1
|
El-Shoura EAM, Mohamed AAN, Atwa AM, Salem EA, Sharkawi SMZ, Mostafa Selim H, Ibrahim Elberri A, Gawesh ES, Ahmed YH, Abd El-Ghafar OAM. Combined diosmin and bisoprolol attenuate cobalt chloride-induced cardiotoxicity and endothelial dysfunction through modulating miR-143-3P/MAPK/MCP-1, ERK5/CXCR4, Orai-1/STIM-1 signaling pathways. Int Immunopharmacol 2024; 140:112777. [PMID: 39088923 DOI: 10.1016/j.intimp.2024.112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Even while accelerated cardiomyocyte apoptosis is one of the primary causes of cardiac damage, the underlying mechanism is still mostly unknown. In addition to examining potential protective effects of bisoprolol and diosmin against CoCl2-induced cardiac injury, the goal of this study was to identify potential mechanisms regulating the hypoxic cardiac damage caused by cobalt chloride (CoCl2). For a period of 21 days except Cocl2 14 days from the first day of the experiment, rats were split into the following groups: Normal control group, rats received vehicle only (2 ml/kg/day, p.o.), (Cocl2, 150 mg/kg/day, p.o.), bisoprolol (25 mg/kg/day, p.o.); diosmin (100 mg/kg/day, p.o.) and bisoprolol + diosmin + Cocl2 groups. At the end of the experimental period, serum was taken for estimation of cardiac function, lipid profile, and pro/anti-inflammatory cytokines. Moreover, tissue samples were collected for evaluation of oxidative stress, endothelial dysfunction, α-SMA, PKC-α, MiR-143-3P, MAPK, ERK5, MCP-1, CXCR4, Orai-1, and STIM-1. Diosmin and bisoprolol, either alone or in combination, enhance heart function by reducing abnormalities in the electrocardiogram and the hypotension brought on by CoCl2. Additionally, they significantly ameliorate endothelial dysfunction by downregulating the cardiac expressions of α-SMA, PKC-α, MiR-143-3P, MAPK, ERK5, MCP-1, CXCR4, Orai-1, and STIM-1. Bisoprolol and diosmin produced modulatory activity against inflammatory state, redox balance, and atherogenic index concurrently. Together, diosmin and bisoprolol, either alone or in combination, significantly reduced all the cardiac alterations brought on by CoCl2. The capacity to obstruct hypoxia-induced α-SMA, PKC-α, MiR-143-3P/MAPK/MCP-1, MiR-143-3P/ERK5/CXCR4, Orai-1/STIM-1 signaling activation, as well as their anti-inflammatory, antioxidant, and anti-apoptotic properties, may be responsible for these cardio-protective results.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Esraa A Salem
- Department of Clinical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Souty M Z Sharkawi
- Pharmacology and Toxicology Department, Beni Suef University, Beni Suef, Egypt
| | | | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebeen Elkom 32511, Egypt
| | - El-Sayed Gawesh
- Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
2
|
Olopade JO, Mustapha OA, Fatola OI, Ighorodje E, Folarin OR, Olopade FE, Omile IC, Obasa AA, Oyagbemi AA, Olude MA, Thackray AM, Bujdoso R. Neuropathological profile of the African Giant Rat brain (Cricetomys gambianus) after natural exposure to heavy metal environmental pollution in the Nigerian Niger Delta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120496-120514. [PMID: 37945948 DOI: 10.1007/s11356-023-30619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Pollution by heavy metals is a threat to public health because of the adverse effects on multiple organ systems including the brain. Here, we used the African giant rat (AGR) as a novel sentinel host to assess the effect of heavy metal accumulation and consequential neuropathology upon the brain. For this study, AGR were collected from distinct geographical regions of Nigeria: the rain forest region of south-west Nigeria (Ibadan), the central north of Nigeria (Abuja), and in oil-polluted areas of south Nigeria (Port-Harcourt). We found that zinc, copper, and iron were the major heavy metals that accumulated in the brain and serum of sentinel AGR, with the level of iron highest in animals from Port-Harcourt and least in animals from Abuja. Brain pathology, determined by immunohistochemistry markers of inflammation and oxidative stress, was most severe in animals from Port Harcourt followed by those from Abuja and those from Ibadan were the least affected. The brain pathologies were characterized by elevated brain advanced oxidation protein product (AOPP) levels, neuronal depletion in the prefrontal cortex, severe reactive astrogliosis in the hippocampus and cerebellar white matter, demyelination in the subcortical white matter and cerebellar white matter, and tauopathies. Selective vulnerabilities of different brain regions to heavy metal pollution in the AGR collected from the different regions of the country were evident. In conclusion, we propose that neuropathologies associated with redox dyshomeostasis because of environmental pollution may be localized and contextual, even in a heavily polluted environment. This novel study also highlights African giant rats as suitable epidemiological sentinels for use in ecotoxicological studies.
Collapse
Affiliation(s)
- James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oluwaseun Ahmed Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Olanrewaju Ifeoluwa Fatola
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ejiro Ighorodje
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Irene Chizubelu Omile
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adedunsola Ajike Obasa
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Matthew Ayokunle Olude
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Alana Maureen Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| |
Collapse
|
3
|
Oyagbemi AA, Ajibade TO, Esan OO, Adetona MO, Obisesan AD, Adeogun AV, Awoyomi OV, Badejo JA, Adedapo ADA, Omobowale TO, Olaleye OI, Ola-Davies OE, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Kayoka-Kabongo PN, Yakubu MA, Nwulia E, Oguntibeju OO. Naringin abrogates angiotensin-converting enzyme (ACE) activity and podocin signalling pathway in cobalt chloride-induced nephrotoxicity and hypertension. Biomarkers 2023; 28:206-216. [PMID: 36480283 DOI: 10.1080/1354750x.2022.2157489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PurposeThe persistent and alarming rates of increase in cardiovascular and renal diseases caused by chemicals such as cobalt chloride (CoCl2) in mammalian tissues have led to the use of various drugs for the treatment of these diseases. This study aims at evaluating the nephron-protective action of Naringin (NAR), a metal-chelating antioxidant against CoCl2-induced hypertension and nephrotoxicity.MethodsForty-two male Wistar rats were randomly distributed to seven rats of six groups and classified into Group A (Control), Group B (300 part per million; ppm CoCl2), Group C (300 ppm CoCl2 + 80 mg/kg NAR), Group D (300 ppm CoCl2 + 160 mg/kg NAR), Group E (80 mg/kg NAR), and Group F (160 mg/kg NAR). NAR and CoCl2 were administered via oral gavage for seven days. Biomarkers of renal damage, oxidative stress, antioxidant status, blood pressure parameters, immunohistochemistry of renal angiotensin-converting enzyme and podocin were determined.ResultsCobalt chloride intoxication precipitated hypertension, renal damage, and oxidative stress. Immunohistochemistry revealed higher expression of angiotensin-converting enzyme (ACE) and podocin in rats administered only CoCl2.ConclusionTaken together, the antioxidant and metal-chelating action of Naringin administration against cobalt chloride-induced renal damage and hypertension could be through abrogation of angiotensin-converting enzyme and podocin signalling pathway.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ayobami Deborah Obisesan
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adewumi Victoria Adeogun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Joseph Ayotunde Badejo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Aduragbenro Deborah A Adedapo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olayinka Israel Olaleye
- Department of Pathology, Histopathology Laboratory, University College Hospital, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa Florida Campus, Florida, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, TX, USA
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Howard University Hospital, Howard University, Washington, DC, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
4
|
Shi S, Zhu Q, Liao S, Zhu X, Tang X, Zhou Y. The association between dietary fiber intake and the concentrations of aldehydes in serum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25790-25798. [PMID: 34846670 DOI: 10.1007/s11356-021-17638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Aldehydes have been shown to be potentially carcinogenic, mutagenic, and cardiotoxic to humans. Dietary fiber reduces exposure to certain environmental pollutants and has been widely used to improve various metabolic disorders. However, the effects of dietary fiber on serum concentrations of aldehydes remain unexplored. Data was collected from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Generalized linear regression and restricted cubic spline models were performed to elucidate the association of dietary fiber intake with the serum concentration of aldehydes. After fully adjusting for age, sex, education level, race, smoking status, alcohol use, diabetes, hypertension, body mass index, energy intake, poverty-income ratio, and physical activity, dietary fiber intake had a strong negative association with serum levels of isopentanaldehyde and propanaldehyde and a positive association with serum levels of benzaldehyde. The estimated increases in the mean log2-unit (ng/mL) of aldehydes for each fold increase in dietary fiber were -0.140 (95% confidence interval [CI]: -0.195 to -0.085) for isopentanaldehyde, -0.060 (95% CI: -0.099 to -0.015) for propanaldehyde, and 0.084 (95% CI: 0.017 to 0.150) for benzaldehyde, respectively. No significant association was observed between dietary fiber intake and the concentration of any other aldehydes. These results demonstrate that dietary fiber reduces the concentration of certain aldehydes in serum.
Collapse
Affiliation(s)
- Shi Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Xiaosu Tang
- Jiangxi Environmental Engineering Vocational College, Ganzhou, 341000, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China.
| |
Collapse
|
5
|
García-Villarino M, Signes-Pastor AJ, Karagas MR, Riaño-Galán I, Rodríguez-Dehli C, Grimalt JO, Junqué E, Fernández-Somoano A, Tardón A. Exposure to metal mixture and growth indicators at 4-5 years. A study in the INMA-Asturias cohort. ENVIRONMENTAL RESEARCH 2022; 204:112375. [PMID: 34785205 PMCID: PMC8671344 DOI: 10.1016/j.envres.2021.112375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Exposure to toxic and non-toxic metals impacts childhood growth and development, but limited data exists on exposure to metal mixtures. Here, we investigated the effects of exposure to individual metals and a mixture of barium, cadmium, cobalt, lead, molybdenum, zinc, and arsenic on growth indicators in children 4-5 years of age. METHODS We used urine metal concentrations as biomarkers of exposure in 328 children enrolled in the Spanish INMA-Asturias cohort. Anthropometric measurements (arm, head, and waist circumferences, standing height, and body mass index) and parental sociodemographic variables were collected through face-to-face interviews by trained study staff. Linear regressions were used to estimate the independent effects and were adjusted for each metal in the mixture. We applied Bayesian kernel machine regression to examine non-linear associations and potential interactions. RESULTS In linear regression, urinary levels of cadmium were associated with reduced arm circumference (βadjusted = -0.44, 95% confidence interval [CI]: -0.73, -0.15), waist circumference (βadjusted = -1.29, 95% CI: -2.10, -0.48), and standing height (βadjusted = -1.09, 95% CI: -1.82, -0.35). Lead and cobalt concentrations were associated with reduced standing height (βadjusted = -0.64, 95% CI: -1.20, -0.07) and smaller head circumference (βadjusted = -0.29, 95% CI: -0.49, -0.09), respectively. However, molybdenum was positively associated with head circumference (βadjusted = 0.22, 95% CI: 0.01, 0.43). BKMR analyses showed strong linear negative associations of cadmium with arm and head circumference and standing height. BKMR analyses also found lead and cobalt in the metal mixture were related to reduce standing height and head circumference, and consistently found molybdenum was related to increased head circumference. CONCLUSION Our findings suggest that exposure to metal mixtures impacts growth indicators in children.
Collapse
Affiliation(s)
- Miguel García-Villarino
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain
| | - Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, NH, 03756, USA; Department of Public Health. Universidad Miguel Hernández, Avenida de Alicante KM 87, 03550, Sant Joan D'Alacant, Spain
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, NH, 03756, USA
| | - Isolina Riaño-Galán
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Servicio de Pediatría, Endocrinología Pediátrica, HUCA, Roma Avenue S/n, 33001, Oviedo, Asturias, Spain
| | | | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street 18-26, 08034, Barcelona, Cataluña, Spain
| | - Eva Junqué
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street 18-26, 08034, Barcelona, Cataluña, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain.
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain
| |
Collapse
|
6
|
Alabi QK, Akomolafe RO, Omole JG, Aturamu A, Ige MS, Kayode OO, Kajewole-Alabi D. Polyphenol-rich extract of Ocimum gratissimum leaves prevented toxic effects of cyclophosphamide on the kidney function of Wistar rats. BMC Complement Med Ther 2021; 21:274. [PMID: 34727903 PMCID: PMC8562005 DOI: 10.1186/s12906-021-03447-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cyclophosphamide (CP) is one of the potent and low cost chemotherapy used in clinical setting against a variety of tumors. However, its association with nephrotoxicity limits its therapeutic use. Ocimum gratissimum leaf is a medicinal plant with numerous pharmacological and therapeutic efficacies, such as antioxidant, anti-inflammation, and anti-apoptotic properties. METHODS The present study was designed to evaluate the protective effect of Ocimum gratissimum (OG) against CP-induced kidney dysfunction in rats. Rats were pre-treated with 400 mg/kg b.w. of leave extract of Ocimum gratissimum (Ocimum G.) for 4 days and then 50 mg/kg b.w. of CP was co-administered from day 5 to day 7 along with Ocimum G. Markers of renal function and oxidative stress, food and water intake, electrolytes, aldosterone, leukocytes infiltration, inflammation and histopathological alteration were evaluated. RESULTS Obvious renal inflammation and kidney injuries were observed in CP treated groups. However, administration of leave extract of Ocimum G. prevented oxidative stress, kidney injuries, attenuated inflammation, increased aldosterone production and reduced sodium ion and water loss in rats. The plasma creatinine, urea and urine albumin concentration were normalized after the administration of Ocimum G. extract in rats treated with CP. Ocimum G. also decreased the plasma concentrations of Interleukin-(IL)-6, C-reactive protein and activity of myeloperoxidase and malondialdehyde in CP treated rats. CONCLUSION Ocimum G. prevented kidney injury and enhanced renal function via inhibiting inflammation and oxidant-induced CP toxicity. The efficacy of Ocimum G. is related to the presence of various phytochemicals in the plant.
Collapse
Affiliation(s)
- Quadri K Alabi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | - Rufus O Akomolafe
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Joseph G Omole
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Ayodeji Aturamu
- Department of Physiology, Faculty of Basic Medical Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Mokolade S Ige
- Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Oyindasola O Kayode
- Department of Public Health, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Deborah Kajewole-Alabi
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| |
Collapse
|
7
|
Ugbogu OC, Emmanuel O, Agi GO, Ibe C, Ekweogu CN, Ude VC, Uche ME, Nnanna RO, Ugbogu EA. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil ( Ocimum gratissimum L.). Heliyon 2021; 7:e08404. [PMID: 34901489 PMCID: PMC8642617 DOI: 10.1016/j.heliyon.2021.e08404] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/29/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
In traditional medicine, Ocimum gratissimum (clove basil) is used in the treatment of various diseases such as diabetes, cancer, inflammation, anaemia, diarrhoea, pains, and fungal and bacterial infections. The present study reviewed the phytochemicals, essential oils, and pharmacological activities of O. gratissimum. The bioactive compounds extracted from O. gratissimum include phytochemicals (oleanolic acid, caffeic acid, ellagic acid, epicatechin, sinapic acid, rosmarinic acid, chlorogenic acid, luteolin, apigenin, nepetoidin, xanthomicrol, nevadensin, salvigenin, gallic acid, catechin, quercetin, rutin, and kaempfero) and essential oils (camphene, β-caryophyllene, α- and β-pinene, α-humulene, sabinene, β-myrcene, limonene, 1,8-cineole, trans-β-ocimene, linalool, α- and δ-terpineol, eugenol, α-copaene, β-elemene, p-cymene, thymol, and carvacrol). Various in vivo and in vitro studies have shown that O. gratissimum and its bioactive constituents possess pharmacological properties such as antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic, antihypertensive, antidiarrhoeal, and antimicrobial properties. This review demonstrated that O. gratissimum has a strong preventive and therapeutic effect against several diseases. The effectiveness of O. gratissimum to ameliorate various diseases may be attributed to its antimicrobial and antioxidant properties as well as its capacity to improve the antioxidant systems. However, despite the widespread pharmacological activities of O. gratissimum, further experiments in human clinical trial studies are needed to establish effective and safe doses for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Okezie Emmanuel
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Grace Oka Agi
- Department of Human Nutrition and Dietetics, University of Ibadan, Nigeria
| | - Chibuike Ibe
- Department of Microbiology, Abia State University, Uturu, PMB 2000, Uturu, Abia State, Nigeria
| | - Celestine Nwabu Ekweogu
- Department of Medical Biochemistry, Imo State University, PMB 2000, Owerri, Imo State, Nigeria
| | - Victor Chibueze Ude
- Department of Medical Biochemistry, College of Medicine Enugu State University of Science and Technology, PMB 01660, Enugu, Nigeria
| | - Miracle Ebubechi Uche
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | | | | |
Collapse
|
8
|
Othman MS, Khaled AM, Al-Bagawi AH, Fareid MA, Ghany RA, Habotta OA, Abdel Moneim AE. Hepatorenal protective efficacy of flavonoids from Ocimum basilicum extract in diabetic albino rats: A focus on hypoglycemic, antioxidant, anti-inflammatory and anti-apoptotic activities. Biomed Pharmacother 2021; 144:112287. [PMID: 34649220 DOI: 10.1016/j.biopha.2021.112287] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 02/09/2023] Open
Abstract
Plant derived phytochemical therapy is a bright candidate for treatment of diabetes and its associated complications. Ocimum baslicum is used as an anti-diabetic traditional medicine. Hence, the present study investigated the effect of Hail Ocimum extract (HOE) and its total flavonoids (HOETF) against hepatorenal damage in experimental diabetes induced by high-fat diet (HFD) and injection of streptozotocin (STZ) in rats. Diabetic animals were co-treated daily with HOE, HOETF or metformin (MET) as a standard anti-diabetic drug for four weeks. Compared to controls, HFD/STZ-treatment lead to significant increases in fasting blood glucose, insulin and HOMA-IR levels. Furthermore, diabetic rats had elevated hepatic (ALT and ALP) and kidney functions (urea and creatinine) biomarkers together with disturbed lipid profile and decreased PPAR-γ gene expression. Higher levels of hepatic and renal LPO and NO paralleled with lower levels of GSH and activities of antioxidant enzymes (SOD, CAT, GPx and GR) after HFD/STZ treatment. Additionally, noteworthy inflammatory and apoptotic responses were evident in both organs of diabetic rats as witnessed by augmented levels of TNF-α, IL-1b and Bax levels with declined levels of Bcl-2. Moreover, histological examination of hepatic, renal and pancreatic tissues validated the biochemical findings. On contrary, co-treatment of diabetic animals with HOE or HOETF could decrease glucose and insulin levels together with improvement of lipid markers and alleviation of hepatorenal dysfunction, oxidative injury, inflammatory and apoptotic events. Conclusively, HOE or HOETF could be a promising complementary therapeutic option for the management of diabetic hepatorenal complication owing to their antioxidant, anti-inflammatory; anti-apoptotic properties.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.
| | - Azza M Khaled
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Amal H Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha'il, Hail, Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Reda A Ghany
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
9
|
Zhu Q, Liao S, Lu X, Shi S, Gong D, Cheang I, Zhu X, Zhang H, Li X. Cobalt exposure in relation to cardiovascular disease in the United States general population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41834-41842. [PMID: 33786770 DOI: 10.1007/s11356-021-13620-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Cobalt exposure has adverse health effects on the cardiovascular system in occupational and laboratory studies, but these effects have not been assessed in the general population. We aimed to determine whether serum cobalt levels had relationship with the prevalence of cardiovascular disease (CVD) in the general population. Using data from the National Health and Nutrition Examination Survey (NHANES) (2015-2016), we performed the cross-sectional study. We analyzed the baseline characteristics of 3389 participants (1623 men and 1766 women). Generalized linear models and restricted cubic spline plots curve were undertaken to elucidate the relationship. Stratified subgroup analysis was tested to exclude interaction between different variates and cobalt. Our results showed that the adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for CVD prevalence across the quartiles of cobalt were 0.94 (0.67, 1.30), 1.55 (1.15, 2.10), and 1.74 (1.28, 2.35) compared with lowest quartile. The restricted cubic spline curve also suggested nonlinear and positive association between cobalt and CVD (P for nonlinearity = 0.007). In summary, our cross-sectional results verify that higher cobalt levels are associated with a higher prevalence of cardiovascular disease.
Collapse
Affiliation(s)
- Qingqing Zhu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Xinyi Lu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Shi Shi
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Dexing Gong
- Institute of Public Health, Guangdong Center for Disease Control and Prevention, Guangzhou, 510000, China
| | - Iokfai Cheang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Xu Zhu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Haifeng Zhang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Xinli Li
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China.
| |
Collapse
|
10
|
Kalefetoğlu Macar T, Macar O, Yalçın E, Çavuşoğlu K. Protective roles of grape seed (Vitis vinifera L.) extract against cobalt(II) nitrate stress in Allium cepa L. root tip cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:270-279. [PMID: 32809124 DOI: 10.1007/s11356-020-10532-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Excessive doses of toxic metals such as cobalt may cause detrimental hazards to exposed organisms. Six groups of onion bulbs were formed to investigate the therapeutic effects of grape seed extract (GSE) against cobalt(II) nitrate (Co(NO3)2) exposure in Allium cepa L. root tips. Control group was irrigated with tap water, while the latter groups were exposed to 150 mg/L GSE, 300 mg/L GSE, 5.5 ppm Co(NO3)2, 5.5 ppm Co(NO3)2 + 150 mg/L GSE and 5.5 ppm Co(NO3)2 + 300 mg/L GSE, respectively. Co(NO3)2 treatment seriously inhibited the root growth, germination and weight gain of the bulbs. Mitotic index was significantly decreased, whereas the chromosomal aberrations and micronuclei incidence exhibited a remarkable increase. In addition, Co(NO3)2 induced a variety of anatomical disorders in onion roots. Lipid peroxidation levels of the cellular membranes were assessed measuring the malondialdehyde content (MDA). MDA amount in Co(NO3)2-treated group reached the highest level among all groups. Co(NO3)2 treatment enhanced the activity of superoxide dismutase and catalase. The addition of GSE to Co(NO3)2 solution substantially suppressed the negative effects of Co(NO3)2 in a dose-dependent manner by strengthening the antioxidant defence system and reducing the cytotoxicity. Moreover, there was a significant recovery in growth parameters following the grape seed addition to Co(NO3)2. GSE had a remarkable reduction in genotoxicity when treated as a mixture with Co(NO3)2. Overall data obtained from this investigation proved that GSE, as a promising functional by-product, had a protective effect on Allium cepa L. against the toxic effects of Co(NO3)2.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey
| | - Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| | - Emine Yalçın
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| |
Collapse
|
11
|
Oyagbemi AA, Akinrinde AS, Adebiyi OE, Jarikre TA, Omobowale TO, Ola-Davies OE, Saba AB, Emikpe BO, Adedapo AA. Luteolin supplementation ameliorates cobalt-induced oxidative stress and inflammation by suppressing NF-кB/Kim-1 signaling in the heart and kidney of rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103488. [PMID: 32898663 DOI: 10.1016/j.etap.2020.103488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/02/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Cobalt-induced cardiomyopathy and renal toxicity have been reported in workers in processing plants, hard metal industries, diamond polishing and manufacture of ceramics. This study was designed to investigate the influence of Luteolin supplementation on cobalt-induced cardiac and renal toxicity in rats. Exposure of rats to cobalt chloride (CoCl2) alone caused significant (p < 0.05) increases in cardiac and renal H2O2, malondialdehyde (MDA) and nitric oxide (NO), along with increased serum myeloperoxidase (MPO) activity. In addition, there were significant (p < 0.05) reductions in cardiac and renal glutathione peroxidase (GPx), glutathione S-transferase (GST) and reduced glutathione (GSH). CoCl2 induced higher immuno-staining of nuclear factor kappa beta (NF-κB) in the heart and kidneys, and the kidney injury molecule (Kim-1) in the kidneys. Treatment with Luteolin or Gallic acid produced significant reversal of the oxidative stress parameters with reductions in NF-κB and Kim-1 expressions, leading to suppression of histopathological lesions observed in the tissues.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Akinleye Stephen Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria.
| | - Olamide Elizabeth Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | | | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Benjamin Obukowho Emikpe
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| |
Collapse
|
12
|
Ethanolic Extract of Moringa oleifera Leaves Influences NF-κB Signaling Pathway to Restore Kidney Tissue from Cobalt-Mediated Oxidative Injury and Inflammation in Rats. Nutrients 2020; 12:nu12041031. [PMID: 32283757 PMCID: PMC7230732 DOI: 10.3390/nu12041031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to describe the protective efficacy of Moringa oleifera ethanolic extract (MOEE) against the impact of cobalt chloride (CoCl2) exposure on the rat’s kidney. Fifty male rats were assigned to five equal groups: a control group, a MOEE-administered group (400 mg/kg body weight (bw), daily via gastric tube), a CoCl2-intoxicated group (300 mg/L, daily in drinking water), a protective group, and a therapeutic co-administered group that received MOEE prior to or following and concurrently with CoCl2, respectively. The antioxidant status indices (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), oxidative stress markers (hydrogen peroxide (H2O2), 8-hydroxy-2-deoxyguanosine (8-OHdG), and malondialdehyde (MDA)), and inflammatory response markers (nitric oxide (NO), tumor necrosis factor (TNF-α), myeloperoxidase (MPO), and C-reactive protein (CRP)) were evaluated. The expression profiles of pro-inflammatory cytokines (nuclear factor-kappa B (NF-kB) and interleukin-6 (IL-6)) were also measured by real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that CoCl2 exposure was associated with significant elevations of oxidative stress and inflammatory indices with reductions in the endogenous tissue antioxidants’ concentrations. Moreover, CoCl2 enhanced the activity of the NF-κB inflammatory-signaling pathway that plays a role in the associated inflammation of the kidney. MOEE ameliorated CoCl2-induced renal oxidative damage and inflammatory injury with the suppression of the mRNA expression pattern of pro-inflammatory cytokine-encoding genes. MOEE is more effective when it is administered with CoCl2 exposure as a prophylactic regimen. In conclusion, MOEE administration exhibited protective effects in counteracting CoCl2-induced renal injury in rats.
Collapse
|
13
|
Akinrinde AS, Adebiyi OE. Neuroprotection by luteolin and gallic acid against cobalt chloride-induced behavioural, morphological and neurochemical alterations in Wistar rats. Neurotoxicology 2019; 74:252-263. [PMID: 31362009 DOI: 10.1016/j.neuro.2019.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/20/2019] [Accepted: 07/21/2019] [Indexed: 02/08/2023]
Abstract
Cobalt (Co) intoxication arising from occupational exposures and ion release from metal implants has been associated with neurological alterations such as cognitive decline, incoordination and depression. The present study evaluated the mechanisms of neuro-protection exerted by Luteolin (Lut; 100 mg/kg) and Gallic acid (GA; 120 mg/kg) in Wistar rats exposed to cobalt chloride (CoCl2) at 150 mg/kg for 7 consecutive days. Results indicate that CoCl2 induced neuro-behavioural deficits specifically by decreasing exploratory activities of CoCl2-exposed rats, increased anxiety, as well as significant reduction in hanging latency. Co-treatment with Lut or GA, however, restored these parameters to values near those of normal controls. Moreover, Lut and GA prevented CoCl2-induced increases in hydrogen peroxide (H2O2), malondialdehyde (MDA) and nitric oxide (NO) in the brain, while also restoring the activities of acetylcholinesterase, glutathione S-transferase (GST) and superoxide dismutase (SOD). In addition, Lut and GA produced significant reversal of CoCl2-induced elevation in levels of serum Interleukin 1 beta (IL-1β) and Tumor necrosis factor (TNFα). Meanwhile, immunohistochemistry revealed increased astrocytic expression of glial fibrillary acidic protein (GFAP), with intense calbindin (CB) D-28k staining and pronounced dendrites in the Purkinje cells. In contrast, the CoCl2 group was characterized by decreased number of neurons expressing CB and dendritic loss. Taken together, mechanisms of luteolin and/or gallic acid protection against Co toxicity involved restoration of Ca2+ homeostasis, acetylcholinesterase and antioxidant enzyme activities, as well as inhibition of lipid peroxidation in the brain.
Collapse
Affiliation(s)
- A S Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria.
| | - O E Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| |
Collapse
|
14
|
Oyagbemi AA, Omobowale TO, Awoyomi OV, Ajibade TO, Falayi OO, Ogunpolu BS, Okotie UJ, Asenuga ER, Adejumobi OA, Hassan FO, Ola-Davies OE, Saba AB, Adedapo AA, Yakubu MA. Cobalt chloride toxicity elicited hypertension and cardiac complication via induction of oxidative stress and upregulation of COX-2/Bax signaling pathway. Hum Exp Toxicol 2018; 38:519-532. [PMID: 30596275 DOI: 10.1177/0960327118812158] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cobalt is a ferromagnetic metal with extensive industrial and biological applications. To assess the toxic effects of, and mechanisms involved in cobalt chloride (CoCl2)-induced cardio-renal dysfunctions. Male Wistar rats were exposed orally, daily through drinking water to 0 ppm (control), 150 ppm, 300 ppm, and 600 ppm of CoCl2, respectively. Following exposure, results revealed significant ( p < 0.05) rise in markers of oxidative stress, but decreased activities of catalase, glutathione peroxidase, glutathione-S-transferase, and reduced glutathione content in cardiac and renal tissues. There were significant increases in systolic, diastolic, and mean arterial blood pressure at the 300- and 600-ppm level of CoCl2-exposed rats relative to the control. Prolongation of QT and QTc intervals was observed in CoCl2 alone treated rats. Also, there were significant increases in the heart rates, and reduction in P wave, and PR duration of rats administered CoCl2. Histopathology of the kidney revealed peritubular and periglomerular inflammation, focal glomerular necrosis following CoCl2 exposure. Further, cyclooxygenase-2 and B-cell associated protein X expressions were upregulated in the cardiac and renal tissues of CoCl2-exposed rats relative to the control. Combining all, results from this study implicated oxidative stress, inflammation, and apoptosis as pathologic mechanisms in CoCl2-induced hypertension and cardiovascular complications of rats.
Collapse
Affiliation(s)
- A A Oyagbemi
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - T O Omobowale
- 2 Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O V Awoyomi
- 3 Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - T O Ajibade
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O O Falayi
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - B S Ogunpolu
- 2 Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - U J Okotie
- 3 Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - E R Asenuga
- 5 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Ibadan, Nigeria
| | - O A Adejumobi
- 2 Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - F O Hassan
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O E Ola-Davies
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - A B Saba
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - A A Adedapo
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - M A Yakubu
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.,6 Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
15
|
Assessment of neuroprotective effects of Gallic acid against glutamate-induced neurotoxicity in primary rat cortex neuronal culture. Neurochem Int 2018; 121:50-58. [DOI: 10.1016/j.neuint.2018.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
|
16
|
Liang C, Wang J, Xia X, Wang Q, Li Z, Tao R, Tao Y, Xiang H, Tong S, Tao F. Serum cobalt status during pregnancy and the risks of pregnancy-induced hypertension syndrome: A prospective birth cohort study. J Trace Elem Med Biol 2018; 46:39-45. [PMID: 29413109 DOI: 10.1016/j.jtemb.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022]
Abstract
Cobalt (Co) is an essential trace element and has been suggested to be involved in blood pressure regulation, but few studies have focused on serum Co status during pregnancy and the risks of pregnancy-induced hypertension syndrome (PIH). The aim of this study was to prospectively assess the association between serum Co levels during pregnancy and the risks of PIH, and to explore how the maternal Co status contributes to the incidence of PIH. 3260 non-hypertensive women before pregnancy with singleton births in Ma'anShan birth cohort study (MABC) were recruited with the assessment of maternal Co concentrations, additionally, the levels of 7 inflammatory factors and 3 stress factors in placentas were also determined. Relative risks (RRs) [95% confidence intervals (CIs)] for the risks of PIH were assessed and the relationships between 10 factors and maternal Co status during pregnancy were evaluated as well. A total of 194 (5.95%) women were diagnosed with PIH. The concentrations of Co varied from the first trimester to the second trimester, and maternal serum Co concentrations during pregnancy were negatively associated with the incidence of PIH in a linear fashion. There was a clear trend in RRs according to decreasing exposure to Co levels in the second trimester (RRa=1.80, 95% CI (1.26, 2.56); RRb=1.73, 95% CI (1.21, 2.46) and RRc=1.43, 95% CI (1.02, 2.04) when low Co levels comparing with high Co levels before and after adjustment for confounders; and RRa=1.29, 95% CI (0.88, 1.88); RRb=1.28, 95% CI (0.87, 1.87) and RRc=1.25, 95% CI (0.86, 1.82) when medium Co levels comparing with high Co levels before and after adjustment for confounders). In addition, the trend for the first trimester was nearly identifical to those for the second trimester (RRa=1.35, 95% CI (0.94, 1.93); RRb=1.33, 95% CI (0.93, 1.91); RRc=1.22, 95%CI (0.86, 1.73) when low Co levels comparing with high Co levels before and after adjustment for confounders; and RRa=1.10, 95% CI (0.76, 1.60); RRb=1.13, 95% CI (0.77, 1.64) and RRc=1.12, 95% CI (0.77, 1.63) before and after adjustment for confounders). Interestingly, Co concentrations in the second trimester were also inversely associated with the levels of some inflammatory factors and all three stress factors in placentas. This prospective study suggested that lower maternal serum Co concentration in the second trimester may associate with the incidence of PIH in Chinese population. Additionally, the maternal Co concentrations in the second trimester could reduce inflammatory and oxidative damage to the placenta. Further evidence is needed to support the findings and assess the mechanisms underlying the association.
Collapse
Affiliation(s)
- Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Jianqing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Qunan Wang
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Zhijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Ruiwen Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Yiran Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Haiyun Xiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Shilu Tong
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China; Shanghai Children's Medical Centre, Shanghai Jiao Tong University, Shanghai, China; School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China.
| |
Collapse
|
17
|
Omóbòwálé TO, Oyagbemi AA, Folasire AM, Ajibade TO, Asenuga ER, Adejumobi OA, Ola-Davies OE, Oyetola O, James G, Adedapo AA, Yakubu MA. Ameliorative effect of gallic acid on doxorubicin-induced cardiac dysfunction in rats. J Basic Clin Physiol Pharmacol 2018; 29:19-27. [PMID: 29016351 DOI: 10.1515/jbcpp-2016-0194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The use of doxorubicin (DOX) as an antineoplastic agent has been greatly limited because of the myriad of toxic sequelae associated with it. The aim of this study was to assess the protective effects of gallic acid (GA) on DOX-induced cardiac toxicity in rats. METHODS Sixty male rats (Wistar strain) were used in this study. They were divided into six groups (A-F) each containing 10 animals. Group A was the control. Rats in Groups B, C, and D were treated with DOX at the dosage of 15 mg/kg body weight i.p. Prior to this treatment, rats in Groups C and D had been treated orally with GA for 7 days at the dosage of 60 and 120 mg/kg, respectively. Animals from Groups E and F received only 60 and 120 mg/kg GA, respectively, which were administered orally for 7 days. RESULTS The exposure of rats to DOX led to a significant (p<0.05) decrease in the cardiac antioxidant defence system and elevation of creatine kinase myocardial band and lactate dehydrogenase. The electrocardiography results showed a significant decrease in heart rate, QRS, and QT-segment prolongation. GA alone improved the antioxidant defence system. CONCLUSIONS The GA pretreatment significantly alleviated GA-associated ECG abnormalities, restored the antioxidant status and prevented cardiac damage.
Collapse
Affiliation(s)
| | - Ademola A Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayorinde M Folasire
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo O Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa R Asenuga
- Department of Veterinary Physiology, Pharmacology and Biochemistry, University of Benin, Benin City, Nigeria
| | | | - Olufunke E Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Orotusin Oyetola
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gana James
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Momoh A Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
18
|
Singh N, Bhagat J, Ingole BS. Genotoxicity of two heavy metal compounds: lead nitrate and cobalt chloride in Polychaete Perinereis cultrifera. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:308. [PMID: 28577271 DOI: 10.1007/s10661-017-5993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
The present study explores the in vivo and in vitro genotoxic effects of lead nitrate, [Pb(NO3)2] a recognized environmental pollutant and cobalt chloride (CoCl2), an emerging environmental pollutant in polychaete Perinereis cultrifera using comet assay. Despite widespread occurrence and extensive industrial applications, no previous published reports on genotoxicity of these compounds are available in polychaete as detected by comet assay. Polychaetes were exposed in vivo to Pb(NO3)2 (0, 100, 500, and 1000 μg/l) and CoCl2 (0, 100, 300, and 500 μg/l) for 5 days. At 100 μg/l Pb(NO3)2 concentration, tail DNA (TDNA) values in coelomocytes were increase by 1.16, 1.43, and 1.55-fold after day 1, day 3, and day 5, whereas, OTM showed 1.12, 2.33, and 2.10-fold increase in in vivo. Pb(NO3)2 showed a concentration and time-dependent genotoxicity whereas CoCl2 showed a concentration-dependent genotoxicity in in vivo. A concentration-dependent increase in DNA damage was observed in in vitro studies for Pb(NO3)2 and CoCl2. DNA damage at 500 μg/L showed almost threefold increase in TDNA and approximately fourfold increase in OTM as compared to control in in vitro. Our studies suggest that Pb(NO3)2 and CoCl2 have potential to cause genotoxic damage, with Pb(NO3)2 being more genotoxic in polychaete and should be used more carefully in industrial and other activities. Graphical abstract.
Collapse
Affiliation(s)
- Nisha Singh
- Biological Oceanographic Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Jacky Bhagat
- Biological Oceanographic Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Baban S Ingole
- Biological Oceanographic Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| |
Collapse
|
19
|
Awoyemi OV, Okotie UJ, Oyagbemi AA, Omobowale TO, Asenuga ER, Ola-Davies OE, Ogunpolu BS. Cobalt chloride exposure dose-dependently induced hepatotoxicity through enhancement of cyclooxygenase-2 (COX-2)/B-cell associated protein X (BAX) signaling and genotoxicity in Wistar rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:1899-1907. [PMID: 28303633 DOI: 10.1002/tox.22412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Cobalt chloride (CoCl2 ) is one of the many environmental contaminants, used in numerous industrial sectors. It is a pollutant with deadly toxicological consequences both in developing and developed countries. We investigated toxicological impact of CoCl2 on hepatic antioxidant status, apoptosis, and genotoxicity. Forty Wistar rats were divided into four groups, 10 rats per group: Group 1 served as control and received clean tap water orally; Group 2 received CoCl2 solution (150 mg/L); Group 3 received CoCl2 solution (300 mg/L); and Group 4 received CoCl2 (600 mg/L) in drinking water for 7 days, respectively. Exposure of rats to CoCl2 led to a significant decline in hepatic antioxidant enzymes together with significant increase in markers of oxidative stress. Immunohistochemistry revealed dose-dependent increase in cyclooxygenase-2 and BAX expressions together with increased frequency of Micronucleated Polychromatic Erythrocytes. Combining all, CoCl2 administration led to hepatic damage through induction of oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
| | - Ufuoma Jowafe Okotie
- Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
20
|
Gardenia jasminoides has therapeutic effects on L‑NNA‑induced hypertension in vivo. Mol Med Rep 2017; 15:4360-4373. [PMID: 28487985 DOI: 10.3892/mmr.2017.6542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/03/2017] [Indexed: 12/18/2022] Open
Abstract
Gardenia jasminoides is a plant that has been used in traditional Chinese medicine. It has four key active components (genipin gentiobioside, geniposide, crocin 1 and crocin 2). The aim of the present study was to determine the anti‑hypertension effects of Gardenia jasminoidesin vivo. The chemical composition of Gardenia jasminoides was determined using liquid chromatography. The anti‑hypertensive effects of Gardenia jasminoides were determined by a L‑NG‑nitroarginine (L‑NNA)‑induced hypertension animal model. Both Gardenia jasminoides plants of the Jiangjin County variety (CJGJ) and the Lichuan City variety (HLGJ) were used. HLGJ contained more geniposide than CJGJ. L‑NNA was used to induce hypertension in mice, and the mice were subsequently treated with CJGJ and HLGJ. The Gardenia jasminoides‑treated mice exhibited lower systolic (SBP), diastolic (DBP) and mean blood pressure (MBP) than the experimental control mice. Additionally, HLGL has a more potent effect on SBP, MBP and DBP than CJGJ. Following Gardenia jasminoides treatment, the nitric oxide contents in serum, heart, liver, kidney and stomach of mice were higher than the L‑NNA‑induced control mice, and the malondialdehyde contents were lower; the levels in HLGJ‑treated mice were closer to those normal mice than the levels in CJGJ‑treated mice were. Serum levels of endothelin‑1 and vascular endothelial growth factor were reduced by HLGJ treatment in hypertensive mice, whereas the calcitonin gene‑related peptide level was raised. Reverse transcription‑polymerase chain reaction analysis of mouse heart and vessel tissue demonstrated that HLGJ‑treated mice exhibited higher heme oxygenase‑1, neuronal nitric oxide synthase (nNOS), endothelial NOS, Bax, caspase‑3, caspase‑8, caspase‑9 mRNA expression levels and lower adrenomedullin, receptor activity modifying protein, interleukin‑1β, tumor necrosis factor‑α, inducible NOS, Bcl‑2, monocyte chemoattractant protein‑1, nuclear factor‑κB and matrix metalloproteinase‑2 and ‑9 mRNA expression compared with control hypertensive mice and CJGJ‑treated mice. In conclusion, Gardenia jasminoides has anti‑hypertensive effects, and these effects may be associated with the active component, geniposide.
Collapse
|