1
|
Majumdar A, Upadhyay MK, Ojha M, Biswas R, Dey S, Sarkar S, Moulick D, Niazi NK, Rinklebe J, Huang JH, Roychowdhury T. A critical review on the organo-metal(loid)s pollution in the environment: Distribution, remediation and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175531. [PMID: 39147056 DOI: 10.1016/j.scitotenv.2024.175531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Toxic metal(loid)s, e.g., mercury, arsenic, lead, and cadmium are known for several environmental disturbances creating toxicity to humans if accumulated in high quantities. Although not discussed critically, the organo-forms of these inorganic metal(loid)s are considered a greater risk to humans than their elemental forms possibly due to physico-chemical modulation triggering redox alterations or by the involvement of biological metabolism. This extensive review describes the chemical and physical causes of organometals and organometal(loid)s distribution in the environment with ecotoxicity assessment and potential remediation strategies. Organo forms of various metal(loid)s, such as mercury (Hg), arsenic (As), lead (Pb), tin (Sn), antimony (Sb), selenium (Se), and cadmium (Cd) have been discussed in the context of their ecotoxicity. In addition, we elaborated on the transformation, speciation and transformation pathways of these toxic metal(loid)s in soil-water-plant-microbial systems. The present review has pointed out the status of toxic organometal(loid)s, which is required to make the scientific community aware of this pressing condition of organometal(loid)s distribution in the environment. The gradual disposal and piling of organometal(loid)s in the environment demand a thorough revision of the past-present status with possible remediation strategies prescribed as reflected in this review.
Collapse
Affiliation(s)
- Arnab Majumdar
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom; School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Megha Ojha
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan, Maharashtra 411008, India
| | - Rakesh Biswas
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Bi Y, Huang N, Xu D, Wu S, Meng Q, Chen H, Li X, Chen R. Manganese exposure leads to depressive-like behavior through disruption of the Gln-Glu-GABA metabolic cycle. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135808. [PMID: 39288524 DOI: 10.1016/j.jhazmat.2024.135808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
There is a correlation between long-term manganese (Mn) exposure and the Parkinson's-like disease (PD), with depression as an early symptom of PD. However, the direct relationship between Mn exposure and depression, and the mechanisms involved, remain unclear. We found that Mn exposure led to depressive-like behavior and mild cognitive impairment in mice, with Mn primarily accumulating in the cornu ammonis 3 (CA3) area of the hippocampus. Mice displayed a reduction in neuronal dendritic spines and damage to astrocytes specifically in the CA3 area. Spatial metabolomics revealed that Mn downregulated glutamic acid decarboxylase 1 (GAD1) expression in astrocytes, disrupting the Glutamine-Glutamate-γ-aminobutyric acid (GlnGluGABA) metabolic cycle in the hippocampus, leading to neurotoxicity. We established an in vitro astrocyte Gad1 overexpression (OEX) model and found that the cultured medium from Gad1 OEX astrocytes reversed neuronal synaptic damage and the expression of gamma-aminobutyric acid (GABA) related receptors. Using the astrocyte Gad1 OEX mouse model, results showed that OEX of Gad1 ameliorated depressive-like behavior and cognitive dysfunction in mice. These findings provide new insight into the important role of GAD1 mediated GlnGluGABA metabolism disorder in Mn exposure induced depressive-like behavior. This study offers a novel sight to understanding abnormal emotional states following central nervous system damage induced by Mn exposure.
Collapse
Affiliation(s)
- Yujie Bi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Nannan Huang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Duo Xu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China.
| |
Collapse
|
3
|
McBride DE, Bhattacharya A, Sucharew H, Brunst KJ, Barnas M, Cox C, Altman L, Hilbert TJ, Burkle J, Westneat S, Martin KV, Parsons PJ, Praamsma ML, Palmer CD, Kannan K, Smith DR, Wright R, Amarasiriwardena C, Dietrich KN, Cecil KM, Haynes EN. Child and Adolescent Manganese Biomarkers and Adolescent Postural Balance in Marietta CARES Cohort Participants. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57010. [PMID: 38780454 PMCID: PMC11114102 DOI: 10.1289/ehp13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Manganese (Mn) plays a significant role in both human health and global industries. Epidemiological studies of exposed populations demonstrate a dose-dependent association between Mn and neuromotor effects ranging from subclinical effects to a clinically defined syndrome. However, little is known about the relationship between early life Mn biomarkers and adolescent postural balance. OBJECTIVES This study investigated the associations between childhood and adolescent Mn biomarkers and adolescent postural balance in participants from the longitudinal Marietta Communities Actively Researching Exposures Study (CARES) cohort. METHODS Participants were recruited into CARES when they were 7-9 y old, and reenrolled at 13-18 years of age. At both time points, participants provided samples of blood, hair, and toenails that were analyzed for blood Mn and lead (Pb), serum cotinine, hair Mn, and toenail Mn. In adolescence, participants completed a postural balance assessment. Greater sway indicates postural instability (harmful effect), whereas lesser sway indicates postural stability (beneficial effect). Multivariable linear regression models were conducted to investigate the associations between childhood and adolescent Mn biomarkers and adolescent postural balance adjusted for age, sex, height-weight ratio, parent/caregiver intelligence quotient, socioeconomic status, blood Pb, and serum cotinine. RESULTS CARES participants who completed the adolescent postural balance assessment (n = 123 ) were 98% White and 54% female and had a mean age of 16 y (range: 13-18 y). In both childhood and adolescence, higher Mn biomarker concentrations were significantly associated with greater adolescent sway measures. Supplemental analyses revealed sex-specific associations; higher childhood Mn biomarker concentrations were significantly associated with greater sway in females compared with males. DISCUSSION This study found childhood and adolescent Mn biomarkers were associated with subclinical neuromotor effects in adolescence. This study demonstrates postural balance as a sensitive measure to assess the association between Mn biomarkers and neuromotor function. https://doi.org/10.1289/EHP13381.
Collapse
Affiliation(s)
- Danielle E. McBride
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Amit Bhattacharya
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Heidi Sucharew
- Department of Emergency Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kelly J. Brunst
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mary Barnas
- Department of Psychology, Marietta College, Marietta, Ohio, USA
| | - Cyndy Cox
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lorenna Altman
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Timothy J. Hilbert
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeff Burkle
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Susan Westneat
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Kaitlin Vollet Martin
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Meredith L. Praamsma
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Christopher D. Palmer
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Robert Wright
- Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| | - Chitra Amarasiriwardena
- Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| | - Kim N. Dietrich
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kim M. Cecil
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erin N. Haynes
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Pajarillo E, Demayo M, Digman A, Nyarko-Danquah I, Son DS, Aschner M, Lee E. Deletion of RE1-silencing transcription factor in striatal astrocytes exacerbates manganese-induced neurotoxicity in mice. Glia 2022; 70:1886-1901. [PMID: 35638297 PMCID: PMC9378447 DOI: 10.1002/glia.24226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
Chronic manganese (Mn) overexposure causes a neurological disorder, referred to as manganism, exhibiting symptoms similar to parkinsonism. Dysfunction of the repressor element-1 silencing transcription factor (REST) is associated with various neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Mn-induced neurotoxicity, but its cellular and molecular mechanisms have yet to be fully characterized. Although neuronal REST is known to be neuroprotective, the role of astrocytic REST in neuroprotection remains to be established. We investigated if astrocytic REST in the striatal region of the mouse brain where Mn preferentially accumulates plays a role in Mn-induced neurotoxicity. Striatal astrocytic REST was deleted by infusion of adeno-associated viral vectors containing sequences of the glial fibrillary acidic protein promoter-driven Cre recombinase into the striatum of RESTflox/flox mice for 3 weeks, followed by Mn exposure (30 mg/kg, daily, intranasally) for another 3 weeks. Striatal astrocytic REST deletion exacerbated Mn-induced impairment of locomotor activity and cognitive function with further decrease in Mn-reduced protein levels of tyrosine hydroxylase and glutamate transporter 1 (GLT-1) in the striatum. Astrocytic REST deletion also exacerbated the Mn-induced proinflammatory mediator COX-2, as well as cytokines such as TNF-α, IL-1β, and IL-6, in the striatum. Mn-induced detrimental astrocytic products such as proinflammatory cytokines on neuronal toxicity were attenuated by astrocytic REST overexpression, but exacerbated by REST inhibition in an in vitro model using primary human astrocytes and Lund human mesencephalic (LUHMES) neuronal culture. These findings indicate that astrocytic REST plays a critical role against Mn-induced neurotoxicity by modulating astrocytic proinflammatory factors and GLT-1.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mark Demayo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Laboratory for Molecular Nutrition of the Institute for Personalized Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
5
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
6
|
Hamid E, Payandeh K, Karimi Nezhad MT, Saadati N. Potential ecological risk assessment of heavy metals (trace elements) in coastal soils of southwest Iran. Front Public Health 2022; 10:889130. [PMID: 36159236 PMCID: PMC9491490 DOI: 10.3389/fpubh.2022.889130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023] Open
Abstract
Heavy metal pollution has become one of the most important threats that can endanger the health of animals, the environment, and humans. The present study was performed to investigate the potential ecological risk (PER) of heavy metals [zinc (Zn), copper (Cu), cobalt (Co), molybdenum (Mo), manganese (Mn), and selenium (Se)] in the coastal soils of southwest Iran in 2019. The samples were collected from six soil sites and three depth intervals (0-15, 15-30, and 30-45 cm) among bare and vegetated coastal soils. The soil samples to study the soil properties (soil grain size, pH, EC, and soil organic carbon) and metal contamination were taken from soil (36 samples), water (6 samples), and plants (24 samples). The soil ecological risk (ER), the pollution load index (PLI), contamination degree (Cdeg), modified contamination degree (mCdeg) for heavy metal contamination in the soil, and enrichment factor (EF index) indicate the origin of metals entering the environment, and hence these parameters were investigated. The results of this study showed that the levels of Zn, Cu, Co, Mn, Se, and Mo were in the range of low-risk contaminants in this region. According to the results of the study, the risk index (RI) for metals was in the range of 1.296-3.845, which is much lower than 150, and therefore the ecological risk potential calculated in this study was in the low-risk category for toxic elements. Based on the results, it was found that agricultural, industrial, and human activities played an effective role in the accumulation of Zn, Cu, Co, Se, and Mo in the soil. In addition, the main source of Mn metal is believed to be natural due to geological activities in the region.
Collapse
Affiliation(s)
- Ebtessam Hamid
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Khoshnaz Payandeh
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran,*Correspondence: Khoshnaz Payandeh ;
| | | | - Naghmeh Saadati
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
7
|
Belingheri M, Chiu YHM, Renzetti S, Bhasin D, Wen C, Placidi D, Oppini M, Covolo L, Padovani A, Lucchini RG. Relationships of Nutritional Factors and Agrochemical Exposure with Parkinson's Disease in the Province of Brescia, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3309. [PMID: 35328997 PMCID: PMC8954923 DOI: 10.3390/ijerph19063309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022]
Abstract
Environmental exposures to agrochemicals and nutritional factors may be associated with Parkinson's Disease (PD). None of the studies to date has examined the combined effects of diet and agricultural chemical exposure together. To address these research gaps, we aimed to assess the association of nutritional factors and agrochemical exposure with the risk of PD. A hospital-based case-control study was conducted. Multivariable logistic regressions were used to estimate the association of nutritional and agrochemical exposures with PD, adjusting for gender, age, socio-economic status, head injury, family history, smoking, metals exposure, and α-synuclein gene polymorphism. Weighted Quantile Sum (WQS) regression was applied to examine the effect of dietary components as a mixture. We recruited 347 cases and 389 controls. Parent history of PD (OR = 4.15, 95%CI: 2.10, 8.20), metals exposure (OR = 2.50, 95%CI: 1.61-3.89), SNCA rs356219 polymorphism (OR = 1.39, 95%CI: 1.04-1.87 for TC vs. TT; OR = 2.17, 95%CI: 1.43-3.28 for CC vs. TT), agrochemical exposures (OR = 2.11, 95%CI: 1.41-3.16), and being born in the Brescia province (OR = 1.83, 95%CI: 1.17-2.90) were significantly associated with PD. Conversely, fish intake and coffee consumption had a protective effect. The study confirmed the role of environmental exposures in the genesis of PD. Fish intake and coffee consumption are protective factors even when agricultural chemical exposures exist. Genetic factors and metals exposure were confirmed as risk factors for PD.
Collapse
Affiliation(s)
- Michael Belingheri
- School of Medicine and Surgery, University of Milano-Bicocca, 20090 Monza, Italy
| | - Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Y.-H.M.C.); (C.W.)
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Deepika Bhasin
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Chi Wen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Y.-H.M.C.); (C.W.)
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Manuela Oppini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Loredana Covolo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Roberto G. Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
- Department of Environmental Health Sciences, School of Public Health and Social Work, Florida International University, Miami, FL 11200, USA
| |
Collapse
|
8
|
Rehman AU, Nazir S, Irshad R, Tahir K, ur Rehman K, Islam RU, Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114455] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Lucchini RG, Guazzetti S, Renzetti S, Broberg K, Caci M, Covolo L, Crippa P, Gelatti U, Hashim D, Oppini M, Pepe F, Pilotto A, Passeri C, Placidi D, Rizzetti MC, Turla M, Wahlberg K, Padovani A. Metal Exposure and SNCA rs356219 Polymorphism Associated With Parkinson Disease and Parkinsonism. Front Neurol 2020; 11:556337. [PMID: 33362685 PMCID: PMC7755861 DOI: 10.3389/fneur.2020.556337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: In the province of Brescia, Italy, historical neurotoxic metal exposure has occurred for several decades. This study aimed to explore the role of metal exposure and genetics on Parkinson's Disease (PD) and Parkinsonism. Methods: Cases were enrolled from four local clinics for movement disorders. Randomly selected controls non-affected by neurological or psychiatric conditions were enrolled from the same health centers keeping a similar gender ratio and age distribution as for cases. Data on sociodemographic variables, clinical onset and life habits were collected besides accurate occupational and residential history. Blood samples were collected from all participants for genotyping of target polymorphisms in genes linked to PD and/or metal transport. Results: A total number of 432 cases and 444 controls were enrolled in the study, with average age of 71 years (72.2 for cases and 70 for controls). The average age at diagnosis was 65.9 years (SD 9.9). Among the potential risk factors, family history of PD or Parkinsonism showed the strongest association with the diseases (OR = 4.2, 95% CI 2.3, 7.6 on PD; OR = 4.3, 95% CI 1.9, 9.5 for Parkinsonism), followed by polymorphism rs356219 in the alpha-synuclein (SNCA) gene (OR = 2.03, 95% CI 1.3, 3.3 for CC vs. TT on PD; OR = 2.5, 95% CI 1.1, 5.3 for CC vs. TT on Parkinsonism), exposure to metals (OR = 2.4;, 95% CI 1.3, 4.2 on PD), being born in a farm (OR = 1.8; 95% CI 1.1, 2.8 on PD; OR = 2.6; 95% CI 1.4, 4.9 on Parkinsonism) and being born in the province of Brescia (OR = 1.7; 95% CI 1.0, 2.9 on PD). Conditional OR of having PD depending by SNCA polymorphism and metal exposure highlights higher risk of PD among CC SNCA carriers and being exposed to metals. However, the interaction term was not statistically significant. Conclusions: Lifetime exposure to metals and genetic variation in SNCA gene are relevant determinants of PD and Parkinsonism in the highly industrialized area of Brescia, Italy. The lack of evidence of statistical interaction between environmental and genetic factors may be due to the low frequencies of subjects representing the exposure categories and the polymorphism variants and does not rule out the biological interaction.
Collapse
Affiliation(s)
- Roberto G. Lucchini
- Robert Stempel College of Public Health, Florida International University, Miami, FL, United States
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Stefano Renzetti
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Margherita Caci
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Loredana Covolo
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Umberto Gelatti
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Dana Hashim
- Hematology & Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Manuela Oppini
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Fulvio Pepe
- Neurology, Poliambulanza Foundation, Brescia, Italy
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Parkinson Rehabilitation Center, Ospedale S. Isidoro - FERB Onlus, Trescore Balneario, Bergamo, Italy
| | - Chiara Passeri
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Placidi
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Maira Cristina Rizzetti
- Parkinson Rehabilitation Center, Ospedale S. Isidoro - FERB Onlus, Trescore Balneario, Bergamo, Italy
| | | | - Karin Wahlberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Manganese Neurotoxicity as a Complication of Chronic Total Parenteral Nutrition. Case Rep Neurol Med 2020; 2020:9484028. [PMID: 32373376 PMCID: PMC7196137 DOI: 10.1155/2020/9484028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/18/2020] [Indexed: 12/05/2022] Open
Abstract
Manganese accumulation in the central nervous system creates clinical symptoms of cognitive dysfunction, behavioral changes, and movement disorders resembling Parkinson's disease. Radiographic features of this rare clinical entity include symmetric T1 hyperintensities in the bilateral globus pallidi, with corresponding hypointensities on T2-weighted images. Total parenteral nutrition (TPN) is an increasingly used potentially lifesaving therapy for patients who cannot tolerate enteral nutrition. However, when used over a period of several weeks to months, its associated risks and complications carry significant morbidity and mortality. One of the more rare complications of TPN use is manganese toxicity. We provided care for a 38-year-old female on chronic TPN who presented to the hospital with Parkinsonian features, confusion, falls, and lethargy. MRI brain showed T1 hyperintensities in the bilateral globus pallidi, which were attributed to manganese toxicity from chronic TPN use. Supporting evidence for this rare entity included decreased signal intensity in the bilateral globus pallidi on T2-weighted images and T1 hyperintensities in the substantia nigra. With antifungal treatment and permanent cessation of TPN, her mentation and neurological symptoms began to improve within a week. Repeat MRI brain performed one month after discontinuation of TPN revealed improvement of the T1 hyperintensities in the bilateral globus pallidi. Our objective in presenting this case is to highlight manganese neurotoxicity as a rare complication of TPN in a patient without known hepatic dysfunction and to emphasize the importance of routinely monitoring patients for the possible adverse effects of chronic TPN. Our case is among the handful of published cases in which a patient without known liver dysfunction, which is the primary organ responsible for manganese elimination from the body, developed manganese neurotoxicity.
Collapse
|
11
|
Li H, Fan X, Luo Y, Song S, Liu J, Fan Q. Repeated manganese administration produced abnormal expression of circadian clock genes in the hypothalamus and liver of rats. Neurotoxicology 2017; 62:39-45. [DOI: 10.1016/j.neuro.2017.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/16/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
|
12
|
Abstract
Although an essential nutrient, manganese (Mn) can be toxic at high doses. There is, however, uncertainty regarding the effects of chronic low-level Mn-exposure. This review provides an overview of Mn-related brain and functional changes based on studies of a cohort of asymptomatic welders who had lower Mn-exposure than in most previous work. In welders with low-level Mn-exposure, we found: 1) Mn may accumulate in the brain in a non-linear fashion: MRI R1 (1/T1) signals significantly increased only after a critical level of exposure was reached (e.g., ≥300 welding hours in the past 90days prior to MRI). Moreover, R1 may be a more sensitive marker to capture short-term dynamic changes in Mn accumulation than the pallidal index [T1-weighted intensity ratio of the globus pallidus vs. frontal white matter], a traditional marker for Mn accumulation; 2) Chronic Mn-exposure may lead to microstructural changes as indicated by lower diffusion tensor fractional anisotropy values in the basal ganglia (BG), especially when welding years exceeded more than 30 years; 3) Mn-related subtle motor dysfunctions can be captured sensitively by synergy metrics (indices for movement stability), whereas traditional fine motor tasks failed to detect any significant differences; and 4) Iron (Fe) also may play a role in welding-related neurotoxicity, especially at low-level Mn-exposure, evidenced by higher R2* values (an estimate for brain Fe accumulation) in the BG. Moreover, higher R2* values were associated with lower phonemic fluency performance. These findings may guide future studies and the development of occupation- and public health-related polices involving Mn-exposure.
Collapse
|
13
|
Abstract
Manganese (Mn) is an essential metal that plays a fundamental role for brain development and functioning. Environmental exposure to Mn may lead to accumulation in the basal ganglia and development of Parkinson-like disorders. The most recent research is focusing on early-life overexposure to Mn and the potential vulnerability of younger individuals to Mn toxicity also in regard to cognitive and executive functions through the involvement of the frontal cortex.Neurodevelopmental disturbances are increasing in the society, and understanding the potential role of environmental determinants is a key for prevention. Therefore, assessing the environmental sources of Mn exposure and the mechanisms of developmental neurotoxicity and defining appropriate biomarkers of exposure and early functional alterations represent key issues to improve and address preventive strategies. These themes will be reviewed in this chapter.
Collapse
|
14
|
Parmalee NL, Aschner M. Manganese and aging. Neurotoxicology 2016; 56:262-268. [PMID: 27293182 DOI: 10.1016/j.neuro.2016.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/04/2016] [Accepted: 06/05/2016] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is an essential metal that is required as a cofactor for many enzymes and is necessary for optimal biological function. Mn is abundant in the earth's crust and is present in soil and well water. Mn is also found in industrial settings, including mining, welding, and battery manufacture. Mn is also present in infant formula, parenteral nutrition, as well as pesticides and gasoline additives. A sufficient amount of Mn is obtained from most diets, and Mn deficiency is exceedingly rare. Excessive exposure to Mn in high doses can result in a condition known as manganism that results in psychological and emotional disturbances and motor symptoms that are reminiscent of Parkinson's disease, including gait disturbance, tremor, rigidity, and bradykinesia. Treatment for manganism is to remove the patient from Mn exposure, though symptoms are generally irreversible. The effects of exposure to Mn at lower doses are less clear. Little work has been done to evaluate the effects of chronic exposure to subclinical levels of Mn, especially in regard to lifelong exposures and the effects on the aging process. Mn is known to have effects on some of the same mechanistic processes that are altered in aging. This review will describe the general effects of Mn exposure and will focus on how Mn may be related to some of the mechanism of aging: neurogenesis, oxidative stress, and microglial activation and inflammation.
Collapse
Affiliation(s)
- Nancy L Parmalee
- Albert Einstein College of Medicine, Department of Molecular Pharmacology, 1300 Morris Park Avenue, Bronx, NY, United States.
| | - Michael Aschner
- Albert Einstein College of Medicine, Department of Molecular Pharmacology, 1300 Morris Park Avenue, Bronx, NY, United States.
| |
Collapse
|
15
|
Efficient and biologically relevant consensus strategy for Parkinson's disease gene prioritization. BMC Med Genomics 2016; 9:12. [PMID: 26961748 PMCID: PMC4784386 DOI: 10.1186/s12920-016-0173-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The systemic information enclosed in microarray data encodes relevant clues to overcome the poorly understood combination of genetic and environmental factors in Parkinson's disease (PD), which represents the major obstacle to understand its pathogenesis and to develop disease-modifying therapeutics. While several gene prioritization approaches have been proposed, none dominate over the rest. Instead, hybrid approaches seem to outperform individual approaches. METHODS A consensus strategy is proposed for PD related gene prioritization from mRNA microarray data based on the combination of three independent prioritization approaches: Limma, machine learning, and weighted gene co-expression networks. RESULTS The consensus strategy outperformed the individual approaches in terms of statistical significance, overall enrichment and early recognition ability. In addition to a significant biological relevance, the set of 50 genes prioritized exhibited an excellent early recognition ability (6 of the top 10 genes are directly associated with PD). 40 % of the prioritized genes were previously associated with PD including well-known PD related genes such as SLC18A2, TH or DRD2. Eight genes (CCNH, DLK1, PCDH8, SLIT1, DLD, PBX1, INSM1, and BMI1) were found to be significantly associated to biological process affected in PD, representing potentially novel PD biomarkers or therapeutic targets. Additionally, several metrics of standard use in chemoinformatics are proposed to evaluate the early recognition ability of gene prioritization tools. CONCLUSIONS The proposed consensus strategy represents an efficient and biologically relevant approach for gene prioritization tasks providing a valuable decision-making tool for the study of PD pathogenesis and the development of disease-modifying PD therapeutics.
Collapse
|
16
|
Iannilli E, Gasparotti R, Hummel T, Zoni S, Benedetti C, Fedrighi C, Tang CY, Van Thriel C, Lucchini RG. Effects of Manganese Exposure on Olfactory Functions in Teenagers: A Pilot Study. PLoS One 2016; 11:e0144783. [PMID: 26765332 PMCID: PMC4713423 DOI: 10.1371/journal.pone.0144783] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/22/2015] [Indexed: 01/01/2023] Open
Abstract
Long-term exposure to environmental manganese (Mn) affects not only attention and neuromotor functions but also olfactory functions of a pre-adolescent local population who have spent their whole life span in contaminated areas. In order to investigate the effect of such exposure at the level of the central nervous system we set up a pilot fMRI experiment pointing at differences of brain activities between a non-exposed population (nine subjects) and an exposed one (three subjects). We also measured the volume of the olfactory bulb as well as the identification of standard olfactory stimuli. Our results suggest that young subjects exposed to Mn exhibit a reduction of BOLD signal, subjective odor sensitivity and olfactory bulb volume. Moreover a region of interest SPM analysis showed a specifically reduced response of the limbic system in relation to Mn exposure, suggesting an alteration of the brain network dealing with emotional responses.
Collapse
Affiliation(s)
- Emilia Iannilli
- Interdisciplinary Center "Smell & Taste", Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | - Thomas Hummel
- Interdisciplinary Center "Smell & Taste", Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Silvia Zoni
- Occupational Medicine, University of Brescia, Brescia, Italy
| | | | - Chiara Fedrighi
- Occupational Medicine, University of Brescia, Brescia, Italy
| | - Cheuk Ying Tang
- Radiology & Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Christoph Van Thriel
- Neurotoxicology and Chemosensation, Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Roberto G. Lucchini
- Occupational Medicine, University of Brescia, Brescia, Italy
- Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
17
|
Abstract
Exposure to manganese (Mn) causes clinical signs and symptoms resembling, but not identical to, Parkinson's disease. Since our last review on this subject in 2004, the past decade has been a thriving period in the history of Mn research. This report provides a comprehensive review on new knowledge gained in the Mn research field. Emerging data suggest that beyond traditionally recognized occupational manganism, Mn exposures and the ensuing toxicities occur in a variety of environmental settings, nutritional sources, contaminated foods, infant formulas, and water, soil, and air with natural or man-made contaminations. Upon fast absorption into the body via oral and inhalation exposures, Mn has a relatively short half-life in blood, yet fairly long half-lives in tissues. Recent data suggest Mn accumulates substantially in bone, with a half-life of about 8-9 years expected in human bones. Mn toxicity has been associated with dopaminergic dysfunction by recent neurochemical analyses and synchrotron X-ray fluorescent imaging studies. Evidence from humans indicates that individual factors such as age, gender, ethnicity, genetics, and pre-existing medical conditions can have profound impacts on Mn toxicities. In addition to body fluid-based biomarkers, new approaches in searching biomarkers of Mn exposure include Mn levels in toenails, non-invasive measurement of Mn in bone, and functional alteration assessments. Comments and recommendations are also provided with regard to the diagnosis of Mn intoxication and clinical intervention. Finally, several hot and promising research areas in the next decade are discussed.
Collapse
Affiliation(s)
- Stefanie L. O’Neal
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Room 1173, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Room 1173, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Pavilonis BT, Lioy PJ, Guazzetti S, Bostick BC, Donna F, Peli M, Zimmerman NJ, Bertrand P, Lucas E, Smith DR, Georgopoulos PG, Mi Z, Royce SG, Lucchini RG. Manganese concentrations in soil and settled dust in an area with historic ferroalloy production. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:443-50. [PMID: 25335867 PMCID: PMC4406789 DOI: 10.1038/jes.2014.70] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/29/2014] [Indexed: 05/16/2023]
Abstract
Ferroalloy production can release a number of metals into the environment, of which manganese (Mn) is of major concern. Other elements include lead, iron, zinc, copper, chromium, and cadmium. Mn exposure derived from settled dust and suspended aerosols can cause a variety of adverse neurological effects to chronically exposed individuals. To better estimate the current levels of exposure, this study quantified the metal levels in dust collected inside homes (n=85), outside homes (n=81), in attics (n=6), and in surface soil (n=252) in an area with historic ferroalloy production. Metals contained in indoor and outdoor dust samples were quantified using inductively coupled plasma optical emission spectroscopy, whereas attic and soil measurements were made with a X-ray fluorescence instrument. Mean Mn concentrations in soil (4600 μg/g) and indoor dust (870 μg/g) collected within 0.5 km of a plant exceeded levels previously found in suburban and urban areas, but did decrease outside 1.0 km to the upper end of background concentrations. Mn concentrations in attic dust were ~120 times larger than other indoor dust levels, consistent with historical emissions that yielded high airborne concentrations in the region. Considering the potential health effects that are associated with chronic Mn inhalation and ingestion exposure, remediation of soil near the plants and frequent, on-going hygiene indoors may decrease residential exposure and the likelihood of adverse health effects.
Collapse
Affiliation(s)
- Brian T Pavilonis
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Paul J Lioy
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | | | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, New York City, NY, USA
| | - Filippo Donna
- Institute of Occupational Health, University of Brescia, Brescia, Italy
| | - Marco Peli
- Institute of Occupational Health, University of Brescia, Brescia, Italy
| | - Neil J Zimmerman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Patrick Bertrand
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Erika Lucas
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Panos G Georgopoulos
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Zhongyuan Mi
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Steven G Royce
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Roberto G Lucchini
- 1] Institute of Occupational Health, University of Brescia, Brescia, Italy [2] Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA [3] Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| |
Collapse
|
19
|
Ferri R, Hashim D, Smith DR, Guazzetti S, Donna F, Ferretti E, Curatolo M, Moneta C, Beone GM, Lucchini RG. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:507-17. [PMID: 25777956 PMCID: PMC4388796 DOI: 10.1016/j.scitotenv.2015.02.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. METHODS Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. RESULTS Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. CONCLUSIONS Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thorough washing of vegetables to minimize metal exposure.
Collapse
Affiliation(s)
| | - Dana Hashim
- Occupational and Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | | | | | - Enrica Ferretti
- Department of Food Chemistry, Metal Laboratory, IZSLER, Brescia, Italy
| | - Michele Curatolo
- Department of Food Chemistry, Metal Laboratory, IZSLER, Brescia, Italy
| | - Caterina Moneta
- Department of Food Chemistry, Metal Laboratory, IZSLER, Brescia, Italy
| | - Gian Maria Beone
- Institute of Agricultural and Environmental Chemistry, Università Cattolica, Piacenza, Italy
| | - Roberto G Lucchini
- Occupational Health, University of Brescia, Italy; Occupational and Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
20
|
Abstract
The central nervous system's extrapyramidal system provides involuntary motor control to the muscles of the head, neck, and limbs. Toxicants that affect the extrapyramidal system are generally clinically characterized by impaired motor control, which is usually the result of basal ganglionic dysfunction. A variety of extrapyramidal syndromes are recognized in humans and include Parkinson's disease, secondary parkinsonism, other degenerative diseases of the basal ganglia, and clinical syndromes that result in dystonia, dyskinesia, essential tremor, and other forms of tremor and chorea. This chapter briefly reviews the anatomy of the extrapyramidal system and discusses several naturally occurring and experimental models that target the mammalian (nonhuman) extrapyramidal system. Topics discussed include extrapyramidal syndromes associated with antipsychotic drugs, carbon monoxide, reserpine, cyanide, rotenone, paraquat, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and manganese. In most cases, animals are used as experimental models to improve our understanding of the toxicity and pathogenesis of these agents. Another agent discussed in this chapter, yellowstar thistle poisoning in horses, however, represents an important spontaneous cause of parkinsonism that naturally occurs in animals. The central focus of the chapter is on animal models, especially the concordance between clinical signs, neurochemical changes, and neuropathology between animals and people.
Collapse
Affiliation(s)
- David Dorman
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
21
|
Guarneros M, Hudson R, López-Palacios M, Drucker-Colín R. Reference Values of Olfactory Function for Mexico City Inhabitants. Arch Med Res 2015; 46:84-90. [DOI: 10.1016/j.arcmed.2014.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
|
22
|
Kim G, Lee HS, Seok Bang J, Kim B, Ko D, Yang M. A current review for biological monitoring of manganese with exposure, susceptibility, and response biomarkers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:229-54. [PMID: 26023759 DOI: 10.1080/10590501.2015.1030530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
People can be easily exposed to manganese (Mn), the twelfth most abundant element, through various exposure routes. However, overexposure to Mn causes manganism, a motor syndrome similar to Parkinson disease, via interference of the several neurotransmitter systems, particularly the dopaminergic system in areas. At cellular levels, Mn preferentially accumulates in mitochondria and increases the generation of reactive oxygen species, which changes expression and activity of manganoproteins. Many studies have provided invaluable insights into the causes, effects, and mechanisms of the Mn-induced neurotoxicity. To regulate Mn exposure, many countries have performed biological monitoring of Mn with three major biomarkers: exposure, susceptibility, and response biomarkers. In this study, we review current statuses of Mn exposure via various exposure routes including food, high susceptible population, effects of genetic polymorphisms of metabolic enzymes or transporters (CYP2D6, PARK9, SLC30A10, etc.), alterations of the Mn-responsive proteins (i.e., glutamine synthetase, Mn-SOD, metallothioneins, and divalent metal trnsporter1), and epigenetic changes due to the Mn exposure. To minimize the effects of Mn exposure, further biological monitoring of Mn should be done with more sensitive and selective biomarkers.
Collapse
Affiliation(s)
- Gyuri Kim
- a Research Center for Cell Fate Control, Department of Toxicology, College of Pharmacy, Sookmyung Women's University , Seoul , Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B. Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics 2014; 6:921-31. [PMID: 24599255 DOI: 10.1039/c4mt00022f] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Occupationally or environmentally caused chronic exposure to Manganese (Mn) can lead to a degeneration of dopaminergic neurons inducing a Parkinson-like complaint called manganism. Deciphering the ongoing neurodegenerative mechanisms in the affected brain is still a major task for understanding the complex modes of action. Therefore, we applied a non-toxic, oral feeding in rats simulating a chronic exposure to Mn. Analysis of brain extracts by electrospray ionization Fourier transform resonance mass spectrometry (ESI-FT-ICR-MS) revealed an increase in markers of oxidative stress like glutathione disulfide (GSSG), prostaglandins, and 15(S)-HETE, a marker of lipid peroxidation. Furthermore, acetylcholinesterase (AchE) activity and glutamate concentrations were elevated in brain samples of Mn-supplemented rats, suggesting oxidative stress in the brain tissue. Application of ion chromatography coupled to inductively coupled plasma-optical emission spectrometry (IC-ICP-OES) further showed a shift of Fe(III) towards Fe(II) in the brain samples enabling for example the action of the Fenton reaction. This is the first time that changes in the Fe-species distribution could be related to Mn-induced neuroinflammation and is therefore enlarging the knowledge of this complex neurodegenerative condition. The combination of our findings provides substantial evidence that Mn-induced neuroinflammation leads to oxidative stress triggered by multifactorial pathophysiological processes.
Collapse
Affiliation(s)
- Katharina Fernsebner
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
24
|
Liu Y, Byrne P, Wang H, Koltick D, Zheng W, Nie LH. A compact DD neutron generator-based NAA system to quantify manganese (Mn) in bone in vivo. Physiol Meas 2014; 35:1899-911. [PMID: 25154883 DOI: 10.1088/0967-3334/35/9/1899] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A deuterium-deuterium (DD) neutron generator-based neutron activation analysis (NAA) system has been developed to quantify metals, including manganese (Mn), in bone in vivo. A DD neutron generator with a flux of up to 3*10(9) neutrons s(-1) was set up in our lab for this purpose. Optimized settings, including moderator, reflector, and shielding material and thickness, were selected based on Monte Carlo (MC) simulations conducted in our previous work. Hand phantoms doped with different Mn concentrations were irradiated using the optimized DD neutron generator irradiation system. The Mn characteristic γ-rays were collected by an HPGe detector system with 100% relative efficiency. The calibration line of the Mn/calcium (Ca) count ratio versus bone Mn concentration was obtained (R(2) = 0.99) using the hand phantoms. The detection limit (DL) was calculated to be about 1.05 μg g(-1) dry bone (ppm) with an equivalent dose of 85.4 mSv to the hand. The DL can be reduced to 0.74 ppm by using two 100% HPGe detectors. The whole body effective dose delivered to the irradiated subject was calculated to be about 17 μSv. Given the average normal bone Mn concentration of 1 ppm in the general population, this system is promising for in vivo bone Mn quantification in humans.
Collapse
Affiliation(s)
- Yingzi Liu
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | |
Collapse
|
25
|
Neurofunctional dopaminergic impairment in elderly after lifetime exposure to manganese. Neurotoxicology 2014; 45:309-17. [PMID: 24881811 DOI: 10.1016/j.neuro.2014.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Manganese (Mn) is an essential element that can become neurotoxic through various exposure windows over the lifespan. While there is clear evidence of Mn neurotoxicity in pediatric and adult occupational populations, little is known about effects in the elderly who may exhibit enhanced susceptibilities due to compromised physiology compared to younger adults. In the province of Brescia, Italy, the Valcamonica area has been the site of three ferroalloy plants operating from 1902 to 2001. Metal emissions of Mn and to a lesser extent lead (Pb) have impacted the surrounding environment, where a high prevalence of Parkinsonism was previously observed. This study aimed to assess neurocognitive and motor functions in healthy elderly subjects residing for most of their lifetime in Valcamonica or in a reference area unimpacted by ferroalloy plant activity. METHODS Subjects were enrolled for extensive neurobehavioral assessment of motor, cognitive and sensory functions. Exposure was assessed with 24h personal air sampling for PM10 airborne particles, surface soil and tap water measurement at individual households, Mn levels in blood and urine and Pb in blood. Dose-response relationships between exposure indicators and biomarkers and health outcomes were analyzed with generalized (linear and logistic) additive models (GAM). RESULTS A total of 255 subjects (55% women) were examined; most (52.9%) were within the 65-70 years age class. Average airborne Mn was 26.41 ng/m(3) (median 18.42) in Valcamonica and 20.96 ng/m(3) (median 17.62) in the reference area. Average Mn in surface soil was 1026 ppm (median 923) in Valcamonica and 421 ppm (median 410) in the reference area. Manganese in drinking water was below the LDL of 1 μg/L. The GAM analysis showed significant association between airborne Mn (p=0.0237) and the motor coordination tests of the Luria Nebraska Neuropsychological Battery. The calculation of the Benchmark Dose using this dose-response relationship yielded a lower level confidence interval of 22.7 ng/m(3) (median 26.4). For the odor identification score of the Sniffin Stick test, an association was observed with soil Mn (p=0.0006) and with a significant interaction with blood Pb (p=0.0856). Significant dose-responses resulted also for the Raven's Colored Progressive Matrices with the distance from exposure point source (p=0.0025) and Mn in soil (p=0.09), and for the Trail Making test, with urinary Mn (p=0.0074). Serum prolactin (PRL) levels were associated with air (p=0.061) and urinary (p=0.003) Mn, and with blood Pb (p=0.0303). In most of these associations age played a significant role as an effect modifier. CONCLUSION Lifelong exposure to Mn was significantly associated with changes in odor discrimination, motor coordination, cognitive abilities and serum PRL levels. These effects are consistent with the hypothesis of a specific mechanism of toxicity of Mn on the dopaminergic system. Lead co-exposure, even at very low levels, can further enhance Mn toxicity.
Collapse
|
26
|
Sung K, Kim M, Hyun J, Kim Y, Kim K. Possible effects of nitric oxide synthases on odor-induced behavioral changes in mice. Neurosci Lett 2014; 569:158-62. [PMID: 24747686 DOI: 10.1016/j.neulet.2014.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/27/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
Abstract
Although exposure to olfactory stimulants can induce neurobehavioral changes, there is a lack of data regarding specific effects on neurotransduction, especially nitric oxide (NO)-mediated neurotransduction. We investigated the relationship between altered behavioral performance and changes in the expression of nitric oxide synthase (NOS), nNOS, iNOS, and eNOS, in 2-methylbutyric (2MB) acid-exposed mice. Mice were exposed to 2MB acid by inhalation and olfactory preference/avoidance and motor coordination were measured. Additionally, we examined NOS expression in the olfactory bulb of the mouse brain. Mice exposed to 2MB acid showed significant changes in olfactory preference and rotarod activity as compared with controls. Although there was no change in nNOS and iNOS expressions in the olfactory bulb of 2MB acid-exposed mice, eNOS expression increased significantly in the olfactory bulb of 9.0M 2MB acid-exposed mice. These data indicate that altered eNOS expression in the olfactory bulb may contribute to 2MB acid-induced behavioral changes.
Collapse
Affiliation(s)
- Kyunghwa Sung
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea; College of Pharmacy, Ewha Womans University, Seoul 151-742, Republic of Korea
| | - Jiyoung Hyun
- Department of Public Health, Keimyung University, Daegu 704-701, Republic of Korea
| | - Younghee Kim
- Department of Skin and Health Management, Suseong College, Daegu 706-711, Republic of Korea
| | - Kisok Kim
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea.
| |
Collapse
|
27
|
Michalke B, Fernsebner K. New insights into manganese toxicity and speciation. J Trace Elem Med Biol 2014; 28:106-116. [PMID: 24200516 DOI: 10.1016/j.jtemb.2013.08.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
Manganese (Mn) is known to be a neurotoxic agent for nearly 175 years now. A lot of research has therefore been carried out over the last century. From preliminary describing only symptoms of Mn-(over)exposed workers, research was preceded to more detail on toxic mechanisms of Mn. Unraveling those neurotoxic mechanisms implicated a number of studies, which were summarized partly in several reviews (e.g. Yokel RA. Neuromol Med 2009;11(4):297-310; Aschner M, et al. Toxicology Appl Pharmacol 2007;221(2):131-47; Michalke B, et al. J Environ Monit 2007;9(7):650). Since our recent review on Mn-speciation in 2007 (Michalke B, et al. J Environ Monit 2007;9(7):650), Mn-research was considerably pushed forward and several new research articles were published. The very recent years though, Mn toxicity investigating science is spreading into different fields with very detailed and complex study designs. Especially the mechanisms of Mn-induced neuronal injury on cellular and molecular level was investigated in more detail, discussing neurotransmitter and enzyme interactions, mechanisms of action on DNA level and even inclusion of genetic influences. Depicting the particular Mn-species was also a big issue to determine which molecule is transporting Mn at the cell membranes and which one is responsible for the injury of neuronal tissue. Other special foci on epidemiologic studies were becoming more and more important: These foci were directed toward environmental influences of Mn on especially Parkinson disease prevalence and the ability to carry out follow-up studies about Mn-life-span exposure. All these very far-reaching research applications may finally lead to a suitable future human Mn-biomonitoring for being able to prevent or at least detect the early onset of manganism at the right time.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| | - Katharina Fernsebner
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
28
|
Bibliography. Current world literature. Neonatology and perinatology. Curr Opin Pediatr 2013; 25:275-81. [PMID: 23481475 DOI: 10.1097/mop.0b013e32835f58ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Manganese speciation in paired serum and CSF samples using SEC-DRC-ICP-MS and CE-ICP-DRC-MS. Anal Bioanal Chem 2013; 405:2301-9. [DOI: 10.1007/s00216-012-6662-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/06/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|