1
|
Dari A, Pérez Ruixo JJ, Le Gars M, Struyf F, Jacqmin P. Modelling antibody dynamics in humans after different Ad26.COV2.S vaccination schemes. Br J Clin Pharmacol 2024. [PMID: 39327825 DOI: 10.1111/bcp.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 09/28/2024] Open
Abstract
AIMS To develop a semimechanistic model that describes the kinetic profile and variability of antibody (Ab) concentrations following vaccination with Ad26.COV2.S at different doses and dosing intervals. METHODS Data were collected from participants randomized into 5 clinical trials receiving the Ad26.COV2.S vaccine. The model considered key elements of humoral immune response, dose proportionality and the evolutionary processes of the immune response. Interindividual variability and covariates were explored. RESULTS Fast and slow kinetic phases of Ab and their evolution over time were differentiated. After first and second administrations, Ab concentrations of both phases increased less than dose proportionally, indicating a saturation of B-cell production processes. Ab concentrations produced during the fast kinetic phase increased significantly after the second administration, indicating an underlying evolutive process after antigen exposures. For the slow kinetic phase, a less pronounced increase occurred after the second and third administrations but was relatively higher in subjects who had low concentrations after the first administration. Ab concentrations of the slow phase were higher in females and decreased with age. After multiple administrations, the fast phase had Ab maximum concentrations about 5 times higher than the slow phase. The limiting kinetic factors in the fast and slow phases were the elimination rates of Ab itself and Ab producing cells, respectively. CONCLUSION The model appears suitable to quantitatively describe the inter- and intraindividual kinetics of the immune response and the impact of covariates after multiple administrations of a vaccine.
Collapse
Affiliation(s)
- Anna Dari
- Janssen Research & Development, Beerse, Belgium
| | | | | | | | | |
Collapse
|
2
|
Hodgson D, Liu Y, Carolan L, Mahanty S, Subbarao K, Sullivan SG, Fox A, Kucharski A. Memory B cell proliferation drives differences in neutralising responses between ChAdOx1 and BNT162b2 SARS-CoV-2 vaccines. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.11.24310221. [PMID: 39040163 PMCID: PMC11261961 DOI: 10.1101/2024.07.11.24310221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Vaccination against COVID-19 has been pivotal in reducing the global burden of the disease. However, Phase III trial results and observational studies underscore differences in efficacy across vaccine technologies and dosing regimens. Notably, mRNA vaccines have exhibited superior effectiveness compared to Adenovirus (AdV) vaccines, especially with extended dosing intervals. Using in-host mechanistic modelling, this study elucidates these variations and unravels the biological mechanisms shaping the immune responses at the cellular level. We used data on the change in memory B cells, plasmablasts, and antibody titres after the second dose of a COVID-19 vaccine for Australian healthcare workers. Alongside this dataset, we constructed a kinetic model of humoral immunity which jointly captured the dynamics of multiple immune markers, and integrated hierarchical effects into this kinetics model, including age, dosing schedule, and vaccine type. Our analysis estimated that mRNA vaccines induced 2.1 times higher memory B cell proliferation than AdV vaccines after adjusting for age, interval between doses and priming dose. Additionally, extending the duration between the second vaccine dose and priming dose beyond 28 days boosted neutralising antibody production per plasmablast concentration by 30%. We also found that antibody responses after the second dose were more persistent when mRNA vaccines were used over AdV vaccines and for longer dosing regimens. Reconstructing in-host kinetics in response to vaccination could help optimise vaccine dosing regimens, improve vaccine efficacy in different population groups, and inform the design of future vaccines for enhanced protection against emerging pathogens.
Collapse
Affiliation(s)
- David Hodgson
- Centre of Mathematical Modelling of Infectious Diseases, London School and Hygiene and Tropical Medicine, London, UK
| | - Yi Liu
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Louise Carolan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Siddhartha Mahanty
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sheena G. Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam Kucharski
- Centre of Mathematical Modelling of Infectious Diseases, London School and Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
3
|
Lovell JF, Miura K, Baik YO, Lee C, Lee JY, Park YS, Hong I, Lee JH, Kim T, Seo SH, Kim JO, Song M, Kim CJ, Choi JK, Kim J, Choo EJ, Choi JH. One-year antibody durability induced by EuCorVac-19, a liposome-displayed COVID-19 receptor binding domain subunit vaccine, in healthy Korean subjects. Int J Infect Dis 2024; 138:73-80. [PMID: 37944586 DOI: 10.1016/j.ijid.2023.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE EuCorVac-19 (ECV-19), an adjuvanted liposome-displayed receptor binding domain (RBD) COVID-19 vaccine, previously reported interim Phase 2 trial results showing induction of neutralizing antibodies 3 weeks after prime-boost immunization. The objective of this study was to determine the longer-term antibody response of the vaccine. METHODS To assess immunogenicity 6 and 12 months after vaccination, participants in the Phase 2 trial (NCT04783311) were excluded if they: 1) withdrew, 2) reported COVID-19 infection or additional vaccination, or 3) exhibited increasing Spike (S) antibodies (representing possible non-reported infection). Following exclusions, of the 197 initial subjects, anti-S IgG antibodies and neutralizing antibodies were further assessed in 124 subjects at the 6-month timepoint, and 36 subjects at the 12-month timepoint. RESULTS Median anti-S antibody half-life was 52 days (interquartile range [IQR]:42-70), in the "early" period from 3 weeks to 6 months, and 130 days (IQR:97-169) in the "late" period from 6 to 12 months. There was a negative correlation between initial antibody titer and half-life. Anti-S and neutralizing antibody responses were correlated. Neutralizing antibody responses showed longer half-lives; the early period had a median half-life of 120 days (IQR:81-207), and the late period had a median half-life of 214 days (IQR:140-550). CONCLUSION These data establish antibody durability of ECV-19, using a framework to analyze COVID-19 vaccine-induced antibodies during periods of high infection.
Collapse
Affiliation(s)
- Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA.
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yeong Ok Baik
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, Korea
| | - Chankyu Lee
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, Korea
| | - Jeong-Yoon Lee
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, Korea
| | | | - Ingi Hong
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Jung Hyuk Lee
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Taewoo Kim
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Sang Hwan Seo
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Jae-Ouk Kim
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Manki Song
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Chung-Jong Kim
- Department of Internal Medicine, Ewha Womans University, Seoul, Korea
| | - Jae-Ki Choi
- Department of Infectious Diseases, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jieun Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Eun Ju Choo
- Department of Infectious Diseases, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jung-Hyun Choi
- Department of Infectious Diseases, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Alexandre M, Prague M, McLean C, Bockstal V, Douoguih M, Thiébaut R. Prediction of long-term humoral response induced by the two-dose heterologous Ad26.ZEBOV, MVA-BN-Filo vaccine against Ebola. NPJ Vaccines 2023; 8:174. [PMID: 37940656 PMCID: PMC10632397 DOI: 10.1038/s41541-023-00767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
The persistence of the long-term immune response induced by the heterologous Ad26.ZEBOV, MVA-BN-Filo two-dose vaccination regimen against Ebola has been investigated in several clinical trials. Longitudinal data on IgG-binding antibody concentrations were analyzed from 487 participants enrolled in six Phase I and Phase II clinical trials conducted by the EBOVAC1 and EBOVAC2 consortia. A model based on ordinary differential equations describing the dynamics of antibodies and short- and long-lived antibody-secreting cells (ASCs) was used to model the humoral response from 7 days after the second vaccination to a follow-up period of 2 years. Using a population-based approach, we first assessed the robustness of the model, which was originally estimated based on Phase I data, against all data. Then we assessed the longevity of the humoral response and identified factors that influence these dynamics. We estimated a half-life of the long-lived ASC of at least 15 years and found an influence of geographic region, sex, and age on the humoral response dynamics, with longer antibody persistence in Europeans and women and higher production of antibodies in younger participants.
Collapse
Affiliation(s)
- Marie Alexandre
- Department of Public Health, Bordeaux University, Inserm UMR 1219 Bordeaux Population Health Research Center, Inria SISTM, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Mélanie Prague
- Department of Public Health, Bordeaux University, Inserm UMR 1219 Bordeaux Population Health Research Center, Inria SISTM, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Chelsea McLean
- Janssen Vaccines and Prevention, Leiden, the Netherlands
| | - Viki Bockstal
- Janssen Vaccines and Prevention, Leiden, the Netherlands
- ExeVir, Ghent, Belgium
| | | | - Rodolphe Thiébaut
- Department of Public Health, Bordeaux University, Inserm UMR 1219 Bordeaux Population Health Research Center, Inria SISTM, Bordeaux, France.
- Vaccine Research Institute, Créteil, France.
| |
Collapse
|
5
|
Dari A, Jacqmin P, Iwaki Y, Neyens M, Le Gars M, Sadoff J, Hardt K, Ruiz‐Guiñazú J, Pérez‐Ruixo JJ. Mechanistic modeling projections of antibody persistence after homologous booster regimens of COVID-19 vaccine Ad26.COV2.S in humans. CPT Pharmacometrics Syst Pharmacol 2023; 12:1485-1498. [PMID: 37715342 PMCID: PMC10583247 DOI: 10.1002/psp4.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 09/17/2023] Open
Abstract
Mechanistic model-based simulations can be deployed to project the persistence of humoral immune response following vaccination. We used this approach to project the antibody persistence through 24 months from the data pooled across five clinical trials in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-seronegative participants following vaccination with Ad26.COV2.S (5 × 1010 viral particles), given either as a single-dose or a homologous booster regimen at an interval of 2, 3, or 6 months. Antibody persistence was quantified as the percentage of participants with detectable anti-spike binding and wild-type virus neutralizing antibodies. The projected overall 24-month persistence after single-dose Ad26.COV2.S was 70.5% for binding antibodies and 55.2% for neutralizing antibodies, and increased after any homologous booster regimen to greater than or equal to 89.9% for binding and greater than or equal to 80.0% for neutralizing antibodies. The estimated model parameters quantifying the rates of antibody production attributed to short-lived and long-lived plasma cells decreased with increasing age, whereas the rate of antibody production mediated by long-lived plasma cells was higher in women relative to men. Accordingly, a more pronounced waning of antibody responses was predicted in men aged greater than or equal to 60 years and was markedly attenuated following any homologous boosting regimen. The findings suggest that homologous boosting might be a viable strategy for maintaining protective effects of Ad26.COV2.S for up to 24 months following prime vaccination. The estimation of mechanistic modeling parameters identified the long-lived plasma cell pathway as a key contributor mediating antibody persistence following single-dose and homologous booster vaccination with Ad26.COV2.S in different subgroups of recipients stratified by age and sex.
Collapse
Affiliation(s)
- Anna Dari
- Janssen Research & DevelopmentBeerseBelgium
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dari A, Solforosi L, Roozendaal R, Hoetelmans RMW, Pérez-Ruixo JJ, Boulton M. Mechanistic Model Describing the Time Course of Humoral Immunity Following Ad26.COV2.S Vaccination in Non-Human Primates. J Pharmacol Exp Ther 2023; 387:121-130. [PMID: 37536955 DOI: 10.1124/jpet.123.001591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Mechanistic modeling can be used to describe the time course of vaccine-induced humoral immunity and to identify key biologic drivers in antibody production. We used a six-compartment mechanistic model to describe a 20-week time course of humoral immune responses in 56 non-human primates (NHPs) elicited by vaccination with Ad26.COV2.S according to either a single-dose regimen (1 × 1011 or 5 × 1010 viral particles [vp]) or a two-dose homologous regimen (5 × 1010 vp) given in an interval of 4 or 8 weeks. Humoral immune responses were quantified by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-specific binding antibody concentrations as determined by spike protein-enzyme-linked immunosorbent assay. The mechanistic model adequately described the central tendency and variability of binding antibody concentrations through 20 weeks in all vaccination arms. The estimation of mechanistic modeling parameters revealed greater contribution of the antibody production mediated by short-lived cells as compared with long-lived cells in driving the peak response, especially post second dose when a more rapid peak response was observed. The antibody production mediated by long-lived cells was identified as relevant for generating the first peak and for contributing to the long-term time course of sustained antibody concentrations in all vaccination arms. The findings contribute evidence on the key biologic components responsible for the observed time course of vaccine-induced humoral immunity in NHPs and constitute a step toward defining immune biomarkers of protection against SARS-CoV-2 that might translate across species. SIGNIFICANCE STATEMENT: We demonstrate the adequacy of a mechanistic modeling approach describing the time course of binding antibody concentrations in non-human primates (NHPs) elicited by different dose levels and regimens of Ad26.COV2.S. The findings are relevant for informing the mechanism-based accounts of vaccine-induced humoral immunity in NHPs and translational research efforts aimed at identifying immune biomarkers of protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Anna Dari
- Janssen Research and Development, Beerse, Belgium (A.D., R.M.W.H., J.-J.P.-R., M.B.); and Janssen Vaccines and Prevention B.V., Leiden, The Netherlands (L.S., R.R.)
| | - Laura Solforosi
- Janssen Research and Development, Beerse, Belgium (A.D., R.M.W.H., J.-J.P.-R., M.B.); and Janssen Vaccines and Prevention B.V., Leiden, The Netherlands (L.S., R.R.)
| | - Ramon Roozendaal
- Janssen Research and Development, Beerse, Belgium (A.D., R.M.W.H., J.-J.P.-R., M.B.); and Janssen Vaccines and Prevention B.V., Leiden, The Netherlands (L.S., R.R.)
| | - Richard M W Hoetelmans
- Janssen Research and Development, Beerse, Belgium (A.D., R.M.W.H., J.-J.P.-R., M.B.); and Janssen Vaccines and Prevention B.V., Leiden, The Netherlands (L.S., R.R.)
| | - Juan-José Pérez-Ruixo
- Janssen Research and Development, Beerse, Belgium (A.D., R.M.W.H., J.-J.P.-R., M.B.); and Janssen Vaccines and Prevention B.V., Leiden, The Netherlands (L.S., R.R.)
| | - Muriel Boulton
- Janssen Research and Development, Beerse, Belgium (A.D., R.M.W.H., J.-J.P.-R., M.B.); and Janssen Vaccines and Prevention B.V., Leiden, The Netherlands (L.S., R.R.)
| |
Collapse
|
7
|
Blengio F, Hocini H, Richert L, Lefebvre C, Durand M, Hejblum B, Tisserand P, McLean C, Luhn K, Thiebaut R, Levy Y. Identification of early gene expression profiles associated with long-lasting antibody responses to the Ebola vaccine Ad26.ZEBOV/MVA-BN-Filo. Cell Rep 2023; 42:113101. [PMID: 37691146 DOI: 10.1016/j.celrep.2023.113101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Ebola virus disease is a severe hemorrhagic fever with a high fatality rate. We investigate transcriptome profiles at 3 h, 1 day, and 7 days after vaccination with Ad26.ZEBOV and MVA-BN-Filo. 3 h after Ad26.ZEBOV injection, we observe an increase in genes related to antigen presentation, sensing, and T and B cell receptors. The highest response occurs 1 day after Ad26.ZEBOV injection, with an increase of the gene expression of interferon-induced antiviral molecules, monocyte activation, and sensing receptors. This response is regulated by the HESX1, ATF3, ANKRD22, and ETV7 transcription factors. A plasma cell signature is observed on day 7 post-Ad26.ZEBOV vaccination, with an increase of CD138, MZB1, CD38, CD79A, and immunoglobulin genes. We have identified early expressed genes correlated with the magnitude of the antibody response 21 days after the MVA-BN-Filo and 364 days after Ad26.ZEBOV vaccinations. Our results provide early gene signatures that correlate with vaccine-induced Ebola virus glycoprotein-specific antibodies.
Collapse
Affiliation(s)
- Fabiola Blengio
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Laura Richert
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Mélany Durand
- University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Boris Hejblum
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Pascaline Tisserand
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Chelsea McLean
- Janssen Vaccines & Prevention, B.V. Archimediesweg, Leiden, the Netherlands
| | - Kerstin Luhn
- Janssen Vaccines & Prevention, B.V. Archimediesweg, Leiden, the Netherlands
| | - Rodolphe Thiebaut
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France.
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| |
Collapse
|
8
|
Clairon Q, Prague M, Planas D, Bruel T, Hocqueloux L, Prazuck T, Schwartz O, Thiébaut R, Guedj J. Modeling the kinetics of the neutralizing antibody response against SARS-CoV-2 variants after several administrations of Bnt162b2. PLoS Comput Biol 2023; 19:e1011282. [PMID: 37549192 PMCID: PMC10434962 DOI: 10.1371/journal.pcbi.1011282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/17/2023] [Accepted: 06/20/2023] [Indexed: 08/09/2023] Open
Abstract
Because SARS-CoV-2 constantly mutates to escape from the immune response, there is a reduction of neutralizing capacity of antibodies initially targeting the historical strain against emerging Variants of Concern (VoC)s. That is why the measure of the protection conferred by vaccination cannot solely rely on the antibody levels, but also requires to measure their neutralization capacity. Here we used a mathematical model to follow the humoral response in 26 individuals that received up to three vaccination doses of Bnt162b2 vaccine, and for whom both anti-S IgG and neutralization capacity was measured longitudinally against all main VoCs. Our model could identify two independent mechanisms that led to a marked increase in measured humoral response over the successive vaccination doses. In addition to the already known increase in IgG levels after each dose, we identified that the neutralization capacity was significantly increased after the third vaccine administration against all VoCs, despite large inter-individual variability. Consequently, the model projects that the mean duration of detectable neutralizing capacity against non-Omicron VoC is between 348 days (Beta variant, 95% Prediction Intervals PI [307; 389]) and 587 days (Alpha variant, 95% PI [537; 636]). Despite the low neutralization levels after three doses, the mean duration of detectable neutralizing capacity against Omicron variants varies between 173 days (BA.5 variant, 95% PI [142; 200]) and 256 days (BA.1 variant, 95% PI [227; 286]). Our model shows the benefit of incorporating the neutralization capacity in the follow-up of patients to better inform on their level of protection against the different SARS-CoV-2 variants. Trial registration: This clinical trial is registered with ClinicalTrials.gov, Trial IDs NCT04750720 and NCT05315583.
Collapse
Affiliation(s)
- Quentin Clairon
- Université de Bordeaux, Inria Bordeaux Sud-Ouest, Bordeaux, France
- Inserm, Bordeaux Population Health Research Center, SISTM Team, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Mélanie Prague
- Université de Bordeaux, Inria Bordeaux Sud-Ouest, Bordeaux, France
- Inserm, Bordeaux Population Health Research Center, SISTM Team, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Delphine Planas
- Vaccine Research Institute, Créteil, France
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Timothée Bruel
- Vaccine Research Institute, Créteil, France
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Laurent Hocqueloux
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional, Orléans, France
| | - Thierry Prazuck
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional, Orléans, France
| | - Olivier Schwartz
- Vaccine Research Institute, Créteil, France
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Rodolphe Thiébaut
- Université de Bordeaux, Inria Bordeaux Sud-Ouest, Bordeaux, France
- Inserm, Bordeaux Population Health Research Center, SISTM Team, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | | |
Collapse
|
9
|
Garcia-Fogeda I, Besbassi H, Larivière Y, Ogunjimi B, Abrams S, Hens N. Within-host modeling to measure dynamics of antibody responses after natural infection or vaccination: A systematic review. Vaccine 2023:S0264-410X(23)00422-X. [PMID: 37198016 DOI: 10.1016/j.vaccine.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Within-host models describe the dynamics of immune cells when encountering a pathogen, and how these dynamics can lead to an individual-specific immune response. This systematic review aims to summarize which within-host methodology has been used to study and quantify antibody kinetics after infection or vaccination. In particular, we focus on data-driven and theory-driven mechanistic models. MATERIALS PubMed and Web of Science databases were used to identify eligible papers published until May 2022. Eligible publications included those studying mathematical models that measure antibody kinetics as the primary outcome (ranging from phenomenological to mechanistic models). RESULTS We identified 78 eligible publications, of which 8 relied on an Ordinary Differential Equations (ODEs)-based modelling approach to describe antibody kinetics after vaccination, and 12 studies used such models in the context of humoral immunity induced by natural infection. Mechanistic modeling studies were summarized in terms of type of study, sample size, measurements collected, antibody half-life, compartments and parameters included, inferential or analytical method, and model selection. CONCLUSIONS Despite the importance of investigating antibody kinetics and underlying mechanisms of (waning of) the humoral immunity, few publications explicitly account for this in a mathematical model. In particular, most research focuses on phenomenological rather than mechanistic models. The limited information on the age groups or other risk factors that might impact antibody kinetics, as well as a lack of experimental or observational data remain important concerns regarding the interpretation of mathematical modeling results. We reviewed the similarities between the kinetics following vaccination and infection, emphasising that it may be worth translating some features from one setting to another. However, we also stress that some biological mechanisms need to be distinguished. We found that data-driven mechanistic models tend to be more simplistic, and theory-driven approaches lack representative data to validate model results.
Collapse
Affiliation(s)
- Irene Garcia-Fogeda
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.
| | - Hajar Besbassi
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Ynke Larivière
- Global Health Institute (GHI), Family Medicine and Population Health (FAMPOP), University of Antwerp, Antwerp, Belgium; Centre for the Evaluation of Vaccination, Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Department of Paediatrics, University Hospital Antwerp, Antwerp, Belgium
| | - Steven Abrams
- Global Health Institute (GHI), Family Medicine and Population Health (FAMPOP), University of Antwerp, Antwerp, Belgium; Data Science Institute (DSI), Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), UHasselt, Hasselt, Belgium
| | - Niel Hens
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Data Science Institute (DSI), Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), UHasselt, Hasselt, Belgium
| |
Collapse
|
10
|
Dari A, Boulton M, Neyens M, Le Gars M, Valenzuela B, Shukarev G, Cárdenas V, Ruiz-Guiñazú J, Sadoff J, Hoetelmans RMW, Ruixo JJP. Quantifying Antibody Persistence After a Single Dose of COVID-19 Vaccine Ad26.COV2.S in Humans Using a Mechanistic Modeling and Simulation Approach. Clin Pharmacol Ther 2023; 113:380-389. [PMID: 36377532 PMCID: PMC10107600 DOI: 10.1002/cpt.2796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Understanding persistence of humoral immune responses elicited by vaccination against coronavirus disease 2019 (COVID-19) is critical for informing the duration of protection and appropriate booster timing. We developed a mechanistic model to characterize the time course of humoral immune responses in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-seronegative adults after primary vaccination with the Janssen COVID-19 vaccine, Ad26.COV2.S. The persistence of antibody responses was quantified through mechanistic modeling-based simulations. Two biomarkers of humoral immune responses were examined: SARS-CoV-2 neutralizing antibodies determined by wild-type virus neutralization assay (wtVNA) and spike protein-binding antibodies determined by indirect spike protein enzyme-linked immunosorbent assay (S-ELISA). The persistence of antibody responses was defined as the period of time during which wtVNA and S-ELISA titers remained above the lower limit of quantification. A total of 442 wtVNA and 1,185 S-ELISA titers from 82 and 220 participants, respectively, were analyzed following administration of a single dose of Ad26.COV2.S (5 × 1010 viral particles). The mechanistic model adequately described the time course of observed wtVNA and S-ELISA serum titers and its associated variability up to 8 months following vaccination. Mechanistic model-based simulations show that single-dose Ad26.COV2.S elicits durable but waning antibody responses up to 24 months following immunization. Of the estimated model parameters, the production rate of memory B cells was decreased in older adults relative to younger adults, and the antibody production rate mediated by long-lived plasma cells was increased in women relative to men. A steeper waning of antibody responses was predicted in men and in older adults.
Collapse
Affiliation(s)
- Anna Dari
- Janssen Research and Development, Beerse, Belgium
| | | | | | | | - Belén Valenzuela
- Janssen-Cilag Spain, Part of Janssen Pharmaceutical Companies, Madrid, Spain
| | | | - Vicky Cárdenas
- Janssen Research and Development, Spring House, Pennsylvania, USA
| | | | - Jerald Sadoff
- Janssen Vaccines and Prevention, Leiden, The Netherlands
| | | | | |
Collapse
|
11
|
Alexandre M, Marlin R, Prague M, Coleon S, Kahlaoui N, Cardinaud S, Naninck T, Delache B, Surenaud M, Galhaut M, Dereuddre-Bosquet N, Cavarelli M, Maisonnasse P, Centlivre M, Lacabaratz C, Wiedemann A, Zurawski S, Zurawski G, Schwartz O, Sanders RW, Le Grand R, Levy Y, Thiébaut R. Modelling the response to vaccine in non-human primates to define SARS-CoV-2 mechanistic correlates of protection. eLife 2022; 11:75427. [PMID: 35801637 PMCID: PMC9282856 DOI: 10.7554/elife.75427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
The definition of correlates of protection is critical for the development of next-generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.
Collapse
Affiliation(s)
- Marie Alexandre
- Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
| | - Romain Marlin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Mélanie Prague
- Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
| | - Severin Coleon
- Vaccine Research Institute, Inserm U955, Créteil, France
| | - Nidhal Kahlaoui
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | | | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Benoit Delache
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | | | - Mathilde Galhaut
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Pauline Maisonnasse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | | | | | | | - Sandra Zurawski
- Baylor Scott and White Research Institute, Dallas, United States
| | - Gerard Zurawski
- Baylor Scott and White Research Institute, Dallas, United States
| | | | - Rogier W Sanders
- Department of Medical Microbiology, University of Amsterdam, Amsterdam, Netherlands
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Yves Levy
- Vaccine Research Institute, Inserm U955, Créteil, France
| | - Rodolphe Thiébaut
- Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
| |
Collapse
|
12
|
Barry H, Mutua G, Kibuuka H, Anywaine Z, Sirima SB, Meda N, Anzala O, Eholie S, Bétard C, Richert L, Lacabaratz C, McElrath MJ, De Rosa S, Cohen KW, Shukarev G, Robinson C, Gaddah A, Heerwegh D, Bockstal V, Luhn K, Leyssen M, Douoguih M, Thiébaut R. Safety and immunogenicity of 2-dose heterologous Ad26.ZEBOV, MVA-BN-Filo Ebola vaccination in healthy and HIV-infected adults: A randomised, placebo-controlled Phase II clinical trial in Africa. PLoS Med 2021; 18:e1003813. [PMID: 34714820 PMCID: PMC8555783 DOI: 10.1371/journal.pmed.1003813] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND We investigated safety, tolerability, and immunogenicity of the heterologous 2-dose Ebola vaccination regimen in healthy and HIV-infected adults with different intervals between Ebola vaccinations. METHODS AND FINDINGS In this randomised, observer-blind, placebo-controlled Phase II trial, 668 healthy 18- to 70-year-olds and 142 HIV-infected 18- to 50-year-olds were enrolled from 1 site in Kenya and 2 sites each in Burkina Faso, Cote d'Ivoire, and Uganda. Participants received intramuscular Ad26.ZEBOV followed by MVA-BN-Filo at 28-, 56-, or 84-day intervals, or saline. Females represented 31.4% of the healthy adult cohort in contrast to 69.7% of the HIV-infected cohort. A subset of healthy adults received booster vaccination with Ad26.ZEBOV or saline at Day 365. Following vaccinations, adverse events (AEs) were collected until 42 days post last vaccination and serious AEs (SAEs) were recorded from signing of the ICF until the end of the study. The primary endpoint was safety, and the secondary endpoint was immunogenicity. Anti-Ebola virus glycoprotein (EBOV GP) binding and neutralising antibodies were measured at baseline and at predefined time points throughout the study. The first participant was enrolled on 9 November 2015, and the date of last participant's last visit was 12 February 2019. No vaccine-related SAEs and mainly mild-to-moderate AEs were observed among the participants. The most frequent solicited AEs were injection-site pain (local), and fatigue, headache, and myalgia (systemic), respectively. Twenty-one days post-MVA-BN-Filo vaccination, geometric mean concentrations (GMCs) with 95% confidence intervals (CIs) of EBOV GP binding antibodies in healthy adults in 28-, 56-, and 84-day interval groups were 3,085 EU/mL (2,648 to 3,594), 7,518 EU/mL (6,468 to 8,740), and 7,300 EU/mL (5,116 to 10,417), respectively. In HIV-infected adults in 28- and 56-day interval groups, GMCs were 4,207 EU/mL (3,233 to 5,474) and 5,283 EU/mL (4,094 to 6,817), respectively. Antibody responses were observed until Day 365. Ad26.ZEBOV booster vaccination after 1 year induced an anamnestic response. Study limitations include that some healthy adult participants either did not receive dose 2 or received dose 2 outside of their protocol-defined interval and that the follow-up period was limited to 365 days for most participants. CONCLUSIONS Ad26.ZEBOV, MVA-BN-Filo vaccination was well tolerated and immunogenic in healthy and HIV-infected African adults. Increasing the interval between vaccinations from 28 to 56 days improved the magnitude of humoral immune responses. Antibody levels persisted to at least 1 year, and Ad26.ZEBOV booster vaccination demonstrated the presence of vaccination-induced immune memory. These data supported the approval by the European Union for prophylaxis against EBOV disease in adults and children ≥1 year of age. TRIAL REGISTRATION ClinicalTrials.gov NCT02564523.
Collapse
Affiliation(s)
| | - Gaudensia Mutua
- KAVI—Institute of Clinical Research University of Nairobi, Nairobi, Kenya
| | - Hannah Kibuuka
- Makerere University—Walter Reed Project, Kampala, Uganda
| | - Zacchaeus Anywaine
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Sodiomon B. Sirima
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Unité de Recherche Clinique de Banfora, Ouagadougou, Burkina Faso
| | | | - Omu Anzala
- KAVI—Institute of Clinical Research University of Nairobi, Nairobi, Kenya
| | - Serge Eholie
- Unit of Infectious and Tropical Diseases, BPV3, Treichville University Teaching Hospital, Abidjan, Côte d’Ivoire
| | - Christine Bétard
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; Inria SISTM team; CHU Bordeaux; CIC 1401, EUCLID/F-CRIN Clinical Trials Platform, F-33000, Bordeaux, France
| | - Laura Richert
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; Inria SISTM team; CHU Bordeaux; CIC 1401, EUCLID/F-CRIN Clinical Trials Platform, F-33000, Bordeaux, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Christine Lacabaratz
- Vaccine Research Institute (VRI), Créteil, France
- Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Stephen De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | | | | | | | - Viki Bockstal
- Janssen Vaccines and Prevention, Leiden, the Netherlands
| | - Kerstin Luhn
- Janssen Vaccines and Prevention, Leiden, the Netherlands
| | | | | | - Rodolphe Thiébaut
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; Inria SISTM team; CHU Bordeaux; CIC 1401, EUCLID/F-CRIN Clinical Trials Platform, F-33000, Bordeaux, France
- Vaccine Research Institute (VRI), Créteil, France
| | | |
Collapse
|
13
|
Wang L, Alexander CA. COVID-19 Compared with Other Viral Diseases: Novelties, Progress, and Challenges. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2020. [DOI: 10.29333/ejgm/8575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|