1
|
Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS, Lisboa SF. "NO" Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD. Molecules 2023; 29:89. [PMID: 38202672 PMCID: PMC10779493 DOI: 10.3390/molecules29010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Bruna F. Ferreira
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Isabela Pavan-Silva
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Francisco S. Guimarães
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Sabrina F. Lisboa
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| |
Collapse
|
2
|
Sbisa AM, Madden K, Toben C, McFarlane AC, Dell L, Lawrence-Wood E. Potential peripheral biomarkers associated with the emergence and presence of posttraumatic stress disorder symptomatology: A systematic review. Psychoneuroendocrinology 2023; 147:105954. [PMID: 36308820 DOI: 10.1016/j.psyneuen.2022.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Evidence suggests posttraumatic stress disorder (PTSD) involves an interplay between psychological manifestations and biological systems. Biological markers of PTSD could assist in identifying individuals with underlying dysregulation and increased risk; however, accurate and reliable biomarkers are yet to be identified. METHODS A systematic review following the PRISMA guidelines was conducted. Databases included EMBASE, MEDLINE, and Cochrane Central. Studies from a comprehensive 2015 review (Schmidt et al., 2015) and English language papers published subsequently (between 2014 and May 2022) were included. Forty-eight studies were eligible. RESULTS Alterations in neuroendocrine and immune markers were most commonly associated with PTSD symptoms. Evidence indicates PTSD symptoms are associated with hypothalamic-pituitary-adrenal axis dysfunction as represented by low basal cortisol, a dysregulated immune system, characterized by an elevated pro-inflammatory state, and metabolic dysfunction. However, a considerable number of studies neglected to measure sex or prior trauma, which have the potential to affect the biological outcomes of posttraumatic stress symptoms. Mixed findings are indicative of the complexity and heterogeneity of PTSD and suggest the relationship between allostatic load, biological markers, and PTSD remain largely undefined. CONCLUSIONS In addition to prospective research design and long-term follow up, it is imperative future research includes covariates sex, prior trauma, and adverse childhood experiences. Future research should include exploration of biological correlates specific to PTSD symptom domains to determine whether underlying processes differ with symptom expression, in addition to subclinical presentation of posttraumatic stress symptoms, which would allow for greater understanding of biomarkers associated with disorder risk and assist in untangling directionality.
Collapse
Affiliation(s)
- Alyssa M Sbisa
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Kelsey Madden
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine Toben
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Lisa Dell
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ellie Lawrence-Wood
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Katrinli S, Oliveira NCS, Felger JC, Michopoulos V, Smith AK. The role of the immune system in posttraumatic stress disorder. Transl Psychiatry 2022; 12:313. [PMID: 35927237 PMCID: PMC9352784 DOI: 10.1038/s41398-022-02094-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) develops in a subset of individuals upon exposure to traumatic stress. In addition to well-defined psychological and behavioral symptoms, some individuals with PTSD also exhibit elevated concentrations of inflammatory markers, including C-reactive protein, interleukin-6, and tumor necrosis factor-α. Moreover, PTSD is often co-morbid with immune-related conditions, such as cardiometabolic and autoimmune disorders. Numerous factors, including lifetime trauma burden, biological sex, genetic background, metabolic conditions, and gut microbiota, may contribute to inflammation in PTSD. Importantly, inflammation can influence neural circuits and neurotransmitter signaling in regions of the brain relevant to fear, anxiety, and emotion regulation. Given the link between PTSD and the immune system, current studies are underway to evaluate the efficacy of anti-inflammatory treatments in those with PTSD. Understanding the complex interactions between PTSD and the immune system is essential for future discovery of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA.
| | - Nayara C. S. Oliveira
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,National Institute of Woman, Child, and Adolescence Health Fernandes Figueira, Rio de Janeiro, RJ Brazil ,grid.418068.30000 0001 0723 0931Department of Violence and Health Studies Jorge Careli, National School of Public Health, Fiocruz, Rio de Janeiro, RJ Brazil
| | - Jennifer C. Felger
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502The Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Vasiliki Michopoulos
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Alicia K. Smith
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| |
Collapse
|
4
|
Voigt RM, Zalta AK, Raeisi S, Zhang L, Brown JM, Forsyth CB, Boley RA, Held P, Pollack MH, Keshavarzian A. Abnormal intestinal milieu in posttraumatic stress disorder is not impacted by treatment that improves symptoms. Am J Physiol Gastrointest Liver Physiol 2022; 323:G61-G70. [PMID: 35638693 PMCID: PMC9291416 DOI: 10.1152/ajpgi.00066.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder, resulting from exposure to traumatic events. Current recommended first-line interventions for the treatment of PTSD include evidence-based psychotherapies, such as cognitive processing therapy (CPT). Psychotherapies are effective for reducing PTSD symptoms, but approximately two-thirds of veterans continue to meet diagnostic criteria for PTSD after treatment, suggesting there is an incomplete understanding of what factors sustain PTSD. The intestine can influence the brain and this study evaluated intestinal readouts in subjects with PTSD. Serum samples from controls without PTSD (n = 40) from the Duke INTRuST Program were compared with serum samples from veterans with PTSD (n = 40) recruited from the Road Home Program at Rush University Medical Center. Assessments included microbial metabolites, intestinal barrier, and intestinal epithelial cell function. In addition, intestinal readouts were assessed in subjects with PTSD before and after a 3-wk CPT-based intensive treatment program (ITP) to understand if treatment impacts the intestine. Compared with controls, veterans with PTSD had a proinflammatory intestinal environment including lower levels of microbiota-derived metabolites, such as acetic, lactic, and succinic acid, intestinal barrier dysfunction [lipopolysaccharide (LPS) and LPS-binding protein], an increase in HMGB1, and a concurrent increase in the number of intestinal epithelial cell-derived extracellular vesicles. The ITP improved PTSD symptoms but no changes in intestinal outcomes were noted. This study confirms the intestine is abnormal in subjects with PTSD and suggests that effective treatment of PTSD does not alter intestinal readouts. Targeting beneficial changes in the intestine may be an approach to enhance existing PTSD treatments.NEW & NOTEWORTHY This study confirms an abnormal intestinal environment is present in subjects with PTSD. This study adds to what is already known by examining the intestinal barrier and evaluating the relationship between intestinal readouts and PTSD symptoms and is the first to report the impact of PTSD treatment (which improves symptoms) on intestinal readouts. This study suggests that targeting the intestine as an adjunct approach could improve the treatment of PTSD.
Collapse
Affiliation(s)
- Robin M Voigt
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Alyson K Zalta
- Department of Psychological Science, University of California, Irvine, California
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Shohreh Raeisi
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
| | - Lijuan Zhang
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- Center for Microbiome and Human Health, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christopher B Forsyth
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Randy A Boley
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Philip Held
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Mark H Pollack
- Department of Psychological Science, University of California, Irvine, California
| | - Ali Keshavarzian
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
- Department of Physiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
5
|
HMGB1 Upregulates RAGE to Trigger the Expression of Inflammatory Factors in the Lung Tissue in a Hypoxic Pulmonary Hypertension Rat Model. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6823743. [PMID: 35903436 PMCID: PMC9325572 DOI: 10.1155/2022/6823743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/19/2022] [Indexed: 11/17/2022]
Abstract
Hypoxic pulmonary hypertension (HPH), a form of pulmonary hypertension (PH) caused by hypoxia, could cause serious complications and has a high mortality rate, and no clinically effective treatments are currently available. In this study, we established an HPH preclinical model in rats by simulating clinicopathological indicators of the disease. Our results showed that high mobility group box-1 protein (HMGB1) aggravated the clinical symptoms of HPH. We aimed at establishing protocols and ideas for the clinical treatment of HPH by identifying downstream HMGB1 binding receptors. Our investigation showed that continuous hypoxia could cause significant lung injury in rats. ELISA and western blotting experiments revealed that HPH induces inflammation in the lung tissue and increases the expression of a hypoxia-inducible factor. Testing of lung tissue proteins in vivo and in human pulmonary artery endothelial cells in vitro revealed that the HMGB1-mediated increase in the receptor for advanced glycation end products (RAGE) expression promoted inflammation. In summary, we successfully established an HPH rat model providing a new model for preclinical HPH research and elucidated the role of HMGB1 in HPH. Furthermore, we describe that HMGB1 induced inflammation in the HPH model via RAGE, causing severe lung dysfunction. This study could potentially provide novel ideas and methods for the clinical treatment of HPH.
Collapse
|
6
|
Chen XK, Kwan JSK, Wong GTC, Yi ZN, Ma ACH, Chang RCC. Leukocyte invasion of the brain after peripheral trauma in zebrafish (Danio rerio). EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:973-987. [PMID: 35831435 PMCID: PMC9356012 DOI: 10.1038/s12276-022-00801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Despite well-known systemic immune reactions in peripheral trauma, little is known about their roles in posttraumatic neurological disorders, such as anxiety, sickness, and cognitive impairment. Leukocyte invasion of the brain, a common denominator of systemic inflammation, is involved in neurological disorders that occur in peripheral inflammatory diseases, whereas the influences of peripheral leukocytes on the brain after peripheral trauma remain largely unclear. In this study, we found that leukocytes, largely macrophages, transiently invaded the brain of zebrafish larvae after peripheral trauma through vasculature-independent migration, which was a part of the systemic inflammation and was mediated by interleukin-1b (il1b). Notably, myeloid cells in the brain that consist of microglia and invading macrophages were implicated in posttraumatic anxiety-like behaviors, such as hyperactivity (restlessness) and thigmotaxis (avoidance), while a reduction in systemic inflammation or myeloid cells can rescue these behaviors. In addition, invading leukocytes together with microglia were found to be responsible for the clearance of apoptotic cells in the brain; however, they also removed the nonapoptotic cells, which suggested that phagocytes have dual roles in the brain after peripheral trauma. More importantly, a category of conserved proteins between zebrafish and humans or rodents that has been featured in systemic inflammation and neurological disorders was determined in the zebrafish brain after peripheral trauma, which supported that zebrafish is a translational model of posttraumatic neurological disorders. These findings depicted leukocyte invasion of the brain during systemic inflammation after peripheral trauma and its influences on the brain through il1b-dependent mechanisms. Invasion of the brain by white blood cells followed tail amputation in zebrafish, the resulting systemic inflammation producing anxiety-like behaviors. Scientists have long recognised an association between systemic inflammation following peripheral traumatic injury such as limb loss and post-traumatic neurological disorders such as anxiety and depression. Raymond Chuen-Chung Chang at the University of Hong Kong, Alvin Chun-Hang Ma at Hong Kong Polytechnic University, China, and co-workers found that following trauma, white cells, mainly macrophages, flowed from neighboring tissues into the hindbrain, before spreading throughout the brain. This influx of white cells, mediated by the small signaling protein interleukin-1b, triggered anxiety-like behaviors such as hyperactivity and avoidance in the zebrafish. The researchers emphasize that the links between systemic inflammation following peripheral trauma and neurological responses require extensive further research.
Collapse
Affiliation(s)
- Xiang-Ke Chen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Zhen-Ni Yi
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
7
|
Smid GE, Lind J, Bonde JP. Neurobiological mechanisms underlying delayed expression of posttraumatic stress disorder: A scoping review. World J Psychiatry 2022; 12:151-168. [PMID: 35111586 PMCID: PMC8783158 DOI: 10.5498/wjp.v12.i1.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/30/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The capacity of posttraumatic stress disorder (PTSD) to occur with delayed onset has been documented in several systematic reviews and meta-analyses. Neurobiological models of PTSD may provide insight into the mechanisms underlying the progressive increase in PTSD symptoms over time as well as into occasional occurrences of long-delayed PTSD with few prodromal symptoms.
AIM To obtain an overview of key concepts explaining and types of evidence supporting neurobiological underpinnings of delayed PTSD.
METHODS A scoping review of studies reporting neurobiological findings relevant to delayed PTSD was performed, which included 38 studies in the qualitative synthesis.
RESULTS Neurobiological mechanisms underlying PTSD symptoms, onset, and course involve several interconnected systems. Neural mechanisms involve the neurocircuitry of fear, comprising several structures, such as the hippocampus, amygdala, and prefrontal cortex, that are amenable to time-dependent increases in activity through sensitization and kindling. Neural network models explain generalization of the fear response. Neuroendocrine mechanisms consist of autonomic nervous system and hypothalamic-pituitary-adrenocortical axis responses, both of which may be involved in sensitization to stress. Neuroinflammatory mechanisms are characterized by immune activation, which is sometimes due to the effects of traumatic brain injury. Finally, neurobehavioral/contextual mechanisms involve the effects of intervening stressors and mental and physical disorder comorbidities, and these may be particularly relevant in cases of long-delayed PTSD.
CONCLUSION Thus, delayed PTSD may result from multiple underlying neurobiological mechanisms that may influence the likelihood of developing prodromal symptoms preceding the onset of full-blown PTSD.
Collapse
Affiliation(s)
- Geert E Smid
- ARQ Centrum'45, ARQ National Psychotrauma Centre, Diemen 1112XE, Netherlands
- Department of Humanist Chaplaincy Studies, University of Humanistic Studies, Utrecht 3512 HD, Netherlands
| | - Jonna Lind
- ARQ Centre of Excellence on War, Persecution and Violence, ARQ National Psychotrauma Centre, Diemen 1112XE, Netherlands
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Frederiksberg and Bispebjerg Hospital, Copenhagen 2400, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen 1014, Denmark
| |
Collapse
|
8
|
Stress-related dysautonomias and neurocardiology-based treatment approaches. Auton Neurosci 2022; 239:102944. [DOI: 10.1016/j.autneu.2022.102944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/13/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022]
|
9
|
Wang J, Wu C, Wang Y, Chen C, Cheng J, Rao X, Sun H. The Role of HMGB1 in Invasive Candida albicans Infection. Mycopathologia 2021; 186:789-805. [PMID: 34608551 DOI: 10.1007/s11046-021-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/25/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION High mobility group box 1 (HMGB1) is an important "late" inflammatory mediator in bacterial sepsis. Ethyl pyruvate (EP), an inhibitor of HMGB1, can prevent bacterial sepsis by decreasing HMGB1 levels. However, the role of HMGB1 in fungal sepsis is still unclear. Therefore, we investigated the role of HMGB1 and EP in invasive C. albicans infection. METHODS We measured serum HMGB1 levels in patients with sepsis with C. albicans infection and without fungal infection, and control subjects. We collected clinical indices to estimate correlations between HMGB1 levels and disease severity. Furthermore, we experimentally stimulated mice with C. albicans and C. albicans + EP. Then, we examined HMGB1 levels from serum and tissue, investigated serum levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), determined pathological changes in tissues, and assessed mortality. RESULTS Serum HMGB1 levels in patients with severe sepsis with C. albicans infection were elevated. Increased HMGB1 levels were correlated with procalcitonin (PCT), C-reactive protein (CRP), 1,3-β-D-Glucan (BDG) and C. albicans sepsis severity. HMGB1 levels in serum and tissues were significantly increased within 7 days after mice were infected with C. albicans. The administration of EP inhibited HMGB1 levels, decreased tissue damage, increased survival rates and inhibited the release of TNF-α and IL-6. CONCLUSIONS HMGB1 levels were significantly increased in invasive C. albicans infections. EP prevented C. albicans lethality by decreasing HMGB1 expression and release. HMGB1 may provide an effective diagnostic and therapeutic target for invasive C. albicans infections.
Collapse
Affiliation(s)
- JiaoJiao Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - ChuanXin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - YunYing Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - ChongXiang Chen
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - XiaoLong Rao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
10
|
Bremner JD, Gurel NZ, Jiao Y, Wittbrodt MT, Levantsevych OM, Huang M, Jung H, Shandhi MH, Beckwith J, Herring I, Rapaport MH, Murrah N, Driggers E, Ko YA, Alkhalaf ML, Soudan M, Song J, Ku BS, Shallenberger L, Hankus AN, Nye JA, Park J, Vaccarino V, Shah AJ, Inan OT, Pearce BD. Transcutaneous vagal nerve stimulation blocks stress-induced activation of Interleukin-6 and interferon-γ in posttraumatic stress disorder: A double-blind, randomized, sham-controlled trial. Brain Behav Immun Health 2020; 9:100138. [PMID: 34589887 PMCID: PMC8474180 DOI: 10.1016/j.bbih.2020.100138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory function. Vagus nerve stimulation (VNS) decreases inflammation, however few studies have examined the effects of non-invasive VNS on physiology in human subjects, and no studies in patients with PTSD. The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on inflammatory responses to stress. Thirty subjects with a history of exposure to traumatic stress with (N = 10) and without (N = 20) PTSD underwent exposure to stressful tasks immediately followed by active or sham tcVNS and measurement of multiple biomarkers of inflammation (interleukin-(IL)-6, IL-2, IL-1β, Tumor Necrosis Factor alpha (TNFα) and Interferon gamma (IFNγ) over multiple time points. Stressful tasks included exposure to personalized scripts of traumatic events on day 1, and public speech and mental arithmetic (Mental Stress) tasks on days 2 and 3. Traumatic scripts were associated with a pattern of subjective anger measured with Visual Analogue Scales and increased IL-6 and IFNγ in PTSD patients that was blocked by tcVNS (p < .05). Traumatic stress had minimal effects on these biomarkers in non-PTSD subjects and there was no difference between tcVNS or sham. No significant differences were seen between groups in IL-2, IL-1β, or TNFα. These results demonstrate that tcVNS blocks behavioral and inflammatory responses to stress reminders in PTSD.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Radiology, and Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yunshen Jiao
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Matthew T. Wittbrodt
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Minxuan Huang
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Hewon Jung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - MdMobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joy Beckwith
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Isaias Herring
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark H. Rapaport
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Nancy Murrah
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Emily Driggers
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Yi-An Ko
- Departments of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA, USA
| | | | - Majd Soudan
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Jiawei Song
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Benson S. Ku
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lucy Shallenberger
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Allison N. Hankus
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Jonathon A. Nye
- Departments of Radiology, and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeanie Park
- Departments of Renal Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Viola Vaccarino
- Departments of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Amit J. Shah
- Departments of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bradley D. Pearce
- Departments of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|
11
|
Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Park J, Bikson M, Inan OT. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J Pers Med 2020; 10:E119. [PMID: 32916852 PMCID: PMC7563188 DOI: 10.3390/jpm10030119] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation. METHODS New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders. RESULTS This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders. CONCLUSIONS nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- James Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Mark H. Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Medicine, Renal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City University of New York, New York, NY 10010, USA;
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Alghnam S, Aldahnim MH, Aldebasi MH, Towhari JA, Alghamdi AS, Alharbi AA, Almarhabi YA, Albabtain IT. The incidence and predictors of pneumothorax among trauma patients in Saudi Arabia. Findings from a level-I trauma center. Saudi Med J 2020; 41:247-252. [PMID: 32114596 PMCID: PMC7841555 DOI: 10.15537/smj.2020.3.24917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ABSTRACT
Collapse
Affiliation(s)
- Suliman Alghnam
- King Abdullah International Medical Research Center, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Corne R, Leconte C, Ouradou M, Fassina V, Zhu Y, Déou E, Besson V, Plotkine M, Marchand-Leroux C, Mongeau R. Spontaneous resurgence of conditioned fear weeks after successful extinction in brain injured mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:276-286. [PMID: 30096331 DOI: 10.1016/j.pnpbp.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/28/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022]
Abstract
Mild traumatic brain injury (TBI) is a major risk factor for post-traumatic stress disorder (PTSD), and both disorders share common symptoms and neurobiological defects. Relapse after successful treatment, known as long-term fear resurgence, is common in PTSD patients and a major therapeutic hurdle. We induced a mild focal TBI by controlled cortical impact (CCI) in male C57BL/6 J mice and used fear conditioning to assess PTSD-like behaviors and concomitant alterations in the fear circuitry. We found for the first time that mild TBI, and to a lesser extent sham (craniotomy), mice displayed a spontaneous resurgence of conditioned fear when tested for fear extinction memory recall, despite having effectively acquired and extinguished conditioned fear 6 weeks earlier in the same context. Other characteristic symptoms of PTSD are risk-taking behaviors and cognitive deficits. CCI mice displayed risk-taking behaviors, behavioral inflexibility and reductions in processing speed compared to naïve mice. In conjunction with these changes there were alterations in amygdala morphology 3 months post-trauma, and decreased myelin basic protein density at the primary lesion site and in distant secondary sites such as the hippocampus, thalamus, and amygdala, compared to sham mice. Furthermore, activity-dependent brain-derived neurotrophic factor (BDNF) transcripts were decreased in the prefrontal cortex, a key region for fear extinction consolidation, following fear extinction training in both TBI and, to a lesser extent, sham mice. This study shows for the first time that a mild brain injury can generate a spontaneous resurgence of conditioned fear associated with defective BDNF signalling in the prefrontal cortex, PTSD-like behaviors, and have enduring effects on the brain.
Collapse
Affiliation(s)
- R Corne
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - C Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - M Ouradou
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - V Fassina
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Y Zhu
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - E Déou
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - V Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - M Plotkine
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - C Marchand-Leroux
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - R Mongeau
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.
| |
Collapse
|
14
|
Hayakawa M. Pathophysiology of trauma-induced coagulopathy: disseminated intravascular coagulation with the fibrinolytic phenotype. J Intensive Care 2017; 5:14. [PMID: 28289544 PMCID: PMC5282695 DOI: 10.1186/s40560-016-0200-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/17/2016] [Indexed: 01/29/2023] Open
Abstract
In severe trauma patients, coagulopathy is frequently observed in the acute phase of trauma. Trauma-induced coagulopathy is coagulopathy caused by the trauma itself. The pathophysiology of trauma-induced coagulopathy consists of coagulation activation, hyperfibrino(geno)lysis, and consumption coagulopathy. These pathophysiological mechanisms are the characteristics to DIC with the fibrinolytic phenotype.
Collapse
Affiliation(s)
- Mineji Hayakawa
- Emergency and Critical Care Center, Hokkaido University Hospital, N14W5 Kita-ku, Sapporo, 060-8648 Japan
| |
Collapse
|
15
|
Hayakawa M. Dynamics of fibrinogen in acute phases of trauma. J Intensive Care 2017; 5:3. [PMID: 34798699 PMCID: PMC8600928 DOI: 10.1186/s40560-016-0199-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/17/2016] [Indexed: 11/10/2022] Open
Abstract
Fibrinogen is a unique precursor of fibrin and cannot be compensated for by other coagulation factors. If plasma fibrinogen concentrations are insufficient, hemostatic clots cannot be formed with the appropriate firmness. In severe trauma patients, plasma fibrinogen concentrations decrease earlier and more frequently than other coagulation factors, predicting massive bleeding and death. We review the mechanisms of plasma fibrinogen concentration decrease, which include coagulation activation-induced consumption, hyper-fibrino(geno)lysis-induced degradation, and dilution by infusion/transfusion. Understanding the mechanisms of plasma fibrinogen concentration decrease in severe trauma patients is crucial.
Collapse
|
16
|
Circulating HMGB1 and RAGE as Clinical Biomarkers in Malignant and Autoimmune Diseases. Diagnostics (Basel) 2015; 5:219-53. [PMID: 26854151 PMCID: PMC4665591 DOI: 10.3390/diagnostics5020219] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022] Open
Abstract
High molecular group box 1 (HMGB1) is a highly conserved member of the HMG-box-family; abundantly expressed in almost all human cells and released in apoptosis; necrosis or by activated immune cells. Once in the extracellular space, HMGB1 can act as a danger associated molecular pattern (DAMP), thus stimulating or inhibiting certain functions of the immune system; depending on the “combinatorial cocktail” of the surrounding milieu. HMGB1 exerts its various functions through binding to a multitude of membrane-bound receptors such as TLR-2; -4 and -9; IL-1 and RAGE (receptor for advanced glycation end products); partly complex-bound with intracellular fragments like nucleosomes. Soluble RAGE in the extracellular space, however, acts as a decoy receptor by binding to HMGB1 and inhibiting its effects. This review aims to outline today’s knowledge of structure, intra- and extracellular functions including mechanisms of release and finally the clinical relevance of HMGB1 and RAGE as clinical biomarkers in therapy monitoring, prediction and prognosis of malignant and autoimmune disease.
Collapse
|