1
|
Ling X, Shen J, Liang J, Yang K, Yang J. Comparison of the Cecum Ligation and Puncture Method and the Intraperitoneal Lipopolysaccharide Injection Method for the Construction of a New-Onset Atrial Fibrillation Model of Sepsis. J Inflamm Res 2024; 17:9103-9117. [PMID: 39583857 PMCID: PMC11585273 DOI: 10.2147/jir.s485142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
Background New-onset atrial fibrillation (AF) in sepsis significantly impacted patient morbidity and mortality, yet the optimal animal model for studying this condition remains undetermined. This study aimed to establish a stable animal model for new-onset AF in sepsis and to explore the molecular mechanisms involved. Methods Forty-seven Sprague-Dawley rats were utilized, with the cecal ligation and puncture (CLP) group divided into 0.6 mm and 1.0 mm needle outer diameter subgroups, and the lipopolysaccharide (LPS) group into 5 mg/kg, 10 mg/kg, 15 mg/kg, and 20 mg/kg dosage subgroups. The incidence of new-onset AF and five-day mortality rates were compared to identify the most stable modeling conditions. Selected subgroups underwent further analysis, including cardiac ultrasound, electrophysiology, and pathological examinations. Inflammation-related molecular levels in the atrium were assessed using ELISA and Western blotting (WB). Results The intraperitoneal injection of 10 mg/kg LPS was identified as the most stable model for new-onset AF in sepsis, with significant findings including increased left atrial area and fibrosis, left ventricular pump dysfunction, uncoordinated ventricular wall motion, and impaired electrical impulse conduction. The effective atrial refractory period was markedly shorter, and susceptibility to AF was higher in the LPS group compared to the CLP group. Molecular analysis revealed elevated levels of NOD-like receptor protein 3(NLRP3) inflammasomes, apoptosis-associated speck-like protein containing a CARD(ASC), Caspase-1 p20 Elevated levels of three inflammation-related proteins and increased activity of the Sphingosine 1-phosphate/Sphingosine 1-phosphate Receptor 2(S1P/S1P2) signaling axis. Conclusion Intraperitoneal injection of 10 mg/kg of LPS can successfully construct a new-onset AF model in sepsis, and NLRP3 inflammatory vesicles mediated by the S1P/S1P2 signaling axis may promote new-onset AF in sepsis.
Collapse
Affiliation(s)
- Xiuwen Ling
- Emergency & Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, People’s Republic of China
| | - Jun Shen
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Junqing Liang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Kai Yang
- Emergency & Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, People’s Republic of China
| | - Jianzhong Yang
- Emergency & Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, People’s Republic of China
| |
Collapse
|
2
|
Li C, Zhang Y, Shen J, Bao H, Zhao Y, Li D, Li S, Liu Y, Yang J, Zhou Z, Gao K, Zhao L, Pei Y, Lu Y, Pan Z, Cai B. Cfp1 Controls Cardiomyocyte Maturation by Modifying Histone H3K4me3 of Structural, Metabolic, and Contractile Related Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305992. [PMID: 38196272 PMCID: PMC10953565 DOI: 10.1002/advs.202305992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/26/2023] [Indexed: 01/11/2024]
Abstract
Cardiomyocyte maturation is the final stage of heart development, and abnormal cardiomyocyte maturation will lead to serious heart diseases. CXXC zinc finger protein 1 (Cfp1), a key epigenetic factor in multi-lineage cell development, remains underexplored in its influence on cardiomyocyte maturation. This study investigates the role and mechanisms of Cfp1 in this context. Cardiomyocyte-specific Cfp1 knockout (Cfp1-cKO) mice died within 4 weeks of birth. Cardiomyocytes derived from Cfp1-cKO mice showed an inhibited maturation phenotype, characterized by structural, metabolic, contractile, and cell cycle abnormalities. In contrast, cardiomyocyte-specific Cfp1 transgenic (Cfp1-TG) mice and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) overexpressing Cfp1 displayed a more mature phenotype. Mechanistically, deficiency of Cfp1 led to a reduction in trimethylation on lysine 4 of histone H3 (H3K4me3) modification, accompanied by the formation of ectopic H3K4me3. Furthermore, Cfp1 deletion decreased the level of H3K4me3 modification in adult genes and increased the level of H3K4me3 modification in fetal genes. Collectively, Cfp1 modulates the expression of genes crucial to cardiomyocyte maturation by regulating histone H3K4me3 modification, thereby intricately influencing the maturation process. This study implicates Cfp1 as an important molecule regulating cardiomyocyte maturation, with its dysfunction strongly linked to cardiac disease.
Collapse
Affiliation(s)
- Changzhu Li
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Yang Zhang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Jingling Shen
- Institute of Life SciencesCollege of Life and Environmental SciencesWenzhou UniversityWenzhou325035P. R. China
| | - Hairong Bao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Yue Zhao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Desheng Li
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Sijia Li
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Yining Liu
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Jiming Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Zhiwen Zhou
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Kangyi Gao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Lexin Zhao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Yao Pei
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Yanjie Lu
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Zhenwei Pan
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical Sciences2019 Research Unit 070HarbinHeilongjiang150086P. R. China
- Key Laboratory of Cell TransplantationThe First Affiliated HospitalHarbin Medical UniversityP. R. China
| | - Benzhi Cai
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| |
Collapse
|
3
|
Song Q, Wang X, Cao Z, Xin C, Zhang J, Li S. The Apelin/APJ System: A Potential Therapeutic Target for Sepsis. J Inflamm Res 2024; 17:313-330. [PMID: 38250143 PMCID: PMC10800090 DOI: 10.2147/jir.s436169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Apelin is the native ligand for the G protein-coupled receptor APJ. Numerous studies have demonstrated that the Apelin/APJ system has positive inotropic, anti-inflammatory, and anti-apoptotic effects and regulates fluid homeostasis. The Apelin/APJ system has been demonstrated to play a protective role in sepsis and may serve as a promising therapeutic target for the treatment of sepsis. Better understanding of the mechanisms of the effects of the Apelin/APJ system will aid in the development of novel drugs for the treatment of sepsis. In this review, we provide a brief overview of the physiological role of the Apelin/APJ system and its role in sepsis.
Collapse
Affiliation(s)
- Qing Song
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Xi Wang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Zhenhuan Cao
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Chun Xin
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Jingyuan Zhang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Suwei Li
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
4
|
Xu Y, Zhang X, Tang X, Zhang C, Cahoon JG, Wang Y, Li H, Lv X, Wang Y, Wang Z, Wang H, Yang D. Dexmedetomidine post-treatment exacerbates metabolic disturbances in septic cardiomyopathy via α 2A-adrenoceptor. Biomed Pharmacother 2024; 170:115993. [PMID: 38091635 DOI: 10.1016/j.biopha.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Cardiomyopathy is a common complication and significantly increases the risk of death in septic patients. Our previous study demonstrated that post-treatment with dexmedetomidine (DEX) aggravates septic cardiomyopathy. However, the mechanisms for the side effect of DEX post-treatment on septic cardiomyopathy are not well-defined. Here we employed a cecal ligation and puncture (CLP) model and α2A-adrenoceptor deficient (Adra2a-/-) mice to observe the effects of DEX post-treatment on myocardial metabolic disturbances in sepsis. CLP mice displayed significant cardiac dysfunction, altered mitochondrial dynamics, reduced cardiac lipid and glucose uptake, impaired fatty acid and glucose oxidation, enhanced glycolysis and decreased ATP production in the myocardium, almost all of which were dramatically enhanced by DEX post-treatment in septic mice. In Adra2a-/- mice, DEX post-treatment did not affect cardiac dysfunction and metabolic disruptions in CLP-induced sepsis. Additionally, Adra2a-/- mice exhibited impaired cardiac function, damaged myocardial mitochondrial structures, and disturbed fatty acid metabolism and glucose oxidation. In sum, DEX post-treatment exacerbates metabolic disturbances in septic cardiomyopathy in a α2A-adrenoceptor dependent manner.
Collapse
Affiliation(s)
- Yaqian Xu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xue Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiangxu Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chanjuan Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Yingwei Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Duomeng Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
5
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Yuecel G, Zhou X, Terkatz L, Wendel A, Reinhardt J, El-Battrawy I, Sattler K, Cyganek L, Utikal J, Langer H, Scharf R, Duerschmied D, Akin I. Flagellin-Induced Immune Response in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:13933. [PMID: 37762236 PMCID: PMC10531389 DOI: 10.3390/ijms241813933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) are involved in the pathogenesis of septic cardiomyopathy through a toll-like receptor (TLR)-mediated immune response. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can reflect the innate immune abilities of cardiomyocytes. Therefore, hiPSC-CMs may provide an attractive tool with which to study PAMP-induced alterations in cardiomyocytes. HiPSC-CMs from two different healthy donors were exposed to the PAMP flagellin (FLA) at different doses and exposure times. Alterations in the expression levels of distinct inflammation-associated cytokines, intracellular inflammation pathways including TLR5 downstream signaling, reactive oxygen species levels and surface antigen composition were assessed using PCR, ELISA and FACS techniques. Higher doses of flagellin increased the expression levels of inflammation-associated cytokines like TNFα (p < 0.01) and downstream signaling molecules like caspase-8 (p < 0.05). TLR5 expression (p < 0.01) and TLR5 fluorescence proportion (p < 0.05) increased in hiPSC-CMs after prolonged FLA exposure. FLA-induced innate immune response processes in cardiomyocytes might be detectable with an hiPSC-CMs-based in vitro model.
Collapse
Affiliation(s)
- Goekhan Yuecel
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Linda Terkatz
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Pediatric Surgery and Pediatric Urology, Children’s Hospital of Cologne, 50735 Cologne, Germany
| | - Angela Wendel
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Julius Reinhardt
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Ibrahim El-Battrawy
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Katherine Sattler
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), Partner Site, 37075 Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology and DKFZ Hector Cancer Institute, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Harald Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Ruediger Scharf
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Li R, Huang W. Yes-Associated Protein and Transcriptional Coactivator with PDZ-Binding Motif in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24021666. [PMID: 36675179 PMCID: PMC9861006 DOI: 10.3390/ijms24021666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Yes-associated protein (YAP, also known as YAP1) and its paralogue TAZ (with a PDZ-binding motif) are transcriptional coactivators that switch between the cytoplasm and nucleus and regulate the organ size and tissue homeostasis. This review focuses on the research progress on YAP/TAZ signaling proteins in myocardial infarction, cardiac remodeling, hypertension and coronary heart disease, cardiomyopathy, and aortic disease. Based on preclinical studies on YAP/TAZ signaling proteins in cellular/animal models and clinical patients, the potential roles of YAP/TAZ proteins in some cardiovascular diseases (CVDs) are summarized.
Collapse
|
8
|
Kuo FY, Lee SP, Cheng JT, Wu MC. The direct effect of lipopolysaccharide on an isolated heart is different from the effect on cardiac myocytes in vitro. Arch Med Sci 2023; 19:216-228. [PMID: 36817673 PMCID: PMC9897085 DOI: 10.5114/aoms.2019.86976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/04/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Lipopolysaccharide (LPS) is widely used to induce experimental animals. However, its effects on cardiac contraction is controversial. Although LPS probably induces its influence in vivo both directly and indirectly, we focused on the direct effects of LPS in this report. MATERIAL AND METHODS Isolated ventricular myocytes mounted on a Langendorff apparatus were perfused with LPS. The changes in cultured H9c2 cells incubated with LPS over a 3-h exposure were compared with the changes after a 24-h incubation. Apoptosis was identified using flow cytometry and Western blotting. The mRNA levels were also determined. RESULTS LPS directly stimulated cardiac contractility at low doses, although it produced inhibition at higher doses. The TLR4-coupled JAK2/STAT3 pathway was identified in H9c2 cells after LPS treatment, with an increase in intracellular calcium levels. LPS dose-dependently activated hypertrophic signals in H9c2 cells and induced apoptosis at the high dose. However, apoptosis was observed in H9c2 cells after a 24-h exposure to LPS, even at low doses. This observation appears to be associated with the level of paracrine cytokines. Changes in H9c2 cells by LPS were diminished by NPS2390, an inhibitor of the calcium-sensing receptor (CaSR). LPS also promoted CaSR mRNA expression in H9c2 cells, which may be unrelated to the changes in cytokine expression influenced by an inflammasome inhibitor. CONCLUSIONS In contrast to the isolated hearts, LPS activated hypertrophic signals prior to apoptotic signals in cardiac cells. Thus, LPS injury appears to be associated with CaSR, which was not markedly influenced by an inflammasome inhibitor.
Collapse
Affiliation(s)
- Feng Yu Kuo
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Cardiovascular Centre, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shu Ping Lee
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Centre, Tainan, Taiwan
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
9
|
Temiz Artmann A, Kurulgan Demirci E, Fırat IS, Oflaz H, Artmann GM. Recombinant Activated Protein C (rhAPC) Affects Lipopolysaccharide-Induced Mechanical Compliance Changes and Beat Frequency of mESC-Derived Cardiomyocyte Monolayers. Shock 2022; 57:544-552. [PMID: 34416756 PMCID: PMC8906254 DOI: 10.1097/shk.0000000000001845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Septic cardiomyopathy increases mortality by 70% to 90% and results in mechanical dysfunction of cells. METHODS Here, we created a LPS-induced in-vitro sepsis model with mouse embryonic stem cell-derived cardiomyocytes (mESC-CM) using the CellDrum technology which simultaneously measures mechanical compliance and beat frequency of mESCs. Visualization of reactive oxygen species (ROS), actin stress fibers, and mRNA quantification of endothelial protein C receptor (EPCR) and protease-activated receptor 1 (PAR1) before/after LPS incubation were used for method validation. Since activated protein C (APC) has cardioprotective effects, samples were treated with human recombinant APC (rhAPC) with/-out LPS predamage to demonstrate the application in therapeutic studies. RESULTS Twelve hours LPS treatment (5 μg/mL) increased ROS and decreased actin stress fiber density and significantly downregulated EPCR and PAR1 compared to control samples (0.26, 0.39-fold respectively). rhAPC application (5 μg/mL, 12 h) decreased ROS and recovered actin density, EPCR, and PAR1 levels were significantly upregulated compared to LPS predamaged samples (4.79, 3.49-fold respectively). The beat frequencies were significantly decreased after 6- (86%) and 12 h (73%) of LPS application. Mechanical compliance of monolayers significantly increased in a time-dependent manner, up to eight times upon 12-h LPS incubation compared to controls. rhAPC incubation increased the beat frequency by 127% (6h-LPS) and 123% (12h-LPS) and decreased mechanical compliance by 68% (12h-LPS) compared to LPS predamaged samples. CONCLUSION LPS-induced contraction dysfunction and the reversal effects of rhAPC were successfully assessed by the mechanical properties of mESC-CMs. The CellDrum technology proved a decent tool to simulate sepsis in-vitro.
Collapse
Affiliation(s)
- Aysegül Temiz Artmann
- Institute for Bioengineering, University of Applied Sciences Aachen/Campus Juelich, Juelich, Germany
| | - Eylem Kurulgan Demirci
- Institute for Bioengineering, University of Applied Sciences Aachen/Campus Juelich, Juelich, Germany
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Campus Gulbahce, URLA, Izmir, Turkey
| | - Ipek Seda Fırat
- Institute for Bioengineering, University of Applied Sciences Aachen/Campus Juelich, Juelich, Germany
| | - Hakan Oflaz
- Bioengineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Gerhard M. Artmann
- Institute for Bioengineering, University of Applied Sciences Aachen/Campus Juelich, Juelich, Germany
| |
Collapse
|
10
|
Xue GL, Li DS, Wang ZY, Liu Y, Yang JM, Li CZ, Li XD, Ma JD, Zhang MM, Lu YJ, Li Y, Yang BF, Pan ZW. Interleukin-17 upregulation participates in the pathogenesis of heart failure in mice via NF-κB-dependent suppression of SERCA2a and Cav1.2 expression. Acta Pharmacol Sin 2021; 42:1780-1789. [PMID: 33589793 DOI: 10.1038/s41401-020-00580-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
Interleukin-17 (IL-17), also called IL-17A, is an important regulator of cardiac diseases, but its role in calcium-related cardiac dysfunction remains to be explored. Thus, we investigated the influence of IL-17 on calcium handling process and its contribution to the development of heart failure. Mice were subjected to transaortic constriction (TAC) to induce heart failure. In these mice, the levels of IL-17 in the plasma and cardiac tissue were significantly increased compared with the sham group. In 77 heart failure patients, the plasma level of IL-17 was significantly higher than 49 non-failing subjects, and was negatively correlated with cardiac ejection fraction and fractional shortening. In IL-17 knockout mice, the shortening of isolated ventricular myocytes was increased compared with that in wild-type mice, which was accompanied by significantly increased amplitude of calcium transient and the upregulation of SERCA2a and Cav1.2. In cultured neonatal cardiac myocytes, treatment of with IL-17 (0.1, 1 ng/mL) concentration-dependently suppressed the amplitude of calcium transient and reduced the expression of SERCA2a and Cav1.2. Furthermore, IL-17 treatment increased the expression of the NF-κB subunits p50 and p65, whereas knockdown of p50 reversed the inhibitory effects of IL-17 on SERCA2a and Cav1.2 expression. In mice with TAC-induced mouse heart, IL-17 knockout restored the expression of SERCA2a and Cav1.2, increased the amplitude of calcium transient and cell shortening, and in turn improved cardiac function. In addition, IL-17 knockout attenuated cardiac hypertrophy with inhibition of calcium-related signaling pathway. In conclusion, upregulation of IL-17 impairs cardiac function through NF-κB-mediated disturbance of calcium handling and cardiac remodeling. Inhibition of IL-17 represents a potential therapeutic strategy for the treatment of heart failure.
Collapse
|
11
|
Xu M, Li XY, Song L, Tao C, Fang J, Tao L. miR-484 targeting of Yap1-induced LPS-inhibited proliferation, and promoted apoptosis and inflammation in cardiomyocyte. Biosci Biotechnol Biochem 2021; 85:378-385. [PMID: 33604630 DOI: 10.1093/bbb/zbaa009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 11/12/2022]
Abstract
Apoptosis and inflammation were the main hallmarks of sepsis-induced cardiomyopathy (SIC). Yes-associated protein isoform 1 (Yap1) and miR-484 were involved in mitochondrial fission and apoptosis, especially proapoptotic roles in SIC. Here, we investigated the role of Yap1 and miR-484 in lipopolysaccharide (LPS)-treated H9c2 cells. Yap1 was downregulated, while miR-484 was elevated by LPS treatment. Cell counting kit-8, flow cytometry, western blotting, and ELISA showed that miR-484 inhibitor significantly improved cell viability, decreased apoptosis, suppressed NLRP3 inflammasome formation, and reduced secretion of inflammatory cytokines TNF-α, IL-1β, and IL-6. Yap1, directly targeted by miR-484 shown in the luciferase assay, was more like a compensatory regulator of LPS stimulation. Knockdown of Yap1 inverted the effects of miR-484 inhibitor, including decreased cell viability, and promoted apoptosis and inflammation. These revealed miR-484 directly targeted mRNA of Yap1 to inhibit cell viability, and promote apoptosis and inflammation in LPS-treated H9c2 cells.
Collapse
Affiliation(s)
- Ming Xu
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| | - Xiao-Yong Li
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| | - Laichun Song
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| | - Chao Tao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| | - Jihui Fang
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| | - Liang Tao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| |
Collapse
|
12
|
Gao Y, Sun Y, Ercan-Sencicek AG, King JS, Akerberg BN, Ma Q, Kontaridis MI, Pu WT, Lin Z. YAP/TEAD1 Complex Is a Default Repressor of Cardiac Toll-Like Receptor Genes. Int J Mol Sci 2021; 22:6649. [PMID: 34206257 PMCID: PMC8268263 DOI: 10.3390/ijms22136649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that modulate innate immune responses and play essential roles in the pathogenesis of heart diseases. Although important, the molecular mechanisms controlling cardiac TLR genes expression have not been clearly addressed. This study examined the expression pattern of Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, Tlr8, and Tlr9 in normal and disease-stressed mouse hearts. Our results demonstrated that the expression levels of cardiac Tlr3, Tlr7, Tlr8, and Tlr9 increased with age between neonatal and adult developmental stages, whereas the expression of Tlr5 decreased with age. Furthermore, pathological stress increased the expression levels of Tlr2, Tlr4, Tlr5, Tlr7, Tlr8, and Tlr9. Hippo-YAP signaling is essential for heart development and homeostasis maintenance, and YAP/TEAD1 complex is the terminal effector of this pathway. Here we found that TEAD1 directly bound genomic regions adjacent to Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, and Tlr9. In vitro, luciferase reporter data suggest that YAP/TEAD1 repression of Tlr4 depends on a conserved TEAD1 binding motif near Tlr4 transcription start site. In vivo, cardiomyocyte-specific YAP depletion increased the expression of most examined TLR genes, activated the synthesis of pro-inflammatory cytokines, and predisposed the heart to lipopolysaccharide stress. In conclusion, our data indicate that the expression of cardiac TLR genes is associated with age and activated by pathological stress and suggest that YAP/TEAD1 complex is a default repressor of cardiac TLR genes.
Collapse
Affiliation(s)
- Yunan Gao
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yan Sun
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
| | - Adife Gulhan Ercan-Sencicek
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Justin S. King
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Brynn N. Akerberg
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Maria I. Kontaridis
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
| |
Collapse
|
13
|
Chen YH, Teng X, Hu ZJ, Tian DY, Jin S, Wu YM. Hydrogen Sulfide Attenuated Sepsis-Induced Myocardial Dysfunction Through TLR4 Pathway and Endoplasmic Reticulum Stress. Front Physiol 2021; 12:653601. [PMID: 34177611 PMCID: PMC8220204 DOI: 10.3389/fphys.2021.653601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aims: We examined the change in endogenous hydrogen sulfide (H2S) production and its role in sepsis-induced myocardial dysfunction (SIMD). Results: Significant elevations in plasma cardiac troponin I (cTnI), creatine kinase (CK), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were noted in SIMD patients, whereas left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and plasma H2S were significantly decreased relative to those in the controls. Plasma H2S was linearly related to LVEF and LVFS. Subsequently, an SIMD model was developed in mice by injecting lipopolysaccharide (LPS), and NaHS, an H2S donor, was used to elucidate the pathophysiological role of H2S. The mice showed decreased ventricular function and increased levels of TNF-α, IL-1β, cTnI, and CK after LPS injections. Toll-like receptor (TLR) 4 protein and endoplasmic reticulum stress (ERS) proteins were over expressed in the SIMD mice. All of the parameters above showed more noticeable variations in cystathionine γ-lyase knockout mice relative to those in wild type mice. The administration of NaHS could improve ventricular function and attenuate inflammation and ERS in the heart. Conclusion: Overall, these findings indicated that endogenous H2S deficiency contributed to SIMD and exogenous H2S ameliorated sepsis-induced myocardial dysfunction by suppressing inflammation and ERS via inhibition of the TLR4 pathway.
Collapse
Affiliation(s)
- Yu-Hong Chen
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Zhen-Jie Hu
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Yang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China.,Key Laboratory of Vascular Medicine of Hebei Province, Shijiazhuang, China
| |
Collapse
|
14
|
Li J, Zhang Y, Zhang D, Li Y. The Role of Long Non-coding RNAs in Sepsis-Induced Cardiac Dysfunction. Front Cardiovasc Med 2021; 8:684348. [PMID: 34041287 PMCID: PMC8141560 DOI: 10.3389/fcvm.2021.684348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a syndrome with life-threatening organ dysfunction induced by a dysregulated host response to infection. The heart is one of the most commonly involved organs during sepsis, and cardiac dysfunction, which is usually indicative of an extremely poor clinical outcome, is a leading cause of death in septic cases. Despite substantial improvements in the understanding of the mechanisms that contribute to the origin and responses to sepsis, the prognosis of sepsis-induced cardiac dysfunction (SICD) remains poor and its molecular pathophysiological changes are not well-characterized. The recently discovered group of mediators known as long non-coding RNAs (lncRNAs) have presented novel insights and opportunities to explore the mechanisms and development of SICD and may provide new targets for diagnosis and therapeutic strategies. LncRNAs are RNA transcripts of more than 200 nucleotides with limited or no protein-coding potential. Evidence has rapidly accumulated from numerous studies on how lncRNAs function in associated regulatory circuits during SICD. This review outlines the direct evidence of the effect of lncRNAs on SICD based on clinical trials and animal studies. Furthermore, potential functional lncRNAs in SICD that have been identified in sepsis studies are summarized with a proven biological function in research on other cardiovascular diseases.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yulin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Fan J, Li H, Xie R, Zhang X, Nie X, Shi X, Zhan J, Yin Z, Zhao Y, Dai B, Yuan S, Wen Z, Chen C, Wang DW. LncRNA ZNF593-AS Alleviates Contractile Dysfunction in Dilated Cardiomyopathy. Circ Res 2021; 128:1708-1723. [PMID: 33550812 DOI: 10.1161/circresaha.120.318437] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Xiang Nie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Xiaolu Shi
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China (X.S.)
| | - Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Zhongwei Yin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Yanru Zhao
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Beibei Dai
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| |
Collapse
|
16
|
Heijman J, Muna AP, Veleva T, Molina CE, Sutanto H, Tekook M, Wang Q, Abu-Taha IH, Gorka M, Künzel S, El-Armouche A, Reichenspurner H, Kamler M, Nikolaev V, Ravens U, Li N, Nattel S, Wehrens XHT, Dobrev D. Atrial Myocyte NLRP3/CaMKII Nexus Forms a Substrate for Postoperative Atrial Fibrillation. Circ Res 2020; 127:1036-1055. [PMID: 32762493 DOI: 10.1161/circresaha.120.316710] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Postoperative atrial fibrillation (POAF) is a common and troublesome complication of cardiac surgery. POAF is generally believed to occur when postoperative triggers act on a preexisting vulnerable substrate, but the underlying cellular and molecular mechanisms are largely unknown. OBJECTIVE To identify cellular POAF mechanisms in right atrial samples from patients without a history of atrial fibrillation undergoing open-heart surgery. METHODS AND RESULTS Multicellular action potentials, membrane ion-currents (perforated patch-clamp), or simultaneous membrane-current (ruptured patch-clamp) and [Ca2+]i-recordings in atrial cardiomyocytes, along with protein-expression levels in tissue homogenates or cardiomyocytes, were assessed in 265 atrial samples from patients without or with POAF. No indices of electrical, profibrotic, or connexin remodeling were noted in POAF, but Ca2+-transient amplitude was smaller, although spontaneous sarcoplasmic reticulum (SR) Ca2+-release events and L-type Ca2+-current alternans occurred more frequently. CaMKII (Ca2+/calmodulin-dependent protein kinase-II) protein-expression, CaMKII-dependent phosphorylation of the cardiac RyR2 (ryanodine-receptor channel type-2), and RyR2 single-channel open-probability were significantly increased in POAF. SR Ca2+-content was unchanged in POAF despite greater SR Ca2+-leak, with a trend towards increased SR Ca2+-ATPase activity. Patients with POAF also showed stronger expression of activated components of the NLRP3 (NACHT, LRR, and PYD domains-containing protein-3)-inflammasome system in atrial whole-tissue homogenates and cardiomyocytes. Acute application of interleukin-1β caused NLRP3-signaling activation and CaMKII-dependent RyR2/phospholamban hyperphosphorylation in an immortalized mouse atrial cardiomyocyte cell-line (HL-1-cardiomyocytes) and enhanced spontaneous SR Ca2+-release events in both POAF cardiomyocytes and HL-1-cardiomyocytes. Computational modeling showed that RyR2 dysfunction and increased SR Ca2+-uptake are sufficient to reproduce the Ca2+-handling phenotype and indicated an increased risk of proarrhythmic delayed afterdepolarizations in POAF subjects in response to interleukin-1β. CONCLUSIONS Preexisting Ca2+-handling abnormalities and activation of NLRP3-inflammasome/CaMKII signaling are evident in atrial cardiomyocytes from patients who subsequently develop POAF. These molecular substrates sensitize cardiomyocytes to spontaneous Ca2+-releases and arrhythmogenic afterdepolarizations, particularly upon exposure to inflammatory mediators. Our data reveal a potential cellular and molecular substrate for this important clinical problem.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.).,Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands (J.H., H.S.,)
| | - Azinwi Phina Muna
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| | - Tina Veleva
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| | - Cristina E Molina
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.).,Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (C.E.M., V.N.)
| | - Henry Sutanto
- Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands (J.H., H.S.,)
| | - Marcel Tekook
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| | - Qiongling Wang
- Cardiovascular Research Institute (Q.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Molecular Physiology and Biophysics, Medicine, Pediatrics, Neuroscience, and Center for Space Medicine (Q.W., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Issam H Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| | - Marcel Gorka
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| | - Stephan Künzel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.).,Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Dresden, Germany (S.K., A.E.-A.)
| | - Ali El-Armouche
- Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Dresden, Germany (S.K., A.E.-A.)
| | - Hermann Reichenspurner
- Cardiovascular Surgery, University Heart Center Hamburg and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (H.R.)
| | - Markus Kamler
- Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany (M.K.)
| | - Viacheslav Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (C.E.M., V.N.)
| | - Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany (U.R.).,Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany (U.R.)
| | - Na Li
- Cardiovascular Research Institute (Q.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Medicine (Section of Cardiovascular Research) (N.L.), Baylor College of Medicine, Houston, TX
| | - Stanley Nattel
- Medicine, Montreal Heart Institute and Université de Montréal & Department of Pharmacology and Therapeutics, McGill University Montreal, Canada (S.N.).,IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France (S.N.)
| | - Xander H T Wehrens
- Cardiovascular Research Institute (Q.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Molecular Physiology and Biophysics, Medicine, Pediatrics, Neuroscience, and Center for Space Medicine (Q.W., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (J.H., A.P.M., T.V., C.E.M., M.T., I.H.A.-T., M.G., S.N., D.D.)
| |
Collapse
|
17
|
Poveda-Jaramillo R. Heart Dysfunction in Sepsis. J Cardiothorac Vasc Anesth 2020; 35:298-309. [PMID: 32807603 DOI: 10.1053/j.jvca.2020.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/11/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
Abstract
Cardiac involvement during sepsis frequently occurs. A series of molecules induces a set of changes at the cellular level that result in the malfunction of the myocardium. The understanding of these molecular alterations has simultaneously promoted the implementation of diagnostic strategies that are much more precise and allowed the advance of the therapeutics. The heart is a vital organ for survival. Its well-being ensures the adequate supply of essential elements for organs and tissues.
Collapse
|
18
|
Yoshida T, Das NA, Carpenter AJ, Izadpanah R, Kumar SA, Gautam S, Bender SB, Siebenlist U, Chandrasekar B. Minocycline reverses IL-17A/TRAF3IP2-mediated p38 MAPK/NF-κB/iNOS/NO-dependent cardiomyocyte contractile depression and death. Cell Signal 2020; 73:109690. [PMID: 32553549 DOI: 10.1016/j.cellsig.2020.109690] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
Minocycline, an FDA-approved second-generation semisynthetic tetracycline, exerts antioxidant, anti-apoptotic and anti-inflammatory effects, independent of its antimicrobial properties. Interleukin (IL)-17A is an immune and inflammatory mediator, and its sustained induction is associated with various cardiovascular diseases. Here we investigated (i) whether IL-17A induces cardiomyocyte contractile depression and death, (ii) whether minocycline reverses IL-17A's negative inotropic effects and (iii) investigated the underlying molecular mechanisms. Indeed, treatment with recombinant mouse IL-17A impaired adult cardiomyocyte contractility as evidenced by a 34% inhibition in maximal velocity of shortening and relengthening after 4 h (P < .01). Contractile depression followed iNOS induction at 2 h (2.13-fold, P < .01) and NO generation at 3 h (3.71-fold, P <.01). Further mechanistic investigations revealed that IL-17A-dependent induction of iNOS occurred via TRAF3IP2, TRAF6, TAK1, NF-κB, and p38MAPK signaling. 1400 W, a highly specific iNOS inhibitor, suppressed IL-17A-induced NO generation and contractile depression, where as the NO donors SNAP and PAPA-NONOate both suppressed cardiomyocyte contractility. IL-17A also stimulated cardiomyocyte IL-1β and TNF-α secretion, however, their neutralization failed to modulate IL-17A-mediated contractile depression or viability. Further increases of IL-17A concentration and the duration of exposure enhanced IL-1β and TNF-α secreted levels, buthad no impact on adult cardiomyocyte viability. However, when combined with pathophysiological concentrations of IL-1β or TNF-α, IL-17A promoted adult cardiomyocyte death. Importantly, minocycline blunted IL-17A-mediated deleterious effects, indicating its therapeutic potential in inflammatory cardiac diseases.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nitin A Das
- Cardiothoracic Surgery, UT Health, San Antonio, TX 78229, USA
| | | | - Reza Izadpanah
- Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Senthil A Kumar
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Sandeep Gautam
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bysani Chandrasekar
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
19
|
Baradaran Rahim V, Khammar MT, Rakhshandeh H, Samzadeh-Kermani A, Hosseini A, Askari VR. Crocin protects cardiomyocytes against LPS-Induced inflammation. Pharmacol Rep 2019; 71:1228-1234. [PMID: 31670059 DOI: 10.1016/j.pharep.2019.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/23/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sepsis causes organ dysfunctions via elevation of oxidative stress and inflammation. Lipopolysaccharide (LPS) is the major surface molecule of most gram-negative bacteria and routinely used as a sepsis model in investigation studies. Crocin is an active compound of saffron which has different pharmacological properties such as anti-oxidant and anti-inflammatory. In this research, the protective effect of crocin was evaluated against LPS-induced toxicity in the embryonic cardiomyocyte cell line (H9c2). METHODS The cells were pre-treated with different concentration of crocin (10, 20 and 40 μM) for 24 h, and then LPS was added (10 μg/ml) for another 24 h. Afterward, the percentage of cell viability and the levels of inflammatory cytokines (TNF-α, PGE2, IL-1β, and IL-6), gene expression levels (TNF-α, COX-2, IL-1β, IL-6, and iNOS), and the level of nitric oxide (NO) and thiol were measured. RESULTS Our results showed that LPS reduced cell viability, increased the levels of cytokines, gene-expression, nitric oxide, and thiol. Crocin attenuated the LPS-induced toxicity in H9c2 cells via reducing the levels of inflammatory factors (TNF-α, PGE2, IL-1β, and IL-6, p < 0.001), gene expression (TNF-α, COX-2, IL-1β, IL-6, and iNOS, p < 0.001), and NO (p < 0.001), whereas increased the level of thiol content (p < 0.001). CONCLUSION The observed results revealed that crocin has preventive effects on the LPS induced sepsis and its cardiac toxicity in-vitro model. Probably, these findings are related to anti-inflammatory and anti-oxidant properties of crocin. However, performing further animal studies are necessary to support the therapeutic effects of crocin in septic shock cardiac dysfunction.
Collapse
Affiliation(s)
- Vafa Baradaran Rahim
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Khammar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Gonçalves MC, Horewicz VV, Lückemeyer DD, Prudente AS, Assreuy J. Experimental Sepsis Severity Score Associated to Mortality and Bacterial Spreading is Related to Bacterial Load and Inflammatory Profile of Different Tissues. Inflammation 2018; 40:1553-1565. [PMID: 28567497 DOI: 10.1007/s10753-017-0596-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pneumonia-induced sepsis is responsible for about 50% of cases in the world. Patients who develop severe sepsis and septic shock present organ dysfunction and elevated plasma cytokine levels, which may lead to death. Clinical scores are important to evaluate the framework of septic patients and are used to predict the syndrome progress, prognostics, and mortality. The objective of the present study was to verify the applicability of a murine clinical score system to experimental sepsis (pneumonia-induced sepsis in male mice) and to correlate it with mortality and bacterial dissemination in different organs. Results demonstrated that animals which present higher clinical scores (>3) are more likely to die. Animals presenting high clinical scores exhibited transient bacteremia and displayed bacterial spreading to different organs such as heart, kidney, liver, and brain. There is a correlation between clinical score and bacterial dissemination and consequently greater risk of death. In addition, animals which showed bacterial dissemination in more than three organs and high clinical scores presented high levels of cytokines (TNF-α, MCP-1, IL-6, and IL-10) in plasma, lung, heart, liver, kidney, and brain. Therefore, our study suggests that (1) severity scores have predictive power in experimental models of sepsis and (2) high concentrations of tissue cytokines may contribute to localized inflammation and be one of the factors responsible for the systemic inflammatory syndrome of sepsis.
Collapse
Affiliation(s)
- Muryel Carvalho Gonçalves
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Verônica Vargas Horewicz
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora Denardin Lückemeyer
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Arthur Silveira Prudente
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil. .,Department of Pharmacology, Block D/CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
21
|
Fattahi F, Frydrych LM, Bian G, Kalbitz M, Herron TJ, Malan EA, Delano MJ, Ward PA. Role of complement C5a and histones in septic cardiomyopathy. Mol Immunol 2018; 102:32-41. [PMID: 29914696 DOI: 10.1016/j.molimm.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022]
Abstract
Polymicrobial sepsis (after cecal ligation and puncture, CLP) causes robust complement activation with release of C5a. Many adverse events develop thereafter and will be discussed in this review article. Activation of complement system results in generation of C5a which interacts with its receptors (C5aR1, C5aR2). This leads to a series of harmful events, some of which are connected to the cardiomyopathy of sepsis, resulting in defective action potentials in cardiomyocytes (CMs), activation of the NLRP3 inflammasome in CMs and the appearance of extracellular histones, likely arising from activated neutrophils which form neutrophil extracellular traps (NETs). These events are associated with activation of mitogen-activated protein kinases (MAPKs) in CMs. The ensuing release of histones results in defective action potentials in CMs and reduced levels of [Ca2+]i-regulatory enzymes including sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) and Na+/Ca2+ exchanger (NCX) as well as Na+/K+-ATPase in CMs. There is also evidence that CLP causes release of IL-1β via activation of the NLRP3 inflammasome in CMs of septic hearts or in CMs incubated in vitro with C5a. Many of these events occur after in vivo or in vitro contact of CMs with histones. Together, these data emphasize the role of complement (C5a) and C5a receptors (C5aR1, C5aR2), as well as extracellular histones in events that lead to cardiac dysfunction of sepsis (septic cardiomyopathy).
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lynn M Frydrych
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Guowu Bian
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Miriam Kalbitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Todd J Herron
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elizabeth A Malan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthew J Delano
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
22
|
Han G, Wang HY, Han ZW, Xu CL, Chen GP, Jiang CM. Relationship between CaSRs and LPS-injured cardiomyocytes. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1965-1971. [PMID: 31938302 PMCID: PMC6958229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/05/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Calcium-sensing receptors (CaSRs) regulate systemic calcium homeostasis. Intracellular calcium concentration changes are initiating factors of endoplasmic reticulum stress and cell autophagy. Recent research has revealed that CaSRs play an important role in myocardial ischemia/reperfusion injury and other cardiovascular diseases. However, it remains unclear whether CaSRs are involved in lipopolysaccharide (LPS)-induced cardiomyocyte injury. METHODS Cultured neonatal rat cardiomyocytes were treated with LPS, with or without pretreatment by a CaSR specific agonist SC-211006 or CaSR specific antagonist SC-207394. The ultrastructure of cardiomyocytes was observed using a transmission electron microscope, and the expression of CaSR, GRP78, LC3B, CytC and Bcl-2 proteins were detected by western blot. RESULTS Compared with the control group, LPS increased cardiomyocyte injury and the expression of CaSR, GRP78, LC3B and CytC proteins, but decreased the expression of Bcl-2. Compared with the LPS group, pretreatment with SC-211006 further enhanced cardiomyocyte damage and the expression of CaSR, GRP78, LC3B and CytC, but reduced the expression of Bcl-2. Conversely, pretreatment with SC-207394 decreased cardiomyocyte injury and the protein expression of CaSR, GRP78, LC3B and CytC, but increased the expression of Bcl-2. CONCLUSION Our results suggest that CaSRs are involved in LPS-induced rat cardiomyocyte injury via the activation of endoplasmic reticulum stress and autophagy.
Collapse
Affiliation(s)
- Gang Han
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| | - Hong-Yu Wang
- Department of Neonatology, Children’s Hospital of Zhejiang University School of MedicineHangzhou 310052, China
| | - Zi-Wei Han
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| | - Chun-Lan Xu
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| | - Guo-Ping Chen
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| | - Chun-Ming Jiang
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| |
Collapse
|
23
|
Léger T, Charrier A, Moreau C, Hininger-Favier I, Mourmoura E, Rigaudière JP, Pitois E, Bouvier D, Sapin V, Pereira B, Azarnoush K, Demaison L. Early sepsis does not stimulate reactive oxygen species production and does not reduce cardiac function despite an increased inflammation status. Physiol Rep 2018; 5:5/13/e13231. [PMID: 28684640 PMCID: PMC5506518 DOI: 10.14814/phy2.13231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
If it is sustained for several days, sepsis can trigger severe abnormalities of cardiac function which leads to death in 50% of cases. This probably occurs through activation of toll-like receptor-9 by bacterial lipopolysaccharides and overproduction of proinflammatory cytokines such as TNF-α and IL-1β In contrast, early sepsis is characterized by the development of tachycardia. This study aimed at determining the early changes in the cardiac function during sepsis and at finding the mechanism responsible for the observed changes. Sixty male Wistar rats were randomly assigned to two groups, the first one being made septic by cecal ligation and puncture (sepsis group) and the second one being subjected to the same surgery without cecal ligation and puncture (sham-operated group). The cardiac function was assessed in vivo and ex vivo in standard conditions. Several parameters involved in the oxidative stress and inflammation were determined in the plasma and heart. As evidenced by the plasma level of TNF-α and gene expression of IL-1β and TNF-α in the heart, inflammation was developed in the sepsis group. The cardiac function was also slightly stimulated by sepsis in the in vivo and ex vivo situations. This was associated with unchanged levels of oxidative stress, but several parameters indicated a lower cardiac production of reactive oxygen species in the septic group. In conclusion, despite the development of inflammation, early sepsis did not increase reactive oxygen species production and did not reduce myocardial function. The depressant effect of TNF-α and IL-1β on the cardiac function is known to occur at very high concentrations. The influence of low- to moderate-grade inflammation on the myocardial mechanical behavior must thus be revisited.
Collapse
Affiliation(s)
- Thibault Léger
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France
| | - Alice Charrier
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France
| | - Clarisse Moreau
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France
| | - Isabelle Hininger-Favier
- Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U1055, Université Joseph Fourier, Grenoble, France
| | - Evangelia Mourmoura
- Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U1055, Université Joseph Fourier, Grenoble, France
| | | | - Elodie Pitois
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France
| | - Damien Bouvier
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Department of Clinical Research and Innovation, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Kasra Azarnoush
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France.,Heart Surgery Department, G. Montpied Hospital, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Luc Demaison
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France
| |
Collapse
|
24
|
Zhang Y, Jiao L, Sun L, Li Y, Gao Y, Xu C, Shao Y, Li M, Li C, Lu Y, Pan Z, Xuan L, Zhang Y, Li Q, Yang R, Zhuang Y, Zhang Y, Yang B. LncRNA ZFAS1 as a SERCA2a Inhibitor to Cause Intracellular Ca 2+ Overload and Contractile Dysfunction in a Mouse Model of Myocardial Infarction. Circ Res 2018; 122:1354-1368. [PMID: 29475982 PMCID: PMC5959220 DOI: 10.1161/circresaha.117.312117] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/05/2018] [Accepted: 02/22/2018] [Indexed: 12/28/2022]
Abstract
RATIONALE Ca2+ homeostasis-a critical determinant of cardiac contractile function-is critically regulated by SERCA2a (sarcoplasmic reticulum Ca2+-ATPase 2a). Our previous study has identified ZFAS1 as a new lncRNA biomarker of acute myocardial infarction (MI). OBJECTIVE To evaluate the effects of ZFAS1 on SERCA2a and the associated Ca2+ homeostasis and cardiac contractile function in the setting of MI. METHODS AND RESULTS ZFAS1 expression was robustly increased in cytoplasm and sarcoplasmic reticulum in a mouse model of MI and a cellular model of hypoxia. Knockdown of endogenous ZFAS1 by virus-mediated silencing shRNA partially abrogated the ischemia-induced contractile dysfunction. Overexpression of ZFAS1 in otherwise normal mice created similar impairment of cardiac function as that observed in MI mice. Moreover, at the cellular level, ZFAS1 overexpression weakened the contractility of cardiac muscles. At the subcellular level, ZFAS1 deleteriously altered the Ca2+ transient leading to intracellular Ca2+ overload in cardiomyocytes. At the molecular level, ZFAS1 was found to directly bind SERCA2a protein and to limit its activity, as well as to repress its expression. The effects of ZFAS1 were readily reversible on knockdown of this lncRNA. Notably, a sequence domain of ZFAS1 gene that is conserved across species mimicked the effects of the full-length ZFAS1. Mutation of this domain or application of an antisense fragment to this conserved region efficiently canceled out the deleterious actions of ZFAS1. ZFAS1 had no significant effects on other Ca2+-handling regulatory proteins. CONCLUSIONS ZFAS1 is an endogenous SERCA2a inhibitor, acting by binding to SERCA2a protein to limit its intracellular level and inhibit its activity, and a contributor to the impairment of cardiac contractile function in MI. Therefore, anti-ZFAS1 might be considered as a new therapeutic strategy for preserving SERCA2a activity and cardiac function under pathological conditions of the heart.
Collapse
Affiliation(s)
- Ying Zhang
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Lei Jiao
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Lihua Sun
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Yanru Li
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Yuqiu Gao
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Chaoqian Xu
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Yingchun Shao
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Mengmeng Li
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Chunyan Li
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Yanjie Lu
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Zhenwei Pan
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Lina Xuan
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Yiyuan Zhang
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Qingqi Li
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Rui Yang
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Yuting Zhuang
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Yong Zhang
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.)
| | - Baofeng Yang
- From the Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Heilongjiang, China (Ying Zhang, L.J., L.S., Y. Li, Y.G., C.X., Y.S., M.L., C.L., Y. Lu, Z.P., L.X., Yiyuan Zhang, Q.L., R.Y., Y. Zhuang, Yong Zhang, B.Y.).,Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Dentistry, and Health Sciences, University of Melbourne, Australia (B.Y.)
| |
Collapse
|
25
|
Koenig A, Buskiewicz I, Huber SA. Age-Associated Changes in Estrogen Receptor Ratios Correlate with Increased Female Susceptibility to Coxsackievirus B3-Induced Myocarditis. Front Immunol 2017; 8:1585. [PMID: 29201031 PMCID: PMC5696718 DOI: 10.3389/fimmu.2017.01585] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023] Open
Abstract
Sexual bias is a hallmark in various diseases. This review evaluates sexual dimorphism in clinical and experimental coxsackievirus B3 (CVB3) myocarditis, and how sex bias in the experimental disease changes with increased age. Coxsackieviruses are major causes of viral myocarditis, an inflammation of the heart muscle, which is more frequent and severe in men than women. Young male mice infected with CVB3 develop heart-specific autoimmunity and severe myocarditis. Females infected during estrus (high estradiol) develop T-regulatory cells and when infected during diestrus (low estradiol) develop autoimmunity similar to males. During estrus, protection depends on estrogen receptor alpha (ERα), which promotes type I interferon, activation of natural killer/natural killer T cells and suppressor cell responses. Estrogen receptor beta has opposing effects to ERα and supports pro-inflammatory immunity. However, the sexual dimorphism of the disease is significantly ameliorated in aged animals when old females become as susceptible as males. This correlates to a selective loss of the ERα that is required for immunosuppression. Therefore, sex-associated hormones control susceptibility in the virus-mediated disease, but their impact can alter with the age and physiological stage of the individual.
Collapse
Affiliation(s)
- Andreas Koenig
- Department of Pathology, University of Vermont, Burlington, VT, United States
| | - Iwona Buskiewicz
- Department of Pathology, University of Vermont, Burlington, VT, United States
| | - Sally A Huber
- Department of Pathology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
26
|
Joseph LC, Kokkinaki D, Valenti MC, Kim GJ, Barca E, Tomar D, Hoffman NE, Subramanyam P, Colecraft HM, Hirano M, Ratner AJ, Madesh M, Drosatos K, Morrow JP. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI Insight 2017; 2:94248. [PMID: 28878116 PMCID: PMC5621873 DOI: 10.1172/jci.insight.94248] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/25/2017] [Indexed: 01/12/2023] Open
Abstract
Cardiomyopathy frequently complicates sepsis and is associated with increased mortality. Increased cardiac oxidative stress and mitochondrial dysfunction have been observed during sepsis, but the mechanisms responsible for these abnormalities have not been determined. We hypothesized that NADPH oxidase 2 (NOX2) activation could be responsible for sepsis-induced oxidative stress and cardiomyopathy. Treatment of isolated adult mouse cardiomyocytes with low concentrations of the endotoxin lipopolysaccharide (LPS) increased total cellular reactive oxygen species (ROS) and mitochondrial superoxide. Elevated mitochondrial superoxide was accompanied by depolarization of the mitochondrial inner membrane potential, an indication of mitochondrial dysfunction, and mitochondrial calcium overload. NOX2 inhibition decreased LPS-induced superoxide and prevented mitochondrial dysfunction. Further, cardiomyocytes from mice with genetic ablation of NOX2 did not have LPS-induced superoxide or mitochondrial dysfunction. LPS decreased contractility and calcium transient amplitude in isolated cardiomyocytes, and these abnormalities were prevented by inhibition of NOX2. LPS decreased systolic function in mice, measured by echocardiography. NOX2 inhibition was cardioprotective in 2 mouse models of sepsis, preserving systolic function after LPS injection or cecal ligation and puncture (CLP). These data show that inhibition of NOX2 decreases oxidative stress, preserves intracellular calcium handling and mitochondrial function, and alleviates sepsis-induced systolic dysfunction in vivo. Thus, NOX2 is a potential target for pharmacotherapy of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Leroy C. Joseph
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Dimitra Kokkinaki
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- The Molecular Basis of Human Diseases Graduate Program, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion-Crete, Greece
| | - Mesele-Christina Valenti
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Grace J. Kim
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Emanuele Barca
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Dhanendra Tomar
- Department of Medical Genetics and Molecular Biochemistry, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Nicholas E. Hoffman
- Department of Medical Genetics and Molecular Biochemistry, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Prakash Subramanyam
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Michio Hirano
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Adam J. Ratner
- Departments of Pediatrics and Microbiology, New York University School of Medicine, New York, New York, USA
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - John P. Morrow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
27
|
Fattahi F, Ward PA. Complement and sepsis-induced heart dysfunction. Mol Immunol 2016; 84:57-64. [PMID: 27931779 DOI: 10.1016/j.molimm.2016.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/18/2016] [Indexed: 01/09/2023]
Abstract
It is well known that cardiac dysfunction develops during sepsis in both humans and in rodents (rats, mice). These defects appear to be reversible, since after "recovery" from sepsis, cardiac dysfunction disappears and the heart returns to its function that was present before the onset of sepsis. Our studies, using in vivo and in vitro models, have demonstrated that C5a and its receptors (C5aR1 and C5aR2) play key roles in cardiac dysfunction developing during sepsis. Use of a neutralizing antibody to C5a largely attenuates cardiac dysfunction and other adverse events developing during sepsis. The molecular basis for cardiac dysfunctions is linked to generation of C5a and its interaction with C5a receptors present on surfaces of cardiomyocytes (CMs). It is established that C5a interactions with C5a receptors leads to significant reductions involving faulty contractility and relaxation in CMs. In addition, C5a interactions with C5a receptors on CMs results in reductions in Na+/K+-ATPase in CMs. This ATPase is essential for intact action potentials in CMs. The enzymatic activity and protein for this ATPase were strikingly reduced in CMs during sepsis by unknown mechanisms. In addition, C5a interactions with C5aRs also caused reductions in CM homeostatic proteins that regulate cytosolic [Ca2+]i in CMs: sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and Na+/Ca2+ exchanger (NCX). In the absence of C5a receptors, defects in SERCA2 and NCX in CMs after sepsis are strikingly attenuated. These observations suggest new strategies to protect the heart from dysfunction developing during sepsis.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
28
|
Li S, Zhang L, Ni R, Cao T, Zheng D, Xiong S, Greer PA, Fan GC, Peng T. Disruption of calpain reduces lipotoxicity-induced cardiac injury by preventing endoplasmic reticulum stress. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2023-2033. [PMID: 27523632 DOI: 10.1016/j.bbadis.2016.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
Abstract
Diabetes and obesity are prevalent in westernized countries. In both conditions, excessive fatty acid uptake by cardiomyocytes induces cardiac lipotoxicity, an important mechanism contributing to diabetic cardiomyopathy. This study investigated the effect of calpain disruption on cardiac lipotoxicity. Cardiac-specific capns1 knockout mice and their wild-type littermates (male, age of 4weeks) were fed a high fat diet (HFD) or normal diet for 20weeks. HFD increased body weight, altered blood lipid profiles and impaired glucose tolerance comparably in both capns1 knockout mice and their wild-type littermates. Calpain activity, cardiomyocyte cross-sectional areas, collagen deposition and triglyceride were significantly increased in HFD-fed mouse hearts, and these were accompanied by myocardial dysfunction and up-regulation of hypertrophic and fibrotic collagen genes as well as pro-inflammatory cytokines. These effects of HFD were attenuated by disruption of calpain in capns1 knockout mice. Mechanistically, deletion of capns1 in HFD-fed mouse hearts and disruption of calpain with calpain inhibitor-III, silencing of capn1, or deletion of capns1 in palmitate-stimulated cardiomyocytes prevented endoplasmic reticulum stress, apoptosis, cleavage of caspase-12 and junctophilin-2, and pro-inflammatory cytokine expression. Pharmacological inhibition of endoplasmic reticulum stress diminished palmitate-induced apoptosis and pro-inflammatory cytokine expression in cardiomyocytes. In summary, disruption of calpain prevents lipotoxicity-induced apoptosis in cardiomyocytes and cardiac injury in mice fed a HFD. The role of calpain is mediated, at least partially, through endoplasmic reticulum stress. Thus, calpain/endoplasmic reticulum stress may represent a new mechanism and potential therapeutic targets for cardiac lipotoxicity.
Collapse
Affiliation(s)
- Shengcun Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Lulu Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Ni
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4G5, Canada
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Dong Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Medicine, Western University, London, Ontario N6A 4G5, Canada
| | - Sidong Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Medicine, Western University, London, Ontario N6A 4G5, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4G5, Canada.
| |
Collapse
|
29
|
Abstract
Sepsis-induced myocardial dysfunction is a common complication in septic patients and is associated with increased mortality. In the clinical setting, it was once believed that myocardial dysfunction was not a major pathological process in the septic patients, at least in part, due to the unavailability of suitable clinical markers to assess intrinsic myocardial function during sepsis. Although sepsis-induced myocardial dysfunction has been studied in clinical and basic research for more than 30 years, its pathophysiology is not completely understood, and no specific therapies for this disorder exist. The purpose of this review is to summarize our current knowledge of sepsis-induced myocardial dysfunction with a special focus on pathogenesis and clinical characteristics.
Collapse
Affiliation(s)
- Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632 China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632 China
| |
Collapse
|