1
|
Golino M, Harding D, Del Buono MG, Fanti S, Mohiddin S, Toldo S, Smyth J, Sanna T, Marelli-Berg F, Abbate A. Innate and adaptive immunity in acute myocarditis. Int J Cardiol 2024; 404:131901. [PMID: 38403204 PMCID: PMC11450758 DOI: 10.1016/j.ijcard.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Acute myocarditis is an acute inflammatory cardiomyopathy associated with cardiac damage triggered by a virus or a pathological immune activation. It may present with a wide range of clinical presentations, ranging from mild symptoms to severe forms like fulminant myocarditis, characterized by hemodynamic compromise and cardiogenic shock. The immune system plays a central role in the pathogenesis of myocarditis. In fact, while its function is primarily protective, aberrant responses can be detrimental. In this context, both innate and adaptive immunity play pivotal roles; notably, the innate system offers a non-specific and immediate defense, while the adaptive provides specialized protection with immunological memory. However, dysregulation in these systems can misidentify cardiac tissue, triggering autoimmune reactions and possibly leading to significant cardiac tissue damage. This review highlights the importance of innate and adaptive immune responses in the progression and treatment of acute myocarditis.
Collapse
Affiliation(s)
- Michele Golino
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Saidi Mohiddin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Stefano Toldo
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - James Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, United States of America; Virginia Tech Carilion School of Medicine, Roanoke, VA, United States of America; Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
2
|
Toldo S, Abbate A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol 2024; 21:219-237. [PMID: 37923829 PMCID: PMC11550901 DOI: 10.1038/s41569-023-00946-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
An intense, stereotyped inflammatory response occurs in response to ischaemic and non-ischaemic injury to the myocardium. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a finely regulated macromolecular protein complex that senses the injury and triggers and amplifies the inflammatory response by activation of caspase 1; cleavage of pro-inflammatory cytokines, such as pro-IL-1β and pro-IL-18, to their mature forms; and induction of inflammatory cell death (pyroptosis). Inhibitors of the NLRP3 inflammasome and blockers of IL-1β and IL-18 activity have been shown to reduce injury to the myocardium and pericardium, favour resolution of the inflammation and preserve cardiac function. In this Review, we discuss the components of the NLRP3 inflammasome and how it is formed and activated in various ischaemic and non-ischaemic cardiac pathologies (acute myocardial infarction, cardiac dysfunction and remodelling, atherothrombosis, myocarditis and pericarditis, cardiotoxicity and cardiac sarcoidosis). We also summarize current preclinical and clinical evidence from studies of agents that target the NLRP3 inflammasome and related cytokines.
Collapse
Affiliation(s)
- Stefano Toldo
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
DiChiacchio L, Goodwin ML, Kagawa H, Griffiths E, Nickel IC, Stehlik J, Selzman CH. Heart Transplant and Donors After Circulatory Death: A Clinical-Preclinical Systematic Review. J Surg Res 2023; 292:222-233. [PMID: 37657140 DOI: 10.1016/j.jss.2023.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Heart transplantation is the treatment of choice for end-stage heart failure. There is a mismatch between the number of donor hearts available and the number of patients awaiting transplantation. Expanding the donor pool is critically important. The use of hearts donated following circulatory death is one approach to increasing the number of available donor hearts. MATERIALS AND METHODS A systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines utilizing Pubmed/MEDLINE and Embase. Articles including adult human studies and preclinical animal studies of heart transplantation following donation after circulatory death were included. Studies of pediatric populations or including organs other than heart were excluded. RESULTS Clinical experience and preclinical studies are reviewed. Clinical experience with direct procurement, normothermic regional perfusion, and machine perfusion are included. Preclinical studies addressing organ function assessment and enhancement of performance of marginal organs through preischemic, procurement, preservation, and reperfusion maneuvers are included. Articles addressing the ethical considerations of thoracic transplantation following circulatory death are also reviewed. CONCLUSIONS Heart transplantation utilizing organs procured following circulatory death is a promising method to increase the donor pool and offer life-saving transplantation to patients on the waitlist living with end-stage heart failure. There is robust ongoing preclinical and clinical research to optimize this technique and improve organ yield. There are also ongoing ethical considerations that must be addressed by consensus before wide adoption of this approach.
Collapse
Affiliation(s)
- Laura DiChiacchio
- Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, Utah
| | - Matthew L Goodwin
- Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, Utah
| | - Hiroshi Kagawa
- Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, Utah
| | - Eric Griffiths
- Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, Utah
| | - Ian C Nickel
- Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, Utah
| | - Josef Stehlik
- Division of Cardiology, University of Utah, Salt Lake City, Utah
| | - Craig H Selzman
- Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
4
|
Siddiqi HK, Trahanas J, Xu M, Wells Q, Farber-Eger E, Pasrija C, Amancherla K, Debose-Scarlett A, Brinkley DM, Lindenfeld J, Menachem JN, Ooi H, Pedrotty D, Punnoose L, Rali AS, Sacks S, Wigger M, Zalawadiya S, McMaster W, Devries S, Shah A, Schlendorf K. Outcomes of Heart Transplant Donation After Circulatory Death. J Am Coll Cardiol 2023; 82:1512-1520. [PMID: 37793748 DOI: 10.1016/j.jacc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Heart transplantation using donation after circulatory death (DCD) allografts is increasingly common, expanding the donor pool and reducing transplant wait times. However, data remain limited on clinical outcomes. OBJECTIVES We sought to compare 6-month and 1-year clinical outcomes between recipients of DCD hearts, most of them recovered with the use of normothermic regional perfusion (NRP), and recipients of donation after brain death (DBD) hearts. METHODS We conducted a single-center retrospective observational study of all adult heart-only transplants from January 2020 to January 2023. Recipient and donor data were abstracted from medical records and the United Network for Organ Sharing registry, respectively. Survival analysis and Cox regression were used to compare the groups. RESULTS During the study period, 385 adults (median age 57.4 years [IQR: 48.0-63.7 years]) underwent heart-only transplantation, including 122 (32%) from DCD donors, 83% of which were recovered with the use of NRP. DCD donors were younger and had fewer comorbidities than DBD donors. DCD recipients were less often hospitalized before transplantation and less likely to require pretransplantation temporary mechanical circulatory support compared with DBD recipients. There were no significant differences between groups in 1-year survival, incidence of severe primary graft dysfunction, treated rejection during the first year, or likelihood of cardiac allograft vasculopathy at 1 year after transplantation. CONCLUSIONS In the largest single-center comparison of DCD and DBD heart transplantations to date, outcomes among DCD recipients are noninferior to those of DBD recipients. This study adds to the published data supporting DCD donors as a safe means to expand the heart donor pool.
Collapse
Affiliation(s)
- Hasan K Siddiqi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - John Trahanas
- Department of Cardiothoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meng Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Quinn Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Farber-Eger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chetan Pasrija
- Department of Cardiothoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaushik Amancherla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandra Debose-Scarlett
- Department of Cardiothoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - D Marshall Brinkley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - JoAnn Lindenfeld
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan N Menachem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Henry Ooi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Dawn Pedrotty
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Lynn Punnoose
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aniket S Rali
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Suzanne Sacks
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark Wigger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Sandip Zalawadiya
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William McMaster
- Department of Cardiothoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Steven Devries
- Department of Cardiothoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashish Shah
- Department of Cardiothoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelly Schlendorf
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Xu L, Zeng Z, Niu C, Liu D, Lin S, Liu X, Szabó G, Lu J, Zheng S, Zhou P. Normothermic ex vivo heart perfusion with NLRP3 inflammasome inhibitor Mcc950 treatment improves cardiac function of circulatory death hearts after transplantation. Front Cardiovasc Med 2023; 10:1126391. [PMID: 37008319 PMCID: PMC10063899 DOI: 10.3389/fcvm.2023.1126391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundThe utilization of donation after circulatory death (DCD) hearts can enlarge the donor pool. However, DCD hearts suffer from serious ischemia/reperfusion injury (IRI). Recent studies found that the activation of NLRP3 inflammasome could play a significant role in organ IRI. Mcc950, which is a novel inhibitor of the NLRP3 inflammasome, can be applied to treat various kinds of cardiovascular diseases. Therefore, we hypothesized that the treatment of mcc950 could protect DCD hearts preserved with normothermic ex vivo heart perfusion (EVHP) against myocardial IRI via inhibiting NLRP3 inflammasome in a rat heart transplantation model of DCD.MethodsDonor-heart rats were randomly divided into four groups: Control group; Vehicle group; MP-mcc950 group; and MP + PO-mcc950 group. Mcc950 was added into the perfusate of normothermic EVHP in the MP-mcc950 and MP + PO-mcc950 groups, and was injected into the left external jugular vein after heart transplantation in the MP + PO-mcc950 group. Cardiac functional assessment was performed. The level of oxidative stress, inflammatory response, apoptosis, and NLRP3 inflammasome-associated protein of donor hearts were evaluated.ResultsThe treatment with mcc950 significantly increased the developed pressure (DP), dP/dtmax, and dP/dtmin of the left ventricular of DCD hearts at 90 min after heart transplantation in both MP-mcc950 and MP + PO-mcc950 groups. Furthermore, mcc950 added into perfusate and injected after transplantation in both MP-mcc950 and MP + PO-mcc950 groups significantly attenuated the level of oxidative stress, inflammatory response, apoptosis, and NLRP3 inflammasome compared with the vehicle group.ConclusionsNormothermic EVHP combined with mcc950 treatment can be a promising and novel DCD heart preservation strategy, which can alleviate myocardial IRI via inhibiting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Liwei Xu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zifeng Zeng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanjie Niu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deshen Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyan Lin
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiu Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
- Department of Cardiac Surgery, University of Halle (Saale), Halle, Germany
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Correspondence: Pengyu Zhou Shaoyi Zheng Jun Lu
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Correspondence: Pengyu Zhou Shaoyi Zheng Jun Lu
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Correspondence: Pengyu Zhou Shaoyi Zheng Jun Lu
| |
Collapse
|
6
|
Hatami S, Conway J, Freed DH, Urschel S. Thoracic organ donation after circulatory determination of death. TRANSPLANTATION REPORTS 2023. [DOI: 10.1016/j.tpr.2022.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Chen Q, Akande O, Lesnefsky EJ, Quader M. Influence of sex on global myocardial ischemia tolerance and mitochondrial function in circulatory death donor hearts. Am J Physiol Heart Circ Physiol 2023; 324:H57-H66. [PMID: 36426883 PMCID: PMC9762969 DOI: 10.1152/ajpheart.00478.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Donation after circulatory death (DCD) donor hearts are not routinely used for heart transplantation (HTx) because of ischemic damage, which is inherent to the DCD process. HTx outcomes are suboptimal in males who received female donor hearts. The exact mechanism for suboptimal outcomes from female donor hearts has not been defined. Differential susceptibility to ischemia tolerance, which would play a significant role in DCD donation, could be a reason but has not been studied. We studied the influence of sex on global myocardial ischemia tolerance and mitochondrial function. Sprague-Dawley rats of both sexes were assigned to DCD (n = 32) or control beating-heart donor (CBD, n = 28) groups. DCD hearts underwent 25 min of in vivo global myocardial ischemia and 90 min of ex vivo Krebs-Henseleit buffer perfusion at 37°C. CBD hearts were procured without ischemia. Infarct size was determined in hearts following 90 min of reperfusion, and in another set of hearts, mitochondrial function (oxidative-phosphorylation) was studied following 60 min of reperfusion. Infarct size was increased 3.3-fold in male and 3.1-fold in female DCD hearts compared with CBD hearts. However, infarct size (%) was comparable in female and male DCD hearts (male: 25.4 ± 3.7 vs. female 19.0 ± 3.3, P = NS). Oxidative phosphorylation was similarly decreased in male and female DCD hearts' mitochondria compared with CBD hearts' mitochondria. Thus, neither infarct size nor mitochondrial dysfunction was higher in female DCD hearts. These results suggest that the susceptibility to ischemia is not the reason for suboptimal HTx outcomes with female donor hearts.NEW & NOTEWORTHY The current study shows cardiac injury is not increased in female DCD hearts following global ischemia-reperfusion compared with male DCD hearts. In addition, mitochondrial dysfunction with DCD ischemia-reperfusion is comparable in both sexes. Sex-specific immune responses and hormone receptor modulation may contribute to suboptimal outcomes in male HTx recipients with female donor hearts.
Collapse
Affiliation(s)
- Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
- Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Oluwatoyin Akande
- Division of Cardiothoracic Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
- Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
- Cardiology Section, Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia
| | - Mohammed Quader
- Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
- Division of Cardiothoracic Surgery, Virginia Commonwealth University, Richmond, Virginia
- Cardiothoracic Surgery Section, Surgical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia
| |
Collapse
|
8
|
Xia W, Yan T, Wen L, Zhu S, Yin W, Zhu M, Lang M, Wang C, Guo C. Hypothermia-Triggered Mesoporous Silica Particles for Controlled Release of Hydrogen Sulfide to Reduce the I/R Injury of the Myocardium. ACS Biomater Sci Eng 2022; 8:2970-2978. [PMID: 35671486 DOI: 10.1021/acsbiomaterials.2c00266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the fact that heart transplantation (HTx) is a relatively mature procedure, heart ischemic and reperfusion (I/R) injury during HTx remains a challenge. Even after a successful operation, the heart will be at risk of primary graft failure and mortality during the first year. In this study, temperature-sensitive polymer poly(N-n-propylacrylamide-co-N-tert-butyl acrylamide) (PNNTBA) was coated on diallyl trisulfide (DATS)-loaded mesoporous silica nanoparticles (DATS-MSN) to synthesize hypothermia-triggered hydrogen sulfide (H2S) releasing particles (HT-MSN). Because the PNNTBA shell dissolves in phosphate-buffered saline at 4 °C, the loaded DATS could continuously release H2S within 6 h when activated by glutathione (GSH). Furthermore, after co-culturing biocompatible HT-MSN with cardiomyocytes, H2S released from HT-MSN at 4 °C was found to protect cardiomyocytes from ischemic and reperfusion (I/R) injury. In detail, the rate of cell apoptosis and lactate dehydrogenase activity was decreased, as manifested by increased BCL-2 expression and decreased BAX expression. More importantly, in an isolated heart preservation experiment, HT-MSN demonstrated potent protection against cardiac I/R injury and reduced expression of inflammatory factors TNF-α and IL-1β. This study provided a new method for the controlled release of H2S by the donor and myocardial protection from I/R injury.
Collapse
Affiliation(s)
- Wenyi Xia
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tao Yan
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Lianlei Wen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Wang Yin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miao Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
9
|
Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther 2021; 236:108053. [PMID: 34906598 PMCID: PMC9187780 DOI: 10.1016/j.pharmthera.2021.108053] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1β and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Eleonora Mezzaroma
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicola Potere
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Benjamin W Van Tassell
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
10
|
Mezzaroma E, Abbate A, Toldo S. NLRP3 Inflammasome Inhibitors in Cardiovascular Diseases. Molecules 2021; 26:976. [PMID: 33673188 PMCID: PMC7917621 DOI: 10.3390/molecules26040976] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Virtually all types of cardiovascular diseases are associated with pathological activation of the innate immune system. The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a protein complex that functions as a platform for rapid induction of the inflammatory response to infection or sterile injury. NLRP3 is an intracellular sensor that is sensitive to danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is regulated by the presence of damage-associated molecular patterns and initiates or amplifies inflammatory response through the production of interleukin-1β (IL-1β) and/or IL-18. NLRP3 activation regulates cell survival through the activity of caspase-1 and gasdermin-D. The development of NLRP3 inflammasome inhibitors has opened the possibility to targeting the deleterious effects of NLRP3. Here, we examine the scientific evidence supporting a role for NLRP3 and the effects of inhibitors in cardiovascular diseases.
Collapse
Affiliation(s)
- Eleonora Mezzaroma
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
- Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
| |
Collapse
|