1
|
Kasai T, Yamada M, Funaki T, Tao C, Myojin S, Aiba H, Matsui T, Ogimi C, Miyake K, Ueno S, Miyairi I, Kato H, Shoji K. Antibody titer trends after SARS-CoV-2 vaccination in patients aged 12 to 25 years with underlying diseases. J Infect Chemother 2024:S1341-321X(24)00326-X. [PMID: 39647700 DOI: 10.1016/j.jiac.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Whereas declines in antibody titers after SARS-CoV-2 vaccination have been reported, most reports are predominantly from adults. Long-term trends in SARS-CoV-2 antibody titers after the first BNT162b2 vaccination series in children and young adults with underlying diseases remain less studied. METHODS This prospective single-center observational cohort study enrolled patients aged 12-25 years with underlying diseases who received the first BNT162b2 vaccination series. At least three longitudinal antibody titers were evaluated during the first year following vaccination. RESULTS Among 429 study subjects, 61 patients with at least three subsequent antibody titer measurements were included. The median (interquartile range [IQR]) time intervals from the vaccination to the first, second, and third antibody measurements were 43 (30-56), 126 (110-155), and 224 (207-256) days, and antibody titers declined with median (IQR) values of 2310 (1440-3515), 2010 (1165-3055), and 1410 (904-2195) U/mL, respectively. In 35 immunocompetent patients, the antibody titers decreased consistently in each measurement. In contrast, the antibody titers in immunocompromised patients remained stable between the first and second measurements, but declined by the third. A two-way ANOVA revealed that time was a more significant factor than immunocompromised status for the declines in antibody titers. CONCLUSIONS In patients aged 12-25 years with underlying diseases, antibody titers in immunocompromised patients after SARS-CoV-2 vaccination were lower than in immunocompetent patients in the early post-vaccination period, but they maintained titers similar to the immunocompetent counterpart during the long-term follow-up.
Collapse
Affiliation(s)
- Taketo Kasai
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masaki Yamada
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takanori Funaki
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Chiaki Tao
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Shota Myojin
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Hiroyuki Aiba
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Toshihiro Matsui
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Chikara Ogimi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Kozue Miyake
- Clinical Research Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Saki Ueno
- Clinical Research Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Isao Miyairi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Department of Pediatrics, Hamamatsu University, School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan
| | - Hitoshi Kato
- National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Kensuke Shoji
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| |
Collapse
|
2
|
Tsagkli P, Geropeppa M, Papadatou I, Spoulou V. Hybrid Immunity against SARS-CoV-2 Variants: A Narrative Review of the Literature. Vaccines (Basel) 2024; 12:1051. [PMID: 39340081 PMCID: PMC11436074 DOI: 10.3390/vaccines12091051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of SARS-CoV-2 led to a global health crisis and the burden of the disease continues to persist. The rapid development and emergency authorization of various vaccines, including mRNA-based vaccines, played a pivotal role in mitigating severe illness and mortality. However, rapid viral mutations, leading to several variants of concern, challenged vaccine effectiveness, particularly concerning immune evasion. Research on immunity, both from natural infection and vaccination, revealed that while neutralizing antibodies provide protection against infection, their effect is short-lived. The primary defense against severe COVID-19 is derived from the cellular immune response. Hybrid immunity, developed from a combination of natural infection and vaccination, offers enhanced protection, with convalescent vaccinated individuals showing significantly higher levels of neutralizing antibodies. As SARS-CoV-2 continues to evolve, understanding the durability and breadth of hybrid immunity becomes crucial. This narrative review examines the latest data on humoral and cellular immunity from both natural infection and vaccination, discussing how hybrid immunity could inform and optimize future vaccination strategies in the ongoing battle against COVID-19 and in fear of a new pandemic.
Collapse
Affiliation(s)
- Panagiota Tsagkli
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Maria Geropeppa
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
3
|
Qureshi Z, Altaf F, Jamil A, Siddique R, Shah S. Navigating uncharted waters: assessing the impact of the COVID-19 pandemic on hematopoietic stem cell transplantation: challenges and innovations. Ann Med Surg (Lond) 2024; 86:5416-5424. [PMID: 39239009 PMCID: PMC11374183 DOI: 10.1097/ms9.0000000000002442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
The COVID-19 pandemic has significantly impacted hematopoietic stem cell transplantation (HSCT), necessitating adaptations across pre-transplant, transplantation, and post-transplant phases. HSCT recipients with compromised immune systems face heightened risks of severe COVID-19 outcomes, including increased mortality. The pandemic prompted significant changes in treatment strategies, with many patients experiencing delays or deferrals in autologous stem cell transplantation (ASCT), alongside adjustments to chemotherapy regimens to prevent disease recurrence. Clinical practices have evolved to address pandemic-related challenges, including a decrease in allo-HSCT procedures, a shift towards using domestic donors and peripheral blood stem cells over bone marrow grafts, and integration of telemedicine to reduce patient burden. These adaptations aim to balance COVID-19 exposure risks with the need for lifesaving HSCT. Innovations in response to the pandemic include stringent infection control measures, modified conditioning regimens, and revised post-transplant care protocols to mitigate infection risks. The importance of optimizing antiviral treatments, exploring new immunomodulatory interventions, and researching broadly neutralizing antibodies for HSCT recipients has been underscored. Despite the difficulties, the pandemic has catalyzed significant learning and innovation in HSCT practices, emphasizing the need for ongoing adaptation and research to protect this vulnerable patient population.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre
| | | | | |
Collapse
|
4
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Howard DS, Ibrahim U, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 Vaccination in the First Year After Hematopoietic Cell Transplant or Chimeric Antigen Receptor T-Cell Therapy: A Prospective, Multicenter, Observational Study. Clin Infect Dis 2024; 79:542-554. [PMID: 38801746 PMCID: PMC11327798 DOI: 10.1093/cid/ciae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The optimal timing of vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines after cellular therapy is incompletely understood. The objectives of this study are to determine whether humoral and cellular responses after SARS-CoV-2 vaccination differ if initiated <4 months versus 4-12 months after cellular therapy. METHODS We conducted a multicenter, prospective, observational study at 30 cancer centers in the United States. SARS-CoV-2 vaccination was administered as part of routine care. We obtained blood prior to and after vaccinations at up to 5 time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T-cell receptors, in a subgroup. RESULTS We enrolled 466 allogeneic hematopoietic cell transplantation (HCT) (n = 231), autologous HCT (n = 170), and chimeric antigen receptor T-cell (CAR-T-cell) therapy (n = 65) recipients between April 2021 and June 2022. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months versus 4-12 months after cellular therapy. Anti-S IgG ≥2500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T-cell recipients, respectively. SARS-CoV-2-specific T-cell responses were attained in 57%, 83%, and 58%, respectively. Pre-cellular therapy SARS-CoV-2 infection or vaccination and baseline B-cell count were key predictors of post-cellular therapy immunity. CONCLUSIONS These data support mRNA SARS-CoV-2 vaccination prior to, and reinitiation 3 to 4 months after, cellular therapies with allogeneic HCT, autologous HCT, and CAR-T-cell therapy.
Collapse
Grants
- Kyowa Kirin
- OptumHealth
- Takeda Oncology Co
- Xenikos BV
- Talaris Therapeutics
- Karyopharm Therapeutics
- Sanofi Genzyme
- MorphoSys
- U10HL069294 National Cancer Institute [NCI]
- Karius
- Vertex
- OncoImmune, Inc
- Orca Biosystems, Inc
- Medexus, Merck & Co.
- Kyowa Kirin International plc
- Seagen, Inc
- P30 CA015704 NCI NIH HHS
- Bristol Myers Squibb Co
- HistoGenetics
- Millennium
- U24 CA076518 NCI NIH HHS
- Oncopeptides, Inc
- Janssen Research & Development, LLC
- Miltenyi Biotec, Inc
- AlloVir, Inc
- UG1 HL069315 NHLBI NIH HHS
- Janssen/Johnson & Johnson
- UG1 HL138645 NHLBI NIH HHS
- HRSA HHS
- Terumo Blood and Cell Technologies
- N00014-20-1-2705 Department of Health and Human Services [DHHS]
- Adienne SA
- Novartis
- Kiadis Pharma
- Actinium Pharmaceuticals, Inc
- Bluebird Bio, Inc
- Novartis Pharmaceuticals Corporation
- Medical College of Wisconsin
- HHSH234200637015C National Institute of Allergy and Infectious Diseases
- UG1 HL069246 NHLBI NIH HHS
- TG Therapeutics
- Pfizer, Inc
- Kite Pharma, Inc
- P30 CA008748 NCI NIH HHS
- Incyte Corporation
- Pharmacyclics, LLC
- Tscan
- National Heart, Lung, and Blood Institute [NHLBI]
- CytoSen Therapeutics, Inc
- Gilead
- Astellas Pharma US
- Takeda Pharmaceuticals
- Accenture
- AbbVie
- Gilead Company
- Be the Match Foundation
- Leukemia and Lymphoma Society
- Adaptive Biotechnologies
- National Marrow Donor Program/Be the Match
- Multiple Myeloma Research Foundation
- Stemcyte
- DBA Eurofins Transplant Diagnostics
- CareDx
- Eurofins Viracor
- NIH HHS
- CSL Behring
- Medac GmbH
- GlaxoSmithKline
- Fate Therapeutics
- American Society for Transplantation and Cellular Therapy
- Gamida-Cell, Ltd
- NCI
- Legend Biotech
- Kadmon
- Ossium Health, Inc
- Vor Biopharma
- Jasper Therapeutics
- Jazz Pharmaceuticals, Inc
- Iovance
- U24CA076518
- LabCorp
- Omeros Corporation
- Amgen, Inc
- Magenta Therapeutics
- Daiichi Sankyo Co, Ltd
- Priothera
- Office of Naval Research
- National Institutes of Health
- Health Resources and Services Administration
- Janssen Research & Development, LLC
- Janssen/Johnson & Johnson
- Medexus, Merck & Co.
Collapse
Affiliation(s)
- Joshua A Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, and Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael J Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jo-Anne H Young
- Division of Infectious Diseases, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - Aliyah Baluch
- Division of Infectious Diseases, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | | | - Dianna S Howard
- Division of Hematology and Oncology, Wake Forest Baptist, Winston-Salem, North Carolina, USA
| | - Uroosa Ibrahim
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, New York, USA
| | - Zainab Shahid
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Paul Armistead
- Division of Hematology, University of North Carolina Medical Center, Chapel Hill, North Carolina, USA
| | - Peter Westervelt
- Division of Oncology, Barnes-Jewish Hospital, Washington University, St. Louis, Missouri, USA
| | - John McCarty
- Division of Hematology, Oncology & Palliative Care, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joseph McGuirk
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas, Lawrence, Kansas, USA
| | - Mehdi Hamadani
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Susan DeWolf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kinga Hosszu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, Maryland, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Amir A Toor
- Lehigh Valley Health Network, Allentown, Pennsylvania, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Lee M Greenberger
- The Leukemia and Lymphoma Society, Rye Brook, New York, New York, USA
| | - Jeffery J Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
- Division of Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mary M Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marcie L Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Miguel-Angel Perales
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
5
|
Konuma T, Hamatani-Asakura M, Nagai E, Adachi E, Kato S, Isobe M, Monna-Oiwa M, Takahashi S, Yotsuyanagi H, Nannya Y. Cellular and humoral immunogenicity against SARS-CoV-2 vaccination or infection is associated with the memory phenotype of T- and B-lymphocytes in adult allogeneic hematopoietic cell transplant recipients. Int J Hematol 2024; 120:229-240. [PMID: 38842630 PMCID: PMC11284193 DOI: 10.1007/s12185-024-03802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
We conducted a cross-sectional study to evaluate cellular and humoral immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination or infection and examine how lymphocyte subpopulations in peripheral blood correlate with cellular and humoral immunogenicity in adult allogeneic hematopoietic cell transplantation (HCT) recipients. The median period from SARS-CoV-2 vaccination or infection to sample collection was 110.5 days (range, 6-345 days). The median SARS-CoV-2 spike-specific antibody level was 1761 binding antibody units (BAU)/ml (range, 0 to > 11,360 BAU/ml). Enzyme-linked immunosorbent spot (ELISpot) assay of T cells stimulated with SARS-CoV-2 spike antigens showed that interferon-gamma (IFN-γ)-, interleukin-2 (IL-2)-, and IFN-γ + IL-2-producing T cells were present in 68.9%, 62.0%, and 56.8% of patients, respectively. The antibody level was significantly correlated with frequency of IL-2-producing T cells (P = 0.001) and IFN-γ + IL-2-producing T cells (P = 0.006) but not IFN-γ-producing T cells (P = 0.970). Absolute counts of CD8+ and CD4+ central memory T cells were higher in both IL-2- and IFN-γ + IL-2-producing cellular responders compared with non-responders. These data suggest that cellular and humoral immunogenicity against SARS-CoV-2 vaccination or infection is associated with the memory phenotype of T cells and B cells in adult allogeneic HCT recipients.
Collapse
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan.
| | - Megumi Hamatani-Asakura
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Etsuko Nagai
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Maki Monna-Oiwa
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
6
|
Sharifi Aliabadi L, Azari M, Taherian MR, Barkhordar M, Abbas SAM, Azari M, Ahmadvand M, Salehi Z, Rouzbahani S, Vaezi M. Immunologic responses to the third and fourth doses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in cell therapy recipients: a systematic review and meta-analysis. Virol J 2024; 21:103. [PMID: 38702752 PMCID: PMC11067217 DOI: 10.1186/s12985-024-02375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Multiple studies have provided evidence of suboptimal or poor immune responses to SARS-CoV-2 vaccines in recipients of hematopoietic stem cell transplantation (HSCT) and chimeric antigen receptor-T (CAR-T) cell therapy compared to healthy individuals. Given the dynamic nature of SARS-CoV2, characterized by the emergence of many viral variations throughout the general population, there is ongoing discussion regarding the optimal quantity and frequency of additional doses required to sustain protection against SARS-CoV2 especially in this susceptible population. This systematic review and meta-analysis investigated the immune responses of HSCT and CAR-T cell therapy recipients to additional doses of the SARS-CoV-2 vaccines. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the study involved a comprehensive search across PubMed, Scopus, Web of Science Core Collection, Embase, and Cochrane Biorxiv and medRxiv, focusing on the serological responses to the third and fourth vaccine doses in HSCT and CAR-T cell patients. RESULTS This study included 32 papers, with 31 qualifying for the meta-analysis. Results showed that after the third dose, the seroconversion rate in HSCT and CAR-T cell therapy recipients who didn't respond to the second dose was 46.10 and 17.26%, respectively. Following the fourth dose, HSCT patients had a seroconversion rate of 27.23%. Moreover, post-third-dose seropositivity rates were 87.14% for HSCT and 32.96% for CAR-T cell therapy recipients. Additionally, the seropositive response to the fourth dose in the HSCT group was 90.04%. CONCLUSION While a significant portion of HSCT recipients developed antibodies after additional vaccinations, only a minority of CAR-T cell therapy patients showed a similar response. This suggests that alternative vaccination strategies are needed to protect these vulnerable groups effectively. Moreover, few studies have reported cellular responses to additional SARS-CoV-2 vaccinations in these patients. Further studies evaluating cellular responses are required to determine a more precise assessment of immunogenicity strength against SARS-CoV-2 after additional doses.
Collapse
Affiliation(s)
- Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Azari
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Taherian
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Morteza Azari
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Rouzbahani
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mohammad Vaezi
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Trepl J, Pasin C, Schneidawind D, Mueller NJ, Manz MG, Bankova AK, Abela IA. Evaluating tixagevimab/cilgavimab prophylaxis in allogeneic haematopoietic cell transplantation recipients for COVID-19 prevention. Br J Haematol 2024; 204:1908-1912. [PMID: 38327109 DOI: 10.1111/bjh.19321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Allogeneic haematopoietic cell transplantation (allo-HCT) recipients exhibit an increased risk of COVID-19, particularly in the early post-transplant phase, due to insufficient vaccine responses. This retrospective study investigated the incidence of SARS-CoV-2 infection in allo-HCT recipients who received tixagevimab/cilgavimab pre-exposure prophylaxis (T/C PrEP) compared to those who did not. Logistic regression, adjusted for sex, age, SARS-CoV-2 vaccination status and immunosuppressive treatment, revealed a significant reduction in the likelihood of SARS-CoV-2 infection risk with T/C PrEP (adjusted odds ratio aOR = 0.26 [0.07, 0.91]). These findings suggest the potential efficacy of monoclonal antibody PrEP in protecting this vulnerable patient population from COVID-19.
Collapse
Affiliation(s)
- Julia Trepl
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominik Schneidawind
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolas J Mueller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Andriyana K Bankova
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- National Specialized Hospital for Hematological Diseases, Sofia, Bulgaria
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Abela IA, Schwarzmüller M, Ulyte A, Radtke T, Haile SR, Ammann P, Raineri A, Rueegg S, Epp S, Berger C, Böni J, Manrique A, Audigé A, Huber M, Schreiber PW, Scheier T, Fehr J, Weber J, Rusert P, Günthard HF, Kouyos RD, Puhan MA, Kriemler S, Trkola A, Pasin C. Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. mBio 2024; 15:e0272223. [PMID: 38270455 PMCID: PMC10865973 DOI: 10.1128/mbio.02722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Numerous clinical parameters link to severe coronavirus disease 2019, but factors that prevent symptomatic disease remain unknown. We investigated the impact of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and endemic human coronavirus (HCoV) antibody responses on symptoms in a longitudinal children cohort (n = 2,917) and a cross-sectional cohort including children and adults (n = 882), all first exposed to SARS-CoV-2 (March 2020 to March 2021) in Switzerland. Saliva (n = 4,993) and plasma (n = 7,486) antibody reactivity to the four HCoVs (subunit S1 [S1]) and SARS-CoV-2 (S1, receptor binding domain, subunit S2 [S2], nucleocapsid protein) was determined along with neutralizing activity against SARS-CoV-2 Wuhan, Alpha, Delta, and Omicron (BA.2) in a subset of individuals. Inferred recent SARS-CoV-2 infection was associated with a strong correlation between mucosal and systemic SARS-CoV-2 anti-spike responses. Individuals with pre-existing HCoV-S1 reactivity exhibited significantly higher antibody responses to SARS-CoV-2 in both plasma (IgG regression coefficients = 0.20, 95% CI = [0.09, 0.32], P < 0.001) and saliva (IgG regression coefficient = 0.60, 95% CI = [0.088, 1.11], P = 0.025). Saliva neutralization activity was modest but surprisingly broad, retaining activity against Wuhan (median NT50 = 32.0, 1Q-3Q = [16.4, 50.2]), Alpha (median NT50 = 34.9, 1Q-3Q = [26.0, 46.6]), and Delta (median NT50 = 28.0, 1Q-3Q = [19.9, 41.7]). In line with a rapid mucosal defense triggered by cross-reactive HCoV immunity, asymptomatic individuals presented with higher pre-existing HCoV-S1 activity in plasma (IgG HKU1, odds ratio [OR] = 0.53, 95% CI = [0.29,0.97], P = 0.038) and saliva (total HCoV, OR = 0.55, 95% CI = [0.33, 0.91], P = 0.019) and higher SARS-CoV-2 reactivity in saliva (IgG S2 fold change = 1.26, 95% CI = [1.03, 1.54], P = 0.030). By investigating the systemic and mucosal immune responses to SARS-CoV-2 and HCoVs in a population without prior exposure to SARS-CoV-2 or vaccination, we identified specific antibody reactivities associated with lack of symptom development.IMPORTANCEKnowledge of the interplay between human coronavirus (HCoV) immunity and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is critical to understanding the coexistence of current endemic coronaviruses and to building knowledge potential future zoonotic coronavirus transmissions. This study, which retrospectively analyzed a large cohort of individuals first exposed to SARS-CoV-2 in Switzerland in 2020-2021, revealed several key findings. Pre-existing HCoV immunity, particularly mucosal antibody responses, played a significant role in improving SARS-CoV-2 immune response upon infection and reducing symptoms development. Mucosal neutralizing activity against SARS-CoV-2, although low in magnitude, retained activity against SARS-CoV-2 variants underlining the importance of maintaining local mucosal immunity to SARS-CoV-2. While the cross-protective effect of HCoV immunity was not sufficient to block infection by SARS-CoV-2, the present study revealed a remarkable impact on limiting symptomatic disease. These findings support the feasibility of generating pan-protective coronavirus vaccines by inducing potent mucosal immune responses.
Collapse
Affiliation(s)
- Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Agne Ulyte
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sarah R. Haile
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Priska Ammann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alessia Raineri
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sonja Rueegg
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Amapola Manrique
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter W. Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| |
Collapse
|
9
|
Ben Khlil AA, Zamali I, Belloumi D, Gdoura M, Kharroubi G, Marzouki S, Dachraoui R, Ben Yaiche I, Bchiri S, Hamdi W, Gharbi M, Ben Hmid A, Samoud S, Galai Y, Torjmane L, Ladeb S, Bettaieb J, Triki H, Ben Abdeljelil N, Ben Othman T, Ben Ahmed M. Immunogenicity and Tolerance of BNT162b2 mRNA Vaccine in Allogeneic Hematopoietic Stem Cell Transplant Patients. Vaccines (Basel) 2024; 12:174. [PMID: 38400157 PMCID: PMC10892348 DOI: 10.3390/vaccines12020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (ASCT) induces acquired immunodeficiency, potentially altering vaccine response. Herein, we aimed to explore the clinical tolerance and the humoral and cellular immune responses following anti-SARS-CoV-2 vaccination in ASCT recipients. METHODS A prospective, non-randomized, controlled study that involved 43 ASCT subjects and 31 healthy controls. Humoral response was investigated using the Elecsys® test anti-SARS-CoV-2. Cellular response was assessed using the QFN® SARS-CoV-2 test. The lymphocyte cytokine profile was tested using the LEGENDplex™ HU Th Cytokine Panel Kit (12-plex). RESULTS Adverse effects (AE) were observed in 69% of patients, encompassing pain at the injection site, fever, asthenia, or headaches. Controls presented more side effects like pain in the injection site and asthenia with no difference in the overall AE frequency. Both groups exhibited robust humoral and cellular responses. Only the vaccine transplant delay impacted the humoral response alongside a previous SARS-CoV-2 infection. Noteworthily, controls displayed a Th1 cytokine profile, while patients showed a mixed Th1/Th2 profile. CONCLUSIONS Pfizer-BioNTech® anti-SARS-CoV-2 vaccination is well tolerated in ASCT patients, inducing robust humoral and cellular responses. Further exploration is warranted to understand the impact of a mixed cytokine profile in ASCT patients.
Collapse
Affiliation(s)
- Ahmed Amine Ben Khlil
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
| | - Imen Zamali
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Dorra Belloumi
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Mariem Gdoura
- Laboratory of Virology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.G.); (M.G.)
- Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Ghassen Kharroubi
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
- Department of Medical Epidemiology, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Soumaya Marzouki
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Rym Dachraoui
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Insaf Ben Yaiche
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Soumaya Bchiri
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Walid Hamdi
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
| | - Manel Gharbi
- Laboratory of Virology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.G.); (M.G.)
| | - Ahlem Ben Hmid
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Samar Samoud
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Yousr Galai
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Lamia Torjmane
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Saloua Ladeb
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Jihene Bettaieb
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
- Department of Medical Epidemiology, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Henda Triki
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Virology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.G.); (M.G.)
| | - Nour Ben Abdeljelil
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Tarek Ben Othman
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Melika Ben Ahmed
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| |
Collapse
|
10
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Howard DS, Ibrahim U, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 vaccination in the first year after hematopoietic cell transplant or chimeric antigen receptor T cell therapy: A prospective, multicenter, observational study (BMT CTN 2101). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.24.24301058. [PMID: 38343800 PMCID: PMC10854344 DOI: 10.1101/2024.01.24.24301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. Objective To describe humoral and cellular responses after SARS-CoV-2 vaccination initiated <4 months versus 4-12 months after cellular therapy. Design Multicenter prospective observational study. Setting 34 centers in the United States. Participants 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), or chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients enrolled between April 2021 and June 2022. Interventions SARS-CoV-2 vaccination as part of routine care. Measurements We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. Results Anti-S IgG and neutralizing antibody responses increased with vaccination in HCT recipients irrespective of vaccine initiation timing but were unchanged in CAR-T cell recipients initiating vaccines within 4 months. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy anti-S IgG levels. Limitations The majority of participants were adults and received mRNA vaccines. Conclusions These data support starting mRNA SARS-CoV-2 vaccination three to four months after allogeneic HCT, autologous HCT, and CAR-T cell therapy. Funding National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.
Collapse
Affiliation(s)
- Joshua A Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, and Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael J Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corp, Seattle, WA, USA
| | - Aliyah Baluch
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | | - Zainab Shahid
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Armistead
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Peter Westervelt
- Barnes-Jewish Hospital, Washington University, St. Louis, MO, USA
| | - John McCarty
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Susan DeWolf
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kinga Hosszu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, MD, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Amir A Toor
- Lehigh Valley Health Network, Allentown, PA, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | - Jeffery J Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Mary M Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcie L Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miguel-Angel Perales
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
11
|
Infante MS, Nemirovsky D, Devlin S, DeWolf S, Tamari R, Dahi PB, Lee YJ, Chung DJ, Politikos I, Barker J, Giralt SA, Babady NE, Ramanathan L, Papanicolaou GA, Seo S, Kamboj M, Perales MA, Shah GL. Outcomes and Management of the SARS-CoV2 Omicron Variant in Recipients of Hematopoietic Cell Transplantation and Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 2024; 30:116.e1-116.e12. [PMID: 37806446 PMCID: PMC11220618 DOI: 10.1016/j.jtct.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Hematopoietic cell transplantation (HCT) and chimeric antigen receptor T cell therapy (CAR-T) recipients who develop Coronavirus disease 2019 (COVID-19) can have decreased overall survival (OS), likely due to disease-inherent and therapy-related immunodeficiency. The availability of COVID-19-directed therapies and vaccines have improved COVID-19-related outcomes, but immunocompromised individuals remain vulnerable. Specifically, the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant infections, including Omicron and its sublineages, particularly in HCT recipients, remain to be defined. The aim of this study was to compare the impact of SARS-CoV-2 Omicron infections in HCT/CAR-T recipients with outcomes previously reported for ancestral SARS-CoV-2 infections early in the pandemic (March to June 2020). This was a retrospective analysis of adult HCT/CAR-T recipients diagnosed with COVID-19 at Memorial Sloan Kettering Cancer Center between July 2021 and July 2022. We identified 353 patients (172 autologous HCT recipients [49%], 152 allogeneic HCT recipients [43%], and 29 CAR-T recipients [8%]), with a median time from HCT/CAR-T to SARS-CoV-2 infection of 1010 days (interquartile range, 300 to 2046 days). Forty-one patients (12%) were diagnosed with COVID-19 during the delta wave, and 312 patients (88%) were diagnosed during the Omicron wave. Risk factors associated with increased odds of COVID-19-related hospitalization were the presence of 2 or more comorbidities (odds ratio [OR], 4.9; 95% confidence interval [CI], 2.4 to 10.7; P < .001), CAR-T therapy compared to allogeneic HCT (OR, 7.7; 95% CI, 3.0 to 20.0; P < .001), hypogammaglobulinemia (OR, 2.71; 95% CI, 1.06 to 6.40; P = .027), and age at COVID-19 diagnosis (OR, 1.03; 95% CI, 1.0 to 1.05; P = .04). In contrast, infection during the Omicron variant BA5/BA4-dominant period compared to variant BA1 (OR, .21; 95% CI, .03 to .73; P = .037) and more than 3 years from HCT/CAR-T therapy to COVID-19 diagnosis compared to early infection at <100 days (OR, .31; 95% CI, .12 to .79; P = .011) were associated with a decreased odds for hospitalization. The OS at 12 months from COVID-19 diagnosis was 89% (95% CI, 84% to 94%), with 6 of 26 deaths attributable to COVID-19. Patients with the ancestral strain of SAR-CoV-2 had a lower OS at 12 months, with 73% (95% CI, 62% to 84%) versus 89% (95% CI, 84% to 94%; P < .001) in the Omicron cohort. Specific COVID-19 treatment was administered in 62% of patients, and 84% were vaccinated with mRNA COVID-19 vaccines. Vaccinated patients had significantly better OS than unvaccinated patients (90% [95% CI, 86% to 95%] versus 82% [95% CI, 72% to 94%] at 12 months; P = .003). No significant difference in OS was observed in patients infected with the Omicron and those infected with the Delta variant (P = .4) or treated with specific COVID-19 treatments compared with those not treated (P = .2). We observed higher OS in HCT and CAR-T recipients infected with the Omicron variants compared to those infected with the ancestral strain of SARS-CoV2. The use of COVID-19 antivirals, mAbs, and vaccines might have contributed to the improved outcomes.
Collapse
Affiliation(s)
- Maria-Stefania Infante
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; University Hospital Infanta Leonor, Madrid, Spain.
| | - David Nemirovsky
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susan DeWolf
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Roni Tamari
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Parastoo B Dahi
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Yeon Joo Lee
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - David J Chung
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ioannis Politikos
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Juliet Barker
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Sergio A Giralt
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - N Esther Babady
- Clinical Microbiology Service, Department of Laboratory Medicine, Memorial SLoan Kettering Cancer Center, New York, New York
| | - Lakshmi Ramanathan
- Clinical Chemistry Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Genovefa A Papanicolaou
- Department of Medicine, Weill Cornell Medical College, New York, New York; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susan Seo
- Department of Medicine, Weill Cornell Medical College, New York, New York; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mini Kamboj
- Department of Medicine, Weill Cornell Medical College, New York, New York; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Gunjan L Shah
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
12
|
Majcherek M, Matkowska-Kocjan A, Szymczak D, Karasek M, Przeorski K, Szeremet A, Kiraga A, Milanowska A, Kuznik E, Kujawa K, Wrobel T, Szenborn L, Czyz A. The booster dose of BNT162b2 mRNA vaccine in patients after hematopoietic stem cell transplantation: humoral and clinical response and serological conversion predictors. Acta Oncol 2023; 62:1939-1941. [PMID: 37669166 DOI: 10.1080/0284186x.2023.2254923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Affiliation(s)
- Maciej Majcherek
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | | | - Donata Szymczak
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | | | | | - Agnieszka Szeremet
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Kiraga
- Laboratory of Flow Cytometry and Cytomorphology, Department of Hematology and Bone Marrow Transplantation, University Hospital in Wroclaw, Wroclaw, Poland
| | - Aneta Milanowska
- Laboratory of Flow Cytometry and Cytomorphology, Department of Hematology and Bone Marrow Transplantation, University Hospital in Wroclaw, Wroclaw, Poland
| | - Edwin Kuznik
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Kujawa
- Statistical Analysis Centre, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Wrobel
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Leszek Szenborn
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Czyz
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
13
|
Kampouri E, Hill JA, Dioverti V. COVID-19 after hematopoietic cell transplantation and chimeric antigen receptor (CAR)-T-cell therapy. Transpl Infect Dis 2023; 25 Suppl 1:e14144. [PMID: 37767643 DOI: 10.1111/tid.14144] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
More than 3 years have passed since Coronavirus disease 2019 (COVID-19) was declared a global pandemic, yet COVID-19 still severely impacts immunocompromised individuals including those treated with hematopoietic cell transplantation (HCT) and chimeric antigen receptor-T-cell therapies who remain at high risk for severe COVID-19 and mortality. Despite vaccination efforts, these patients have inadequate responses due to immunosuppression, which underscores the need for additional preventive approaches. The optimal timing, schedule of vaccination, and immunological correlates for protective immunity remain unknown. Antiviral therapies used early during disease can reduce mortality and severity due to COVID-19. The combination or sequential use of antivirals could be beneficial to control replication and prevent the development of treatment-related mutations in protracted COVID-19. Despite conflicting data, COVID-19 convalescent plasma remains an option in immunocompromised patients with mild-to-moderate disease to prevent progression. Protracted COVID-19 has been increasingly recognized among these patients and has been implicated in intra-host emergence of SARS-CoV-2 variants. Finally, novel SARS-CoV2-specific T-cells and natural killer cell-boosting (or -containing) products may be active against multiple variants and are promising therapies in immunocompromised patients.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Veronica Dioverti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
VanOudenhove J, Liu Y, Nelakanti R, Kim D, Busarello E, Ovalle NT, Qi Z, Mamillapalli P, Siddon A, Bai Z, Axtmayer A, Corso C, Kothari S, Foss F, Isufi I, Tebaldi T, Gowda L, Fan R, Seropian S, Halene S. Impact of Memory T Cells on SARS-COV-2 Vaccine Response in Hematopoietic Stem Cell Transplant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564259. [PMID: 37961434 PMCID: PMC10634862 DOI: 10.1101/2023.10.26.564259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
During the COVID-19 pandemic, hematopoietic stem cell transplant (HSCT) recipients faced an elevated mortality rate from SARS-CoV-2 infection, ranging between 10-40%. The SARS-CoV-2 mRNA vaccines are important tools in preventing severe disease, yet their efficacy in the post-transplant setting remains unclear, especially in patients subjected to myeloablative chemotherapy and immunosuppression. We evaluated the humoral and adaptive immune responses to the SARS-CoV-2 mRNA vaccination series in 42 HSCT recipients and 5 healthy controls. Peripheral blood mononuclear nuclear cells and serum were prospectively collected before and after each dose of the SARS-CoV-2 vaccine. Post-vaccination responses were assessed by measuring anti-spike IgG and nucleocapsid titers, and antigen specific T cell activity, before and after vaccination. In order to examine mechanisms behind a lack of response, pre-and post-vaccine samples were selected based on humoral and cellular responses for single-cell RNA sequencing with TCR and BCR sequencing. Our observations revealed that while all participants eventually mounted a humoral response, transplant recipients had defects in memory T cell populations that were associated with an absence of T cell response, some of which could be detected pre-vaccination.
Collapse
|
15
|
Thole LML, Tóth L, Proß V, Siegle J, Stahl C, Hermsdorf G, Knabe A, Winkler A, Schrezenmeier E, Ludwig C, Eckert C, Eggert A, Schrezenmeier H, Sattler A, Schulte JH, Kotsch K. Impact of a booster dose on SARS-CoV2 mRNA vaccine-specific humoral-, B- and T cell immunity in pediatric stem cell transplant recipients. Front Immunol 2023; 14:1239519. [PMID: 37942315 PMCID: PMC10628529 DOI: 10.3389/fimmu.2023.1239519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Stem cell transplant recipients (SCTR) are imperiled to increased risks after SARS-CoV2 infection, supporting the need for effective vaccination strategies for this vulnerable group. With respect to pediatric patients, data on immunogenicity of SARS-CoV2 mRNA-based vaccination is limited. We therefore comprehensively examined specific humoral, B- and T cell responses in a cohort of 2-19 year old SCTR after the second and third vaccine dose. Only after booster vaccination, transplant recipients reached similar levels of vaccine-specific IgG, IgA and neutralizing antibodies against omicron variant as age-matched controls. Although frequencies of SARS-CoV2 specific B cells increased after the third dose, they were still fourfold reduced in patients compared to controls. Overall, the majority of individuals enrolled mounted SARS-CoV2 Spike protein-specific CD4+ T helper cell responses with patients showing significantly higher portions than controls after the third dose. With respect to functionality, however, SCTR were characterized by reduced frequencies of specific interferon gamma producing CD4+ T cells, along with an increase in IL-2 producers. In summary, our data identify distinct quantitative and qualitative impairments within the SARS-CoV2 vaccination specific B- and CD4+ T cell compartments. More importantly, humoral analyses highlight the need for a booster vaccination of SCTR particularly for development of neutralizing antibodies.
Collapse
Affiliation(s)
- Linda Marie Laura Thole
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Tóth
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vanessa Proß
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janine Siegle
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolin Stahl
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georg Hermsdorf
- Department of Pediatric Oncology and Hematology, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annette Knabe
- Department of Pediatric Oncology and Hematology, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology and Hematology, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin Institute of Health (BIH) Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin Ludwig
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Arne Sattler
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Hematology and Oncology, University Children’s Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Katja Kotsch
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Nikoloudis A, Neumann IJ, Buxhofer-Ausch V, Machherndl-Spandl S, Binder M, Kaynak E, Milanov R, Nocker S, Stiefel O, Strassl I, Wipplinger D, Moyses M, Kerschner H, Apfalter P, Girschikofsky M, Petzer A, Weltermann A, Clausen J. Successful SARS-CoV-2 mRNA Vaccination Program in Allogeneic Hematopoietic Stem Cell Transplant Recipients-A Retrospective Single-Center Analysis. Vaccines (Basel) 2023; 11:1534. [PMID: 37896938 PMCID: PMC10611175 DOI: 10.3390/vaccines11101534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: mRNA COVID-19 vaccines are effective but show varied efficacy in immunocompromised patients, including allogeneic hematopoietic stem cell transplant (HSCT) recipients. (2) Methods: A retrospective study on 167 HSCT recipients assessed humoral response to two mRNA vaccine doses, using the manufacturer cut-off of ≥7.1 BAU/mL, and examined factors affecting non-response. (3) Results: Twenty-two percent of HSCT recipients failed humoral response. Non-responders received the first vaccine a median of 10.2 (2.5-88.9) months post-HSCT versus 35.3 (3.0-215.0) months for responders (p < 0.001). Higher CD19 (B cell) counts favored vaccination response (adjusted odds ratio (aOR) 3.3 per 100 B-cells/microliters, p < 0.001), while ongoing mycophenolate mofetil (MMF) immunosuppression hindered it (aOR 0.04, p < 0.001). By multivariable analysis, the time from transplant to first vaccine did not remain a significant risk factor. A total of 92% of non-responders received a third mRNA dose, achieving additional 77% seroconversion. Non-converters mostly received a fourth dose, with an additional 50% success. Overall, a cumulative seroconversion rate of 93% was achieved after up to four doses. (4) Conclusion: mRNA vaccines are promising for HSCT recipients as early as 3 months post-HSCT. A majority seroconverted after four doses. MMF usage and low B cell counts are risk factors for non-response.
Collapse
Affiliation(s)
- Alexander Nikoloudis
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | | | - Veronika Buxhofer-Ausch
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Sigrid Machherndl-Spandl
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Michaela Binder
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Emine Kaynak
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Robert Milanov
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Stefanie Nocker
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Olga Stiefel
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Irene Strassl
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Dagmar Wipplinger
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Margarete Moyses
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Heidrun Kerschner
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
- Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum, Linz, Austria
| | - Petra Apfalter
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
- Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum, Linz, Austria
| | - Michael Girschikofsky
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Andreas Petzer
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Ansgar Weltermann
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| | - Johannes Clausen
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Ordensklinikum Linz—Elisabethinen, Hemostaseology and Medical Oncology, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
- Interdisciplinary Center for Infectious Medicine and Microbiology, Linz, Austria
| |
Collapse
|
17
|
Meejun T, Srisurapanont K, Manothummetha K, Thongkam A, Mejun N, Chuleerarux N, Sanguankeo A, Phongkhun K, Leksuwankun S, Thanakitcharu J, Lerttiendamrong B, Langsiri N, Torvorapanit P, Worasilchai N, Plongla R, Hirankarn N, Nematollahi S, Permpalung N, Moonla C, Kates OS. Attenuated immunogenicity of SARS-CoV-2 vaccines and risk factors in stem cell transplant recipients: a meta-analysis. Blood Adv 2023; 7:5624-5636. [PMID: 37389818 PMCID: PMC10514108 DOI: 10.1182/bloodadvances.2023010349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
Immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is diminished in hematopoietic stem cell transplant (HSCT) recipients. To summarize current evidence and identify risk factors for attenuated responses, 5 electronic databases were searched since database inceptions through 12 January 2023 for studies reporting humoral and/or cellular immunogenicity of SARS-CoV-2 vaccination in the HSCT population. Using descriptive statistics and random-effects models, extracted numbers of responders and pooled odds ratios (pORs) with 95% confidence intervals (CIs) for risk factors of negative immune responses were analyzed (PROSPERO: CRD42021277109). From 61 studies with 5906 HSCT recipients, after 1, 2, and 3 doses of messenger RNA (mRNA) SARS-CoV-2 vaccines, the mean antispike antibody seropositivity rates (95% CI) were 38% (19-62), 81% (77-84), and 80% (75-84); neutralizing antibody seropositivity rates were 52% (40-64), 71% (54-83), and 78% (61-89); and cellular immune response rates were 52% (39-64), 66% (51-79), and 72% (52-86). After 2 vaccine doses, risk factors (pOR; 95% CI) associated with antispike seronegativity were male recipients (0.63; 0.49-0.83), recent rituximab exposure (0.09; 0.03-0.21), haploidentical allografts (0.46; 0.22-0.95), <24 months from HSCT (0.25; 0.07-0.89), lymphopenia (0.18; 0.13-0.24), hypogammaglobulinemia (0.23; 0.10-0.55), concomitant chemotherapy (0.48; 0.29-0.78) and immunosuppression (0.18; 0.13-0.25). Complete remission of underlying hematologic malignancy (2.55; 1.05-6.17) and myeloablative conditioning (1.72; 1.30-2.28) compared with reduced-intensity conditioning were associated with antispike seropositivity. Ongoing immunosuppression (0.31; 0.10-0.99) was associated with poor cellular immunogenicity. In conclusion, attenuated humoral and cellular immune responses to mRNA SARS-CoV-2 vaccination are associated with several risk factors among HSCT recipients. Optimizing individualized vaccination and developing alternative COVID-19 prevention strategies are warranted.
Collapse
Affiliation(s)
- Tanaporn Meejun
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kasama Manothummetha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Achitpol Thongkam
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuthchaya Mejun
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipat Chuleerarux
- Department of Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL
| | - Anawin Sanguankeo
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kasidis Phongkhun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Surachai Leksuwankun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | | | - Nattapong Langsiri
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattama Torvorapanit
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Rongpong Plongla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saman Nematollahi
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ
| | - Nitipong Permpalung
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatphatai Moonla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Olivia S. Kates
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Albiol N, Lynton-Pons E, Aso O, Moga E, Vidal S, Gómez-Pérez L, Santiago JA, Triquell M, Roch N, Lázaro E, González I, López-Contreras J, Esquirol A, Sierra J, Martino R, García-Cadenas I. mRNA-1273 SARS-CoV-2 vaccine in recently transplanted allogeneic hematopoietic cell transplant recipients: Dynamics of cellular and humoral immune responses and booster effect. Leuk Res 2023; 132:107347. [PMID: 37356281 PMCID: PMC10284722 DOI: 10.1016/j.leukres.2023.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Allogeneic hematopoietic stem cell transplant (HCT) recipients are at high risk of severe COVID-19 despite vaccination. Little is known about cellular response to SARS-CoV-2 vaccine in this population, especially in recently transplanted patients (RTP). In this single-center study we examined cellular and humoral response to the mRNA-1273 (Spikevax®) vaccine in recently transplanted patients (RTP, n = 49), and compared them to long-term transplanted patients (LTTP, n = 19) and healthy controls (n = 20) at three different timepoints: one and three months after the second dose (T1 and T2, respectively, 28 days apart), and one month after the third dose (T3). Controls did not receive a third dose. RTPs showed lower IgG anti-S1 titers than healthy controls at both T1 (mean 0.50 vs 0.94 arbitrary units -AU-, p < 0.0001) and T2 (0.37 vs 0.79 AU, p < 0.0001). They also presented lower titers than LTTPs at T1 (0.50 vs 0.66, p = 0.01), but no differences at T2 (0.37 vs 0.40 AU, p = 0.55). The rate of positive T-cell responses was lower in RTPs than in controls at both T1 and T2 (61.2 % vs 95 %, p = 0.007; 59.2 % vs 100 %, p = 0.001, respectively), but without statistically significant differences between transplanted groups. At T3 no differences were seen between RTPs and LTTPs as well, neither in IgG antibodies (p = 0.82) nor in cellular responses (p = 0.15), although a third dose increased the rate of positive cellular and humoral responses in approximately 50 % of recently transplanted patients. However, active immunosuppressive treatment severely diminished their chances to produce an adequate response.
Collapse
Affiliation(s)
- Nil Albiol
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Institut d'Investigació Biomèdica (IIB) Sant Pau, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Autonomous University of Barcelona, Carrer de Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; Catalan Institute of Oncology (ICO), Hospital Universitari Doctor Josep Trueta, 17007 Girona, Spain.
| | - Elionor Lynton-Pons
- Institut d'Investigació Biomèdica (IIB) Sant Pau, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Autonomous University of Barcelona, Carrer de Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; Immunology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain
| | - Olga Aso
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain
| | - Esther Moga
- Josep Carreras Leukaemia Research Institute, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Institut d'Investigació Biomèdica (IIB) Sant Pau, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Autonomous University of Barcelona, Carrer de Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; Immunology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain
| | - Silvia Vidal
- Institut d'Investigació Biomèdica (IIB) Sant Pau, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Autonomous University of Barcelona, Carrer de Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; Immunology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain
| | - Lucía Gómez-Pérez
- Hematology Department, Hospital del Mar - Parc de Salut Mar, Passeig Marítim de la Barceloneta 25-29, 08003 Barcelona, Spain
| | - Jose Alejandre Santiago
- Institut d'Investigació Biomèdica (IIB) Sant Pau, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Immunology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain
| | - Mercè Triquell
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain
| | - Nerea Roch
- Division of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain
| | - Elisabeth Lázaro
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain
| | - Iria González
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain; Autonomous University of Barcelona, Carrer de Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Joaquín López-Contreras
- Institut d'Investigació Biomèdica (IIB) Sant Pau, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Autonomous University of Barcelona, Carrer de Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; Division of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain
| | - Albert Esquirol
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Institut d'Investigació Biomèdica (IIB) Sant Pau, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Autonomous University of Barcelona, Carrer de Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Jorge Sierra
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Institut d'Investigació Biomèdica (IIB) Sant Pau, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Autonomous University of Barcelona, Carrer de Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Rodrigo Martino
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Institut d'Investigació Biomèdica (IIB) Sant Pau, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Autonomous University of Barcelona, Carrer de Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Irene García-Cadenas
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Carrer del Mas Casanovas 90, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Institut d'Investigació Biomèdica (IIB) Sant Pau, Carrer de Sant Quintí 77-79, 08041 Barcelona, Spain; Autonomous University of Barcelona, Carrer de Sant Antoni Maria Claret 167, 08025 Barcelona, Spain.
| |
Collapse
|
19
|
Kokogho A, Crowell TA, Aleissa M, Lupan AM, Davey S, Park Chang JB, Baden LR, Walsh SR, Sherman AC. SARS-CoV-2 Vaccine-Induced Immune Responses Among Hematopoietic Stem Cell Transplant Recipients. Open Forum Infect Dis 2023; 10:ofad349. [PMID: 37520415 PMCID: PMC10372870 DOI: 10.1093/ofid/ofad349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Background Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination reduces the risk and severity of coronavirus disease 2019 (COVID-19), several variables may impact the humoral response among patients undergoing hematopoietic stem cell transplantation (HSCT). Methods A retrospective chart review was conducted among SARS-CoV-2-vaccinated HSCT recipients between 2020 and 2022 at a single center in Boston, Massachusetts. Patients age ≥18 years who received doses of Pfizer, Moderna, or J&J vaccines were included. Anti-spike (S) immunoglobulin G (IgG) titer levels were measured using the Roche assay. Responders (≥0.8 U/mL) and nonresponders (<0.8 U/mL) were categorized and analyzed. Multivariable linear and logistic regression were used to estimate the correlation coefficient and odds ratio of response magnitude and status. Results Of 152 HSCT recipients, 141 (92.8%) were responders, with a median (interquartile range [IQR]) anti-S IgG titer of 2500 (107.9-2500) U/mL at a median (IQR) of 80.5 (36-153.5) days from last dose, regardless of the number of doses received. Higher quantitative titers were associated with receipt of more vaccine doses (coeff, 205.79; 95% CI, 30.10 to 381.47; P = .022), being female (coeff, 343.5; 95% CI, -682.6 to -4.4; P = .047), being younger (<65 years; coeff, 365.2; 95% CI, -711.3 to 19.1; P = .039), and not being on anti-CD20 therapy (coeff, -1163.7; 95% CI, -1717.7 to -609.7; P = .001). Being male (odds ratio [OR], 0.11; 95% CI, 0.01 to 0.93; P = .04) and being on anti-CD20 therapy (OR, 0.16; 95% CI, 0.03 to 0.70; P = .016) were associated with nonresponse. Conclusions Overall, most HSCT recipients had high SARS-CoV-2 antibody responses. More vaccine doses improved the magnitude of immune responses. Anti-S IgG monitoring may be useful for identifying attenuated vaccine-induced responses.
Collapse
Affiliation(s)
- Afoke Kokogho
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Trevor A Crowell
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Muneerah Aleissa
- Present affiliation: Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ana-Mihaela Lupan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sonya Davey
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jun Bai Park Chang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lindsey R Baden
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen R Walsh
- Correspondence: Stephen R. Walsh, MDCM, Division of Infectious Diseases, Brigham & Women’s Hospital, 75 Francis Street, PBB-A-4, Boston, MA 02115 (); or Amy C. Sherman, MD, Division of Infectious Diseases, Brigham & Women’s Hospital, 75 Francis Street, PBB-A-4, Boston, MA 02115 ()
| | - Amy C Sherman
- Correspondence: Stephen R. Walsh, MDCM, Division of Infectious Diseases, Brigham & Women’s Hospital, 75 Francis Street, PBB-A-4, Boston, MA 02115 (); or Amy C. Sherman, MD, Division of Infectious Diseases, Brigham & Women’s Hospital, 75 Francis Street, PBB-A-4, Boston, MA 02115 ()
| |
Collapse
|
20
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 vaccination in the first year after allogeneic hematopoietic cell transplant: a prospective, multicentre, observational study. EClinicalMedicine 2023; 59:101983. [PMID: 37128256 PMCID: PMC10133891 DOI: 10.1016/j.eclinm.2023.101983] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Background The optimal timing for SARS-CoV-2 vaccines within the first year after allogeneic hematopoietic cell transplant (HCT) is poorly understood. Methods We conducted a prospective, multicentre, observational study of allogeneic HCT recipients who initiated SARS-CoV-2 vaccinations within 12 months of HCT. Participants were enrolled at 22 academic cancer centers across the United States. Participants of any age who were planning to receive a first post-HCT SARS-CoV-2 vaccine within 12 months of HCT were eligible. We obtained blood prior to and after each vaccine dose for up to four vaccine doses, with an end-of-study sample seven to nine months after enrollment. We tested for SARS-CoV-2 spike protein (anti-S) IgG; nucleocapsid protein (anti-N) IgG; neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains; and SARS-CoV-2-specific T-cell receptors (TCRs). The primary outcome was a comparison of anti-S IgG titers at the post-V2 time point in participants initiating vaccinations <4 months versus 4-12 months after HCT using a propensity-adjusted analysis. We also evaluated factors associated with high-level anti-S IgG titers (≥2403 U/mL) in logistic regression models. Findings Between April 22, 2021 and November 17, 2021, 175 allogeneic HCT recipients were enrolled in the study, of whom all but one received mRNA SARS-CoV-2 vaccines. SARS-CoV-2 anti-S IgG titers, neutralizing antibody titers, and TCR breadth and depth did not significantly differ at all tested time points following the second vaccination among those initiating vaccinations <4 months versus 4-12 months after HCT. Anti-S IgG ≥2403 U/mL correlated with neutralizing antibody levels similar to those observed in a prior study of non-immunocompromised individuals, and 57% of participants achieved anti-S IgG ≥2403 U/mL at the end-of-study time point. In models adjusted for SARS-CoV-2 infection pre-enrollment, SARS-CoV-2 vaccination pre-HCT, CD19+ B-cell count, CD4+ T-cell count, and age (as applicable to the model), vaccine initiation timing was not associated with high-level anti-S IgG titers at the post-V2, post-V3, or end-of-study time points. Notably, prior graft-versus-host-disease (GVHD) or use of immunosuppressive medications were not associated with high-level anti-S IgG titers. Grade ≥3 vaccine-associated adverse events were infrequent. Interpretation These data support starting mRNA SARS-CoV-2 vaccination three months after HCT, irrespective of concurrent GVHD or use of immunosuppressive medications. This is one of the largest prospective analyses of vaccination for any pathogen within the first year after allogeneic HCT and supports current guidelines for SARS-CoV-2 vaccination starting three months post-HCT. Additionally, there are few studies of mRNA vaccine formulations for other pathogens in HCT recipients, and these data provide encouraging proof-of-concept for the utility of early vaccination targeting additional pathogens with mRNA vaccine platforms. Funding National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.
Collapse
Affiliation(s)
- Joshua A. Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael J. Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corp, Seattle, WA, USA
| | - Aliyah Baluch
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | - Zainab Shahid
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Armistead
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Peter Westervelt
- Barnes-Jewish Hospital, Washington University, St. Louis, MO, USA
| | - John McCarty
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Susan DeWolf
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kinga Hosszu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, MD, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Amir A. Toor
- Virginia Commonwealth University, Richmond, VA, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | - Jeffery J. Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Mary M. Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcie L. Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miguel-Angel Perales
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weil Cornell Medical College, New York, NY, USA
| |
Collapse
|
21
|
Spyridonidis A. Is a third SARS-CoV-2 vaccine dose efficient in allogeneic haematopoietic cell transplant recipients? Br J Haematol 2023; 201:9-10. [PMID: 36477621 PMCID: PMC9878174 DOI: 10.1111/bjh.18591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
When and how often should allogeneic haematopoietic cell transplantation recipients be vaccinated against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is unclear. The report by Bankova et al. suggests that a third SARS-CoV-2 vaccine dose is important but still insufficient in some patients to establish an adequate humoral response. Commentary on: Bankova et al. Antibody response to a third SARS-CoV-2 vaccine dose in recipients of an allogeneic hematopoietic cell transplantation. Br J Haematol. 2023;201:58-63.
Collapse
Affiliation(s)
- Alexandros Spyridonidis
- Bone Marrow Transplantation Unit and Institute of Cellular TherapyUniversity of PatrasPatrasGreece
| |
Collapse
|
22
|
Fernandes MDCR, Vasconcelos GS, de Melo ACL, Matsui TC, Caetano LF, de Carvalho Araújo FM, Fonseca MHG. Influence of age, gender, previous SARS-CoV-2 infection, and pre-existing diseases in antibody response after COVID-19 vaccination: A review. Mol Immunol 2023; 156:148-155. [PMID: 36921489 PMCID: PMC9998295 DOI: 10.1016/j.molimm.2023.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Vaccines induce specific long-term immunological memory against pathogens, preventing the worsening of diseases. The COVID-19 health emergency has caused more than 6 million deaths and started a race for vaccine development. Antibody response to COVID-19 vaccines has been investigated primarily in healthcare workers. The heterogeneity of immune responses and the behavior of this response in particular groups were still very little explored. In this review, we discuss whether antibody responses after vaccination are influenced by age, gender, previous SARS-CoV-2 infection, or pre-existing diseases.
Collapse
|
23
|
Piñana JL, Martino R, Vazquez L, López-Corral L, Pérez A, Chorão P, Avendaño-Pita A, Pascual MJ, Sánchez-Salinas A, Sanz-Linares G, Olave MT, Arroyo I, Tormo M, Villalon L, Conesa-Garcia V, Gago B, Terol MJ, Villalba M, Garcia-Gutierrez V, Cabero A, Hernández-Rivas JÁ, Ferrer E, García-Cadenas I, Teruel A, Navarro D, Cedillo Á, Sureda A, Solano C. SARS-CoV-2-reactive antibody waning, booster effect and breakthrough SARS-CoV-2 infection in hematopoietic stem cell transplant and cell therapy recipients at one year after vaccination. Bone Marrow Transplant 2023; 58:567-580. [PMID: 36854892 PMCID: PMC9974060 DOI: 10.1038/s41409-023-01946-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
The kinetics of SARS-CoV-2 reactive IgG antibodies after full vaccination and booster in allogeneic and autologous stem cell transplantation (allo-HSCT, ASCT) and chimeric antigen receptor T-cell therapy (CAR-T) are of utmost importance for estimating risk of infection. A prospective multicenter registry-based cohort study, conducted from December 2020 to July 2022 was used to analyze antibody waning over time, booster effect and the relationship of antibody response and breakthrough infection in 572 recipients (429 allo-HSCT, 121 ASCT and 22 CAR-T cell therapy). A significant decline in antibody titers was observed at 3 and 6 months after full vaccination in recipients without pre-vaccine SARS-CoV-2 infection, whereas recipients infected prior to vaccination showed higher and stable antibody titers over time. In poor responders, a booster dose was able to increase antibody titers in 83% of allo-HSCT and 58% of ASCT recipients but not in CART-T cell recipients [0%] (p < 0.01). One-year cumulative incidence of breakthrough infection was 15%, similar among cell therapy procedures. Immunosuppressive drugs at the time of vaccination [hazard ratio (HR) 1.81, p = 0.0028] and reduced intensity conditioning (HR 0.49, p = 0.011) were identified as the only conditions associated with different risk of breakthrough infection in allo-HSCT recipients. Antibody titers were associated with breakthrough infection and disease severity. No death was observed among the 72 breakthrough infections. Antibody level decay after the first two vaccine doses was common except in recipients with pre-vaccination SARS-CoV-2 infection. Poorly responding allo-HSCT recipients showed a response advantage with the booster as compared to ASCT and, especially, the null response found in CAR-T cell recipients. Antibody titers were positively correlated with the risk of breakthrough SARS-CoV-2 infection which was mainly driven by the immunosuppression status.
Collapse
Affiliation(s)
- José Luis Piñana
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain. .,Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | - Rodrigo Martino
- grid.413396.a0000 0004 1768 8905Hematology Division, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lourdes Vazquez
- grid.411258.bHematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Lucia López-Corral
- grid.411258.bHematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Ariadna Pérez
- grid.411308.fHematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain ,grid.411308.fFundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pedro Chorão
- grid.84393.350000 0001 0360 9602Hematology Division, Hospital universitario y politécnico La Fe, Valencia, Spain
| | - Alejandro Avendaño-Pita
- grid.411258.bHematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - María-Jesús Pascual
- grid.411457.2Hematology Division, Hospital Regional Universitario Carlos Haya, Malaga, Spain
| | - Andrés Sánchez-Salinas
- grid.411372.20000 0001 0534 3000Hematology Division, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Gabriela Sanz-Linares
- grid.414660.1Hematology Division, Institut Català Oncologia-Hospital Duran i reynals, Barcelona, Spain
| | - María T. Olave
- grid.411050.10000 0004 1767 4212Hematology Division, Hospital Clínico Universitario Lozano Blesa, IIS Aragon, Zaragoza, Spain
| | - Ignacio Arroyo
- grid.411308.fHematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Mar Tormo
- grid.411308.fFundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Lucia Villalon
- grid.411316.00000 0004 1767 1089Hematology Division, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Venancio Conesa-Garcia
- grid.411093.e0000 0004 0399 7977Hematology Division, Hospital General universitari d’Elx, Elche, Spain
| | - Beatriz Gago
- grid.411457.2Hematology Division, Hospital Regional Universitario Carlos Haya, Malaga, Spain
| | - María-José Terol
- grid.411308.fHematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain ,grid.411308.fFundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Marta Villalba
- grid.84393.350000 0001 0360 9602Hematology Division, Hospital universitario y politécnico La Fe, Valencia, Spain
| | | | - Almudena Cabero
- grid.411258.bHematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - José Ángel Hernández-Rivas
- grid.414761.1Hematology Division, Hospital Universitario Infanta Leonor. Department of Medicine. Complutense University, Madrid, Spain
| | - Elena Ferrer
- grid.411308.fHematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain ,grid.411308.fFundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Irene García-Cadenas
- grid.413396.a0000 0004 1768 8905Hematology Division, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Anabel Teruel
- grid.411308.fHematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain ,grid.411308.fFundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - David Navarro
- grid.411308.fFundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain ,grid.411308.fMicrobiology department, Hospital Clinico Universitario de Valencia, Valencia, Spain
| | - Ángel Cedillo
- Hematopoietic Stem Cell Transplantation and Cell Therapy Group (GETH), Valencia, Spain
| | - Anna Sureda
- grid.414660.1Hematology Division, Institut Català Oncologia-Hospital Duran i reynals, Barcelona, Spain
| | - Carlos Solano
- grid.411308.fHematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain ,grid.411308.fFundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Medicine, School of Medicine. University of Valencia, Valencia, Spain
| | | |
Collapse
|
24
|
Evaluation of Safety and Immunogenicity of a Recombinant Receptor-Binding Domain (RBD)-Tetanus Toxoid (TT) Conjugated SARS-CoV-2 Vaccine (PastoCovac) in Recipients of Autologous Hematopoietic Stem Cell Transplantation Compared to the Healthy Controls; A Prospective, Open-Label Clinical Trial. Vaccines (Basel) 2023; 11:vaccines11010117. [PMID: 36679963 PMCID: PMC9863563 DOI: 10.3390/vaccines11010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Background: The urgent need for prompt SARS-CoV-2 immunization of hematopoietic stem cell transplant (HSCT) recipients in an endemic area raises many challenges regarding selecting a vaccine platform appropriate for HSCT recipients being economical for widespread use in developing countries. Methods: The trial is a prospective, single-group, open-label study to investigate the safety and serologic response of two doses of the recombinant receptor-binding domain (RBD)-Tetanus Toxoid (TT) conjugated SARS-CoV-2 vaccine (PastoCovac) early after autologous (auto) HSCT. For this reason, a total of 38 patients who completed the two-dose SARS-CoV-2 RBD-based vaccine between three to nine months after auto-HSCT and had an available anti-spike serologic test at three predefined time points of baseline and after the first and second doses and 50 healthy control individuals were included in the analysis. The primary outcome was defined as an increase in IgG Immune status ratio (ISR) to the cut-off value for the positive result (≥1.1) in the semiquantitative test. Findings: The median time between auto-HSCT and vaccination was 127 days. No participant reported any significant adverse effects (Grade 3). Pain at the injection site was the most common adverse event. The ISR increased significantly (p < 0.001) during the three-time point sampling for both patients and healthy control groups. In patients, the mean ISR increased from 1.39 (95% CI: 1.13−1.65) at baseline to 2.48 (1.93−3.03) and 3.73 (3.13−4.38) following the first and second dosages, respectively. In multivariate analysis, the higher count of lymphocytes [OR: 8.57 (95% CI: 1.51−48.75); p = 0.02] and history of obtaining COVID-19 infection before transplantation [OR: 6.24 (95% CI: 1.17−33.15); p = 0.03] remained the predictors of the stronger immune response following two doses of the RBD-TT conjugated vaccine. Moreover, we found that the immunogenicity of the COVID-19 vaccine shortly after transplantation could be influenced by pre-transplant COVID-19 vaccination. Interpretation: The RBD-TT conjugated SARS-CoV-2 vaccine was safe, highly immunogenic, and affordable early after autologous transplants. Funding: This work was mainly financed by the Hematology-Oncology-Stem Cell Transplantation Research Center (HORCSCT) of Tehran University and the Pasteur Institute of Iran.
Collapse
|
25
|
Barkhordar M, Chahardouli B, Biglari A, Ahmadvand M, Bahri T, Alaeddini F, Sharifi Aliabadi L, Noorani SS, Bagheri Amiri F, Biglari M, Shemshadi MR, Ghavamzadeh A, Vaezi M. Three doses of a recombinant conjugated SARS-CoV-2 vaccine early after allogeneic hematopoietic stem cell transplantation: predicting indicators of a high serologic response-a prospective, single-arm study. Front Immunol 2023; 14:1169666. [PMID: 37153556 PMCID: PMC10154585 DOI: 10.3389/fimmu.2023.1169666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Background Allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients must be vaccinated against SARS-CoV-2 as quickly as possible after transplantation. The difficulty in obtaining recommended SARS-CoV-2 vaccines for allo-HSCT recipients motivated us to utilize an accessible and affordable SARS-CoV-2 vaccine with a recombinant receptor-binding domain (RBD)-tetanus toxoid (TT)-conjugated platform shortly after allo-HSCT in the developing country of Iran. Methods This prospective, single-arm study aimed to investigate immunogenicity and its predictors following a three-dose SARS-CoV-2 RBD-TT-conjugated vaccine regimen administered at 4-week (± 1-week) intervals in patients within 3-12 months post allo-HSCT. An immune status ratio (ISR) was measured at baseline and 4 weeks (± 1 week) after each vaccine dose using a semiquantitative immunoassay. Using the median ISR as a cut-off point for immune response intensity, we performed a logistic regression analysis to determine the predictive impact of several baseline factors on the intensity of the serologic response following the third vaccination dose. Results Thirty-six allo-HSCT recipients, with a mean age of 42.42 years and a median time of 133 days between hematopoietic stem cell transplant (allo-HSCT) and the start of vaccination, were analyzed. Our findings, using the generalized estimating equation (GEE) model, indicated that, compared with the baseline ISR of 1.55 [95% confidence interval (CI) 0.94 to 2.17], the ISR increased significantly during the three-dose SARS-CoV-2 vaccination regimen. The ISR reached 2.32 (95% CI 1.84 to 2.79; p = 0.010) after the second dose and 3.87 (95% CI 3.25 to 4.48; p = 0.001) after the third dose of vaccine, reflecting 69.44% and 91.66% seropositivity, respectively. In a multivariate logistic regression analysis, the female sex of the donor [odds ratio (OR) 8.67; p = 0.028] and a higher level donor ISR at allo-HSCT (OR 3.56; p = 0.050) were the two positive predictors of strong immune response following the third vaccine dose. No serious adverse events (i.e., grades 3 and 4) were observed following the vaccination regimen. Conclusions We concluded that early vaccination of allo-HSCT recipients with a three-dose RBD-TT-conjugated SARS-CoV-2 vaccine is safe and could improve the early post-allo-HSCT immune response. We further believe that the pre-allo-HSCT SARS-CoV-2 immunization of donors may enhance post-allo-HSCT seroconversion in allo-HSCT recipients who receive the entire course of the SARS-CoV-2 vaccine during the first year after allo-HSCT.
Collapse
Affiliation(s)
- Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Vaezi, ; Maryam Barkhordar,
| | - Bahram Chahardouli
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Biglari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tanaz Bahri
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Alaeddini
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seied Saeid Noorani
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Biglari
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Shemshadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Cancer & Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Vaezi, ; Maryam Barkhordar,
| |
Collapse
|
26
|
Khawaja F, Papanicolaou G, Dadwal S, Pergam SA, Wingard JR, Boghdadly ZE, Abidi MZ, Waghmare A, Shahid Z, Michaels L, Hill JA, Kamboj M, Boeckh M, Auletta JJ, Chemaly RF. Frequently Asked Questions on Coronavirus Disease 2019 Vaccination for Hematopoietic Cell Transplantation and Chimeric Antigen Receptor T-Cell Recipients From the American Society for Transplantation and Cellular Therapy and the American Society of Hematology. Transplant Cell Ther 2023; 29:10-18. [PMID: 36273782 PMCID: PMC9584756 DOI: 10.1016/j.jtct.2022.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), disproportionately affects immunocompromised and elderly patients. Not only are hematopoietic cell transplantation (HCT) and chimeric antigen receptor (CAR) T-cell recipients at greater risk for severe COVID-19 and COVID-19-related complications, but they also may experience suboptimal immune responses to currently available COVID-19 vaccines. Optimizing the use, timing, and number of doses of the COVID-19 vaccines in these patients may provide better protection against SARS-CoV-2 infection and better outcomes after infection. To this end, current guidelines for COVID-19 vaccination in HCT and CAR T-cell recipients from the American Society of Transplantation and Cellular Therapy Transplant Infectious Disease Special Interest Group and the American Society of Hematology are provided in a frequently asked questions format.
Collapse
Affiliation(s)
- Fareed Khawaja
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Genovefa Papanicolaou
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sanjeet Dadwal
- Division of Infectious Diseases, City of Hope, Duarte, California
| | - Steven A Pergam
- Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, Washington
| | - John R Wingard
- Division of Hematology/Oncology, University of Florida, Gainesville, Florida
| | - Zeinab El Boghdadly
- Division of Infectious Diseases, The Ohio State University College of Medicine, Columbus, Ohio
| | - Maheen Z Abidi
- Division of Infectious Diseases, University of Colorado, Boulder, Colorado
| | - Alpana Waghmare
- Division of Infectious Diseases, Seattle Children's Hospital, Seattle, Washington
| | - Zainab Shahid
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura Michaels
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joshua A Hill
- Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Mini Kamboj
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Boeckh
- Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jeffery J Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota; Divisions of Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
27
|
Mori Y, Uchida N, Harada T, Katayama Y, Wake A, Iwasaki H, Eto T, Morishige S, Fujisaki T, Ito Y, Kamimura T, Takahashi T, Imamura Y, Tanimoto K, Ishitsuka K, Sugita J, Kawano N, Tanimoto K, Yoshimoto G, Choi I, Hidaka T, Ogawa R, Takamatsu Y, Miyamoto T, Akashi K, Nagafuji K. Predictors of impaired antibody response after SARS-CoV-2 mRNA vaccination in hematopoietic cell transplant recipients: A Japanese multicenter observational study. Am J Hematol 2023; 98:102-111. [PMID: 36260658 PMCID: PMC9874814 DOI: 10.1002/ajh.26769] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023]
Abstract
HCT recipients reportedly have a high mortality rate after developing COVID-19. SARS-CoV-2 vaccination is generally useful to prevent COVID-19. However, its safety and efficacy among HCT recipients remain elusive. This large-scale prospective observational study including 543 HCT recipients with 37-months interval from transplant demonstrated high safety profiles of mRNA vaccine: only 0.9% of patients avoided the second dose due to adverse event or GVHD aggravation following the first dose. Regarding the efficacy, serological response with a clinically relevant titer (≥250 BAU/mL) was obtained in 397 (73.1%) patients. We classified the remaining 146 patients as impaired responders and compared the clinical and immunological parameters between two groups. In allogeneic HCT recipients, multivariable analysis revealed the risk factors for impaired serological response as follows: age (≥60, 1 points), HLA-mismatched donor (1 points), use of systemic steroids (1 points), absolute lymphocyte counts (<1000/μL, 1 points), absolute B-cell counts (<100/μL, 1 points), and serum IgG level (<500 mg/dL, 2 points). Notably, the incidence of impaired serological response increased along with the risk scores: patients with 0, 1-3, and 4-7 points were 3.9%, 21.8%, and 74.6%, respectively. In autologous HCT recipients, a shorter interval from transplant to vaccination was the only risk factor for impaired serological response. Our findings indicate that two doses of SARS-CoV-2 vaccine are safe but insufficient for a part of HCT recipients with higher risk scores. To improve this situation, we should consider additional treatment options, including booster vaccination and prophylactic neutralizing antibodies during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Yasuo Mori
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical ScienceFukuokaJapan
| | | | - Takuya Harada
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical ScienceFukuokaJapan
| | - Yuta Katayama
- Department of HematologyHiroshima Red Cross Hospital and Atomic‐Bomb Survivors HospitalHiroshimaJapan
| | - Atsushi Wake
- Department of HematologyToranomon Hospital KajigayaKawasakiJapan
| | - Hiromi Iwasaki
- Departments of HematologyNational Hospital Organization, Kyushu Medical CenterFukuokaJapan
| | - Tetsuya Eto
- Department of HematologyHamanomachi HospitalFukuokaJapan
| | - Satoshi Morishige
- Division of Hematology and Oncology, Department of MedicineKurume University School of MedicineKurumeJapan
| | - Tomoaki Fujisaki
- Department of Internal MedicineMatsuyama Red Cross HospitalMatsuyamaJapan
| | - Yoshikiyo Ito
- Department of HematologyImamura General HospitalKagoshimaJapan
| | | | | | | | - Kazushi Tanimoto
- Department of Hematology, Clinical Immunology, and Infectious DiseasesEhime University Graduate School of MedicineEhimeJapan
| | - Kenji Ishitsuka
- Department of Hematology and RheumatologyKagoshima University HospitalKagoshimaJapan
| | - Junichi Sugita
- Department of HematologyHokkaido University HospitalSapporoJapan
| | - Noriaki Kawano
- Department of Internal MedicineMiyazaki Prefectural Miyazaki HospitalMiyazakiJapan
| | - Kazuki Tanimoto
- Department of HematologyFukuoka Red Cross HospitalFukuokaJapan
| | - Goichi Yoshimoto
- Department of HematologySaga‐Ken Medical Center KoseikanSagaJapan
| | - Ilseung Choi
- Department of HematologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Tomonori Hidaka
- Department of Gastroenterology and Hematology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Ryosuke Ogawa
- Department of Hematology and OncologyJCHO Kyushu HospitalFukuokaJapan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology and Infectious Diseases, Faculty of MedicineFukuoka UniversityFukuokaJapan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical ScienceFukuokaJapan,Division of Hematology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Koichi Akashi
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical ScienceFukuokaJapan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of MedicineKurume University School of MedicineKurumeJapan
| |
Collapse
|
28
|
Bordat J, Maury S, Leclerc M. Allogeneic hematopoietic stem cell transplantation in the COVID-19 era. Front Immunol 2023; 14:1100468. [PMID: 36911678 PMCID: PMC9993088 DOI: 10.3389/fimmu.2023.1100468] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Allogeneic hematopoietic stem-cell transplantation (allo-HSCT) recipients are especially vulnerable to coronavirus disease 19 (COVID-19), because of their profound immunodeficiency. Indeed, the first pandemic wave was marked by a high mortality rate in this population. Factors increasing immunodepression such as older age, immunosuppressive treatments or a short delay between transplant and infection appear to worsen the prognosis. Many changes in clinical practice had to be implemented in order to limit this risk, including postponing of transplant for non-malignant diseases, preference for local rather than international donations and for peripheral blood as stem cell source, and the widespread use of cryopreservation. The great revolution in the COVID-19 pandemic came from the development of mRNA vaccines that have shown to be able to prevent severe forms of the disease. More than 75% of allo-HSCT recipients develop seroconversion after 2 doses of vaccine. Multiple studies have identified lymphopenia, exposure to immunosuppressive or anti-CD20 therapies, and a short post-transplant period as factors associated with a poor response to vaccination. The use of repeated injections of the vaccine, including a third dose, not only improves the seroconversion rate but also intensifies the immune response, both in B cells and T cells. Vaccines are an effective and well-tolerated method in this high-risk population. Some studies investigated the possibility of immune protection being transferred from a vaccinated donor to a recipient, with encouraging initial results. However, dynamic mutations and immune escape of the virus can lead to breakthrough infections with new variants in vaccinated individuals and still represent a threat of severe disease in allo-HSCT recipients. New challenges include the need to adapt vaccine protection to emerging variants.
Collapse
Affiliation(s)
- Jonathan Bordat
- Hematology Department, Henri Mondor Hospital, Assistance Publique/Hôpitaux de Paris, Créteil, France
| | - Sébastien Maury
- Hematology Department, Henri Mondor Hospital, Assistance Publique/Hôpitaux de Paris, Créteil, France.,Institut Mondor de Recherche Biomédicale, équipe Immunorégulation et Biothérapies, INSERM U955, Créteil, France.,Faculté de Médecine, Paris-Est Créteil University, Créteil, France
| | - Mathieu Leclerc
- Hematology Department, Henri Mondor Hospital, Assistance Publique/Hôpitaux de Paris, Créteil, France.,Institut Mondor de Recherche Biomédicale, équipe Immunorégulation et Biothérapies, INSERM U955, Créteil, France.,Faculté de Médecine, Paris-Est Créteil University, Créteil, France
| |
Collapse
|
29
|
Uaprasert N, Pitakkitnukun P, Tangcheewinsirikul N, Chiasakul T, Rojnuckarin P. Immunogenicity and risks associated with impaired immune responses following SARS-CoV-2 vaccination and booster in hematologic malignancy patients: an updated meta-analysis. Blood Cancer J 2022; 12:173. [PMID: 36550105 PMCID: PMC9780106 DOI: 10.1038/s41408-022-00776-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with hematologic malignancies (HM) have demonstrated impaired immune responses following SARS-CoV-2 vaccination. Factors associated with poor immunogenicity remain largely undetermined. A literature search was conducted using PubMed, EMBASE, Cochrane, and medRxiv databases to identify studies that reported humoral or cellular immune responses (CIR) following complete SARS-CoV-2 vaccination. The primary aim was to estimate the seroconversion rate (SR) following complete SARS-CoV-2 vaccination across various subtypes of HM diseases and treatments. The secondary aims were to determine the rates of development of neutralizing antibodies (NAb) and CIR following complete vaccination and SR following booster doses. A total of 170 studies were included for qualitative and quantitative analysis of primary and secondary outcomes. A meta-analysis of 150 studies including 20,922 HM patients revealed a pooled SR following SARS-CoV-2 vaccination of 67.7% (95% confidence interval [CI], 64.8-70.4%; I2 = 94%). Meta-regression analysis showed that patients with lymphoid malignancies, but not myeloid malignancies, had lower seroconversion rates than those with solid cancers (R2 = 0.52, P < 0.0001). Patients receiving chimeric antigen receptor T-cells (CART), B-cell targeted therapies or JAK inhibitors were associated with poor seroconversion (R2 = 0.39, P < 0.0001). The pooled NAb and CIR rates were 52.8% (95% CI; 45.8-59.7%, I2 = 87%) and 66.6% (95% CI, 57.1-74.9%; I2 = 86%), respectively. Approximately 20.9% (95% CI, 11.4-35.1%, I2 = 90%) of HM patients failed to elicit humoral and cellular immunity. Among non-seroconverted patients after primary vaccination, only 40.5% (95% CI, 33.0-48.4%; I2 = 87%) mounted seroconversion after the booster. In conclusion, HM patients, especially those with lymphoid malignancies and/or receiving CART, B-cell targeted therapies, or JAK inhibitors, showed poor SR after SARS-CoV-2 vaccination. A minority of patients attained seroconversion after booster vaccination. Strategies to improve immune response in these severely immunosuppressed patients are needed.
Collapse
Affiliation(s)
- Noppacharn Uaprasert
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| | - Palada Pitakkitnukun
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nuanrat Tangcheewinsirikul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thita Chiasakul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
30
|
Dioverti V, Boghdadly ZE, Shahid Z, Waghmare A, Abidi MZ, Pergam S, Boeckh M, Dadwal S, Kamboj M, Seo S, Chemaly RF, Papanicolaou GA. Revised Guidelines for Coronavirus Disease 19 Management in Hematopoietic Cell Transplantation and Cellular Therapy Recipients (August 2022). Transplant Cell Ther 2022; 28:810-821. [PMID: 36103987 PMCID: PMC9464362 DOI: 10.1016/j.jtct.2022.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 01/17/2023]
Abstract
This document is intended as a guide for diagnosis and management of Coronavirus Disease 2019 (COVID-19), caused by the virus SARS-CoV-2, in adult and pediatric HCT and cellular therapy patients. This document was prepared using available data and with expert opinion provided by members of the (ASTCT) Infectious Diseases Special Interest Group (ID-SIG) and is an update of pervious publication. Since our original publication in 2020, the NIH and IDSA have published extensive guidelines for management of COVID-19 which are readily accessible ( NIH Guidelines , IDSA Guidelines ). This update focuses primarily on issues pertaining specifically to HCT/cellular therapy recipients. Information provided in this manuscript may change as new information becomes available.
Collapse
Affiliation(s)
- Veronica Dioverti
- Assistant Professor of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Zeinab El Boghdadly
- Assistant Professor of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Zainab Shahid
- Attending physician, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alpana Waghmare
- Associate Professor of Pediatrics, University of Washington, Seattle, Washington; Fred Hutchinson Cancer Center, Seattle, Washington
| | - Maheen Z Abidi
- Assistant Professor of Medicine, University of Colorado, Denver, Colorado
| | - Steven Pergam
- Professor, Fred Hutchinson Cancer Research Center, Associate Professor, University of Washington, Seattle, Washington
| | - Michael Boeckh
- Fred Hutchinson Cancer Center, Seattle, Washington; Professor of Medicine, University of Washington, Seattle, Washington
| | | | - Mini Kamboj
- Associate Professor of Medicine, Weill Cornell Medical College, New York, New York; Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susan Seo
- Memorial Sloan Kettering Cancer Center, New York, New York; Professor of Clinical Medicine, Weill Cornell Medical College, New York, New York
| | - Roy F Chemaly
- Professor of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Genovefa A Papanicolaou
- Memorial Sloan Kettering Cancer Center, New York, New York; Professor of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
31
|
Bankova AK, Pasin C, Huang A, Cicin‐Sain C, Epp S, Audige A, Mueller NJ, Nilsson J, Vilinovszki O, Nair G, Wolfensberger N, Hockl P, Schanz U, Trkola A, Kouyos R, Hasse B, Zinkernagel AS, Manz MG, Abela IA, Müller AMS. Antibody response to a third SARS‐CoV‐2 vaccine dose in recipients of an allogeneic haematopoietic cell transplantation. Br J Haematol 2022; 201:58-63. [PMID: 36382698 DOI: 10.1111/bjh.18562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Allogeneic haematopoietic cell transplantation (allo-HCT) recipients show impaired antibody (Ab) response to a standard two-dose vaccination against severe acute respiratory syndrome coronavirus-2 and currently a third dose is recommended as part of the primary vaccination regimen. By assessing Ab titres 1 month after a third mRNA vaccine dose in 74 allo-HCT recipients we show sufficient neutralisation activity in 77% of the patients. Discontinuation of immunosuppression before the third vaccine led to serological responses in 50% of low responders to two vaccinations. Identifying factors that might contribute to better vaccine responses in allo-HCT recipients is critical to optimise current vaccination strategies.
Collapse
Affiliation(s)
- Andriyana K. Bankova
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Chloé Pasin
- Institute of Medical Virology University of Zürich Zürich Switzerland
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Alice Huang
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Caroline Cicin‐Sain
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Selina Epp
- Institute of Medical Virology University of Zürich Zürich Switzerland
| | - Annette Audige
- Institute of Medical Virology University of Zürich Zürich Switzerland
| | - Nicolas J. Mueller
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Jakob Nilsson
- Department of Immunology University Hospital Zürich Zürich Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
- Department of Internal Medicine University Hospital Zürich Zürich Switzerland
| | - Gayathri Nair
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Nathan Wolfensberger
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Philipp Hockl
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology University of Zürich Zürich Switzerland
| | - Roger Kouyos
- Institute of Medical Virology University of Zürich Zürich Switzerland
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Barbara Hasse
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Irene A. Abela
- Institute of Medical Virology University of Zürich Zürich Switzerland
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Antonia M. S. Müller
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
- Department of Blood Group Serology and Transfusion Medicine Medical University of Vienna Vienna Austria
| |
Collapse
|
32
|
Meyer T, Ihorst G, Bartsch I, Zeiser R, Wäsch R, Bertz H, Finke J, Huzly D, Wehr C. Cellular and Humoral SARS-CoV-2 Vaccination Responses in 192 Adult Recipients of Allogeneic Hematopoietic Cell Transplantation. Vaccines (Basel) 2022; 10:1782. [PMID: 36366291 PMCID: PMC9699205 DOI: 10.3390/vaccines10111782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
To determine factors influencing the vaccination response against SARS-CoV-2 is of importance in recipients of allogeneic hematopoietic cell transplantation (allo-HCT) as they display an increased mortality after SARS-CoV-2 infection, an increased risk of extended viral persistence and reduced vaccination response. Real-life data on anti-SARS-CoV-2-S1-IgG titers (n = 192) and IFN-γ release (n = 110) of allo-HCT recipients were obtained using commercially available, validated assays after vaccination with either mRNA (Comirnaty™, Pfizer-BioNTech™, NY, US and Mainz, Germany or Spikevax™, Moderna™, Cambridge, Massachusetts, US) or vector-based vaccines (Vaxzevria™,AstraZeneca™, Cambridge, UK or Janssen COVID-19 vaccine™Johnson/Johnson, New Brunswick, New Jersey, US), or after a heterologous protocol (vector/mRNA). Humoral response (78% response rate) was influenced by age, time after transplantation, the usage of antithymocyte globulin (ATG) and ongoing immunosuppression, specifically corticosteroids. High counts of B cells during the vaccination period correlated with a humoral response. Only half (55%) of participants showed a cellular vaccination response. It depended on age, time after transplantation, ongoing immunosuppression with ciclosporin A, chronic graft-versus-host disease (cGvHD) and vaccination type, with vector-based protocols favoring a response. Cellular response failure correlated with a higher CD8+ count and activated/HLA-DR+ T cells one year after transplantation. Our data provide the basis to assess both humoral and cellular responses after SARS-CoV2 vaccination in daily practice, thereby opening up the possibility to identify patients at risk.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Medicine I/Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Ingrid Bartsch
- Department of Medicine I/Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I/Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Ralph Wäsch
- Department of Medicine I/Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Hartmut Bertz
- Department of Medicine I/Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jürgen Finke
- Department of Medicine I/Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudia Wehr
- Department of Medicine I/Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
33
|
Strasfeld L. COVID-19 and HSCT (Hematopoietic stem cell transplant). Best Pract Res Clin Haematol 2022; 35:101399. [PMID: 36494150 PMCID: PMC9547387 DOI: 10.1016/j.beha.2022.101399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 01/26/2023]
Abstract
HSCT recipients are at increased risk for COVID-19-associated morbidity and mortality. Early treatment of symptomatic SARS-CoV-2 infection is an important means to decreasing risk for severe disease and death. While some HSCT recipients, particularly those who are early post-transplant and severely immunosuppressed, may have diminished response to COVID-19 vaccines, the benefits of vaccination are uncontested. Public health, healthcare facility and individual level approaches are all necessary to mitigate risk for infection in this vulnerable population.
Collapse
Affiliation(s)
- Lynne Strasfeld
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, mail code L-457, Portland, OR, 97239, USA.
| |
Collapse
|
34
|
Chaekal OK, Gomez-Arteaga A, Chen Z, Soave R, Shore T, Mayer S, Phillips A, Hsu JM, Drelick A, Kodiyanplakkal RPL, Plate M, Satlin MJ, van Besien K. Predictors of Covid-19 Vaccination Response After In-Vivo T-Cell-Depleted Stem Cell Transplantation. Transplant Cell Ther 2022; 28:618.e1-618.e10. [PMID: 35724850 PMCID: PMC9213029 DOI: 10.1016/j.jtct.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023]
Abstract
Covid-19 vaccination is recommended in allogeneic transplant recipients, but many questions remain regarding its efficacy. Here we studied serologic responses in 145 patients who had undergone allogeneic transplantation using in vivo T-cell depletion. Median age was 57 (range 21-79) at transplantation and 61 (range 24-80) at vaccination. Sixty-nine percent were Caucasian. One third each received transplants from HLA-identical related (MRD), adult unrelated (MUD), or haploidentical-cord blood donors. Graft-versus-host disease (GVHD) prophylaxis involved in-vivo T-cell depletion using alemtuzumab for MRD or MUD transplants and anti-thymocyte globulin for haplo-cord transplants. Patients were vaccinated between January 2021 and January 2022, an average of 31 months (range 3-111 months) after transplantation. Sixty-one percent received the BNT162b2 (bioNtech/Pfizer) vaccine, 34% received mRNA-1273 (Moderna), and 5% received JNJ-78436735 (Johnson & Johnson). After the initial vaccinations (2 doses for BNT162b2 and mRNA-1273, 1 dose for JNJ-7843673), 124 of the 145 (85%) patients had a detectable SARS-CoV-2 spike protein (S) antibody, and 21 (15%) did not respond. Ninety-nine (68%) had high-level responses (≥100 binding antibody units [BAU]/mL)m and 25 (17%) had a low-level response (<100 BAU/mL). In multivariable analysis, lymphocyte count less than 1 × 109/ mL, having chronic GVHD, and being vaccinated in the first year after transplantation emerged as independent predictors for poor response. Neither donor source nor prior exposure to rituximab was predictive of antibody response. SARS-CoV-2 vaccination induced generally high response rates in recipients of allogeneic transplants including recipients of umbilical cord blood transplants and after in-vivo T cell depletion. Responses are less robust in those vaccinated in the first year after transplantation, those with low lymphocyte counts, and those with chronic GVHD.
Collapse
Affiliation(s)
- Ok-Kyong Chaekal
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York; Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Alexandra Gomez-Arteaga
- Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Sciences, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Rosemary Soave
- Division of Infectious Diseases, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Tsiporah Shore
- Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Sebastian Mayer
- Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Adrienne Phillips
- Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Jing Mei Hsu
- Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Alexander Drelick
- Division of Infectious Diseases, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Rosy Priya L Kodiyanplakkal
- Division of Infectious Diseases, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Markus Plate
- Division of Infectious Diseases, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Michael J Satlin
- Division of Infectious Diseases, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Koen van Besien
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York; Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York.
| |
Collapse
|
35
|
Cazeau N, Palazzo M, Savani M, Shroff RT. COVID-19 Vaccines and Immunosuppressed Patients With Cancer: Critical Considerations. Clin J Oncol Nurs 2022; 26:367-373. [PMID: 35939727 PMCID: PMC9713690 DOI: 10.1188/22.cjon.367-373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Patients with cancer are highly vulnerable to COVID-19 because of immunosuppression from diseases and treatments. Emerging data characterize the impact of COVID-19 vaccines related to cancer malignancies and treatments. OBJECTIVES This article provides a clinical foundation on the immune response to the COVID-19 vaccine associated with the impact of cancer and its related treatments. It reviews strategies for vaccine scheduling, Centers for Disease Control and Prevention recommendations, and nursing considerations when administering the vaccine to immunosuppressed patients. METHODS Research studies about immune responses to COVID-19 vaccines among immunosuppressed patients with hematologic and solid tumor malignancies were summarized. FINDINGS Studies about the humoral immune responses of patients with cancer to COVID-19 vaccines help guide vaccination planning for this population. Critical nursing considerations for patients with cancer receiving COVID-19 vaccination are integral to the provision of optimal clinical oncology care during the pandemic.
Collapse
|
36
|
SARS-CoV-2 Specific Antibody Response and T Cell-Immunity in Immunocompromised Patients up to Six Months Post COVID: A Pilot Study. J Clin Med 2022; 11:jcm11123535. [PMID: 35743605 PMCID: PMC9225567 DOI: 10.3390/jcm11123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 generates SARS-CoV-2-specific antibodies in immunocompetent individuals. However, in immunocompromised patients, the humoral immunity following infection may be impaired or absent. Recently, the assessment of cellular immunity to SARS-CoV-2, both following natural infection and vaccination, has contributed new knowledge regarding patients with low or no antibody responses. As part of a prospective cohort study which included hospitalized patients with COVID-19, we identified immunocompromised patients and compared them with age- and sex-matched immunocompetent patients regarding co-morbidities, biomarkers of COVID-19 and baseline viral load by real-time PCR in nasopharyngeal swabs. Spike and nucleocapsid antibody responses were analyzed at inclusion and after two weeks, six weeks and six months. Plasma immunoglobulin G (IgG) levels were quantified, lymphocyte phenotyping was performed, and SARS-CoV-2 specific CD4 and CD8 T cell responses after in vitro antigen stimulation were assessed at six months post infection. All patients showed IgG levels above or within reference limits. At six months, all patients had detectable SARS-CoV-2 anti-spike antibody levels. SARS-CoV-2 specific T cell responses were detected in 12 of 12 immunocompetent patients and in four of six immunocompromised patients. The magnitude of long-lived SARS-CoV-2 specific T cell responses were significantly correlated with the number of CD4 T cells and NK cells. Determining the durability of the humoral and cellular immune response against SARS-CoV-2 in immunocompromised individuals could be of importance by providing insights into the risk of re-infection and the need for vaccine boosters.
Collapse
|
37
|
Wu X, Wang L, Shen L, He L, Tang K. Immune response to vaccination against SARS-CoV-2 in hematopoietic stem cell transplantation and CAR T-cell therapy recipients. J Hematol Oncol 2022; 15:81. [PMID: 35710431 PMCID: PMC9200932 DOI: 10.1186/s13045-022-01300-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Recipients after hematopoietic stem cell transplantation (HSCT) or chimeric antigen receptor T-cell (CAR-T) therapy are at increased risk for unfavorable outcomes after SARS-CoV-2 infection. The efficacy of COVID-19 vaccines remains undetermined in this vulnerable population, we therefore conducted a pooled analysis to evaluate the immune response after vaccination. A total of 46 studies were finally included, comprising 4757 HSCT and 174 CAR-T recipients. Our results indicated that HSCT and CAR-T recipients had an attenuated immune response to SARS-CoV-2 vaccination compared with healthy individuals, while time interval between transplant and vaccination, immunosuppressive therapy (IST) and lymphocyte counts at vaccination significantly affected the humoral response in HSCT recipients. In addition, seroconversion was significantly higher in patients with BCMA-based CAR-T than those with CD19-based CAR-T. Thus, an adapted vaccination strategy for HSCT and CAR-T recipients may be required, and further research on the effect of a booster dose of COVID-19 vaccine and the role of cellular response after vaccination is warranted.
Collapse
Affiliation(s)
- Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kefu Tang
- Prenatal Diagnosis Center, Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200051, China.
| |
Collapse
|