1
|
Song P, Wu Y, Fan M, Chen X, Dong M, Qiao W, Dong N, Wang Q. Folic acid modified silver nanoparticles promote endothelialization and inhibit calcification of decellularized heart valves by immunomodulation with anti-bacteria property. BIOMATERIALS ADVANCES 2025; 166:214069. [PMID: 39447240 DOI: 10.1016/j.bioadv.2024.214069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Xenogeneic decellularized heart valves (DHVs) have become one of the most commonly used scaffolds for tissue engineered heart valves (TEHVs) due to extensive resources and possessing the distinct three-layer structure similar to native heart valves. However, DHVs as scaffolds face the shortages such as poor mechanical properties, proneness to thrombosis and calcification, difficulty in endothelialization and chronic inflammatory responses etc., which limit their applications in clinic. In this work, we constructed a novel TEHV with immunomodulatory functions by loading folic acid modified silver nanoparticles (FS NPs) on DHVs to overcome these issues. The FS NPs preferentially targeted M1 macrophages and reduced their intracellular H2O2 level, resulting in polarizing them into M2 phenotype. The increased M2 macrophages facilitated to eliminate inflammation, recruit endothelial cells, and promote their proliferation and endothelialization by secreting relative factors. We founded that FS NPs with the size of 80 nm modified DHVs (FSD-80) performed optimally on cytocompatibility and regulating macrophage phenotype ability in vitro. In addition, the FSD-80 had excellent mechanical properties, hemocompatibility and anti-bacteria property. The results of the subcutaneous implantation in rats revealed that the FSD-80 also had good performance in regulating macrophage phenotype, promoting endothelialization, remolding the extracellular matrix and anti-calcification in vivo. Therefore, FS NPs-loaded DHVs possess immunomodulatory functions, which is a feasible and promising strategy for constructing TEHVs with excellent comprehensive performance.
Collapse
Affiliation(s)
- Peng Song
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Fan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Mengna Dong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Lu F, Wu B, Dong L, Shu X, Wang Y. Pro-angiogenic cytokine features of left ventricular remodeling in patients with bicuspid aortic valve. Hellenic J Cardiol 2024:S1109-9666(24)00161-1. [PMID: 39038608 DOI: 10.1016/j.hjc.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE Bicuspid aortic valve (BAV) is prone to promote left ventricular remodeling (LVR), which is associated with adverse clinical outcomes. Although the association between angiogenic activity and LVR has been established, pro-angiogenic cytokine features and potential biomarker candidates for LVR in patients with BAV remain to be clarified. METHODS From November 2018 to May 2019, patients with BAV diagnosed by transthoracic echocardiography at our institution were included. LVR was diagnosed on the basis of echocardiographic calculations of relative wall thickness (RWT) and left ventricular mass index (LVMI). A multiplex ELISA array was used to measure the plasma levels of 60 angiogenesis-related cytokines. RESULTS Among 103 patients with BAV, 71 were categorized into the LVR group and 32 into the normal left ventricular (LV) geometry group. BAV patients with LVR demonstrated increased LVMI, elevated prevalence of moderate to severe aortic stenosis and aortic regurgitation, and decreased LV ejection fraction (LVEF). Plasma levels of angiopoietin-1 were elevated in BAV patients with or without LVR compared with healthy controls (P = 0.001, P < 0.001, respectively), and were negatively correlated with RWT (r = -0.222, P = 0.027). Plasma levels of angiopoietin-2 were elevated in the LVR group (P = 0.001) compared with the normal LV geometry group, and were negatively correlated with LVEF (r = -0.330, P = 0.002). CONCLUSION Decreased angiogenesis plays a crucial role in the occurrence and progression of LVR in patients with BAV. Disturbance in the pro- and anti-angiogenesis equilibrium in BAV patients with LVR may reflect the aggravation of endothelial injury and dysfunction.
Collapse
Affiliation(s)
- Feiwei Lu
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Boting Wu
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Lili Dong
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xianhong Shu
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongshi Wang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Pichler Sekulic S, Sekulic M. Neovascularization of native cardiac valves, and correlation with histopathologic, clinical, and radiologic features. Cardiovasc Pathol 2024; 69:107605. [PMID: 38244849 DOI: 10.1016/j.carpath.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
Native cardiac valves in the setting of chronic injury undergo remodeling that includes fibrous thickening and dystrophic calcification, as well as neovascularization, that result in abnormal valve function. In order to characterize the presence of neovascularization in valves, a retrospective review of 1246 sequentially reviewed native cardiac valves of all types was performed, with correlation with other histopathologic features, and clinical and echocardiographic findings. Neovascularization was present in 55.5% of cases, with the greatest prevalence amongst aortic valves. While microvasculature (representing capillaries, venules, and/or lymphatics) was at least present in all cases of valves with neovascularization, arterial vessels were never identified in valves without also the finding of concomitant microvasculature present. Patients with neovascularization had a greater mean age and body mass index compared to those without, and the proportions of cases with significant coronary artery disease, dyslipidemia, diabetes mellitus, rheumatic fever, and malignancy were greater in the setting of valves with neovascularization compared to cases without. The rate of neovascularization increased with degree of valve thickening and/or calcification, and stenosis; in contrast, neovascularization was observed at a greater rate with decreasing degrees of regurgitation. The prevalence rates of hemosiderin-laden macrophages, osseous metaplasia, chondromatous metaplasia, smooth muscle, and chronic inflammation were greater in valves with neovascularization compared to valves without. Neovascularization within native cardiac valves is a frequent histopathologic alteration associated with chronic valve disease, likely representing a constituent of structural remodeling that mediates and reflects chronic injury.
Collapse
Affiliation(s)
- Simona Pichler Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Patel KP, Lin A, Kumar N, Esposito G, Grodecki K, Lloyd G, Mathur A, Baumbach A, Mullen MJ, Williams MC, Newby DE, Treibel TA, Dweck MR, Dey D. Influence of cusp morphology and sex on quantitative valve composition in severe aortic stenosis. Eur Heart J Cardiovasc Imaging 2023; 24:1653-1660. [PMID: 37339331 DOI: 10.1093/ehjci/jead142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/09/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
AIMS Aortic stenosis is characterized by fibrosis and calcification of the valve, with a higher proportion of fibrosis observed in women. Stenotic bicuspid aortic valves progress more rapidly than tricuspid valves, which may also influence the relative composition of the valve. We aimed to investigate the influence of cusp morphology on quantitative aortic valve composition quantified from contrast-enhanced computed tomography angiography in severe aortic stenosis. METHODS AND RESULTS Patients undergoing transcatheter aortic valve implantation with bicuspid and tricuspid valves were propensity matched 1:1 by age, sex, and comorbidities. Computed tomography angiograms were analysed using semi-automated software to quantify the fibrotic and calcific scores (volume/valve annular area) and the fibro-calcific ratio (fibrotic score/calcific score). The study population (n = 140) was elderly (76 ± 10 years, 62% male) and had a peak aortic jet velocity of 4.1 ± 0.7 m/s. Compared with those with tricuspid valves (n = 70), patients with bicuspid valves (n = 70) had higher fibrotic scores [204 (interquartile range 118-267) vs. 144 (99-208) mm3/cm2, P = 0.006] with similar calcific scores (P = 0.614). Women had greater fibrotic scores than men in bicuspid [224 (181-307) vs. 169 (109-247) mm3/cm2, P = 0.042] but not tricuspid valves (P = 0.232). Men had greater calcific scores than women in both bicuspid [203 (124-355) vs. 130 (70-182) mm3/cm2, P = 0.008] and tricuspid [177 (136-249) vs. 100 (62-150) mm3/cm2, P = 0.004] valves. Among both valve types, women had a greater fibro-calcific ratio compared with men [tricuspid 1.86 (0.94-2.56) vs. 0.86 (0.54-1.24), P = 0.001 and bicuspid 1.78 (1.21-2.90) vs. 0.74 (0.44-1.53), P = 0.001]. CONCLUSIONS In severe aortic stenosis, bicuspid valves have proportionately more fibrosis than tricuspid valves, especially in women.
Collapse
Affiliation(s)
- Kush P Patel
- Department of Cardiology, Barts Health NHS Trust, London, UK
| | - Andrew Lin
- Department of Cardiology, Barts Health NHS Trust, London, UK
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, 116N Robertson Blvd, Suite 400, Los Angeles, CA 90048, USA
| | - Niraj Kumar
- Department of Cardiology, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Giulia Esposito
- Department of Cardiology, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Kajetan Grodecki
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, 116N Robertson Blvd, Suite 400, Los Angeles, CA 90048, USA
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Guy Lloyd
- Department of Cardiology, Barts Health NHS Trust, London, UK
| | - Anthony Mathur
- Department of Cardiology, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andreas Baumbach
- Department of Cardiology, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Yale University School of Medicine, New Haven, CT, USA
| | | | - Michelle C Williams
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh, UK
| | - David E Newby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh, UK
| | - Thomas A Treibel
- Department of Cardiology, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Marc R Dweck
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh, UK
| | - Damini Dey
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, 116N Robertson Blvd, Suite 400, Los Angeles, CA 90048, USA
| |
Collapse
|
5
|
Ren T, Maitusong M, Zhou X, Hong X, Cheng S, Lin Y, Xue J, Xu D, Chen J, Qian Y, Lu Y, Liu X, Zhu Y, Wang J. Programing Cell Assembly via Ink-Free, Label-Free Magneto-Archimedes Based Strategy. ACS NANO 2023; 17:12072-12086. [PMID: 37363813 DOI: 10.1021/acsnano.2c10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Tissue engineering raised a high requirement to control cell distribution in defined materials and structures. In "ink"-based bioprintings, such as 3D printing and photolithography, cells were associated with inks for spatial orientation; the conditions suitable for one ink are hard to apply on other inks, which increases the obstacle in their universalization. The Magneto-Archimedes effect based (Mag-Arch) strategy can modulate cell locomotion directly without impelling inks. In a paramagnetic medium, cells were repelled from high magnetic strength zones due to their innate diamagnetism, which is independent of substrate properties. However, Mag-Arch has not been developed into a powerful bioprinting strategy as its precision, complexity, and throughput are limited by magnetic field distribution. By controlling the paramagnetic reagent concentration in the medium and the gaps between magnets, which decide the cell repelling scope of magnets, we created simultaneously more than a hundred micrometer scale identical assemblies into designed patterns (such as alphabets) with single/multiple cell types. Cell patterning models for cell migration and immune cell adhesion studies were conveniently created by Mag-Arch. As a proof of concept, we patterned a tumor/endothelial coculture model within a covered microfluidic channel to mimic epithelial-mesenchymal transition (EMT) under shear stress in a cancer pathological environment, which gave a potential solution to pattern multiple cell types in a confined space without any premodification. Overall, our Mag-Arch patterning presents an alternative strategy for the biofabrication and biohybrid assembly of cells with biomaterials featured in controlled distribution and organization, which can be broadly employed in tissue engineering, regenerative medicine, and cell biology research.
Collapse
Affiliation(s)
- Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Miribani Maitusong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xuhao Zhou
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xiaoqian Hong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Si Cheng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yin Lin
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Junhui Xue
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Dilin Xu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| |
Collapse
|
6
|
Xiao F, Pan H, Yang D, Wang R, Wu B, Shao Y, Zhou B. Identification of TNFα-mediated inflammation as potential pathological marker and therapeutic target for calcification progress of congenital bicuspid aortic valve. Eur J Pharmacol 2023; 951:175783. [PMID: 37172927 DOI: 10.1016/j.ejphar.2023.175783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUD Congenital bicuspid aortic valve (cBAV) develops calcification and stenotic obstruction early compared with degenerative tricuspid aortic valve (dTAV), which requires surgical intervention. Here we report a comparative study of patients with cBAV or dTAV to identify risk factors associated with the rapid development of calcified bicuspid valves. METHODS A total of 69 aortic valves (24 dTAV and 45 cBAV) were collected at the time of surgical aortic valve replacement for comparative clinical characteristics. Ten samples were randomly selected from each group for histology, pathology, and inflammatory factors expression and comparison analyses. OM-induced calcification in porcine aortic valve interstitial cell cultures were prepared for illustrating the underlying molecular mechanisms about calcification progress of cBAV and dTAV. RESULTS We found that cBAV patients have increased cases of aortic valve stenosis compared with dTAV patients. Histopathological examinations revealed increased collagens deposition, neovascularization and infiltrations by inflammatory cells, especially T-lymphocytes and macrophages. We identified that tumor necrosis factor α (TNFα) and its regulated inflammatory cytokines are upregulated in cBAV. Further in vitro study indicated that TNFα-NFκB and TNFα-GSK3β pathway accelerate aortic valve interstitial cells calcification, while inhibition of TNFα significantly delays this process. CONCLUSION The finding of intensified TNFα-mediated inflammation in the pathological cBAV advocates the inhibition of TNFα as a potential treatment for patients with cBAV by alleviating the progress of inflammation-induced valve damage and calcification.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China.
| | - Haotian Pan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Di Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ruxing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Bingruo Wu
- Departments of Genetics, Pediatrics and Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Bin Zhou
- Departments of Genetics, Pediatrics and Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| |
Collapse
|
7
|
Calcific aortic valve disease: mechanisms, prevention and treatment. Nat Rev Cardiol 2023:10.1038/s41569-023-00845-7. [PMID: 36829083 DOI: 10.1038/s41569-023-00845-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most common disorder affecting heart valves and is characterized by thickening, fibrosis and mineralization of the aortic valve leaflets. Analyses of surgically explanted aortic valve leaflets have shown that dystrophic mineralization and osteogenic transition of valve interstitial cells co-occur with neovascularization, microhaemorrhage and abnormal production of extracellular matrix. Age and congenital bicuspid aortic valve morphology are important and unalterable risk factors for CAVD, whereas additional risk is conferred by elevated blood pressure and plasma lipoprotein(a) levels and the presence of obesity and diabetes mellitus, which are modifiable factors. Genetic and molecular studies have identified that the NOTCH, WNT-β-catenin and myocardin signalling pathways are involved in the control and commitment of valvular cells to a fibrocalcific lineage. Complex interactions between valve endothelial and interstitial cells and immune cells promote the remodelling of aortic valve leaflets and the development of CAVD. Although no medical therapy is effective for reducing or preventing the progression of CAVD, studies have started to identify actionable targets.
Collapse
|
8
|
Bozzi M, Parisi V, Poggio P. Macrophages in the heart: Active players or simple bystanders? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:109-141. [PMID: 35636926 DOI: 10.1016/bs.ircmb.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Today, more and more studies focus on the processes in which macrophages are involved. These discoveries provide new perspectives on the cellular mechanisms that regulate the physiological functions of the healthy heart. Moreover, they offer a deeper knowledge of the pathologic processes underlying the onset and the evolution of specific cardiac impairment. The heterogeneous population of macrophages within the heart can be divided by origin, expression profile, and function. The pool of cardiac macrophages includes at least two distinct subsets with different ontogeny. The first one has an embryonic origin, deriving from the yolk sac and the fetal liver, while the other macrophage subset results from the postnatal recruitment of monocytes produced in the bone marrow. This review will focus on new phenotypes and functions of cardiac macrophages that have been identified in the last years and that need to be deeply studied to unveil new potential therapies aimed at treating cardiac diseases.
Collapse
Affiliation(s)
- Michele Bozzi
- Unit for the Study of Aortic, Valvular, and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular, and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| |
Collapse
|
9
|
Liu C, Liu H, Xie T. Impact of Fetuin-A, Lp(a), matrix gla protein and macrophage density on calcific aortic valve disease: a clinical study. Lipids Health Dis 2022; 21:14. [PMID: 35065626 PMCID: PMC8783496 DOI: 10.1186/s12944-022-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) has a substantial and increasing burden in the ageing population with occult onset.Present study aimed to assess association of clinical characteristics of these patients and occurrence of CAVD. METHODS Patients diagnosed with CAVD and those receiving healthy medical examination in our hospital from January 2019 to February 2021 were enrolled in this retrospective study. Clinical characteristics, ultrasonic indicators, serological indicators and histology of CAVD were collected and compared among different groups. Logistic regression and Pearson correlation analysis was used to explore relationship between these indexes and occurrence of CAVD. RESULTS DBP, SBP, LVESD, LVEDD, IVS, PW, AV Vmax, TC, TG, LDL-C, Fetuin-A, Lp(a) in severe group were higher than mild, moderate and control groups (P<0.05), while those indexes of patients in moderate group were higher than that in mild and controlled groups (P<0.05). Besides, theses indexes of patients in mild group were also higher than that of controlled one (P<0.05). However, LVEF, HDL-C and MGP of patients in severe group was the lowest (P<0.05), while those in moderate group were lower than mild and controlled groups. Moreover, these indexes in mild group were also lower than control group (P<0.05). In Logistic regression analysis, MGP, Fetuin-A and Lp(a) were all independently associated with occurrence of CAVD (P<0.05). In Pearson correlation analysis, Fetuin-A and Lp(a) were positively correlated with progression of the disease, while MGP and macrophage density were negatively correlated with it. CONCLUSIONS Fetuin-A, MPG and Lp(a) were independently associated with the occurrence of CAVD, and they might be potential predictors for diagnosis of this disease.
Collapse
Affiliation(s)
- Cong Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, 430022, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Haifeng Liu
- Department of Medical Engineering, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Ting Xie
- Department of Cardiac Surgery, Hainan General Hospital, No.19 Xiuhua Road, Xiuying District, 571000, Haikou, China.
| |
Collapse
|
10
|
Bian W, Wang Z, Sun C, Zhang DM. Pathogenesis and Molecular Immune Mechanism of Calcified Aortic Valve Disease. Front Cardiovasc Med 2022; 8:765419. [PMID: 35004882 PMCID: PMC8734655 DOI: 10.3389/fcvm.2021.765419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Calcified aortic valve disease (CAVD) was previously regarded as a passive process associated with valve degeneration and calcium deposition. However, recent studies have shown that the occurrence of CAVD is an active process involving complex changes such as endothelial injury, chronic inflammation, matrix remodeling, and neovascularization. CAVD is the ectopic accumulation of calcium nodules on the surface of the aortic valve, which leads to aortic valve thickening, functional stenosis, and ultimately hemodynamic disorders. CAVD has become an important cause of death from cardiovascular disease. The discovery of therapeutic targets to delay or block the progression of CAVD and the clinical application of transcatheter aortic valve implantation (TAVI) provide new ideas for the prevention and treatment of CAVD. This article summarizes the pathogenesis of CAVD and provides insight into the future directions of CAVD diagnosis and treatment.
Collapse
Affiliation(s)
- Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chongxiu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Dharmarajan S, Speer MY, Pierce K, Lally J, Leaf EM, Lin ME, Scatena M, Giachelli CM. Role of Runx2 in Calcific Aortic Valve Disease in Mouse Models. Front Cardiovasc Med 2021; 8:687210. [PMID: 34778386 PMCID: PMC8585763 DOI: 10.3389/fcvm.2021.687210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Calcific aortic valve disease is common in the aging population and is characterized by the histological changes of the aortic valves including extracellular matrix remodeling, osteochondrogenic differentiation, and calcification. Combined, these changes lead to aortic sclerosis, aortic stenosis (AS), and eventually to heart failure. Runt-related transcription factor 2 (Runx2) is a transcription factor highly expressed in the calcified aortic valves. However, its definitive role in the progression of calcific aortic valve disease (CAVD) has not been determined. In this study, we utilized constitutive and transient conditional knockout mouse models to assess the molecular, histological, and functional changes in the aortic valve due to Runx2 depletion. Methods: Lineage tracing studies were performed to determine the provenance of the cells giving rise to Runx2+ osteochondrogenic cells in the aortic valves of LDLr-/- mice. Hyperlipidemic mice with a constitutive or temporal depletion of Runx2 in the activated valvular interstitial cells (aVICs) and sinus wall cells were further investigated. Following feeding with a diabetogenic diet, the mice were examined for changes in gene expression, blood flow dynamics, calcification, and histology. Results: The aVICs and sinus wall cells gave rise to Runx2+ osteochondrogenic cells in diseased mouse aortic valves. The conditional depletion of Runx2 in the SM22α+ aVICs and sinus wall cells led to the decreased osteochondrogenic gene expression in diabetic LDLr-/- mice. The transient conditional depletion of Runx2 in the aVICs and sinus wall cells of LDLr-/-ApoB100 CAVD mice early in disease led to a significant reduction in the aortic peak velocity, mean velocity, and mean gradient, suggesting the causal role of Runx2 on the progression of AS. Finally, the leaflet hinge and sinus wall calcification were significantly decreased in the aortic valve following the conditional and temporal Runx2 depletion, but no significant effect on the valve cusp calcification or thickness was observed. Conclusions: In the aortic valve disease, Runx2 was expressed early and was required for the osteochondrogenic differentiation of the aVICs and sinus wall cells. The transient depletion of Runx2 in the aVICs and sinus wall cells in a mouse model of CAVD with a high prevalence of hemodynamic valve dysfunction led to an improved aortic valve function. Our studies also suggest that leaflet hinge and sinus wall calcification, even in the absence of significant leaflet cusp calcification, may be sufficient to cause significant valve dysfunctions in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cecilia M. Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Gonzalez Rodriguez A, Schroeder ME, Grim JC, Walker CJ, Speckl KF, Weiss RM, Anseth KS. Tumor necrosis factor-α promotes and exacerbates calcification in heart valve myofibroblast populations. FASEB J 2021; 35:e21382. [PMID: 33554387 DOI: 10.1096/fj.202002013rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Pro-inflammatory cytokines play critical roles in regulating valvular interstitial cell (VIC) phenotypic changes that can cause heart valve fibrosis and calcification. Tumor necrosis factor alpha (TNF-α) is a cytokine known to influence VIC behavior and has been reported at high levels in calcified valves ex vivo. We sought to understand the specific effects of TNF-α on VIC phenotypes (eg, fibroblast, profibrotic activated myofibroblasts) and its link with heart valve disorders. We characterize human aortic valve tissue from patients with valve disorders and identify a high variability of fibrotic and calcific markers between tissues. These results motivated in vitro studies to explore the effects of TNF-α on defined VIC fibroblasts and profibrotic activated myofibroblasts, induced via FGF-2 and TGF-β1 treatment. Using 3D hydrogels to culture VICs, we measure the effect of TNF-α (0.1-10 ng/mL) on key markers of fibrosis (eg, αSMA, COL1A1) and calcification (eg, RUNX2, BMP2, and calcium deposits). We observe calcification in TNF-α-treated VIC activated myofibroblasts and identify the MAPK/ERK signaling cascade as a potential pathway for TNF-α mediated calcification. Conversely, VIC fibroblasts respond to TNF-α with decreased calcification. Treatment of VIC profibrotic activated myofibroblast populations with TNF-α leads to increased calcification. Our in vitro findings correlate with findings in diseased human valves and highlight the importance of understanding the effect of cytokines and signaling pathways on specific VIC phenotypes. Finally, we reveal MAPK/ERK as a potential pathway involved in VIC-mediated matrix calcification with TNF-α treatment, suggesting this pathway as a potential pharmaceutical target for aortic valve disease.
Collapse
Affiliation(s)
- Andrea Gonzalez Rodriguez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Megan E Schroeder
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.,Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Joseph C Grim
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Cierra J Walker
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.,Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Kelly F Speckl
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.,Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
13
|
Seime T, Akbulut AC, Liljeqvist ML, Siika A, Jin H, Winski G, van Gorp RH, Karlöf E, Lengquist M, Buckler AJ, Kronqvist M, Waring OJ, Lindeman JHN, Biessen EAL, Maegdefessel L, Razuvaev A, Schurgers LJ, Hedin U, Matic L. Proteoglycan 4 Modulates Osteogenic Smooth Muscle Cell Differentiation during Vascular Remodeling and Intimal Calcification. Cells 2021; 10:1276. [PMID: 34063989 PMCID: PMC8224064 DOI: 10.3390/cells10061276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
Calcification is a prominent feature of late-stage atherosclerosis, but the mechanisms driving this process are unclear. Using a biobank of carotid endarterectomies, we recently showed that Proteoglycan 4 (PRG4) is a key molecular signature of calcified plaques, expressed in smooth muscle cell (SMC) rich regions. Here, we aimed to unravel the PRG4 role in vascular remodeling and intimal calcification. PRG4 expression in human carotid endarterectomies correlated with calcification assessed by preoperative computed tomographies. PRG4 localized to SMCs in early intimal thickening, while in advanced lesions it was found in the extracellular matrix, surrounding macro-calcifications. In experimental models, Prg4 was upregulated in SMCs from partially ligated ApoE-/- mice and rat carotid intimal hyperplasia, correlating with osteogenic markers and TGFb1. Furthermore, PRG4 was enriched in cells positive for chondrogenic marker SOX9 and around plaque calcifications in ApoE-/- mice on warfarin. In vitro, PRG4 was induced in SMCs by IFNg, TGFb1 and calcifying medium, while SMC markers were repressed under calcifying conditions. Silencing experiments showed that PRG4 expression was driven by transcription factors SMAD3 and SOX9. Functionally, the addition of recombinant human PRG4 increased ectopic SMC calcification, while arresting cell migration and proliferation. Mechanistically, it suppressed endogenous PRG4, SMAD3 and SOX9, and restored SMC markers' expression. PRG4 modulates SMC function and osteogenic phenotype during intimal remodeling and macro-calcification in response to TGFb1 signaling, SMAD3 and SOX9 activation. The effects of PRG4 on SMC phenotype and calcification suggest its role in atherosclerotic plaque stability, warranting further investigations.
Collapse
Affiliation(s)
- Till Seime
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Asim Cengiz Akbulut
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.A.); (R.H.v.G.); (L.J.S.)
| | - Moritz Lindquist Liljeqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Antti Siika
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Hong Jin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
- Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; (G.W.); (L.M.)
| | - Greg Winski
- Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; (G.W.); (L.M.)
| | - Rick H. van Gorp
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.A.); (R.H.v.G.); (L.J.S.)
| | - Eva Karlöf
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Mariette Lengquist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Andrew J. Buckler
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Malin Kronqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Olivia J. Waring
- Department of Pathology, CARIM, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (O.J.W.); (E.A.L.B.)
| | - Jan H. N. Lindeman
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Erik A. L. Biessen
- Department of Pathology, CARIM, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (O.J.W.); (E.A.L.B.)
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; (G.W.); (L.M.)
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, 81679 Munich, Germany
| | - Anton Razuvaev
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Leon J. Schurgers
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.A.); (R.H.v.G.); (L.J.S.)
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52062 Aachen, Germany
| | - Ulf Hedin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Ljubica Matic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| |
Collapse
|
14
|
Spatial N-glycomics of the human aortic valve in development and pediatric endstage congenital aortic valve stenosis. J Mol Cell Cardiol 2021; 154:6-20. [PMID: 33516683 DOI: 10.1016/j.yjmcc.2021.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Congenital aortic valve stenosis (AS) progresses as an obstructive narrowing of the aortic orifice due to deregulated extracellular matrix (ECM) production by aortic valve (AV) leaflets and leads to heart failure with no effective therapies. Changes in glycoprotein and proteoglycan distribution are a hallmark of AS, yet valvular carbohydrate content remains virtually uncharacterized at the molecular level. While almost all glycoproteins clinically linked to stenotic valvular modeling contain multiple sites for N-glycosylation, there are very few reports aimed at understanding how N-glycosylation contributes to the valve structure in disease. Here, we tested for spatial localization of N-glycan structures within pediatric congenital aortic valve stenosis. The study was done on valvular tissues 0-17 years of age with de-identified clinical data reporting pre-operative valve function spanning normal development, aortic valve insufficiency (AVI), and pediatric endstage AS. High mass accuracy imaging mass spectrometry (IMS) was used to localize N-glycan profiles in the AV structure. RNA-Seq was used to identify regulation of N-glycan related enzymes. The N-glycome was found to be spatially localized in the normal aortic valve, aligning with fibrosa, spongiosa or ventricularis. In AVI diagnosed tissue, N-glycans localized to hypertrophic commissures with increases in pauci-mannose structures. In all valve types, sialic acid (N-acetylneuraminic acid) N-glycans were the most abundant N-glycan group. Three sialylated N-glycans showed common elevation in AS independent of age. On-tissue chemical methods optimized for valvular tissue determined that aortic valve tissue sialylation shows both α2,6 and α2,3 linkages. Specialized enzymatic strategies demonstrated that core fucosylation is the primary fucose configuration and localizes to the normal fibrosa with disparate patterning in AS. This study identifies that the human aortic valve structure is spatially defined by N-glycomic signaling and may generate new research directions for the treatment of human aortic valve disease.
Collapse
|
15
|
Ma X, Ma H, Yun Y, Chen S, Zhang X, Zhao D, Liu Y, Shen H, Wu C, Zheng J, Zhang T, Xu Z, Sun L, Zhang H, Zhang W, Zou C, Wang Z. Lymphocyte-to-monocyte ratio in predicting the calcific aortic valve stenosis in a Chinese case-control study. Biomark Med 2020; 14:1329-1339. [PMID: 33064019 DOI: 10.2217/bmm-2020-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
Aim: This study examined the role of lymphocyte-to-monocyte ratio (LMR), an inflammatory biomarker, in predicting the severity of calcific aortic valve stenosis (CAVS) in a Chinese case-control study. Results: The LMR significantly decreased in the patients with CAVS compared with healthy controls. An inverse correlation was observed between the severity of stenosis and LMR in the patients. Additionally, the LMR was identified in the multivariate analysis as an independent predictor of severe CAVS. Conclusion: This study provides evidence of an inverse correlation between the severity of CAVS and LMR. LMR could potentially be applied as an independent predictor of severe CAVS and could be incorporated into a novel predictive model.
Collapse
Affiliation(s)
- Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Huibo Ma
- Qingdao University Medical College, 308 Ningxia Road, Qingdao University, Qingdao, Shandong 266071, China
| | - Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Shanghao Chen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Xiaofeng Zhang
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, No. 247 Beiyuan Road, Tianqiao District, Jinan 250033, Shandong Province, China
| | - Diming Zhao
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Yanwu Liu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Hechen Shen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Chuanni Wu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Jing Zheng
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Zhenqiang Xu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Liangong Sun
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| |
Collapse
|
16
|
Duran Karaduman B, Ayhan H, Keleş T, Bozkurt E. Association between monocyte to high-density lipoprotein cholesterol ratio and bicuspid aortic valve degeneration. Turk J Med Sci 2020; 50:1307-1313. [PMID: 32777897 PMCID: PMC7491300 DOI: 10.3906/sag-2006-60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/09/2020] [Indexed: 11/05/2022] Open
Abstract
Background/aim From a pathophysiological point of view, inflammation is thought to be more dominant in bicuspid aortic valve (BAV) stenosis than tricuspid aortic valve (TAV) stenosis. Our study aimed to determine the association between monocyte to high-density lipoprotein cholesterol (HDL-C) ratio (MHR), a new inflammatory marker, and the speed of progression of stenosis and pathophysiology of BAV stenosis. Materials and methods A total of 210 severe aortic stenosis patients (70 consecutive BAV patients, 140 matched TAV patients) were retrospectively enrolled in the study. Clinical and echocardiographic data and laboratory results related to our research were collected retrospectively from the patients’ records. MHR was measured as the ratio of the absolute monocyte count to the HDL-C value. Results Seventy BAV (mean age: 72.0 ± 9.1 years, 42.9% female) and 140 TAV patients (mean age: 77.9 ± 8.3 years, 51.4% female) with severe aortic stenosis were enrolled in this study. There was no difference between the two groups in terms of another baseline demographic or clinic findings except age (P < 0.001). Monocyte count, hemoglobin level, mean platelet volume was significantly higher, and HDL-C level was significantly lower in the BAV group, while other lipid and CBC parameters were found to be similar. In the multivariate analysis, MHR (P = 0.005, 95% CI: 0.90–0.98) and, as expected, age (P = 0.001, 95% CI: 1.02–1.11) were found to be significant as the independent predictor of BAV, after adjusting for other risk factors. Conclusion Our study showed a significant correlation between increased MHR and BAV. MHR was determined as a significant independent predictor for the speed of progression and diagnosis of severe BAV stenosis in multivariate analysis.
Collapse
Affiliation(s)
- Bilge Duran Karaduman
- Department of Cardiology, Faculty of Medicine, Atılım University, Medicana International Ankara Hospital, Ankara, Turkey
| | - Hüseyin Ayhan
- Department of Cardiology, Faculty of Medicine, Atılım University, Medicana International Ankara Hospital, Ankara, Turkey
| | - Telat Keleş
- Department of Cardiology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Engİn Bozkurt
- Department of Cardiology, Medicana International Ankara Hospital, Ankara, Turkey
| |
Collapse
|
17
|
Baratchi S, Zaldivia MTK, Wallert M, Loseff-Silver J, Al-Aryahi S, Zamani J, Thurgood P, Salim A, Htun NM, Stub D, Vahidi P, Duffy SJ, Walton A, Nguyen TH, Jaworowski A, Khoshmanesh K, Peter K. Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress-Induced, Piezo-1-Mediated Monocyte Activation. Circulation 2020; 142:1092-1105. [PMID: 32697107 DOI: 10.1161/circulationaha.120.045536] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aortic valve stenosis is an increasingly prevalent degenerative and inflammatory disease. Transcatheter aortic valve implantation (TAVI) has revolutionized its treatment, thereby avoiding its life-threatening/disabling consequences. Whether aortic valve stenosis is accelerated by inflammation and whether it is itself a cause of inflammation are unclear. We hypothesized that the large shear forces exerted on circulating cells, particularly on the largest circulating cells, monocytes, while passing through stenotic aortic valves result in proinflammatory effects that are resolved with TAVI. METHODS TAVI provides a unique opportunity to compare the activation status of monocytes under high shear stress (before TAVI) and under low shear stress (after TAVI). The activation status of monocytes was determined with a single-chain antibody, MAN-1, which is specific for the activated β2-integrin Mac-1. Monocyte function was further characterized by the adhesion of myocytes to stimulated endothelial cells, phagocytic activity, uptake of oxidized low-density lipoprotein, and cytokine expression. In addition, we designed a microfluidic system to recapitulate the shear rate conditions before and after TAVI. We used this tool in combination with functional assays, Ca2+ imaging, siRNA gene silencing, and pharmacological agonists and antagonists to identify the key mechanoreceptor mediating the shear stress sensitivity of monocytes. Last, we stained for monocytes in explanted stenotic aortic human valves. RESULTS The resolution of high shear stress through TAVI reduces Mac-1 activation, cellular adhesion, phagocytosis, oxidized low-density lipoprotein uptake, and expression of inflammatory markers in monocytes and plasma. Using microfluidics and pharmacological and genetic studies, we could recapitulate high shear stress effects on isolated human monocytes under highly controlled conditions, showing that shear stress-dependent calcium influx and monocyte adhesion are mediated by the mechanosensitive ion channel Piezo-1. We also demonstrate that the expression of this receptor is shear stress dependent and downregulated in patients receiving TAVI. Last, we show monocyte accumulation at the aortic side of leaflets of explanted aortic valves. CONCLUSIONS We demonstrate that high shear stress, as present in patients with aortic valve stenosis, activates multiple monocyte functions, and we identify Piezo-1 as the mainly responsible mechanoreceptor, representing a potentially druggable target. We demonstrate an anti-inflammatory effect and therefore a novel therapeutic benefit of TAVI.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Maria T K Zaldivia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Maria Wallert
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Julia Loseff-Silver
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
| | - Sefaa Al-Aryahi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | - Jalal Zamani
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Peter Thurgood
- School of Engineering (P.T., K.K.), RMIT University, Melbourne, Victoria, Australia
| | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria, Australia (A.S.)
| | - Nay M Htun
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Dion Stub
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (D.S.)
| | - Parisa Vahidi
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | - Stephen J Duffy
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Antony Walton
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| | - Thanh Ha Nguyen
- Cardiology Department, Queen Elizabeth Hospital, University of Adelaide, Woodville, South Australia, Australia (T.H.N.)
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
| | | | - Karlheinz Peter
- School of Health and Biomedical Sciences (S.B., S.A.-A., P.V., A.J., K.P.), RMIT University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (S.B., M.T.K.J., M.W., J.L.-S., A.S., N.M.H., D.S., K.P.)
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (J.Z., N.M.H., D.S., S.J.D., A.W., K.P.)
| |
Collapse
|
18
|
Manno G, Bentivegna R, Morreale P, Nobile D, Santangelo A, Novo S, Novo G. Chronic inflammation: A key role in degeneration of bicuspid aortic valve. J Mol Cell Cardiol 2019; 130:59-64. [PMID: 30885747 DOI: 10.1016/j.yjmcc.2019.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Bicuspid aortic valve (BAV) is the most common congenital valvular heart defect resulting from abnormal aortic cusp formation during heart development, where two of the three normal and equal sized cusps fuse into a single large cusp resulting in a two cusps aortic valve. Over the past years, much interest has been given in understanding the pathogenesis of BAV and its complications. In this review, we focused on the role of inflammation, involved in the degeneration of BAV and the development of its complications. ROLE OF INFLAMMATION From a pathophysiological point of view, BAV may rapidly progress into aortic stenosis (AS) and is related to aortopathy. Several histopathologic studies have demonstrated that the development and progression of alterations in bicuspid aortic valve are related to an active process that includes: oxidative stress, shear stress, endothelial dysfunction, disorganized tissue architecture, inflammatory cells and cytokines. These factors are closely related one to each other, constituting the basis of the structural and functional alterations of the BAV. CONCLUSION Chronic inflammation plays a key role in the degeneration of BAV. Severe aortic stenosis in bicuspid aortic valves is associated with a more aggressive inflammatory process, increased inflammatory cells infiltration and neovascularization when compared to tricuspid AS. These findings might help to explain the more frequent onset and rapid progression of AS and the heavy aortic valve calcification seen in patients with BAV.
Collapse
Affiliation(s)
- G Manno
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy.
| | - R Bentivegna
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - P Morreale
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - D Nobile
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - A Santangelo
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - S Novo
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - G Novo
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy.
| |
Collapse
|
19
|
Song J, Zheng Q, Ma X, Zhang Q, Xu Z, Zou C, Wang Z. Predictive Roles of Neutrophil-to-Lymphocyte Ratio and C-Reactive Protein in Patients with Calcific Aortic Valve Disease. Int Heart J 2019; 60:345-351. [PMID: 30745535 DOI: 10.1536/ihj.18-196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) are emerging indirect blood markers to roughly reflect the inflammation level in our body while some pathological changes occurring in aortic valve tissue. Few recent studies demonstrated that NLR is related to calcific aortic valve disease (CAVD). However, the extent of the relationship between them and the impact of CRP on CAVD are not clear. This study aimed to investigate the diagnostic influence and surgical predictive effect of NLR and CRP on CAVD.A total of 278 consecutive patients with CAVD (123 patients with bicuspid aortic valve and others with tricuspid aortic valve) and 108 healthy individuals who were included in the control group were enrolled in the study. The NLR was calculated from the complete blood count, and the CRP was measured from peripheral blood samples. Echocardiography was used to evaluate the severity of aortic stenosis. Intraoperation/postoperation indicators were collected in 166 patients from the total consecutive patients who underwent aortic valve replacement (AVR) alone.Significantly higher NLR was measured in both the BAV group (1.96 ± 0.78 versus 0.97 ± 0.15, P < 0.001) and the TAV group (2.51 ± 2.03 versus 0.97 ± 0.15, P < 0.001) compared with the control group. Moreover, the NLR level was significantly higher (P < 0.001) and the CRP level was significantly lower (P = 0.007) of the TAV group than that of the BAV group; a significant positive correlation between the NLR and the maximum gradient of aortic valve was detected. Furthermore, there was a moderate correlation between the NLR and the postoperative mechanical ventilation time.Our results indicated that the NLR and CRP were novel and useful predictive factors in patients with CAVD, and these two potential factors have guiding significance for the prediction of different pathological typing (BAV or TAV). Higher NLR level will not extend the cardiopulmonary bypass time (CPB); however, it will prolong the operation time and the postoperative mechanical ventilation time.
Collapse
Affiliation(s)
- Jian Song
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Zhenqiang Xu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| |
Collapse
|
20
|
Cozijnsen L, van der Zaag-Loonen HJ, Cozijnsen MA, Braam RL, Heijmen RH, Bouma BJ, Mulder BJM. Differences at surgery between patients with bicuspid and tricuspid aortic valves. Neth Heart J 2018; 27:93-99. [PMID: 30547414 PMCID: PMC6352617 DOI: 10.1007/s12471-018-1214-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim To determine differences in surgical procedures and clinical characteristics at the time of surgery between native bicuspid aortic valves (BAV) and tricuspid aortic valves (TAV) in patients being followed up after aortic valve surgery (AVS). Methods In this retrospective cohort study in a non-academic hospital, we identified patients who had a surgeon’s report of the number of native valve cusps and were still being followed up. We selected patients with BAV and TAV, and used multivariable regression analyses to identify associations between BAV-TAV and pre-specified clinical characteristics. Results Of 439 patients, 140 had BAV (32%) and 299 TAV (68%). BAV patients were younger at the time of surgery (mean age 58.6 ± 13 years) than TAV patients (69.1 ± 12 years, p < 0.001) and were more often male (64% vs 53%; p = 0.029). Cardiovascular risk factors were less prevalent in BAV than in TAV patients at the time of surgery (hypertension (31% vs 55%), hypercholesterolaemia (29% vs 58%) and diabetes (7% vs 16%); all p < 0.005). Concomitant coronary artery bypass grafting (CABG) was performed less often in BAV than in TAV patients (14% vs 39%, p < 0.001), even when adjusted for confounders (adjusted odds ratio (adj.OR) 0.45; 95% CI: 0.25–0.83). In contrast, surgery of the proximal aorta was performed more often (31% vs 11%, respectively, p < 0.001; adj.OR 2.3; 95% CI: 1.3–4.0). Conclusions Whereas mechanical stress is the supposed major driver of valvulopathy towards AVS in BAV, prevalent cardiovascular risk factors are a suspected driver towards the requirement for AVS and concomitant CABG in TAV, an observation based on surgical determination of the number of valve cusps.
Collapse
Affiliation(s)
- L Cozijnsen
- Department of Cardiology, Gelre Hospital, Apeldoorn, The Netherlands.
| | | | - M A Cozijnsen
- Department of Paediatric Gastroenterology and Hepatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - R L Braam
- Department of Cardiology, Gelre Hospital, Apeldoorn, The Netherlands
| | - R H Heijmen
- Department of Cardiothoracic Surgery, Nieuwegein, The Netherlands
| | - B J Bouma
- Department of Cardiology, Amsterdam University Medical Centre, location AMC, Amsterdam, The Netherlands
| | - B J M Mulder
- Department of Cardiology, Amsterdam University Medical Centre, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Williams LB, Adesida AB. Angiogenic approaches to meniscal healing. Injury 2018; 49:467-472. [PMID: 29395218 DOI: 10.1016/j.injury.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 02/02/2023]
Abstract
Meniscal injuries commonly result in osteoarthritis causing long term morbidity, lifelong treatment, joint replacement and significant financial burden to the Canadian healthcare system. Injuries to the outer third of the meniscus often heal well due to adequate blood supply. Healing of injuries in the inner two thirds of the meniscus are often critically retarded due to a lack of blood flow necessitating partial meniscectomy in many instances. Localized angiogenesis in the inner meniscus has yet to be achieved despite a belief that vascularization of these lesions corresponds with meniscal healing. This review briefly summarizes the growth factors that have been assessed for a role in meniscal healing and points to a significant knowledge gap in our understanding of meniscal healing.
Collapse
Affiliation(s)
- Lynn B Williams
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
Šteiner I, Stejskal V, Žáček P. Mast cells in calcific aortic stenosis. Pathol Res Pract 2018; 214:163-168. [DOI: 10.1016/j.prp.2017.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/26/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
|
23
|
Li G, Qiao W, Zhang W, Li F, Shi J, Dong N. The shift of macrophages toward M1 phenotype promotes aortic valvular calcification. J Thorac Cardiovasc Surg 2017; 153:1318-1327.e1. [PMID: 28283241 DOI: 10.1016/j.jtcvs.2017.01.052] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 12/31/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of the present study was to comprehensively compare the phenotype profile of infiltrated macrophages in human noncalcified and calcific aortic valves, and to determine whether the shift of macrophage polarization modulates valvular calcification in vitro. METHODS Cell surface markers of macrophages and inflammatory cytokines expression in 90 cases of human noncalcified and calcific aortic valve leaflets were analyzed. The normal aortic valve interstitial cells were isolated and cultured in vitro. After incubation with nonconditioned medium and conditioned medium from unstimulated or lipopolysaccharide-stimulated U937 monocytes, valve interstitial cells were evaluated by osteogenic differentiation markers. RESULTS Infiltration of macrophages was enhanced in the calcific aortic valves, and M1 phenotype was the predominant macrophage subsets. In addition, both proinflammatory and anti-inflammatory cytokines were significantly upregulated in the calcific aortic valves. Furthermore, lipopolysaccharide-stimulated monocytes presented with increased expression of inducible nitric oxide synthase and high proportional CD11c-positive (M1) macrophages. Conditioned medium from unstimulated monocytes promoted the osteogenic differentiation of valve interstitial cells in vitro, as evidenced by increased markers such as bone morphogenetic protein 2, osteopontin, and alkaline phosphatase. Conditioned medium from M1 macrophages further enhanced valve interstitial cells calcification. Enzyme-linked immunosorbent assay showed that M1 phenotype macrophages secreted tumor necrosis factors α and interleukin 6, and neutralizing antibodies to these 2 proinflammatory cytokines attenuated induction of osteogenic differentiation and calcification by the conditioned media. CONCLUSIONS Both total numbers and polarization of macrophage influence the process of calcification in human aortic valve. The shift toward M1 phenotype might promote valve interstitial cell calcification.
Collapse
Affiliation(s)
- Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenjing Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
24
|
Understanding the structural features of symptomatic calcific aortic valve stenosis: A broad-spectrum clinico-pathologic study in 236 consecutive surgical cases. Int J Cardiol 2016; 228:364-374. [PMID: 27866029 DOI: 10.1016/j.ijcard.2016.11.180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/06/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND With age, aortic valve cusps undergo varying degrees of sclerosis which, sometimes, can progress to calcific aortic valve stenosis (AVS). To perform a retrospective clinico-pathologic investigation in patients with calcific AVS. METHODS We characterized and graded the structural remodeling in 236 aortic valves (200 tricuspid and 36 bicuspid) from patients with calcific AVS (148 males; average 72years); possible relationships between general/clinical/echocardiographic characteristics and the histopathologic changes were explored. Twenty autopsy aortic valves served as controls. In 40 cases, we also tested the immunohistochemical expression of metalloproteinases and cytokines, and characterized the inflammatory infiltrate. In 5 cases, we cultured cusp stem cells and explored their potential to differentiate into osteoblasts/adipocytes. RESULTS AVS cusps showed structural remodeling as severe fibrosis (100%), calcific nodules (100%), neoangiogenesis (81%), inflammation (71%), bone metaplasia with or without hematopoiesis (6% and 53%, respectively), adipose metaplasia (16%), and cartilaginous metaplasia (7%). At multivariate analysis, AVS degree and interventricular septum thickness were the only predictors of remodeling (barring inflammation). All the tested metalloproteinases (except MMP-13) and cytokines were expressed in AVS cusps. Inflammation mainly consisted of B and T lymphocytes (CD4+/CD8+ cell ratio 3:1) and plasma cells. AVS changes were mostly different from typical atherosclerosis. Cultured mesenchymal cusp stem cells could differentiate into osteoblasts/adipocytes. CONCLUSIONS Structural remodeling in AVS is peculiar and considerable, and is related to the severity of the disease. However, the different newly formed tissues-where "valvular interstitial cells" play a key role-and their well-known slow turnover suggest a reverse structural remodeling improbable.
Collapse
|
25
|
Hamatani Y, Ishibashi-Ueda H, Nagai T, Sugano Y, Kanzaki H, Yasuda S, Fujita T, Kobayashi J, Anzai T. Pathological Investigation of Congenital Bicuspid Aortic Valve Stenosis, Compared with Atherosclerotic Tricuspid Aortic Valve Stenosis and Congenital Bicuspid Aortic Valve Regurgitation. PLoS One 2016; 11:e0160208. [PMID: 27479126 PMCID: PMC4968844 DOI: 10.1371/journal.pone.0160208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/17/2016] [Indexed: 12/03/2022] Open
Abstract
Background Congenital bicuspid aortic valve (CBAV) is the main cause of aortic stenosis (AS) in young adults. However, the histopathological features of AS in patients with CBAV have not been fully investigated. Methods and Results We examined specimens of aortic valve leaflets obtained from patients who had undergone aortic valve re/placement at our institution for severe AS with CBAV (n = 24, CBAV-AS group), severe AS with tricuspid aortic valve (n = 24, TAV-AS group), and severe aortic regurgitation (AR) with CBAV (n = 24, CBAV-AR group). We compared the histopathological features among the three groups. Pathological features were classified using semi-quantitative methods (graded on a scale 0 to 3) by experienced pathologists without knowledge of the patients’ backgrounds. The severity of inflammation, neovascularization, and calcium and cholesterol deposition did not differ between the CBAV-AS and TAV-AS groups, and these four parameters were less marked in the CBAV-AR group than in the CBAV-AS (all p<0.01). Meanwhile, the grade of valvular fibrosis was greater in the CBAV-AS group, compared with the TAV-AS and CBAV-AR groups (both p<0.01). In AS patients, thickness of fibrotic lesions was greater on the aortic side than on the ventricular side (both p<0.01). Meanwhile, thickness of fibrotic lesions was comparable between the aortic and ventricular sides in CBAV-AR patients (p = 0.35). Conclusions Valvular fibrosis, especially on the aortic side, was greater in patients with CBAV-AS than in those without, suggesting a difference in the pathogenesis of AS between CBAV and TAV.
Collapse
Affiliation(s)
- Yasuhiro Hamatani
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Toshiyuki Nagai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yasuo Sugano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hideaki Kanzaki
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomoyuki Fujita
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Junjiro Kobayashi
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
- * E-mail:
| |
Collapse
|
26
|
Torre M, Hwang DH, Padera RF, Mitchell RN, VanderLaan PA. Osseous and chondromatous metaplasia in calcific aortic valve stenosis. Cardiovasc Pathol 2016; 25:18-24. [DOI: 10.1016/j.carpath.2015.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022] Open
|
27
|
Kapelouzou A, Tsourelis L, Kaklamanis L, Degiannis D, Kogerakis N, Cokkinos DV. Serum and tissue biomarkers in aortic stenosis. Glob Cardiol Sci Pract 2015; 2015:49. [PMID: 26779524 PMCID: PMC4710866 DOI: 10.5339/gcsp.2015.49] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
Background: Calcific aortic valve stenosis (CAVS) is seen in a large proportion of individuals over 60 years. It is an active process, influenced by lipid accumulation, mechanical stress, inflammation, and abnormal extracellular matrix turnover. Various biomarkers (BMs) are studied, as regards mechanisms, diagnosis and prognosis. Methods: In the calcified valves calcium deposition, elastin fragmentation and disorganization of cellular matrix were assessed, together with expression of OPN, OPG, osteocalcin (OCN) and RL2. We prospectively studied the following serum BMs in 60 patients with CAVS and compared them to 20 healthy controls, free from any cardiac disease: Matrix metalloproteinases (MMP) 2 and 9 and tissue inhibitor of metalloproteinase 1 (TIMP1), which regulate collagen turnover, inflammatory factors, i.e. tumor necrosis factor a (TNFa), interleukin 2 (IL2), transforming growth factor β1 (TGF-β1) which regulates fibrosis, fetuin-A (fet-A), osteopontin (OPN), osteoprotegerin (OPG), sclerostin (SOST), and relaxin-2 (RL2) which positively or negatively regulate calcification. Monocyte chemoattractant protein 1 (MCP-1) which regulates migration and infiltration of monocytes/macrophages was also studied as well as malondialdehyde (MDA) an oxidative marker. Results: Extent of tissue valve calcification (Alizarin Red stain) was negatively correlated with tissue elastin, and RL2, and positively correlated with tissue OCN and serum TIMP1 and MCP-1 and negatively with MMP9. Tissue OCN was positively correlated with OPN and negatively with the elastin. Tissue OPN was negatively correlated with elastin and OPG. Tissue OPN OPG and RL2 were not correlated with serum levels In the serum we found in patients statistically lower TIMP1, fet-A and RL2 levels, while all other BMs were higher compared to the healthy group. Positive correlations between SOST and IL2, OPG and MDA but negative with TNFa and OPN were found; also MMP9 was negatively correlated with TNFa and MCP-1 was negatively correlated with TIMP1. Conclusion: We found that many BMs expressing calcification, collagen breakdown, or formation, and inflammation are increased in the valve tissue and in the serum of patients with CAVS as compared with healthy group. Our findings may give new insights towards diagnosis but also therapy. Thus antisclerostin, and antiflammatory agents could be tried for preventing aortic calcification progression.
Collapse
Affiliation(s)
- Alkistis Kapelouzou
- Center of Clinical, Experimental Surgery, & Translation Research. Biomedical Research Foundation Academy of Athens (BRFAA), Soranou Efesiou 4 11527Athens, Greece
| | - Loukas Tsourelis
- Department of Pathology, Onassis Cardiac Surgery Center, Avenue Sygrou 356 17674Athens, Greece
| | - Loukas Kaklamanis
- Department of Pathology, Onassis Cardiac Surgery Center, Avenue Sygrou 356 17674Athens, Greece
| | - Dimitrios Degiannis
- Laboratory of Molecular Immunopathology and Istocompatibility Onassis Cardiac Surgery Center, Avenue Sygrou 356 17674Athens, Greece
| | - Nektarios Kogerakis
- Department of Pathology, Onassis Cardiac Surgery Center, Avenue Sygrou 356 17674Athens, Greece
| | - Dennis V Cokkinos
- Center of Clinical, Experimental Surgery, & Translation Research. Biomedical Research Foundation Academy of Athens (BRFAA), Soranou Efesiou 4 11527Athens, Greece
| |
Collapse
|
28
|
Mathieu P, Bossé Y, Huggins GS, Della Corte A, Pibarot P, Michelena HI, Limongelli G, Boulanger MC, Evangelista A, Bédard E, Citro R, Body SC, Nemer M, Schoen FJ. The pathology and pathobiology of bicuspid aortic valve: State of the art and novel research perspectives. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2015; 1:195-206. [PMID: 27499904 PMCID: PMC4939890 DOI: 10.1002/cjp2.21] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Bicuspid aortic valve is the most prevalent cardiac valvular malformation. It is associated with a high rate of long‐term morbidity including development of calcific aortic valve disease, aortic regurgitation and concomitant thoracic aortic aneurysm and dissection. Recently, basic and translational studies have identified some key processes involved in the development of bicuspid aortic valve and its morbidity. The development of aortic valve disease and thoracic aortic aneurysm and dissection is the result of complex interactions between genotypes, environmental risk factors and specific haemodynamic conditions created by bicuspid aortic valve anatomy. Herein, we review the pathobiology of bicuspid aortic valve with a special emphasis on translational aspects of these basic findings. Important but unresolved problems in the pathology of bicuspid aortic valve and thoracic aortic aneurysm and dissection are discussed, along with the molecular processes involved.
Collapse
Affiliation(s)
- Patrick Mathieu
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Department of Surgery Quebec Heart and Lung Institute/Research Center, Laval University Quebec Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Quebec Heart and Lung Institute/Research Center Laval University Québec Canada
| | - Gordon S Huggins
- Molecular Cardiology Research Institute Center for Translational Genomics, Tufts Medical Center Boston Massachussetts USA
| | - Alessandro Della Corte
- Department of Cardiothoracic Sciences, Cardiac Surgery Second University of Naples 80131 Naples Italy
| | - Philippe Pibarot
- Department of Molecular Medicine, Quebec Heart and Lung Institute/Research Center Laval University Québec Canada
| | - Hector I Michelena
- Division of Cardiovascular Diseases, Mayo Clinic Rochester Minnesota USA
| | - Giuseppe Limongelli
- Department of Cardiology and Cardiothoracic and Respiratory Sciences, Cardiologia SUN, Monaldi Hospital, AO Colli Naples Italy
| | - Marie-Chloé Boulanger
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Department of Surgery Quebec Heart and Lung Institute/Research Center, Laval University Quebec Canada
| | - Arturo Evangelista
- Department of Cardiology Hospital Universitary Vall d'Hebron Barcelona Spain
| | - Elisabeth Bédard
- Department of Molecular Medicine, Quebec Heart and Lung Institute/Research Center Laval University Québec Canada
| | - Rodolfo Citro
- Heart Department University Hospital "San Giovanni di Dio e Ruggi d'Aragona" Salerno Italy
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine Center for Perioperative Genomics, Brigham and Women's Hospital Boston Massachusetts USA
| | - Mona Nemer
- Laboratory for Cardiac Development and Differentiation University of Ottawa Ontario Canada
| | - Frederick J Schoen
- Department of Pathology Brigham and Women's Hospital, Harvard Medical School USA
| |
Collapse
|
29
|
Padang R, Bagnall RD, Tsoutsman T, Bannon PG, Semsarian C. Comparative transcriptome profiling in human bicuspid aortic valve disease using RNA sequencing. Physiol Genomics 2015; 47:75-87. [DOI: 10.1152/physiolgenomics.00115.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Intrinsic valvular degeneration and dysfunction is the most common complication of bicuspid aortic valve (BAV) disease. Phenotypically, it ranges from calcific aortic stenosis to redundant or prolapsing regurgitant leaflets. The underlying molecular mechanism underpinning phenotype heterogeneity of valvular degeneration in BAV is poorly understood. We used RNA sequencing (RNA-seq) to identify genes and pathways responsible for the development of valvular degeneration in BAV, compared with tricuspid aortic valve (TAV). Comparative transcriptome analysis was performed on total RNA of aortic valve tissues of patients with diseased BAV ( n = 5) and calcified TAV ( n = 3). RNA-seq findings were validated by RT-qPCR. A total of 59 and 177 genes were significantly up- and downregulated, respectively, in BAV compared with TAV. Hierarchical clustering indicated heterogeneity within the BAV group, separating those with heavy calcification (BAVc) from those with redundant leaflets and/or minimal calcification (BAVr). Interestingly, the gene expression profile of the BAVc group closely resembled the TAV, with shared up- and downregulation of inflammatory and NOTCH1 signaling pathways, respectively. Downregulation of matrix protease ADAMTS9 and protein aggrecan were observed in BAVr compared with TAV. Dysregulation of fetal gene programs were also present, with notable downregulation of SEMA6B and SEMA3F in BAVr and BAVc compared with TAV, respectively. Upregulation of TBX20 was observed exclusively in BAVr compared with BAVc. In conclusion, diverging molecular mechanisms underpin phenotype heterogeneity of valvular degeneration in BAV and data from the present study suggest that there may be shared mechanisms leading to calcification in BAV and TAV. Recognition of these pathways is fundamental to improve our understanding of the molecular basis of human BAV disease.
Collapse
Affiliation(s)
- Ratnasari Padang
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
- Baird Institute, Sydney, Australia; and
| | - Richard D. Bagnall
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Tatiana Tsoutsman
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Paul G. Bannon
- Sydney Medical School, University of Sydney, Sydney, Australia
- Baird Institute, Sydney, Australia; and
- Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, Sydney, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
30
|
MicroRNA-30b is a multifunctional regulator of aortic valve interstitial cells. J Thorac Cardiovasc Surg 2014; 147:1073-1080.e2. [DOI: 10.1016/j.jtcvs.2013.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/04/2013] [Accepted: 05/09/2013] [Indexed: 01/21/2023]
|
31
|
Adam Young D, Bajaj V, Christman KL. Award winner for outstanding research in the PhD category, 2014 Society for Biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. J Biomed Mater Res A 2014; 102:1641-51. [PMID: 24510423 DOI: 10.1002/jbm.a.35109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 12/20/2022]
Abstract
Decellularization of tissues offers the ability to produce tissue-specific extracellular matrix (ECM) scaffolds that recreate many of the biochemical aspects of the tissue of interest. In this study, we describe the in vivo function of decellularized adipose ECM hydrogels for treating subcutaneous adipose deficits. Adipose ECM hydrogels were combined with either adipose-derived adult stem cells or a biocompatible cross-linker, injected subcutaneously into nude mice, and evaluated over the course of 1 month. These ECM hydrogels showed improved integration with the surrounding tissue in vivo compared to a clinical standard soft tissue filler, Juvederm, and stimulated neovascularization. More importantly, these adipose ECM hydrogels facilitated new adipose regeneration within the material at 1 month, a feature not seen with current clinical soft tissue fillers. These results contribute to the growing evidence that ECM-based materials are capable of stimulating subcutaneous adipose regeneration, suggesting that future soft tissue filler materials could incorporate ECM elements in order to restore function to adipose deficits instead of simply filling them with static materials.
Collapse
Affiliation(s)
- D Adam Young
- Department of Bioengineering & Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
32
|
Wang R, Chen W, Ma Z, Li L, Chen X. M1/M2 macrophages and associated mechanisms in congenital bicuspid aortic valve stenosis. Exp Ther Med 2014; 7:935-940. [PMID: 24669254 PMCID: PMC3965126 DOI: 10.3892/etm.2014.1529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to observe macrophage infiltration in congenital bicuspid aortic valve (CBAV) stenosis. M1/M2 macrophage distribution, inflammatory cytokine expression and the role of M1 macrophages during CBAV stenosis were also explored. The experimental and control groups comprised 30 severely stenotic CBAVs and 30 severely stenotic tricuspid aortic valves (TAVs), respectively. Histological and morphological changes were assessed using hematoxylin-eosin (HE) staining and mRNA levels of vascular endothelial growth factor (VEGF) were examined using the quantitative polymerase chain reaction. Nonspecific, M1 and M2 macrophages were monitored using cluster of differentiation (CD)68, inducible nitric oxide synthase (iNOS) and CD163 staining, respectively. Endothelial nitric oxide synthase (eNOS), interleukin (IL)-10, arginase (Arg)-1 and macrophage colony-stimulating factor (M-CSF) were also examined using immunohistochemical staining. Of note, HE staining revealed a higher cell density and neovascularization was more common in CBAVs than TAVs. At the mRNA level, VEGF expression was two-fold higher in CBAVs relative to that in TAVs (P=0.02). Furthermore, CD68 and iNOS were significantly higher in CBAVs compared with TAVs (P=0.029 and 0.021, respectively), while CD163 expression was lower in CBAVs (P=0.033). In addition, eNOS expression was higher and Arg-1, IL-10 and M-CSF expression were lower in CBAVs compared with TAVs (all P<0.0001). The present study suggested that CBAVs are associated with a higher total and M1 macrophage density and a lower M2 macrophage density than TAVs, and that M1 macrophage infiltration may contribute to calcification of CBAVs.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhifei Ma
- Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
33
|
Prapa M, McCarthy KP, Dimopoulos K, Sheppard MN, Krexi D, Swan L, Wort SJ, Gatzoulis MA, Ho SY. Histopathology of the great vessels in patients with pulmonary arterial hypertension in association with congenital heart disease: Large pulmonary arteries matter too. Int J Cardiol 2013; 168:2248-54. [DOI: 10.1016/j.ijcard.2013.01.210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
34
|
|
35
|
Affiliation(s)
- Jane A Leopold
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Abstract
The bicuspid aortic valve is the most common congenital cardiac anomaly in developed nations. The abnormal bicuspid morphology of the aortic valve results in valvular dysfunction and subsequent hemodynamic derangements. However, the clinical presentation of bicuspid aortic valve disease remains quite heterogeneous with patients presenting from infancy to late adulthood with variable degrees of valvular stenosis and insufficiency and associated abnormalities including aortic coarctation, hypoplastic left heart structures, and ascending aortic dilatation. Emerging evidence suggests that the heterogeneous presentation of bicuspid aortic valve phenotypes may be a more complex matter related to congenital, genetic, and/or connective tissue abnormalities. Optimal management of patients with BAV disease and associated ascending aortic aneurysms often requires a thoughtful approach, carefully assessing various risk factors of the aortic valve and the aorta and discerning individual indications for ongoing surveillance, medical management, and operative intervention. We review current concepts of anatomic classification, pathophysiology, natural history, and clinical management of bicuspid aortic valve disease with associated ascending aortic aneurysms.
Collapse
|
37
|
Ascending aortic wall cohesion: comparison of bicuspid and tricuspid valves. Cardiol Res Pract 2012; 2012:180238. [PMID: 22988539 PMCID: PMC3441012 DOI: 10.1155/2012/180238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/05/2012] [Indexed: 02/01/2023] Open
Abstract
Objectives. Bicuspid aortic valve (AV) represents the most common form of congenital AV malformation, which is frequently associated with pathologies of the ascending aorta. We compared the mechanical properties of the aortic wall between patients with bicuspid and tricuspid AV using a new custom-made device mimicking transversal aortic wall shear stress. Methods. Between 03/2010 and 07/2011, 190 consecutive patients undergoing open aortic valve replacement at our institution were prospectively enrolled, presenting either with a bicuspid (group 1, n = 44) or a tricuspid (group 2, n = 146) AV. Aortic wall specimen were examined with the “dissectometer” resulting in nine specific aortic-wall parameters derived from tensile strength curves (TSC). Results. Patients with a bicuspid AV showed significantly more calcified valves (43.2% versus 15.8%, P < 0.001), and a significantly thinner aortic wall (2.04 ± 0.42 mm versus 2.24 ± 0.41 mm, P = 0.008). Transesophageal echocardiography diameters (annulus, aortic sinuses, and sinotubular junction) were significantly larger in the bicuspid group (P = 0.003, P = 0.02, P = 0.01). We found no difference in the aortic wall cohesion between both groups as revealed by shear stress testing (P = 0.72, P = 0.40, P = 0.41). Conclusion. We observed no differences of TSC in patients presenting with tricuspid or bicuspid AVs. These results may allow us to assume that the morphology of the AV and the pathology of the ascending aorta are independent.
Collapse
|
38
|
Abstract
Cartilage is one of the very few naturally occurring avascular tissues where lack of angiogenesis is the guiding principle for its structure and function. This has attracted investigators who have sought to understand the biochemical basis for its avascular nature, hypothesising that it could be used in designing therapies for treating cancer and related malignancies in humans through antiangiogenic applications. Cartilage encompasses primarily a specialised extracellular matrix synthesised by chondrocytes that is both complex and unique as a result of the myriad molecules of which it is composed. Of these components, a few such as thrombospondin-1, chondromodulin-1, the type XVIII-derived endostatin, SPARC (secreted protein acidic and rich in cysteine) and the type II collagen-derived N-terminal propeptide (PIIBNP) have demonstrated antiangiogenic or antitumour properties in vitro and in vivo preclinical trials that involve several complicated mechanisms that are not completely understood. Thrombospondin-1, endostatin and the shark-cartilage-derived Neovastat preparation have also been investigated in human clinical trials to treat several different kinds of cancers, where, despite the tremendous success seen in preclinical trials, these molecules are yet to show success as anticancer agents. This review summarises the current state-of-the-art antiangiogenic characterisation of these molecules, highlights their most promising aspects and evaluates the future of these molecules in antiangiogenic applications.
Collapse
|
39
|
Šteiner I, Krbal L, Rozkoš T, Harrer J, Laco J. Calcific aortic valve stenosis: Immunohistochemical analysis of inflammatory infiltrate. Pathol Res Pract 2012; 208:231-4. [DOI: 10.1016/j.prp.2012.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/06/2012] [Accepted: 02/20/2012] [Indexed: 11/29/2022]
|
40
|
Yanagawa B, Lovren F, Pan Y, Garg V, Quan A, Tang G, Singh KK, Shukla PC, Kalra NP, Peterson MD, Verma S. miRNA-141 is a novel regulator of BMP-2-mediated calcification in aortic stenosis. J Thorac Cardiovasc Surg 2012; 144:256-62. [PMID: 22336757 DOI: 10.1016/j.jtcvs.2011.10.097] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 10/04/2011] [Accepted: 10/26/2011] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Bone morphogenetic protein-2 (BMP-2) is a major regulator of aortic valve calcification. MicroRNAs (miRNAs) are essential post-transcriptional modulators of gene expression and miRNA-141 is a known repressor of BMP-2-mediated osteogenesis. We hypothesized that miRNA-141 is a key regulator of aortic valve calcification. METHODS Porcine valvular interstitial cells were isolated, transfected with miRNA-141 or control, and stimulated with transforming growth factor-β. The BMP-2, extracellular signal-regulated kinase 1/2, and runt-related transcription factor 2 levels were determined by immunoblotting and reverse transcriptase polymerase chain reaction. To determine the role of miRNA-141 in bicuspid aortic valve disease, human bicuspid (n = 19) and tricuspid (n = 17) aortic valve leaflets obtained intraoperatively were submitted for GenoExplorer human microRNA array, immunoblotting, and histologic and immunohistochemical analyses. RESULTS Stimulation of porcine aortic valvular interstitial cells with transforming growth factor-β induced morphologic alterations consistent with myofibroblastic transformation, BMP-2 signaling, and calcification. Transfection with miRNA-141 restored transforming growth factor-β-induced valvular interstitial cell activation, BMP-2 signaling, and alkaline phosphatase activity (3.55 ± 0.18 vs 4.01 ± 0.21, P < .05), suggesting upstream regulation by miRNA-141. miRNA microarray demonstrated differential expression of 35 of 1583 miRNA sequences in the bicuspid versus tricuspid aortic valve leaflets, with a 14.5-fold decrease in miRNA-141 in the bicuspid versus tricuspid leaflets (P < .05). This was associated with significantly increased BMP-2 protein expression in bicuspid aortic valve compared with the tricuspid aortic valve leaflets (P < .001). CONCLUSIONS We report a completely novel role of miRNA-141 as a regulator of BMP-2-dependent aortic valvular calcification and demonstrate marked attenuation of miRNA-141 expression in patients with bicuspid aortic valve-associated aortic stenosis. Therapeutic targeting of miRNA-141 could serve as a novel strategy to limit progressive calcification in aortic stenosis.
Collapse
Affiliation(s)
- Bobby Yanagawa
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baber U, Kini AS, Moreno PR, Sharma SK. Calcific Aortic Stenosis: Pathology and Role of Balloon Aortic Valvuloplasty. Interv Cardiol Clin 2012; 1:1-9. [PMID: 28582059 DOI: 10.1016/j.iccl.2011.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Calcific aortic stenosis (AS) is a common expression of aortic valve disease and increases in prevalence with advancing age. Recent studies have shown that calcific deposition in aortic valve leaflets is an actively regulated process with many pathophysiologic similarities to atherosclerosis. Surgical valve replacement is the definitive treatment of calcific AS, but many patients do not undergo surgery because of prohibitive comorbidities or other high-risk features. Balloon aortic valvuloplasty remains an option for temporary palliation and symptomatic relief, and continues to serve as a bridge to aortic valve replacement in certain patients with AS requiring temporary hemodynamic stabilization.
Collapse
Affiliation(s)
- Usman Baber
- Cardiac Catheterization Laboratory, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Annapoorna S Kini
- Cardiac Catheterization Laboratory, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Pedro R Moreno
- Cardiac Catheterization Laboratory, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Samin K Sharma
- Cardiac Catheterization Laboratory, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA.
| |
Collapse
|