1
|
Leisching G, Yennemadi A, Gogan K, Keane J. Interferon α and β induce differential transcriptional and functional metabolic phenotypes in human macrophages and blunt glycolysis in response to antigenic stimuli. Eur J Immunol 2024; 54:e2451032. [PMID: 38993003 DOI: 10.1002/eji.202451032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024]
Abstract
The impact of chronic exposure to type I interferons (IFN)-α2a, 2b, and β on macrophage metabolism, intimately linked to macrophage function, is not well understood. This study assesses the nuanced host responses induced by type I IFN cytokines, offering insights into potential therapeutic approaches in diseases associated with these cytokines. Employing a combination of transcriptional profiling and real-time functional analysis, we delineated metabolic reprogramming in response to chronic IFN exposure. Our results reveal distinct transcriptional metabolic profiles between macrophages chronically exposed to IFN-α and IFN-β. IFN-β significantly diminishes the oxygen consumption rate and glycolytic proton extrusion rate in macrophages. Conversely, IFN-α2b decreased parameters of mitochondrial fitness and induced a shift toward glutamine oxidation. Assessing the ability of macrophages to induce glycolysis in response to antigenic stimuli (LPS and iH37Rv), we found that chronic exposure to all IFN subtypes limited glycolytic induction. This study addresses a critical oversight in the literature, where individual roles of IFN subtypes are frequently amalgamated and lack distinction. These findings not only provide novel insights into the divergent effects of IFN-α2a, α2b, and β on macrophage metabolism but also highlight their potential implications for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Gina Leisching
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Anjali Yennemadi
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Karl Gogan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Yan Y, Yu F, Li Q, Feng X, Geng L, Sun L. Metabolic alterations in vitamin D deficient systemic lupus erythematosus patients. Sci Rep 2024; 14:18879. [PMID: 39143130 PMCID: PMC11325032 DOI: 10.1038/s41598-024-67588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Vitamin D deficiency is increasingly common in systemic lupus erythematosus (SLE) patients and is associated with the disease activity and proteinuria. Recently, alterations in metabolism have been recognized as key regulators of SLE pathogenesis. Our objective was to identify differential metabolites in the serum metabolome of SLE with vitamin D deficiency. In this study, serum samples from 31 SLE patients were collected. Levels of 25(OH)D3 were assayed by ELISA. Patients were divided into two groups according to their vitamin D level (20 ng/ml). Untargeted metabolomics were used to study the metabolite profiles in serum by high-performance liquid chromatography-tandem mass spectrometry. Subsequently, we performed metabolomics profiling analysis to identify 52 significantly altered metabolites in vitamin D deficient SLE patients. The area under the curve (AUC) from ROC analyses was calculated to assess the diagnostic potential of each candidate metabolite biomarker. Lipids accounted for 66.67% of the differential metabolites in the serum, highlighted the disruption of lipid metabolism. The 52 differential metabolites were mapped to 27 metabolic pathways, with fat digestion and absorption, as well as lipid metabolism, emerging as the most significant pathways. The AUC of (S)-Oleuropeic acid and 2-Hydroxylinolenic acid during ROC analysis were 0.867 and 0.833, respectively, indicating their promising diagnostic potential. In conclusion, our results revealed vitamin D deficiency alters SLE metabolome, impacting lipid metabolism, and thrown insights into the pathogenesis and diagnosis of SLE.
Collapse
Affiliation(s)
- Yunxia Yan
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Fangyuan Yu
- School of Medicine, Southeast University, Nanjing, China
| | - Qi Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
3
|
Leventhal EL, Daamen AR, Grammer AC, Lipsky PE. An interpretable machine learning pipeline based on transcriptomics predicts phenotypes of lupus patients. iScience 2023; 26:108042. [PMID: 37860757 PMCID: PMC10582499 DOI: 10.1016/j.isci.2023.108042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Machine learning (ML) has the potential to identify subsets of patients with distinct phenotypes from gene expression data. However, phenotype prediction using ML has often relied on identifying important genes without a systems biology context. To address this, we created an interpretable ML approach based on blood transcriptomics to predict phenotype in systemic lupus erythematosus (SLE), a heterogeneous autoimmune disease. We employed a sequential grouped feature importance algorithm to assess the performance of gene sets, including immune and metabolic pathways and cell types, known to be abnormal in SLE in predicting disease activity and organ involvement. Gene sets related to interferon, tumor necrosis factor, the mitoribosome, and T cell activation were the best predictors of phenotype with excellent performance. These results suggest potential relationships between the molecular pathways identified in each model and manifestations of SLE. This ML approach to phenotype prediction can be applied to other diseases and tissues.
Collapse
Affiliation(s)
- Emily L. Leventhal
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - Andrea R. Daamen
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - Amrie C. Grammer
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| |
Collapse
|
4
|
Li J, Zhao M, Luo W, Huang J, Zhao B, Zhou Z. B cell metabolism in autoimmune diseases: signaling pathways and interventions. Front Immunol 2023; 14:1232820. [PMID: 37680644 PMCID: PMC10481957 DOI: 10.3389/fimmu.2023.1232820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Autoimmune diseases are heterogeneous disorders believed to stem from the immune system's inability to distinguish between auto- and foreign- antigens. B lymphocytes serve a crucial role in humoral immunity as they generate antibodies and present antigens. Dysregulation of B cell function induce the onset of autoimmune disorders by generating autoantibodies and pro-inflammatory cytokines, resulting in an imbalance in immune regulation. New research in immunometabolism shows that cellular metabolism plays an essential role in controlling B lymphocytes immune reactions by providing the energy and substrates for B lymphocytes activation, differentiation, and function. However, dysregulated immunometabolism lead to autoimmune diseases by disrupting self-tolerance mechanisms. This review summarizes the latest research on metabolic reprogramming of B lymphocytes in autoimmune diseases, identifying crucial pathways and regulatory factors. Moreover, we consider the potential of metabolic interventions as a promising therapeutic strategy. Understanding the metabolic mechanisms of B cells brings us closer to developing novel therapies for autoimmune disorders.
Collapse
Affiliation(s)
- Jingyue Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenjun Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Saadh MJ, Kazemi K, Khorramdelazad H, Mousavi MJ, Noroozi N, Masoumi M, Karami J. Role of T cells in the pathogenesis of systemic lupus erythematous: Focus on immunometabolism dysfunctions. Int Immunopharmacol 2023; 119:110246. [PMID: 37148769 DOI: 10.1016/j.intimp.2023.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Evidence demonstrates that T cells are implicated in developing SLE, and each of them dominantly uses distinct metabolic pathways. Indeed, intracellular enzymes and availability of specific nutrients orchestrate fate of T cells and lead to differentiation of regulatory T cells (Treg), memory T cells, helper T cells, and effector T cells. The function of T cells in inflammatory and autoimmune responses is determined by metabolic processes and activity of their enzymes. Several studies were conducted to determine metabolic abnormalities in SLE patients and clarify how these modifications could control the functions of the involved T cells. Metabolic pathways such as glycolysis, mitochondrial pathways, oxidative stress, mTOR pathway, fatty acid and amino acid metabolisms are dysregulated in SLE T cells. Moreover, immunosuppressive drugs used in treating autoimmune diseases, including SLE, could affect immunometabolism. Developing drugs to regulate autoreactive T cell metabolism could be a promising therapeutic approach for SLE treatment. Accordingly, increased knowledge about metabolic processes paves the way to understanding SLE pathogenesis better and introduces novel therapeutic options for SLE treatment. Although monotherapy with metabolic pathways modulators might not be sufficient to prevent autoimmune disease, they may be an ideal adjuvant to reduce administration doses of immunosuppressive drugs, thus reducing drug-associated adverse effects. This review summarized emerging data about T cells that are involved in SLE pathogenesis, focusing on immunometabolism dysregulation and how these modifications could affect the disease development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Private University, Amman, Jordan
| | | | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran; Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negar Noroozi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran.
| | - Jafar Karami
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
6
|
Owen KA, Bell KA, Price A, Bachali P, Ainsworth H, Marion MC, Howard TD, Langefeld CD, Shen N, Yazdany J, Dall'era M, Grammer AC, Lipsky PE. Molecular pathways identified from single nucleotide polymorphisms demonstrate mechanistic differences in systemic lupus erythematosus patients of Asian and European ancestry. Sci Rep 2023; 13:5339. [PMID: 37005464 PMCID: PMC10067935 DOI: 10.1038/s41598-023-32569-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/29/2023] [Indexed: 04/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of Asian-Ancestry (AsA) disproportionately experience more severe SLE compared to individuals of European-Ancestry (EA), including increased renal involvement and tissue damage. However, the mechanisms underlying elevated severity in the AsA population remain unclear. Here, we utilized available gene expression data and genotype data based on all non-HLA SNP associations in EA and AsA SLE patients detected using the Immunochip genotyping array. We identified 2778 ancestry-specific and 327 trans-ancestry SLE-risk polymorphisms. Genetic associations were examined using connectivity mapping and gene signatures based on predicted biological pathways and were used to interrogate gene expression datasets. SLE-associated pathways in AsA patients included elevated oxidative stress, altered metabolism and mitochondrial dysfunction, whereas SLE-associated pathways in EA patients included a robust interferon response (type I and II) related to enhanced cytosolic nucleic acid sensing and signaling. An independent dataset derived from summary genome-wide association data in an AsA cohort was interrogated and identified similar molecular pathways. Finally, gene expression data from AsA SLE patients corroborated the molecular pathways predicted by SNP associations. Identifying ancestry-related molecular pathways predicted by genetic SLE risk may help to disentangle the population differences in clinical severity that impact AsA and EA individuals with SLE.
Collapse
Affiliation(s)
- Katherine A Owen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA.
| | - Kristy A Bell
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Andrew Price
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Prathyusha Bachali
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Hannah Ainsworth
- Department of Biostatistics and Data Science, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Miranda C Marion
- Department of Biostatistics and Data Science, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Timothy D Howard
- Department of Biochemistry, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinoos Yazdany
- University of California San Francisco, San Francisco, CA, 94117, USA
| | - Maria Dall'era
- University of California San Francisco, San Francisco, CA, 94117, USA
| | - Amrie C Grammer
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Peter E Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA
| |
Collapse
|
7
|
Yan Z, Chen Q, Xia Y. Oxidative Stress Contributes to Inflammatory and Cellular Damage in Systemic Lupus Erythematosus: Cellular Markers and Molecular Mechanism. J Inflamm Res 2023; 16:453-465. [PMID: 36761905 PMCID: PMC9907008 DOI: 10.2147/jir.s399284] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with complex pathogenesis, the treatment of which relies exclusively on the use of immunosuppressants. Increased oxidative stress is involved in causing inflammatory and cellular defects in the pathogenesis of SLE. Various inflammatory and cellular markers including oxidative modifications of proteins, lipids, and DNA contribute to immune system dysregulation and trigger an aggressive autoimmune attack through molecular mechanisms like enhanced NETosis, mTOR pathway activation, and imbalanced T-cell differentiation. Accordingly, the detection of inflammatory and cellular markers is important for providing an accurate assessment of the extent of oxidative stress. Oxidative stress also reduces DNA methylation, thus allowing the increased expression of affected genes. As a result, pharmacological approaches targeting oxidative stress yield promising results in treating patients with SLE. The purpose of this review is to examine the involvement of oxidative stress in the pathogenesis and management of SLE.
Collapse
Affiliation(s)
- Zhu Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Qin Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China,Correspondence: Yumin Xia, Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, 710004, People’s Republic of China, Tel/Fax +86-29-87679969, Email
| |
Collapse
|
8
|
Voss K, Sewell AE, Krystofiak ES, Gibson-Corley KN, Young AC, Basham JH, Sugiura A, Arner EN, Beavers WN, Kunkle DE, Dickson ME, Needle GA, Skaar EP, Rathmell WK, Ormseth MJ, Major AS, Rathmell JC. Elevated transferrin receptor impairs T cell metabolism and function in systemic lupus erythematosus. Sci Immunol 2023; 8:eabq0178. [PMID: 36638190 PMCID: PMC9936798 DOI: 10.1126/sciimmunol.abq0178] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
T cells in systemic lupus erythematosus (SLE) exhibit multiple metabolic abnormalities. Excess iron can impair mitochondria and may contribute to SLE. To gain insights into this potential role of iron in SLE, we performed a CRISPR screen of iron handling genes on T cells. Transferrin receptor (CD71) was identified as differentially critical for TH1 and inhibitory for induced regulatory T cells (iTregs). Activated T cells induced CD71 and iron uptake, which was exaggerated in SLE-prone T cells. Cell surface CD71 was enhanced in SLE-prone T cells by increased endosomal recycling. Blocking CD71 reduced intracellular iron and mTORC1 signaling, which inhibited TH1 and TH17 cells yet enhanced iTregs. In vivo treatment reduced kidney pathology and increased CD4 T cell production of IL-10 in SLE-prone mice. Disease severity correlated with CD71 expression on TH17 cells from patients with SLE, and blocking CD71 in vitro enhanced IL-10 secretion. T cell iron uptake via CD71 thus contributes to T cell dysfunction and can be targeted to limit SLE-associated pathology.
Collapse
Affiliation(s)
- Kelsey Voss
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison E. Sewell
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan S. Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Katherine N. Gibson-Corley
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arissa C. Young
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacob H. Basham
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily N. Arner
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William N. Beavers
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dillon E. Kunkle
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megan E. Dickson
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriel A. Needle
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - W. Kimryn Rathmell
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle J. Ormseth
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA
| | - Amy S. Major
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA
| | - Jeffrey C. Rathmell
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Attia ZR, Zedan MM, Mutawi TM, Saad EA, Abd El Azeem RA, El Basuni MA. Association of the Gelatinase B/Metalloproteinase 9 (MMP-9) Gene Haplotype in Systemic Lupus Erythematosus (SLE) in the Pediatric Egyptian Population. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091271. [PMID: 36138580 PMCID: PMC9496982 DOI: 10.3390/children9091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
Abstract
Permanent systemic inflammation is a defining feature of systemic lupus erythematosus (SLE), which affects multiple organs. Gelatinase B/matrix metalloproteinase-9 (MMP-9) is an essential protease investigated in inflammation that has been linked to SLE. The study’s objective was to investigate the relationship between the rs3918249 T/C and rs17576 A/G SNPs in the MMP-9 gene with SLE. The study was conducted with 100 SLE cases and 100 age/sex-matched healthy individuals. TaqManTM SNP was used for genotyping by real time PCR on the Artus Rotor-Gene Qiagen equipment. Haplotypes (TG: OR = 0.226, 95% CI = 0.119−0.429) and (CA: OR = 0.36, 95% CI = 0.2206−0.631), both with a p-value < 0.001 were substantially linked to a lower incidence of SLE. Conversely, the risk of SLE was not associated with the individual SNPs studied. The haplotype analysis was more significant than the SNP analysis and may correlate with the decreased risk of SLE in children and adolescents in Egypt.
Collapse
Affiliation(s)
- Zeinab R. Attia
- Mansoura University Children’s Hospital, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +20-1098830190
| | - Mohamed M. Zedan
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Thuraya M. Mutawi
- Mansoura University Children’s Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Entsar A. Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta 34511, Egypt
| | | | - Mohamed A. El Basuni
- Mansoura University Children’s Hospital, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
10
|
Muñoz-Urbano M, Quintero-González DC, Vasquez G. T cell metabolism and possible therapeutic targets in systemic lupus erythematosus: a narrative review. Immunopharmacol Immunotoxicol 2022; 44:457-470. [PMID: 35352607 DOI: 10.1080/08923973.2022.2055568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the immunopathogenesis of systemic lupus erythematosus (SLE), there is a dysregulation of specific immune cells, including T cells. The metabolic reprogramming in T cells causes different effects. Metabolic programs are critical checkpoints in immune responses and are involved in the etiology of autoimmune disease. For instance, resting lymphocytes generate energy through oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO), whereas activated lymphocytes rapidly shift to the glycolytic pathway. Specifically, mitochondrial dysfunction, oxidative stress, abnormal metabolism (including glucose, lipid, and amino acid metabolism), and mTOR signaling are hallmarks of T lymphocyte metabolic dysfunction in SLE. Herein it is summarized how metabolic defects contribute to T cell responses in SLE, and some epigenetic alterations involved in the disease. Finally, it is shown how metabolic defects could be modified therapeutically.
Collapse
Affiliation(s)
| | | | - Gloria Vasquez
- Rheumatology Section, Universidad de Antioquia, Medellín, Colombia.,Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
11
|
Shiraz AK, Panther EJ, Reilly CM. Altered Germinal-Center Metabolism in B Cells in Autoimmunity. Metabolites 2022; 12:metabo12010040. [PMID: 35050162 PMCID: PMC8780703 DOI: 10.3390/metabo12010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
B lymphocytes play an important role in the pathophysiology of many autoimmune disorders by producing autoantibodies, secreting cytokines, and presenting antigens. B cells undergo extreme physiological changes as they develop and differentiate. Aberrant function in tolerogenic checkpoints and the metabolic state of B cells might be the contributing factors to the dysfunctionality of autoimmune B cells. Understanding B-cell metabolism in autoimmunity is important as it can give rise to new treatments. Recent investigations have revealed that alterations in metabolism occur in the activation of B cells. Several reports have suggested that germinal center (GC) B cells of individuals with systemic lupus erythematosus (SLE) have altered metabolic function. GCs are unique microenvironments in which the delicate and complex process of B-cell affinity maturation occurs through somatic hypermutation (SHM) and class switching recombination (CSR) and where Bcl6 tightly regulates B-cell differentiation into memory B-cells or plasma cells. GC B cells rely heavily on glucose, fatty acids, and oxidative phosphorylation (OXPHOS) for their energy requirements. However, the complicated association between GC B cells and their metabolism is still not clearly understood. Here, we review several studies of B-cell metabolism, highlighting the significant transformations that occur in GC progression, and suggest possible approaches that may be investigated to more precisely target aberrant B-cell metabolism in SLE.
Collapse
Affiliation(s)
- Ashton K. Shiraz
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
- Correspondence: (A.K.S.); (C.M.R.); Tel.: +1-540-231-9365 (C.M.R.)
| | - Eric J. Panther
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
| | - Christopher M. Reilly
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
- Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
- Correspondence: (A.K.S.); (C.M.R.); Tel.: +1-540-231-9365 (C.M.R.)
| |
Collapse
|
12
|
Attia ZR, Zedan MM, Saad EA, Mutawi TM, El Basuni MA. Association of CD14 genetic variants and circulating level with systemic lupus erythematosus risk in Egyptian children and adolescents. Biomark Med 2021; 15:1669-1680. [PMID: 34743544 DOI: 10.2217/bmm-2021-0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: To demonstrate whether sCD14 and CD14 (rs2569190 A/G and rs2569191 C/T) genetic variants are associated with systemic lupus erythematosus (SLE) risk, for the first time, in Egyptian pediatrics and adolescents. Materials & methods: sCD14 concentrations were determined in plasma of 95 SLE cases and 98 healthy controls using ELISA assay. Genotyping was performed using TaqMan technology. Results: sCD14 levels were elevated in SLE. Individuals with T, CT and TT genotypes in rs2569191 were of significant risk (odds ratio = 1.471-2.035, 95% CI = 1.138-3.471) and those with combined CT+TT and haplotype GT were of higher risk of SLE (odds ratio = 1.660-1.758, 95% CI = 1.003-3.106, p < 0.05). sCD14 levels and CD14 polymorphism were not correlated with SLE clinical and laboratory features. Conclusion: In SLE, sCD14 levels are associated with rs2569190 A/G. Genotype CT+TT in rs2569191 C/T and haplotype GT are associated with SLE risk in Egyptian pediatric and adolescents.
Collapse
Affiliation(s)
- Zeinab R Attia
- Department of Laboratories, Immunology Lab, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Mohamed M Zedan
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Thuraya M Mutawi
- Department of Laboratories, Immunology Lab, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Mohamed A El Basuni
- Department of Laboratories, Immunology Lab, Mansoura University Children's Hospital, Mansoura, Egypt
| |
Collapse
|
13
|
Attia ZR, Zedan MM, Mutawi TM, Saad EA, El Basuni MA. Plasma interleukin-22 level, variants in interleukin-22 gene polymorphism, and the severity of systemic lupus erythematosus among Egyptian pediatric and adolescents. Lupus 2021; 30:2066-2074. [PMID: 34493116 DOI: 10.1177/09612033211042330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Our purpose was to investigate, for the first time, genotypes and alleles distribution of two single nucleotide polymorphisms (SNPs) of interleukin 22 (IL-22) (rs1012356 and rs2227485) in Egyptian pediatric and adolescents with systemic lupus erythematosus (SLE) and to evaluate the plasma IL-22 levels and their association with gene polymorphism and SLE risk and severity. METHODS The TaqMan™ SNP genotyping assay on a real-time polymerase chain reaction (PCR) system was employed to evaluate the polymorphism's genotypes. Plasma IL-22 levels were determined by using an enzyme-linked immunoabsorbent assay (ELISA). RESULTS The frequencies and genotypes of rs2227485 and rs1012356 in IL-22 between SLE patients and controls also haplotypes formed by the same SNPs revealed no statistically significant difference (p > 0.05). Otherwise, logistic regression analysis revealed that patients carrying rs1012356 "TA + AA" genotype had increased risk for prediction of SLE activity (OR = 1.610, 95% CI = 1.339-2.760, p = 0.034) by lowering plasma IL-22 level. CONCLUSIONS Among Egyptian pediatric and adolescents, we confirm a combined model "TA + AA" in rs1012356 (A/T) of IL-22 in regression analysis, as an independent predictor for SLE activity by lowering IL-22 plasma levels. Despite neither SNP rs2227485 A/G in IL-22 gene nor haplotypes formed by the same two SNPs (rs2227485 A/G and rs1012356 A/T) were significantly associated with the clinical and/or laboratory manifestations of SLE.
Collapse
Affiliation(s)
- Zeinab R Attia
- Department of Laboratories, Immunology Lab, 165176Mansoura University Children's Hospital, Mansoura, Egypt
| | - Mohamed M Zedan
- Department of Pediatrics, Faculty of Medicine, 68780Mansoura University, Mansoura, Egypt
| | - Thuraya M Mutawi
- Department of Laboratories, Immunology Lab, 165176Mansoura University Children's Hospital, Mansoura, Egypt
| | - Entsar A Saad
- Department of Chemistry, Faculty of Science, 531219Damietta University, Damietta, Egypt
| | - Mohamed A El Basuni
- Department of Laboratories, Immunology Lab, 165176Mansoura University Children's Hospital, Mansoura, Egypt
| |
Collapse
|
14
|
Iperi C, Bordron A, Dueymes M, Pers JO, Jamin C. Metabolic Program of Regulatory B Lymphocytes and Influence in the Control of Malignant and Autoimmune Situations. Front Immunol 2021; 12:735463. [PMID: 34650560 PMCID: PMC8505885 DOI: 10.3389/fimmu.2021.735463] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolic pathways have been studied for a while in eukaryotic cells. During glycolysis, glucose enters into the cells through the Glut1 transporter to be phosphorylated and metabolized generating ATP molecules. Immune cells can use additional pathways to adapt their energetic needs. The pentose phosphate pathway, the glutaminolysis, the fatty acid oxidation and the oxidative phosphorylation generate additional metabolites to respond to the physiological requirements. Specifically, in B lymphocytes, these pathways are activated to meet energetic demands in relation to their maturation status and their functional orientation (tolerance, effector or regulatory activities). These metabolic programs are differentially involved depending on the receptors and the co-activation molecules stimulated. Their induction may also vary according to the influence of the microenvironment, i.e. the presence of T cells, cytokines … promoting the expression of particular transcription factors that direct the energetic program and modulate the number of ATP molecule produced. The current review provides recent advances showing the underestimated influence of the metabolic pathways in the control of the B cell physiology, with a particular focus on the regulatory B cells, but also in the oncogenic and autoimmune evolution of the B cells.
Collapse
Affiliation(s)
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Maryvonne Dueymes
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Jacques-Olivier Pers
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Christophe Jamin
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHU de Brest, Brest, France
| |
Collapse
|
15
|
Iwata S, Tanaka Y. Therapeutic perspectives on the metabolism of lymphocytes in patients with rheumatoid arthritis and systemic lupus erythematosus. Expert Rev Clin Immunol 2021; 17:1121-1130. [PMID: 34351835 DOI: 10.1080/1744666x.2021.1964957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The activation of autoreactive T- and B-cells and production of autoantibodies by B cells are involved in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Recently, the concept of 'immunometabolism' has attracted significant attention. Immune cells produce large amounts of energy in the form of ATP and biosynthesize biological components such as nucleic acids and lipids via metabolic reprogramming to activate, differentiate, and exert their functions. AREAS COVERED While the mechanisms underlying the metabolism of CD4+ T cells in SLE have been extensively studied, the metabolic changes underlying B cell activation, differentiation, and function remain unclear. Drugs targeting mTOR and AMPK, such as sirolimus, rapamycin, and metformin, have shown some efficacy and tolerability in clinical trials on patients with SLE, but have not led to breakthroughs. In this review, we summarize the current knowledge on the immunometabolic mechanisms involved in SLE and RA and discuss the potential novel therapeutic drugs. EXPERT OPINION The intensity of activation of different immune cells and their metabolic kinetics vary in different autoimmune diseases; thus, understanding the disease- and cell-specific metabolic mechanisms may help in the development of clinically effective immunometabolism-targeting drugs.
Collapse
Affiliation(s)
- Shigeru Iwata
- The First Department of Internal Medicine, Assistant Professor, University of Occupational and Environmental Health, Japan, School of Medicine, Kitakyushu, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, Professor and Chairman, Deputy Director, University of Occupational and Environmental Health, Japan, the University Hospital, School of Medicine, Kitakyushu, Japan
| |
Collapse
|
16
|
Zedan MM, Attia ZR, Abd El Azeem RA, Mutawi TM, El Shehawy AS, Bakr A. Genetic Polymorphisms in Genes Involved in the Type I Interferon System (IFIH1/MDA-5, TNFAIP3/A20, and STAT4): Association with SLE Risk in Egyptian Children and Adolescents. J Inflamm Res 2021; 14:3349-3358. [PMID: 34290519 PMCID: PMC8289366 DOI: 10.2147/jir.s309008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Systemic lupus erythematosus (SLE) is a multifactorial autoimmune inflammatory disease that is influenced by both genetic and environmental factors and associated with dysregulation of type I interferon (INF) response. This study aimed to investigate the effects of single nucleotide polymorphisms (SNPs) of the IFIH1, TNFAIP3, and STAT4 genes in the type I INF system on SLE risk in Egyptian children and adolescents. Patients and Methods We recruited 94 SLE individuals and 94 healthy subjects. SNPs of IFIH1 rs3747517 C/T, TNFAIP3 rs610604 G/T, and STAT4 rs7574865 G/T were evaluated using TaqMan™ SNP genotyping assay. Results Individuals with the TT, CT+TT genotypes, and T allele of rs3747517 in the IFIH1 gene were protective for SLE patients (OR = 0.429, 95% CI = 0.191-0.962, P = 0.040), (OR = 0.685, 95% CI = 0.477-0.984, P = 0.041), and (OR = 0.705, 95% CI = 0.527-0.944, P = 0.019), respectively. Also, individuals with the TT, GT+TT genotypes, and T allele of rs7574865 in the STAT4 gene were associated with SLE risk (OR = 3.945, 95% CI = 1.303-11.947, P = 0.015), (OR = 1.536, 95% CI = 1.058-2.231, P = 0.024), and (OR = 1.522, 95% CI = 1.113-2.082, P = 0.009), respectively. In the case of TNFAIP3 rs610604, no significant association of genotypes or alleles with SLE were detected, while the three SNPs did not show any significant association with the SLE clinical or laboratory features. Conclusion Our findings indicated that rs3747517 in IFIH1 was protective for SLE in Egyptian children and adolescents. Moreover, rs7574865 in STAT4 not rs610604 in TNFAIP3 was associated with SLE risk.
Collapse
Affiliation(s)
- Mohamed M Zedan
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Zeinab Rizk Attia
- Department of Laboratories, Immunology Lab, Mansoura University Children's Hospital, Mansoura University, Mansoura, Egypt
| | - Rania A Abd El Azeem
- Department of Laboratories, Immunology Lab, Mansoura University Children's Hospital, Mansoura University, Mansoura, Egypt.,Department of Clinical Laboratory Sciences, College of Medical Applied Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Thuraya M Mutawi
- Department of Laboratories, Immunology Lab, Mansoura University Children's Hospital, Mansoura University, Mansoura, Egypt
| | - Amora S El Shehawy
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf Bakr
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Huang D, Li Z, Chen Y, Fan Y, Yu T. Paeoniflorin reduces the inflammatory response of THP-1 cells by up-regulating microRNA-124 : Paeoniflorin reduces the inflammatory response of THP-1 cells through microRNA-124. Genes Genomics 2021; 43:623-631. [PMID: 33779948 PMCID: PMC8131308 DOI: 10.1007/s13258-021-01083-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/15/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND The activation of macrophages and the release of inflammatory cytokines are the main reasons for the progress of systemic lupus erythematosus (SLE). MicroRNA (miRNA)-124 is involved in the regulation of macrophages and is a key regulator of inflammation and immunity. OBJECTIVE To explore whether paeoniflorin (PF) regulates the biological functions of macrophages depends on miR-124. METHODS RT-PCR, WB, ELISA, CCK-8 and flow cytometry were used to evaluate that PF regulated the biological functions of THP-1 cells through miR-124. RESULTS PF significantly inhibited the proliferation while promotes the apoptosis of THP-1 cells, and inhibited the release of IL-6, TNF-α and IL-1βin THP-1 cells. RT-PCR results shown that PF up-regulated the expression of miR-124 in THP-1 cells. Functional recovery experiments showed that compared with the LPS + mimic-NC group, LPS + miR-124 mimic significantly inhibited the proliferation and the release of IL-6, TNF-α and IL-1β, but promoted the apoptosis of THP-1 cells. In addition, compared with the LPS + PF + inhibitor-NC group, LPS + PF + miR-124 inhibitor significantly promoted the proliferation and the release of IL-6, TNF-α and IL-1β, but inhibited the apoptosis of THP-1 cells. CONCLUSIONS By down-regulating miR-124, PF inhibits the proliferation and inflammation of THP-1 cells, and promotes the apoptosis of THP-1 cells.
Collapse
Affiliation(s)
- Danyun Huang
- Dermatology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang, China
| | - Zhijun Li
- Department of Internal Medicine, Huangyan District Hospital of Traditional Chinese Medicine, Taizhou, 318020, Zhejiang, China
| | - Yue Chen
- Dermatology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang, China
| | - Yan Fan
- Department of Internal Medicine, Huangyan District Hospital of Traditional Chinese Medicine, Taizhou, 318020, Zhejiang, China.
| | - Tao Yu
- Dermatology, Hangzhou Traditional Chinese Medicine Hospital, Dingqiao Campus, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
18
|
Immunometabolism in systemic lupus erythematosus: Relevant pathogenetic mechanisms and potential clinical applications. J Formos Med Assoc 2021; 120:1667-1675. [PMID: 33836940 DOI: 10.1016/j.jfma.2021.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, heterogeneous, systemic autoimmune disease involving a wide array of aberrant innate and adaptive immune responses. The immune microenvironment of SLE promotes the metabolic reprogramming of immune cells, leading to immune dyshomeostasis and triggering autoimmune inflammation. Different immune subsets switch from a resting state to a highly metabolic active state by alternating the redox-sensitive signaling pathway and the involved metabolic intermediates to amplify the inflammatory response, which is critical in SLE pathogenesis. In this review, we discuss abnormal metabolic changes in glucose metabolism, tricarboxylic acid cycle, and lipid and amino acid metabolism as well as mitochondrial dysfunction in immune cells in SLE. We also review studies focused on the potential targets for key molecules of metabolic pathways in SLE, such as hypoxia-inducible factor-1α, mammalian target of rapamycin, and AMP-activated protein kinase. We highlight the therapeutic rationale for targeting these pathways in treating SLE and summarize their recent clinical applications in SLE.
Collapse
|
19
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
20
|
Abd El Azeem RA, Zedan MM, Saad EA, Mutawi TM, Attia ZR. Single-nucleotide polymorphisms (SNPs) of antioxidant enzymes SOD2 and GSTP1 genes and SLE risk and severity in an Egyptian pediatric population. Clin Biochem 2020; 88:37-42. [PMID: 33264651 DOI: 10.1016/j.clinbiochem.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/09/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease associated with increased oxidative stress that participates in immune dysregulation, and injury resulting in loss of immune tolerance and increased auto-antibody production. This study was designed to investigate the effects of genetic polymorphisms of the antioxidant enzymes genes that code for SOD2 (rs2758332) and GSTP1 (rs1695) on SLE risk and severity in Egyptian children and adolescents cohort from Delta region. METHODS The frequencies of these genes polymorphic variants were compared between 100 SLE children and adolescents and 100 healthy control subjects. Single-nucleotide polymorphisms (SNPs) of the two antioxidants were determined using TaqMan SNP genotyping assay. RESULTS Individuals with the TT and CT genotypes of rs2758332 in the SOD2 gene were of significant risk for SLE patients (OR = 1.831, 95% CI = 1.082-3.101, P = 0.024) and (OR = 1.864, 95% CI = 1.136-3.059, P = 0.014), respectively. Cases who have combined CT + TT genotype were of significant higher risk of SLE (OR = 1.851, 95% CI = 1.156 - 2.962, P = 0.010). While, they did not show any significant association between SOD2 genotypes or alleles with SLE clinical features. In case of the SNP rs1695 in the GSTP1 gene, no significant associations of genotypes or alleles with SLE risk or with SLE clinical features were detected. CONCLUSIONS This study among Egyptian children and adolescents showed a strong association of the SOD2 rs2758332 not GSTP1 rs1695 polymorphism with the risk of SLE disease.
Collapse
Affiliation(s)
- Rania A Abd El Azeem
- Department of Clinical Laboratory Sciences, College of Medical Applied Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia; Department of Laboratories, Immunology Lab, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Mohamed M Zedan
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta 34517, Egypt.
| | - Thuraya M Mutawi
- Department of Laboratories, Immunology Lab, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Zeinab R Attia
- Department of Laboratories, Immunology Lab, Mansoura University Children's Hospital, Mansoura, Egypt
| |
Collapse
|