaminin, an artificial laminin polymer with anti-inflammatory properties, generating the new biomaterial polyLN-Biodritin. Capsules containing polylaminin are stable, do not induce macrophage activation in vitro, and are also able to prevent macrophage activation by encapsulated human pancreatic islets in vitro, preserving their glucose-stimulated insulin secretion potential. In addition, when empty capsules containing polylaminin were implanted into immunocompetent mice, the inflammatory response towards the implant was attenuated, when compared with capsules without polylaminin. The results indicate that polylaminin incorporation leads to lower levels of pericapsular growth on the capsules surface, lower infiltration of cells into the peritoneal cavity, and lower production of proinflammatory cytokines, both at the implant site (interleukin-12p70 (IL-12p70), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and interferon-γ (IFN-γ)) and systemically (IL-12p70 and TNF-α). Therefore, polylaminin incorporation into the microcapsules polymer attenuates the host posttransplantation immune response against implanted microcapsules, being likely to favor maintenance of engrafted encapsulated cells.
Collapse
Affiliation(s)
- Camila Leal-Lopes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Núcleo de Terapia Celular e Molecular (NUCEL), Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Gisella Grazioli
- Núcleo de Terapia Celular e Molecular (NUCEL), Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago R Mares-Guia
- Núcleo de Terapia Celular e Molecular (NUCEL), Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Tatiana Coelho-Sampaio
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mari Cleide Sogayar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Núcleo de Terapia Celular e Molecular (NUCEL), Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Farah S, Doloff JC, Müller P, Sadraei A, Han HJ, Olafson K, Vyas K, Tam HH, Hollister-Lock J, Kowalski PS, Griffin M, Meng A, McAvoy M, Graham AC, McGarrigle J, Oberholzer J, Weir GC, Greiner DL, Langer R, Anderson DG. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. NATURE MATERIALS 2019; 18:892-904. [PMID: 31235902 PMCID: PMC7184801 DOI: 10.1038/s41563-019-0377-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/16/2019] [Indexed: 05/02/2023]
Abstract
Implantable medical devices have revolutionized modern medicine. However, immune-mediated foreign body response (FBR) to the materials of these devices can limit their function or even induce failure. Here we describe long-term controlled-release formulations for local anti-inflammatory release through the development of compact, solvent-free crystals. The compact lattice structure of these crystals allows for very slow, surface dissolution and high drug density. These formulations suppress FBR in both rodents and non-human primates for at least 1.3 years and 6 months, respectively. Formulations inhibited fibrosis across multiple implant sites-subcutaneous, intraperitoneal and intramuscular. In particular, incorporation of GW2580, a colony stimulating factor 1 receptor inhibitor, into a range of devices, including human islet microencapsulation systems, electrode-based continuous glucose-sensing monitors and muscle-stimulating devices, inhibits fibrosis, thereby allowing for extended function. We believe that local, long-term controlled release with the crystal formulations described here enhances and extends function in a range of medical devices and provides a generalized solution to the local immune response to implanted biomaterials.
Collapse
Affiliation(s)
- Shady Farah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua C Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical and Materials Science Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Müller
- X-Ray Diffraction Facility, MIT Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atieh Sadraei
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hye Jung Han
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katy Olafson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Keval Vyas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hok Hei Tam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marissa Griffin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ashley Meng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malia McAvoy
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam C Graham
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - James McGarrigle
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose Oberholzer
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Coronel MM, Liang JP, Li Y, Stabler CL. Oxygen generating biomaterial improves the function and efficacy of beta cells within a macroencapsulation device. Biomaterials 2019; 210:1-11. [PMID: 31029812 PMCID: PMC6527135 DOI: 10.1016/j.biomaterials.2019.04.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Tissue-engineered devices have the potential to significantly improve human health. A major impediment to the success of clinically scaled transplants, however, is insufficient oxygen transport, which leads to extensive cell death and dysfunction. To provide in situ supplementation of oxygen within a cellular implant, we developed a hydrolytically reactive oxygen generating material in the form of polydimethylsiloxane (PDMS) encapsulated solid calcium peroxide, termed OxySite. Herein, we demonstrate, for the first time, the successful implementation of this in situ oxygen-generating biomaterial to support elevated cellular function and efficacy of macroencapsulation devices for the treatment of type 1 diabetes. Under extreme hypoxic conditions, devices supplemented with OxySite exhibited substantially elevated beta cell and islet viability and function. Furthermore, the inclusion of OxySite within implanted macrodevices resulted in the significant improvement of graft efficacy and insulin production in a diabetic rodent model. Translating to human islets at elevated loading densities further validated the advantages of this material. This simple biomaterial-based approach for delivering a localized and controllable oxygen supply provides a broad and impactful platform for improving the therapeutic efficacy of cell-based approaches.
Collapse
Affiliation(s)
- M M Coronel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - J-P Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Y Li
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - C L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
13
|
Noninvasive Monitoring of Allogeneic Stem Cell Delivery with Dual-Modality Imaging-Visible Microcapsules in a Rabbit Model of Peripheral Arterial Disease. Stem Cells Int 2019; 2019:9732319. [PMID: 31001343 PMCID: PMC6437732 DOI: 10.1155/2019/9732319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/06/2019] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Stem cell therapies, although promising for treating peripheral arterial disease (PAD), often suffer from low engraftment rates and the inability to confirm the delivery success and track cell distribution and engraftment. Stem cell microencapsulation combined with imaging contrast agents may provide a means to simultaneously enhance cell survival and enable cell tracking with noninvasive imaging. Here, we have evaluated a novel MRI- and X-ray-visible microcapsule formulation for allogeneic mesenchymal stem cell (MSC) delivery and tracking in a large animal model. Bone marrow-derived MSCs from male New Zealand White rabbits were encapsulated using a modified cell encapsulation method to incorporate a dual-modality imaging contrast agent, perfluorooctyl bromide (PFOB). PFOB microcapsules (PFOBCaps) were then transplanted into the medial thigh of normal or PAD female rabbits. In vitro MSC viability remained high (79 ± 5% at 4 weeks of postencapsulation), and as few as two and ten PFOBCaps could be detected in phantoms using clinical C-arm CT and 19F MRI, respectively. Successful injections of PFOBCaps in the medial thigh of normal (n = 15) and PAD (n = 16) rabbits were demonstrated on C-arm CT at 1-14 days of postinjection. Using 19F MRI, transplanted PFOBCaps were clearly identified as “hot spots” and showed one-to-one correspondence to the radiopacities on C-arm CT. Concordance of 19F MRI and C-arm CT locations of PFOBCaps with postmortem locations was high (95%). Immunohistological analysis revealed high MSC survival in PFOBCaps (>56%) two weeks after transplantation while naked MSCs were no longer viable beyond three days after delivery. These findings demonstrate that PFOBCaps could maintain cell viability even in the ischemic tissue and provide a means to monitor cell delivery and track engraftment using clinical noninvasive imaging systems.
Collapse
|
14
|
Espona-Noguera A, Etxebarria-Elezgarai J, Saenz Del Burgo L, Cañibano-Hernández A, Gurruchaga H, Blanco FJ, Orive G, Hernández RM, Benito-Lopez F, Ciriza J, Basabe-Desmonts L, Pedraz JL. Type 1 Diabetes Mellitus reversal via implantation of magnetically purified microencapsulated pseudoislets. Int J Pharm 2019; 560:65-77. [PMID: 30742984 DOI: 10.1016/j.ijpharm.2019.01.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/13/2023]
Abstract
Microencapsulation of pancreatic islets for the treatment of Type I Diabetes Mellitus (T1DM) generates a high quantity of empty microcapsules, resulting in high therapeutic graft volumes that can enhance the host's immune response. We report a 3D printed microfluidic magnetic sorting device for microcapsules purification with the objective to reduce the number of empty microcapsules prior transplantation. In this study, INS1E pseudoislets were microencapsulated within alginate (A) and alginate-poly-L-lysine-alginate (APA) microcapsules and purified through the microfluidic device. APA microcapsules demonstrated higher mechanical integrity and stability than A microcapsules, showing better pseudoislets viability and biological function. Importantly, we obtained a reduction of the graft volume of 77.5% for A microcapsules and 78.6% for APA microcapsules. After subcutaneous implantation of induced diabetic Wistar rats with magnetically purified APA microencapsulated pseudoislets, blood glucose levels were restored into normoglycemia (<200 mg/dL) for almost 17 weeks. In conclusion, our described microfluidic magnetic sorting device represents a great alternative approach for the graft volume reduction of microencapsulated pseudoislets and its application in T1DM disease.
Collapse
Affiliation(s)
- A Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J Etxebarria-Elezgarai
- BIOMICs-microfluidics Research Group, Microfluidics Cluster UPV/EHU, University of the Basque Country, Spain
| | - L Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - A Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - H Gurruchaga
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - F J Blanco
- INIBIC-Hospital Universitario La Coruña, La Coruña, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), La Coruña, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain
| | - Rosa M Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - F Benito-Lopez
- AMMa LOAC Research Group, Microfluidics Cluster UPV/EHU, University of the Basque Country, Spain
| | - J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - L Basabe-Desmonts
- BIOMICs-microfluidics Research Group, Microfluidics Cluster UPV/EHU, University of the Basque Country, Spain; Basque Foundation of Science, IKERBASQUE, Spain.
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
15
|
Leung CS, Yang KY, Li X, Chan VW, Ku M, Waldmann H, Hori S, Tsang JCH, Lo YMD, Lui KO. Single-cell transcriptomics reveal that PD-1 mediates immune tolerance by regulating proliferation of regulatory T cells. Genome Med 2018; 10:71. [PMID: 30236153 PMCID: PMC6148788 DOI: 10.1186/s13073-018-0581-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
Background We have previously reported an antigen-specific protocol to induce transplant tolerance and linked suppression to human embryonic stem cell (hESC)-derived tissues in immunocompetent mice through coreceptor and costimulation blockade. However, the exact mechanisms of acquired immune tolerance in this model have remained unclear. Methods We utilize the NOD.Foxp3hCD2 reporter mouse line and an ablative anti-hCD2 antibody to ask if CD4+FOXP3+ regulatory T cells (Treg) are required for coreceptor and costimulation blockade-induced immune tolerance. We also perform genome-wide single-cell RNA-sequencing to interrogate Treg during immune rejection and tolerance and to indicate possible mechanisms involved in sustaining Treg function. Results We show that Treg are indispensable for tolerance induced by coreceptor and costimulation blockade as depletion of which with an anti-hCD2 antibody resulted in rejection of hESC-derived pancreatic islets in NOD.Foxp3hCD2 mice. Single-cell transcriptomic profiling of 12,964 intragraft CD4+ T cells derived from rejecting and tolerated grafts reveals that Treg are heterogeneous and functionally distinct in the two outcomes of transplant rejection and tolerance. Treg appear to mainly promote chemotactic and ubiquitin-dependent protein catabolism during transplant rejection while seeming to harness proliferative and immunosuppressive function during tolerance. We also demonstrate that this form of acquired transplant tolerance is associated with increased proliferation and PD-1 expression by Treg. Blocking PD-1 signaling with a neutralizing anti-PD-1 antibody leads to reduced Treg proliferation and graft rejection. Conclusions Our results suggest that short-term coreceptor and costimulation blockade mediates immune tolerance to hESC-derived pancreatic islets by promoting Treg proliferation through engagement of PD-1. Our findings could give new insights into clinical development of hESC-derived pancreatic tissues, combined with immunotherapies that expand intragraft Treg, as a potentially sustainable alternative treatment for T1D. Electronic supplementary material The online version of this article (10.1186/s13073-018-0581-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cherry S Leung
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W Chan
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Manching Ku
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Hematology and Oncology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jason C H Tsang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuk Ming Dennis Lo
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China. .,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS, Olabisi RM, Libutti S, Tischfield J, Maus MV, Deans R, Barcia RN, Anderson DG, Ritz J, Preti R, Parekkadan B. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng 2018; 2:362-376. [PMID: 31011198 PMCID: PMC6594100 DOI: 10.1038/s41551-018-0246-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The achievements of cell-based therapeutics have galvanized efforts to bring cell therapies to the market. To address the demands of the clinical and eventual commercial-scale production of cells, and with the increasing generation of large clinical datasets from chimeric antigen receptor T-cell immunotherapy, from transplants of engineered haematopoietic stem cells and from other promising cell therapies, an emphasis on biomanufacturing requirements becomes necessary. Robust infrastructure should address current limitations in cell harvesting, expansion, manipulation, purification, preservation and formulation, ultimately leading to successful therapy administration to patients at an acceptable cost. In this Review, we highlight case examples of cutting-edge bioprocessing technologies that improve biomanufacturing efficiency for cell therapies approaching clinical use.
Collapse
Affiliation(s)
- Ayesha Aijaz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Matthew Li
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - David Smith
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Danika Khong
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - Courtney LeBlon
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Owen S Fenton
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | | | - Jay Tischfield
- Human Genetics Institute of New Jersey, RUCDR, Piscataway, NJ, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | - Daniel G Anderson
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jerome Ritz
- Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Robert Preti
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Sentien Biotechnologies, Inc, Lexington, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
17
|
Guruswamy Damodaran R, Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J Tissue Eng Regen Med 2018; 12:1230-1237. [PMID: 29499099 DOI: 10.1002/term.2655] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 02/01/2018] [Accepted: 02/17/2018] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus involves the loss of function and/or absolute numbers of insulin-producing β cells in pancreatic islets. Islet transplantation is currently being investigated as a potential cure, and advances in tissue engineering methods can be used to improve pancreatic islets survival and functionality. Transplanted islets experience anoikis, hypoxia, and inflammation-mediated immune response, leading to early damage and subsequent failure of the graft. Recent development in tissue engineering enables the use of decellularized organs as scaffolds for cell therapies. Decellularized pancreas could be a suitable scaffold as it can retain the native extracellular matrix and vasculature. In this study, mouse pancreata were decellularized by perfusion using 0.5% sodium dodecyl sulfate. Different characterizations revealed that the resulting matrix was free of cells and retained part of the pancreas extracellular matrix including the vasculature and its internal elastic basal lamina, the ducts with their basal membrane, and the glycosaminoglycan and collagen structures. Islets were infused into the ductal system of decellularized pancreata, and glucose-stimulated insulin secretion results confirmed their functionality after 48 hr. Also, recellularizing the decellularized pancreas with green fluorescent protein-tagged INS-1 cells and culturing the system over 120 days confirmed the biocompatibility and non-toxic nature of the scaffold. Green fluorescent protein-tagged INS-1 cells formed pseudoislets that were, over time, budding out of the decellularized pancreata. Decellularized pancreatic scaffolds seeded with endocrine pancreatic tissue could be a potential bioengineered organ for transplantation.
Collapse
Affiliation(s)
- Rajesh Guruswamy Damodaran
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.,Faculté de médecine et des sciences de la santé, Institut de pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.,Faculté de médecine et des sciences de la santé, Institut de pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
18
|
Lee SH, Park HS, Yang Y, Lee EY, Kim JW, Khang G, Yoon KH. Improvement of islet function and survival by integration of perfluorodecalin into microcapsules in vivo and in vitro. J Tissue Eng Regen Med 2018; 12:e2110-e2122. [PMID: 29330944 DOI: 10.1002/term.2643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/24/2022]
Abstract
Hypoxic injury of islets is a major obstacle for encapsulated islet transplantation into the peritoneal cavity. To improve oxygen delivery to encapsulated islets, we integrated 20% of the oxygen carrier material, perfluorodecalin (PFD), in alginate capsules mixed with islets (PFD-alginate). Integration of PFD clearly improved islet viability and decreased reactive oxygen species production compared to islets encapsulated with alginate only (alginate) and naked islets exposed to hypoxia in vitro. In PFD-alginate capsules, HIF-1α expression was minimal, and insulin expression was well maintained. Furthermore, the best islet function represented by glucose-stimulated insulin secretion was observed for the PFD-alginate capsules in hypoxic condition. For the in vivo study, the same number of naked islets and encapsulated islets (alginate and PFD-alginate) was transplanted into streptozotocin-induced diabetic mice. Nonfasting blood glucose levels and the area under the curve for glucose based on intraperitoneal glucose tolerance tests in the PFD-alginate group were lower than in the alginate group. The harvested islets stained positive for insulin in all groups, but the ratio of dead cell area was 4 times higher in the alginate group than in the PFD-alginate group. In conclusion, integration of PFD in alginate microcapsules improved islet function and survival by minimizing the hypoxic damage of islets after intraperitoneal transplantation.
Collapse
Affiliation(s)
- Sang-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Heon-Seok Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeoree Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, South Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
19
|
Lew B, Kim IY, Choi H, Kim K. Sustained exenatide delivery via intracapsular microspheres for improved survival and function of microencapsulated porcine islets. Drug Deliv Transl Res 2018; 8:857-862. [DOI: 10.1007/s13346-018-0484-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Zhu H, Li W, Liu Z, Li W, Chen N, Lu L, Zhang W, Wang Z, Wang B, Pan K, Zhang X, Chen G. Selection of Implantation Sites for Transplantation of Encapsulated Pancreatic Islets. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:191-214. [PMID: 29048258 DOI: 10.1089/ten.teb.2017.0311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic islet transplantation has been validated as a valuable therapy for type 1 diabetes mellitus patients with exhausted insulin treatment. However, this therapy remains limited by the shortage of donor and the requirement of lifelong immunosuppression. Islet encapsulation, as an available bioartificial pancreas (BAP), represents a promising approach to enable protecting islet grafts without or with minimal immunosuppression and possibly expanding the donor pool. To develop a clinically implantable BAP, some key aspects need to be taken into account: encapsulation material, capsule design, and implant site. Among them, the implant site exerts an important influence on the engraftment, stability, and biocompatibility of implanted BAP. Currently, an optimal site for encapsulated islet transplantation may include sufficient capacity to host large graft volumes, portal drainage, ease of access using safe and reproducible procedure, adequate blood/oxygen supply, minimal immune/inflammatory reaction, pliable for noninvasive imaging and biopsy, and potential of local microenvironment manipulation or bioengineering. Varying degrees of success have been confirmed with the utilization of liver or extrahepatic sites in an experimental or preclinical setting. However, the ideal implant site remains to be further engineered or selected for the widespread application of encapsulated islet transplantation.
Collapse
Affiliation(s)
- Haitao Zhu
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China .,2 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University , Xi'an, China
| | - Wenjing Li
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Zhongwei Liu
- 3 Department of Cardiology, Shaanxi Provincial People's Hospital , Xi'an, China
| | - Wenliang Li
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Niuniu Chen
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Linlin Lu
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Wei Zhang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Zhen Wang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Bo Wang
- 2 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University , Xi'an, China .,4 Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University , Xi'an, China
| | - Kaili Pan
- 5 Department of Pediatrics (No. 2 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Xiaoge Zhang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Guoqiang Chen
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| |
Collapse
|
21
|
Thomas D, O'Brien T, Pandit A. Toward Customized Extracellular Niche Engineering: Progress in Cell-Entrapment Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1703948. [PMID: 29194781 DOI: 10.1002/adma.201703948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The primary aim in tissue engineering is to repair, replace, and regenerate dysfunctional tissues to restore homeostasis. Cell delivery for repair and regeneration is gaining impetus with our understanding of constructing tissue-like environments. However, the perpetual challenge is to identify innovative materials or re-engineer natural materials to model cell-specific tissue-like 3D modules, which can seamlessly integrate and restore functions of the target organ. To devise an optimal functional microenvironment, it is essential to define how simple is complex enough to trigger tissue regeneration or restore cellular function. Here, the purposeful transition of cell immobilization from a cytoprotection point of view to that of a cell-instructive approach is examined, with advances in the understanding of cell-material interactions in a 3D context, and with a view to further application of the knowledge for the development of newer and complex hierarchical tissue assemblies for better examination of cell behavior and offering customized cell-based therapies for tissue engineering.
Collapse
Affiliation(s)
- Dilip Thomas
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
22
|
Somo SI, Langert K, Yang CY, Vaicik MK, Ibarra V, Appel AA, Akar B, Cheng MH, Brey EM. Synthesis and evaluation of dual crosslinked alginate microbeads. Acta Biomater 2018; 65:53-65. [PMID: 29101016 PMCID: PMC5902406 DOI: 10.1016/j.actbio.2017.10.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022]
Abstract
Alginate hydrogels have been investigated for a broad variety of medical applications. The ability to assemble hydrogels at neutral pH and mild temperatures makes alginate a popular choice for the encapsulation and delivery of cells and proteins. Alginate has been studied extensively for the delivery of islets as a treatment for type 1 diabetes. However, poor stability of the encapsulation systems after implantation remains a challenge. In this paper, alginate was modified with 2-aminoethyl methacrylate hydrochloride (AEMA) to introduce groups that can be photoactivated to generate covalent bonds. This enabled formation of dual crosslinked structure upon exposure to ultraviolet light following initial ionic crosslinking into bead structures. The degree of methacrylation was varied and in vitro stability, long term swelling, and cell viability examined. At low levels of the methacrylation, the beads could be formed by first ionic crosslinks followed by exposure to ultraviolet light to generate covalent bonds. The methacrylated alginate resulted in more stable beads and cells were viable following encapsulation. Alginate microbeads, ionic (unmodified) and dual crosslinked, were implanted into a rat omentum pouch model. Implantation was performed with a local injection of 100 µl of 50 µg/ml of Lipopolysaccharide (LPS) to stimulate a robust inflammatory challenge in vivo. Implants were retrieved at 1 and 3 weeks for analysis. The unmodified alginate microbeads had all failed by week 1, whereas the dual-crosslinked alginate microbeads remained stable up through 3 weeks. The modified alginate microbeads may provide a more stable alternative to current alginate-based systems for cell encapsulation. STATEMENT OF SIGNIFICANCE Alginate, a naturally occurring polysaccharide, has been used for cell encapsulation to prevent graft rejection of cell transplants for people with type I diabetes. Although some success has been observed in clinical trials, the lack of reproducibility and failure to reach insulin dependence for longer periods of time indicates the need for improvements in the procedure. A major requirement for the long-term function of alginate encapsulated cells is the mechanical stability of microcapsules. Insufficient mechanical integrity of the capsules can lead to immunological reactions in the recipients. In this work, alginate was modified to allow photoactivatable groups in order to allow formation of covalent crosslinks in addition to ionic crosslinking. The dual crosslinking design prevents capsule breakdown following implantation in vivo.
Collapse
Affiliation(s)
- Sami I Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Kelly Langert
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Chin-Yu Yang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Marcella K Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Banu Akar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Ming-Huei Cheng
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
23
|
Tissue adhesive FK506-loaded polymeric nanoparticles for multi-layered nano-shielding of pancreatic islets to enhance xenograft survival in a diabetic mouse model. Biomaterials 2017; 154:182-196. [PMID: 29128846 DOI: 10.1016/j.biomaterials.2017.10.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
This study aims to develop a novel surface modification technology to prolong the survival time of pancreatic islets in a xenogenic transplantation model, using 3,4-dihydroxyphenethylamine (DOPA) conjugated poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (DOPA-NPs) carrying immunosuppressant FK506 (FK506/DOPA-NPs). The functionalized DOPA-NPs formed a versatile coating layer for antigen camouflage without interfering the viability and functionality of islets. The coating layer effectively preserved the morphology and viability of islets in a co-culture condition with xenogenic lymphocytes for 7 days. Interestingly, the mean survival time of islets coated with FK506/DOPA-NPs was significantly higher as compared with that of islets coated with DOPA-NPs (without FK506) and control. This study demonstrated that the combination of surface camouflage and localized low dose of immunosuppressant could be an effective approach in prolonging the survival of transplanted islets. This newly developed platform might be useful for immobilizing various types of small molecules on therapeutic cells and biomaterial surface to improve the therapeutic efficacy in cell therapy and regenerative medicine.
Collapse
|
24
|
Nikravesh N, Cox SC, Ellis MJ, Grover LM. Encapsulation and Fluidization Maintains the Viability and Glucose Sensitivity of Beta-Cells. ACS Biomater Sci Eng 2017; 3:1750-1757. [DOI: 10.1021/acsbiomaterials.7b00191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Niusha Nikravesh
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sophie C. Cox
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Marianne J. Ellis
- School
of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Liam M. Grover
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
25
|
Aoki T, Hui H, Umehara Y, LiCalzi S, Demetriou AA, Rozga J, Perfettit R. Intrasplenic Transplantation of Encapsulated Genetically Engineered Mouse Insulinoma Cells Reverses Streptozotocin-Induced Diabetes in Rats. Cell Transplant 2017; 14:411-21. [PMID: 16180660 DOI: 10.3727/000000005783982990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pancreatic islet transplantation is limited by shortage of donor organs. Although β-cell lines could be used, their secretion of insulin is characteristically glucose independent and immunoisolation is required. Here we show that intrasplenic transplantation of encapsulated glucose-responsive mouse insulinoma cells reversed streptozotocin (STZ)-induced diabetes in rats. MIN-6 cells derived from a transgenic mouse expressing SV 40 large T antigen in pancreatic β-cells were transfected with minigene encoding for human glucagon-like-peptide-1 under the control of rat insulin promoter. The cells were encapsulated in alginate/poly-L-lysine and used for cell transplantation in STZ-diabetic rats. Rats with nonfasting blood glucose (n-FBG) greater than 350 mg/dl were used. In group I rats (n = 6) 20 million encapsulated cells were injected into the spleen. Group II rats (n = 6) received empty capsules. n-FBG was measured biweekly. After 4 and 8 weeks, an intraperitoneal glucose tolerance test (IPGTT) was performed in group I; normal rats served as controls. Plasma insulin level was measured every other week (RIA). After 8 weeks, spleens were removed 1 day before sacrifice. In rats transplanted with cells the n-FBG was 100—150 mg/dl until the end of the study. After splenectomy, all cell recipients became diabetic (glucose 400 ± 20 mg/dl). Transplanted rats showed increase in body weight and insulin production (3.3 ± 1.0 ng/ml versus 0.92 ± 0.3 ng/ml; p < 0.01) and had normal IPGTT. Spleens contained capsules with insulin-positive cells. Overall, data from this work indicate that intrasplenic transplantation of xenogeneic encapsulated insulin-producing cells without immunosuppression reversed diabetes in rats. Excellent survival and function of the transplanted cells was due to the fact that the cells were separated from the bloodstream by the immunoisolatory membrane only and insulin was delivered directly to the liver (i.e., in a physiological manner).
Collapse
Affiliation(s)
- Takeshi Aoki
- Surgical Research, Department of Surgery, Cedars-Sinai Medical Center, David Geffen UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.
Collapse
Affiliation(s)
- Vijayaganapathy Vaithilingam
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde, New South Wales, Australia
| | - Sumeet Bal
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde, New South Wales, Australia
| | - Bernard E Tuch
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, Cooper DKC, Cai Z, Mou L. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transplant 2017; 26:925-947. [PMID: 28155815 PMCID: PMC5657750 DOI: 10.3727/096368917x694859] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
Abstract
Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs combined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotransplantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human recipient's immune response. Clinical trials using this approach are currently underway. This review focuses on the major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Zhengzhao Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Wenbao Hu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Tian He
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hidetaka Hara
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - David K. C. Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
28
|
Nikravesh N, Cox SC, Birdi G, Williams RL, Grover LM. Calcium pre-conditioning substitution enhances viability and glucose sensitivity of pancreatic beta-cells encapsulated using polyelectrolyte multilayer coating method. Sci Rep 2017; 7:43171. [PMID: 28240241 PMCID: PMC5327385 DOI: 10.1038/srep43171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/08/2017] [Indexed: 12/13/2022] Open
Abstract
Type I diabetics are dependent on daily insulin injections. A therapy capable of immunoisolating pancreatic beta-cells and providing normoglycaemia is an alternative since it would avoid the late complications associated with insulin use. Here, 3D-concave agarose micro-wells were used to culture robust pancreatic MIN-6 cell spheroids within 24 hours that were shown to exhibit cell-cell contact and uniform size (201 ± 2 μm). A polyelectrolyte multilayer (PEM) approach using alginate and poly-l-lysine was employed to coat cell spheroids. In comparison to conventional PEM, use of a novel Ca2+ pre-coating step enhanced beta-cells viability (89 ± 6%) and metabolic activity since it reduced the toxic effect of the cationic polymer. Pre-coating was achieved by treating MIN-6 spheroids with calcium chloride, which enabled the adhesion of anionic polymer to the cells surface. Pre-coated cells coated with four bilayers of polymers were successfully immunoisolated from FITC-mouse antibody and pro-inflammatory cytokines. Novel PEM coated cells were shown to secret significantly (P < 0.05) different amounts of insulin in response to changes in glucose concentration (2 vs. 20 mM). This work presents a 3D culture model and novel PEM coating procedure that enhances viability, maintains functionality and immunoisolates beta-cells, which is a promising step towards an alternative therapy to insulin.
Collapse
Affiliation(s)
- Niusha Nikravesh
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Gurpreet Birdi
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard L Williams
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
29
|
|
30
|
Appel AA, Ibarra V, Somo SI, Larson JC, Garson AB, Guan H, McQuilling JP, Zhong Z, Anastasio MA, Opara EC, Brey EM. Imaging of Hydrogel Microsphere Structure and Foreign Body Response Based on Endogenous X-Ray Phase Contrast. Tissue Eng Part C Methods 2016; 22:1038-1048. [PMID: 27796159 PMCID: PMC5116683 DOI: 10.1089/ten.tec.2016.0253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Transplantation of functional islets encapsulated in stable biomaterials has the potential to cure Type I diabetes. However, the success of these materials requires the ability to quantitatively evaluate their stability. Imaging techniques that enable monitoring of biomaterial performance are critical to further development in the field. X-ray phase-contrast (XPC) imaging is an emerging class of X-ray techniques that have shown significant promise for imaging biomaterial and soft tissue structures. In this study, XPC imaging techniques are shown to enable three dimensional (3D) imaging and evaluation of islet volume, alginate hydrogel structure, and local soft tissue features ex vivo. Rat islets were encapsulated in sterile ultrapurified alginate systems produced using a high-throughput microfluidic system. The encapsulated islets were implanted in omentum pouches created in a rodent model of type 1 diabetes. Microbeads were imaged with XPC imaging before implantation and as whole tissue samples after explantation from the animals. XPC microcomputed tomography (μCT) was performed with systems using tube-based and synchrotron X-ray sources. Islets could be identified within alginate beads and the islet volume was quantified in the synchrotron-based μCT volumes. Omental adipose tissue could be distinguished from inflammatory regions resulting from implanted beads in harvested samples with both XPC imaging techniques. Individual beads and the local encapsulation response were observed and quantified using quantitative measurements, which showed good agreement with histology. The 3D structure of the microbeads could be characterized with XPC imaging and failed beads could also be identified. These results point to the substantial potential of XPC imaging as a tool for imaging biomaterials in small animal models and deliver a critical step toward in vivo imaging.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| | - Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Sami I. Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| | - Alfred B. Garson
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Huifeng Guan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | | | - Zhong Zhong
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Emmanuel C. Opara
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, North Carolina
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| |
Collapse
|
31
|
Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells. Acta Biomater 2016; 44:178-87. [PMID: 27506126 DOI: 10.1016/j.actbio.2016.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/19/2016] [Accepted: 08/05/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Intrahepatic transplantation of allogeneic pancreatic islets offers a promising therapy for type 1 diabetes. However, long-term insulin independency is often not achieved due to severe islet loss shortly after transplantation. To improve islet survival and function, extrahepatic biomaterial-assisted transplantation of pancreatic islets to alternative sites has been suggested. Herein, we present macroporous, star-shaped poly(ethylene glycol) (starPEG)-heparin cryogel scaffolds, covalently modified with adhesion peptides, for the housing of pancreatic islets in three-dimensional (3D) co-culture with adherent mesenchymal stromal cells (MSC) as accessory cells. The implantable biohybrid scaffolds provide efficient transport properties, mechanical protection, and a supportive extracellular environment as a desirable niche for the islets. MSC colonized the cryogel scaffolds and produced extracellular matrix proteins that are important components of the natural islet microenvironment known to facilitate matrix-cell interactions and to prevent cellular stress. Islets survived the seeding procedure into the cryogel scaffolds and secreted insulin after glucose stimulation in vitro. In a rodent model, intact islets and MSC could be visualized within the scaffolds seven days after subcutaneous transplantation. Overall, this demonstrates the potential of customized macroporous starPEG-heparin cryogel scaffolds in combination with MSC to serve as a multifunctional islet supportive carrier for transplantation applications. STATEMENT OF SIGNIFICANCE Diabetes results in the insufficient production of insulin by the pancreatic β-cells in the islets of Langerhans. Transplantation of pancreatic islets offers valuable options for treating the disease; however, many transplanted islets often do not survive the transplantation or die shortly thereafter. Co-transplanted, supporting cells and biomaterials can be instrumental for improving islet survival, function and protection from the immune system. In the present study, islet supportive hydrogel sponges were explored for the co-transplantation of islets and mesenchymal stromal cells. Survival and continued function of the supported islets were demonstrated in vitro. The in vivo feasibility of the approach was shown by transplantation in a mouse model.
Collapse
|
32
|
Benthuysen JR, Carrano AC, Sander M. Advances in β cell replacement and regeneration strategies for treating diabetes. J Clin Invest 2016; 126:3651-3660. [PMID: 27694741 DOI: 10.1172/jci87439] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the past decade, new approaches have been explored that are aimed at restoring functional β cell mass as a treatment strategy for diabetes. The two most intensely pursued strategies are β cell replacement through conversion of other cell types and β cell regeneration by enhancement of β cell replication. The approach closest to clinical implementation is the replacement of β cells with human pluripotent stem cell-derived (hPSC-derived) cells, which are currently under investigation in a clinical trial to assess their safety in humans. In addition, there has been success in reprogramming developmentally related cell types into β cells. Reprogramming approaches could find therapeutic applications by inducing β cell conversion in vivo or by reprogramming cells ex vivo followed by implantation. Finally, recent studies have revealed novel pharmacologic targets for stimulating β cell replication. Manipulating these targets or the pathways they regulate could be a strategy for promoting the expansion of residual β cells in diabetic patients. Here, we provide an overview of progress made toward β cell replacement and regeneration and discuss promises and challenges for clinical implementation of these strategies.
Collapse
|
33
|
Mooranian A, Negrulj R, Al-Salami H. The impact of allylamine-bile acid combinations on cell delivery microcapsules in diabetes. J Microencapsul 2016; 33:569-574. [PMID: 27574968 DOI: 10.1080/02652048.2016.1228703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE In a recent study, we developed a new microencapsulating method for β-cell microencapsulation, but cell viability declined rapidly, post microencapsulation, due to potential polymer-polyelectrolyte chelation and non-porous microcapsules' membranes resulting in cell apoptosis. Thus, this study tested the effects of incorporating cationic polyamine at 1% w/v, on microcapsule strength and cell viability, in the absence or presence of an anionic tertiary bile acid (ATBA) with potential cell-protective effects. METHODS 1% w/v polyamine was used without or with ATBA, to form β-cell microcapsules and physical and biological analyses was carried out 50 h post microencapsulation. RESULTS Microcapsules containing 1% w/v polyamine showed weak physical properties and low cell viability and ATBA incorporation resulted in >30% reduction in cell viability and increased levels of pro-inflammatory cytokines. CONCLUSION Neither 1% w/v polyamine nor the presence of ATBA resulted in optimised cell viability, but rather reduced cell viability, enhanced inflammation and lowered insulin secretion.
Collapse
Affiliation(s)
- Armin Mooranian
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , Western Australia , Australia
| | - Rebecca Negrulj
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , Western Australia , Australia
| | - Hani Al-Salami
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , Western Australia , Australia
| |
Collapse
|
34
|
Zhu HT, Lu L, Liu XY, Yu L, Lyu Y, Wang B. Treatment of diabetes with encapsulated pig islets: an update on current developments. J Zhejiang Univ Sci B 2016; 16:329-43. [PMID: 25990050 DOI: 10.1631/jzus.b1400310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The potential use of allogeneic islet transplantation in curing type 1 diabetes mellitus has been adequately demonstrated, but its large-scale application is limited by the short supply of donor islets and the need for sustained and heavy immunosuppressive therapy. Encapsulation of pig islets was therefore suggested with a view to providing a possible alternative source of islet grafts and avoiding chronic immunosuppression and associated adverse or toxic effects. Nevertheless, several vital elements should be taken into account before this therapy becomes a clinical reality, including cell sources, encapsulation approaches, and implantation sites. This paper provides a comprehensive review of xenotransplantation of encapsulated pig islets for the treatment of type 1 diabetes mellitus, including current research findings and suggestions for future studies.
Collapse
Affiliation(s)
- Hai-tao Zhu
- Heart Center, Northwest Women's and Children's Hospital, Xi'an 710061, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China; Department of Hand Surgery, China-Japan Union Hospital, Norman Bethune Health Science Center, Jilin University, Changchun 130033, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | |
Collapse
|
35
|
Vegas AJ, Veiseh O, Gürtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, Tam HH, Jhunjhunwala S, Langan E, Aresta-Dasilva S, Gandham S, McGarrigle J, Bochenek MA, Hollister-Lock J, Oberholzer J, Greiner DL, Weir GC, Melton DA, Langer R, Anderson DG. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 2016; 22:306-11. [PMID: 26808346 PMCID: PMC4825868 DOI: 10.1038/nm.4030] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically, but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-β cells), which may represent an unlimited source of human cells for pancreas replacement therapy. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier. However, clinical implementation has been challenging because of host immune responses to the implant materials. Here we report the first long-term glycemic correction of a diabetic, immunocompetent animal model using human SC-β cells. SC-β cells were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin, which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.
Collapse
Affiliation(s)
- Arturo J. Vegas
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
| | - Omid Veiseh
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mads Gürtler
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jeffrey R. Millman
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Felicia W. Pagliuca
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrew R. Bader
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
| | - Joshua C. Doloff
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
| | - Jie Li
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
| | - Michael Chen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
| | - Karsten Olejnik
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
| | - Hok Hei Tam
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Siddharth Jhunjhunwala
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
| | - Erin Langan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
| | - Stephanie Aresta-Dasilva
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
| | - Srujan Gandham
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
| | - James McGarrigle
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew A. Bochenek
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA USA
| | - Jose Oberholzer
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| | - Gordon C. Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA USA
| | - Douglas A. Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G. Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Hou L, Dong Q, Wu YJ, Sun YX, Guo YY, Huo YH. Gonadotropins facilitate potential differentiation of human bone marrow mesenchymal stem cells into Leydig cells in vitro. Kaohsiung J Med Sci 2015; 32:1-9. [PMID: 26853168 DOI: 10.1016/j.kjms.2015.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
Infertility due to low testosterone levels has increased in recent years. This has impacted the social well-being of the patients. This study was undertaken to investigate the potential of gonadotropins in facilitating differentiation of human bone marrow mesenchymal stem cells (BMSCs) into Leydig cells in vitro. BMSCs were isolated, cultured, and their biological characteristics were observed. BMSCs were induced with gonadotropins in vitro and their ability to differentiate into Leydig cells was studied. The level of expression of 3-beta hydroxysteroid dehydrogenase (3β-HSD) and secretion of testosterone were determined using flow cytometry and enzyme-linked immunosorbent assay, respectively, and the results were compared between the experimental and control groups. The cultured BMSCs showed a typical morphology of the fibroblast-like colony. The growth curve of cells formed an S-shape. After inducing the cells for 8-13 days, the cells in the experimental group increased in size and showed typical characteristics of Leydig cells, and the growth occurred in spindle or stellate shapes. Cells from the experimental group highly expressed 3β-HSD, and there was a gradual increase in the number of Leydig cells. The control group did not express 3β-HSD. The level of testosterone in the experimental group was higher than the control group (p < 0.05). Additionally, the cells in the experimental group secreted higher levels of testosterone with increased culture time. The expression of Leydig cell-specific markers in the experimental group was significantly higher (p < 0.05). With these findings, BMSCs can be considered a new approach for the treatment of patients with low androgen levels.
Collapse
Affiliation(s)
- Lin Hou
- Department of Urology, Number 5 Hospital of Datong, Datong, China
| | - Qiang Dong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Yun-Jian Wu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Xing Sun
- Department of Urology, Number 5 Hospital of Datong, Datong, China
| | - Yan-Yu Guo
- Department of Rheumatology, Number 5 Hospital of Datong, Datong, China
| | - Yue-Hong Huo
- Department of Rheumatology, Number 5 Hospital of Datong, Datong, China
| |
Collapse
|
37
|
Garate A, Ciriza J, Casado JG, Blazquez R, Pedraz JL, Orive G, Hernandez RM. Assessment of the Behavior of Mesenchymal Stem Cells Immobilized in Biomimetic Alginate Microcapsules. Mol Pharm 2015; 12:3953-62. [PMID: 26448513 DOI: 10.1021/acs.molpharmaceut.5b00419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The combination of mesenchymal stem cells (MSCs) and biomimetic matrices for cell-based therapies has led to enormous advances, including the field of cell microencapsulation technology. In the present work, we have evaluated the potential of genetically modified MSCs from mice bone marrow, D1-MSCs, immobilized in alginate microcapsules with different RGD (Arg-Gly-Asp) densities. Results demonstrated that the microcapsules represent a suitable platform for D1-MSC encapsulation since cell immobilization into alginate matrices does not affect their main characteristics. The in vitro study showed a higher activity of D1-MSCs when they are immobilized in RGD-modified alginate microcapsules, obtaining the highest therapeutic factor secretion with low and intermediate densities of the bioactive molecule. In addition, the inclusion of RGD increased the differentiation potential of immobilized cells upon specific induction. However, subcutaneous implantation did not induce differentiation of D1-MSCs toward any lineage remaining at an undifferentiated state in vivo.
Collapse
Affiliation(s)
- Ane Garate
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country , Vitoria, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country , Vitoria, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit "Jesús Usón", Minimally Invasive Surgery Centre , Cáceres, Spain
| | - Rebeca Blazquez
- Stem Cell Therapy Unit "Jesús Usón", Minimally Invasive Surgery Centre , Cáceres, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country , Vitoria, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country , Vitoria, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country , Vitoria, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria, Spain
| |
Collapse
|
38
|
Zhu H, Yu L, He Y, Lyu Y, Wang B. Microencapsulated Pig Islet Xenotransplantation as an Alternative Treatment of Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:474-89. [PMID: 26028249 DOI: 10.1089/ten.teb.2014.0499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haitao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Heart Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yayi He
- Department of Endocrinology, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
39
|
Ludwig B, Ludwig S. Transplantable bioartificial pancreas devices: current status and future prospects. Langenbecks Arch Surg 2015; 400:531-40. [DOI: 10.1007/s00423-015-1314-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 02/08/2023]
|
40
|
Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH, Bader AR, Li J, Langan E, Wyckoff J, Loo WS, Jhunjhunwala S, Chiu A, Siebert S, Tang K, Hollister-Lock J, Aresta-Dasilva S, Bochenek M, Mendoza-Elias J, Wang Y, Qi M, Lavin DM, Chen M, Dholakia N, Thakrar R, Lacík I, Weir GC, Oberholzer J, Greiner DL, Langer R, Anderson DG. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. NATURE MATERIALS 2015; 14:643-51. [PMID: 25985456 PMCID: PMC4477281 DOI: 10.1038/nmat4290] [Citation(s) in RCA: 580] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/10/2015] [Indexed: 04/14/2023]
Abstract
The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals and plastics, significantly abrogated foreign body reactions and fibrosis when compared with smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5-mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than five times longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved simply by tuning their spherical dimensions.
Collapse
Affiliation(s)
- Omid Veiseh
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Joshua C. Doloff
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Minglin Ma
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Arturo J. Vegas
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Hok Hei Tam
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Andrew R. Bader
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Jie Li
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Erin Langan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Jeffrey Wyckoff
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Whitney S. Loo
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Siddharth Jhunjhunwala
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Alan Chiu
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Sean Siebert
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Katherine Tang
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Stephanie Aresta-Dasilva
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Matthew Bochenek
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Joshua Mendoza-Elias
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Yong Wang
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Merigeng Qi
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Danya M. Lavin
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Michael Chen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Nimit Dholakia
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Raj Thakrar
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Gordon C. Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Jose Oberholzer
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Daniel G. Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
41
|
Cook CA, Hahn KC, Morrissette-McAlmon JBF, Grayson WL. Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments. Biomaterials 2015; 52:376-84. [PMID: 25818444 PMCID: PMC4955786 DOI: 10.1016/j.biomaterials.2015.02.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/01/2015] [Accepted: 02/06/2015] [Indexed: 11/15/2022]
Abstract
Oxygen diffusion limitations within nascent tissue engineered (TE) grafts lead to the development of hypoxic regions, cell death, and graft failure. Previous efforts have been made to deliver oxygen within TE scaffolds, including peroxide-doping, perfluorocarbons, and hyperbaric oxygen therapy, to mitigate these effects and help maintain post transplantation cell viability, but these have suffered from significant drawbacks. Here we present a novel approach utilizing polymeric hollow-core microspheres that can be hyperbarically loaded with oxygen and subsequently provide prolonged oxygen delivery. These oxygen carriers are termed, microtanks. With an interest in orthopedic applications, we combined microtanks within polycaprolactone to form solid phase constructs with oxygen delivery capabilities. The mathematical laws governing oxygen delivery from microtank-loaded constructs are developed along with empirical validation. Constructs achieved periods of oxygen delivery out to 6 days, which was shown to prolong the survival of human adipose derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs) as well as to enhance their cellular morphology under anoxic conditions. The results of this study suggest the microtank approach may be a feasible means of maintaining cell viability in TE scaffolds during the critical period of vascularization in vivo.
Collapse
Affiliation(s)
- Colin A Cook
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn C Hahn
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin B F Morrissette-McAlmon
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Warren L Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Material Sciences & Engineering, Johns Hopkins University, School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
42
|
Denner J, Graham M. Xenotransplantation of islet cells: what can the non-human primate model bring for the evaluation of efficacy and safety? Xenotransplantation 2015; 22:231-5. [DOI: 10.1111/xen.12169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Melanie Graham
- Department of Surgery; Preclinical Research Center; University of Minnesota; Saint Paul MN USA
| |
Collapse
|
43
|
Schmitt A, Rödel P, Anamur C, Seeliger C, Imhoff AB, Herbst E, Vogt S, van Griensven M, Winter G, Engert J. Calcium alginate gels as stem cell matrix-making paracrine stem cell activity available for enhanced healing after surgery. PLoS One 2015; 10:e0118937. [PMID: 25793885 PMCID: PMC4368733 DOI: 10.1371/journal.pone.0118937] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/07/2015] [Indexed: 12/11/2022] Open
Abstract
Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs.
Collapse
Affiliation(s)
- Andreas Schmitt
- Department of Sports Orthopedics, Technical University Munich, Ismaninger Str. 22, D-81675 Munich, Germany
- * E-mail:
| | - Philipp Rödel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University Munich, Butenandtstr. 5, Haus B, D-81377 Munich, Germany
| | - Cihad Anamur
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University Munich, Butenandtstr. 5, Haus B, D-81377 Munich, Germany
| | - Claudine Seeliger
- Department of Trauma Surgery, Technical University Munich, Ismaninger Str. 22, D-81675 Munich, Germany
| | - Andreas B. Imhoff
- Department of Sports Orthopedics, Technical University Munich, Ismaninger Str. 22, D-81675 Munich, Germany
| | - Elmar Herbst
- Department of Sports Orthopedics, Technical University Munich, Ismaninger Str. 22, D-81675 Munich, Germany
- Department of Trauma Surgery, Medical University Innsbruck (MUI), Anichstr. 35, A-6020 Innsbruck, Austria
| | - Stephan Vogt
- Department of Sports Orthopedics, Technical University Munich, Ismaninger Str. 22, D-81675 Munich, Germany
| | - Martijn van Griensven
- Department of Trauma Surgery, Technical University Munich, Ismaninger Str. 22, D-81675 Munich, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University Munich, Butenandtstr. 5, Haus B, D-81377 Munich, Germany
| | - Julia Engert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University Munich, Butenandtstr. 5, Haus B, D-81377 Munich, Germany
| |
Collapse
|
44
|
Campanha-Rodrigues AL, Grazioli G, Oliveira TC, Campos-Lisbôa ACV, Mares-Guia TR, Sogayar MC. Therapeutic Potential of Laminin–Biodritin Microcapsules for Type 1 Diabetes Mellitus. Cell Transplant 2015; 24:247-61. [DOI: 10.3727/096368913x675160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet microencapsulation constitutes an attractive therapy for type 1 diabetes mellitus; however, long-term β-cell function remains a major problem. Loss of extracellular matrix interactions during islet isolation dramatically affects β-cell viability. We have previously shown beneficial effects of laminin (LN) in human islet cultures. Herein, we investigated whether LN could improve the outcome of transplantation after islet microencapsulation in Biodritin, an alginate-based material. To test LN-Biodritin stability, microcapsules were subjected to different types of in vitro stress. Focusing on biocompatibility, empty microcapsules were coincubated with the RAW 264.7 macrophage cell line for up to 24 h, and empty beads were implanted IP in mice and retrieved for analyses after 7 and 30 days. Upon culturing for 48 h, mRNA, protein levels, and caspase 3 activity were evaluated in islets microencapsulated with LN-Biodritin. Mice rendered diabetic by streptozotocin injection were transplanted with microencapsulated islets, followed by assessment of body weight, glycemia, and graft function (evaluated by OGTT). Graft efficiency was observed upon microencapsulated islet explantation. The results obtained showed that LN-Biodritin microcapsules were as stable and biocompatible as Biodritin. Modulation of mRNA and protein levels suggested protection against apoptosis and islet stress. Mice transplanted with LN-Biodritin microencapsulated islets presented a better outcome at 198 days postsurgery. Graft explantation led animals to hyperglycemia. In conclusion, LN-Biodritin constitutes a very promising biomaterial for islet transplantation.
Collapse
Affiliation(s)
- Ana Lucia Campanha-Rodrigues
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Gisella Grazioli
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Talita C. Oliveira
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Carolina V. Campos-Lisbôa
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Thiago R. Mares-Guia
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Mari C. Sogayar
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
45
|
Gianello P. Macroencapsulated Pig Islets Correct Induced Diabetes in Primates up to 6 Months. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:157-70. [DOI: 10.1007/978-3-319-18603-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippeos C, Lehec SC, Heaton ND, Longhi MS, Mitry RR. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One 2014; 9:e113609. [PMID: 25438038 PMCID: PMC4249959 DOI: 10.1371/journal.pone.0113609] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
Abstract
Background and Aim Intraperitoneal transplantation of alginate-microencapsulated human hepatocytes is an attractive option for the management of acute liver failure (ALF) providing short-term support to allow native liver regeneration. The main aim of this study was to establish an optimised protocol for production of alginate-encapsulated human hepatocytes and evaluate their suitability for clinical use. Methods Human hepatocyte microbeads (HMBs) were prepared using sterile GMP grade materials. We determined physical stability, cell viability, and hepatocyte metabolic function of HMBs using different polymerisation times and cell densities. The immune activation of peripheral blood mononuclear cells (PBMCs) after co-culture with HMBs was studied. Rats with ALF induced by galactosamine were transplanted intraperitoneally with rat hepatocyte microbeads (RMBs) produced using a similar optimised protocol. Survival rate and biochemical profiles were determined. Retrieved microbeads were evaluated for morphology and functionality. Results The optimised HMBs were of uniform size (583.5±3.3 µm) and mechanically stable using 15 min polymerisation time compared to 10 min and 20 min (p<0.001). 3D confocal microscopy images demonstrated that hepatocytes with similar cell viability were evenly distributed within HMBs. Cell density of 3.5×106 cells/ml provided the highest viability. HMBs incubated in human ascitic fluid showed better cell viability and function than controls. There was no significant activation of PBMCs co-cultured with empty or hepatocyte microbeads, compared to PBMCs alone. Intraperitoneal transplantation of RMBs was safe and significantly improved the severity of liver damage compared to control groups (empty microbeads and medium alone; p<0.01). Retrieved RMBs were intact and free of immune cell adherence and contained viable hepatocytes with preserved function. Conclusion An optimised protocol to produce GMP grade alginate-encapsulated human hepatocytes has been established. Transplantation of microbeads provided effective metabolic function in ALF. These high quality HMBs should be suitable for use in clinical transplantation.
Collapse
Affiliation(s)
- Suttiruk Jitraruch
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Anil Dhawan
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
- * E-mail: (AD); (RRM)
| | - Robin D. Hughes
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Celine Filippi
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Daniel Soong
- British Heart Foundation Centre of Excellence Cardiovascular Division, King's College London School of Medicine, London, United Kingdom
| | - Christina Philippeos
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Sharon C. Lehec
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Nigel D. Heaton
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Maria S. Longhi
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Ragai R. Mitry
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
- * E-mail: (AD); (RRM)
| |
Collapse
|
47
|
Tan G, Elefanty AG, Stanley EG. β-cell regeneration and differentiation: how close are we to the 'holy grail'? J Mol Endocrinol 2014; 53:R119-29. [PMID: 25385843 DOI: 10.1530/jme-14-0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes can be managed by careful monitoring of blood glucose and timely delivery of exogenous insulin. However, even with fastidious compliance, people with diabetes can suffer from numerous complications including atherosclerosis, retinopathy, neuropathy, and kidney disease. This is because delivery of exogenous insulin coupled with glucose monitoring cannot provide the fine level of glucose control normally provided by endogenous β-cells in the context of intact islets. Moreover, a subset of people with diabetes lack awareness of hypoglycemic events; a status that can have grave consequences. Therefore, much effort has been focused on replacing lost or dysfunctional β-cells with cells derived from other sources. The advent of stem cell biology and cellular reprogramming strategies have provided impetus to this work and raised hopes that a β-cell replacement therapy is on the horizon. In this review, we look at two components that will be required for successful β-cell replacement therapy: a reliable and safe source of β-cells and a mechanism by which such cells can be delivered and protected from host immune destruction. Particular attention is paid to insulin-producing cells derived from pluripotent stem cells because this platform addresses the issue of scale, one of the more significant hurdles associated with potential cell-based therapies. We also review methods for encapsulating transplanted cells, a technique that allows grafts to evade immune attack and survive for a long term in the absence of ongoing immunosuppression. In surveying the literature, we conclude that there are still several substantial hurdles that need to be cleared before a stem cell-based β-cell replacement therapy for diabetes becomes a reality.
Collapse
Affiliation(s)
- Gemma Tan
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Edouard G Stanley
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
48
|
Kuehn C, Fülöp T, Lakey JRT, Vermette P. Young porcine endocrine pancreatic islets cultured in fibrin and alginate gels show improved resistance towards human monocytes. ACTA ACUST UNITED AC 2014; 62:354-64. [PMID: 25239278 DOI: 10.1016/j.patbio.2014.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/29/2014] [Indexed: 12/17/2022]
Abstract
AIM To investigate the protective function of alginate and fibrin gels used to embed porcine endocrine pancreatic islets towards human monocytes. METHODS Groups of 200 islet equivalents from young pigs were embedded in either a fibrin or in an alginate gel, and as a control seeded in tissue culture polystyrene (TCPS) well plates. The islet cultures were incubated with 2×10(5) human monocytes for 24h. In addition, both islets and monocytes were separately cultured in TCPS, fibrin and alginate. Islet morphology, viability and function were investigated as well as the secretion of cytokines TNFα, IL-6, and IL-1β. RESULTS When freely-floating in TCPS, non-encapsulated islets were surrounded by monocytes and started to disperse after 24h. In fibrin, monocytes could be found in close proximity to embedded islets, indicating monocyte migration through the gel. In contrast, after 24h, few monocytes were found close to islets in alginate. Immunofluorescence staining and manual counting showed that integrin expression was higher in fibrin-embedded islet cultures. A TUNEL assay revealed elevated numbers of apoptotic cells for islets in TCPS wells compared to fibrin and alginate cultures. Insulin secretion was higher with islets embedded in fibrin and alginate when compared to non-encapsulated islets. TNFα, IL-6 and IL-1β were found in high concentrations in the media of co-cultures and monocyte mono-culture in fibrin. CONCLUSION Both alginate and fibrin provide key structural support and offer some protection for the islets towards human monocytes. Fibrin itself triggers the cytokine secretion from monocytes.
Collapse
Affiliation(s)
- C Kuehn
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500, boulevard de l'Université, J1K 2R1 Sherbrooke, Québec, Canada; Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036, rue Belvédère Sud, J1H 4C4 Sherbrooke, Québec, Canada
| | - T Fülöp
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036, rue Belvédère Sud, J1H 4C4 Sherbrooke, Québec, Canada
| | - J R T Lakey
- Department of Surgery and Biomedical Engineering, University of California, Irvine, 333 City Boulevard West, Suite 700, Orange, 92868 CA, United States
| | - P Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500, boulevard de l'Université, J1K 2R1 Sherbrooke, Québec, Canada; Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036, rue Belvédère Sud, J1H 4C4 Sherbrooke, Québec, Canada.
| |
Collapse
|
49
|
Tezza S, Ben Nasr M, Vergani A, Valderrama Vasquez A, Maestroni A, Abdi R, Secchi A, Fiorina P. Novel immunological strategies for islet transplantation. Pharmacol Res 2014; 98:69-75. [PMID: 25014184 DOI: 10.1016/j.phrs.2014.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023]
Abstract
Islet transplantation has been demonstrated to improve glycometabolic control, to reduce hypoglycemic episodes and to halt the progression of diabetic complications. However, the exhaustion of islet function and the side effects related to chronic immunosuppression limit the spread of this technique. Consequently, new immunoregulatory protocols have been developed, with the aim to avoid the use of a life-time immunosuppression. Several approaches have been tested in preclinical models, and some are now under clinical evaluation. The development of new small molecules and new monoclonal or polyclonal antibodies is continuous and raises the possibility of targeting new costimulatory pathways or depleting particular cell types. The use of stem cells and regulatory T cells is underway to take advantage of their immunological properties and to induce tolerance. Xenograft islet transplantation, although having severe problems in terms of immunological compatibility, could theoretically provide an unlimited source of donors; using pigs carrying human immune antigens has showed indeed promising results. A completely different approach, the use of encapsulated islets, has been developed; synthetic structures are used to hide islet alloantigen from the immune system, thus preserving islet endocrine function. Once one of these strategies is demonstrated safe and effective, it will be possible to establish clinical islet transplantation as a treatment for patients with type 1 diabetes long before the onset of diabetic-related complications.
Collapse
Affiliation(s)
- Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy; Univerista' degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Andrea Vergani
- Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy; Dompé Inc. Research and Development Department, Diabetes and Transplantation Unit, New York, NY, USA
| | | | - Anna Maestroni
- Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Reza Abdi
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonio Secchi
- Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy; Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
50
|
Colton CK. Oxygen supply to encapsulated therapeutic cells. Adv Drug Deliv Rev 2014; 67-68:93-110. [PMID: 24582600 DOI: 10.1016/j.addr.2014.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
Abstract
Therapeutic cells encapsulated in immunobarrier devices have promise for treatment of a variety of human diseases without immunosuppression. The absence of sufficient oxygen supply to maintain viability and function of encapsulated tissue has been the most critical impediment to progress. Within the framework of oxygen supply limitations, we review the major issues related to development of these devices, primarily in the context of encapsulated islets of Langerhans for treating diabetes, including device designs and materials, supply of tissue, protection from immune rejection, and maintenance of cell viability and function. We describe various defensive measures investigated to enhance survival of transplanted tissue, and we review the diverse approaches to enhancement of oxygen transport to encapsulated tissue, including manipulation of diffusion distances and oxygen permeability of materials, induction of neovascularization with angiogenic factors and vascularizing membranes, and methods for increasing the oxygen concentration adjacent to encapsulated tissue so as to exceed that in the microvasculature. Recent developments, particularly in this latter area, suggest that the field is ready for clinical trials of encapsulated therapeutic cells to treat diabetes.
Collapse
|