1
|
Zheng XW, Fang YY, Lin JJ, Luo JJ, Li SJ, Aschner M, Jiang YM. Signal Transduction Associated with Mn-induced Neurological Dysfunction. Biol Trace Elem Res 2024; 202:4158-4169. [PMID: 38155332 DOI: 10.1007/s12011-023-03999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Manganese (Mn) is a heavy metal that occurs widely in nature and has a vital physiological role in growth and development. However, excessive exposure to Mn can cause neurological damage, especially cognitive dysfunction, such as learning disability and memory loss. Numerous studies on the mechanisms of Mn-induced nervous system damage found that this metal targets a variety of metabolic pathways, for example, endoplasmic reticulum stress, apoptosis, neuroinflammation, cellular signaling pathway changes, and neurotransmitter metabolism interference. This article reviews the latest research progress on multiple signaling pathways related to Mn-induced neurological dysfunction.
Collapse
Affiliation(s)
- Xiao-Wei Zheng
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Yuan-Yuan Fang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jun-Jie Lin
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jing-Jing Luo
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| |
Collapse
|
2
|
Liu QQ, Wu GH, Wang XC, Xiong XW, Rui-Wang, Yao BL. The role of Foxo3a in neuron-mediated cognitive impairment. Front Mol Neurosci 2024; 17:1424561. [PMID: 38962803 PMCID: PMC11220205 DOI: 10.3389/fnmol.2024.1424561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Cognitive impairment (COI) is a prevalent complication across a spectrum of brain disorders, underpinned by intricate mechanisms yet to be fully elucidated. Neurons, the principal cell population of the nervous system, orchestrate cognitive processes and govern cognitive balance. Extensive inquiry has spotlighted the involvement of Foxo3a in COI. The regulatory cascade of Foxo3a transactivation implicates multiple downstream signaling pathways encompassing mitochondrial function, oxidative stress, autophagy, and apoptosis, collectively affecting neuronal activity. Notably, the expression and activity profile of neuronal Foxo3a are subject to modulation via various modalities, including methylation of promoter, phosphorylation and acetylation of protein. Furthermore, upstream pathways such as PI3K/AKT, the SIRT family, and diverse micro-RNAs intricately interface with Foxo3a, engendering alterations in neuronal function. Through several downstream routes, Foxo3a regulates neuronal dynamics, thereby modulating the onset or amelioration of COI in Alzheimer's disease, stroke, ischemic brain injury, Parkinson's disease, and traumatic brain injury. Foxo3a is a potential therapeutic cognitive target, and clinical drugs or multiple small molecules have been preliminarily shown to have cognitive-enhancing effects that indirectly affect Foxo3a. Particularly noteworthy are multiple randomized, controlled, placebo clinical trials illustrating the significant cognitive enhancement achievable through autophagy modulation. Here, we discussed the role of Foxo3a in neuron-mediated COI and common cognitively impaired diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao-Le Yao
- Department of Rehabilitation Medicine, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
3
|
Chen Z, Ao C, Liu Y, Yang Y, Liu Y, Ming Q, Li C, Zhao H, Ban J, Li J. Manganese induces oxidative damage in the hippocampus by regulating the expression of oxidative stress-related genes via modulation of H3K18 acetylation. ENVIRONMENTAL TOXICOLOGY 2024; 39:2240-2253. [PMID: 38129942 DOI: 10.1002/tox.24102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/25/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Prolonged exposure to manganese (Mn) contributes to hippocampal Mn accumulation, which leads to neurodegenerative diseases called manganese poisoning. However, the underlying molecular mechanisms remain unclear and there are no ideal biomarkers. Oxidative stress is the essential mechanisms of Mn-related neurotoxicity. Furthermore, histone acetylation has been identified as being engaged in the onset and development of neurodegenerative diseases. Therefore, the work aims to understand the molecular mechanisms of oxidative damage in the hippocampus due to Mn exposure from the aspect of histone acetylation modification and to assess whether H3K18 acetylation (H3K18ac) modification level in peripheral blood reflect Mn-induced oxidative damage in the hippocampus. Here, we randomly divided 60 male rats into four groups and injected them intraperitoneally with sterile pure water and MnCl2 ⋅4H2 O (5, 10, and 15 mg/kg) for 16 weeks, 5 days a week, once a day. The data confirmed that Mn exposure down-regulated superoxide dismutase activity and glutathione level as well as up-regulated malondialdehyde level in the hippocampus and plasma, and that there was a positive correlation between these indicators in the hippocampus and plasma. Besides, we noted that Mn treatment upregulated H3K18ac modification levels in the hippocampus and peripheral blood and that H3K18ac modification levels correlated with oxidative stress. Further studies demonstrated that Mn treatment decreased the amounts of H3K18ac enrichment in the manganese superoxide dismutase (SOD2) and glutathione transferase omega 1 (GSTO1) gene promoter regions, contributing to oxidative damage in the hippocampus. In short, our results demonstrate that Mn induces oxidative damage in the hippocampus by inhibiting the expression of SOD2 and GSTO1 genes via modulation of H3K18ac. In assessing Mn-induced hippocampal neurotoxicity, oxidative damage in plasma may reflect hippocampal oxidative damage in Mn-exposed groups.
Collapse
Affiliation(s)
- Zhi Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chunyan Ao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yue Yang
- Guiyang Stomatological Hospital, Guiyang, Guizhou, China
| | - Ying Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qian Ming
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Changzhe Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hua Zhao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiaqi Ban
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Cheng H, Villahoz BF, Ponzio RD, Aschner M, Chen P. Signaling Pathways Involved in Manganese-Induced Neurotoxicity. Cells 2023; 12:2842. [PMID: 38132161 PMCID: PMC10742340 DOI: 10.3390/cells12242842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Manganese (Mn) is an essential trace element, but insufficient or excessive bodily amounts can induce neurotoxicity. Mn can directly increase neuronal insulin and activate insulin-like growth factor (IGF) receptors. As an important cofactor, Mn regulates signaling pathways involved in various enzymes. The IGF signaling pathway plays a protective role in the neurotoxicity of Mn, reducing apoptosis in neurons and motor deficits by regulating its downstream protein kinase B (Akt), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). In recent years, some new mechanisms related to neuroinflammation have been shown to also play an important role in Mn-induced neurotoxicity. For example, DNA-sensing receptor cyclic GMP-AMP synthase (cCAS) and its downstream signal efficient interferon gene stimulator (STING), NOD-like receptor family pyrin domain containing 3(NLRP3)-pro-caspase1, cleaves to the active form capase1 (CASP1), nuclear factor κB (NF-κB), sirtuin (SIRT), and Janus kinase (JAK) and signal transducers and activators of the transcription (STAT) signaling pathway. Moreover, autophagy, as an important downstream protein degradation pathway, determines the fate of neurons and is regulated by these upstream signals. Interestingly, the role of autophagy in Mn-induced neurotoxicity is bidirectional. This review summarizes the molecular signaling pathways of Mn-induced neurotoxicity, providing insight for further understanding of the mechanisms of Mn.
Collapse
Affiliation(s)
| | | | | | | | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.C.); (B.F.V.); (R.D.P.); (M.A.)
| |
Collapse
|
5
|
Tang X, Balachandran RC, Aschner M, Bowman AB. IGF/mTORC1/S6 Signaling Is Potentiated and Prolonged by Acute Loading of Subtoxicological Manganese Ion. Biomolecules 2023; 13:1229. [PMID: 37627294 PMCID: PMC10452562 DOI: 10.3390/biom13081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The insulin-like growth factor (IGF)/insulin signaling (IIS) pathway is involved in cellular responses against intracellular divalent manganese ion (Mn2+) accumulation. As a pathway where multiple nodes utilize Mn2+ as a metallic co-factor, how the IIS signaling patterns are affected by Mn2+ overload is unresolved. In our prior studies, acute Mn2+ exposure potentiated IIS kinase activity upon physiological-level stimulation, indicated by elevated phosphorylation of protein kinase B (PKB, also known as AKT). AKT phosphorylation is associated with IIS activity; and provides direct signaling transduction input for the mammalian target of rapamycin complex 1 (mTORC1) and its downstream target ribosomal protein S6 (S6). Here, to better define the impact of Mn2+ exposure on IIS function, Mn2+-induced IIS activation was evaluated with serial concentrations and temporal endpoints. In the wild-type murine striatal neuronal line STHdh, the acute treatment of Mn2+ with IGF induced a Mn2+ concentration-sensitive phosphorylation of S6 at Ser235/236 to as low as 5 μM extracellular Mn2+. This effect required both the essential amino acids and insulin receptor (IR)/IGF receptor (IGFR) signaling input. Similar to simultaneous stimulation of Mn2+ and IGF, when a steady-state elevation of Mn2+ was established via a 24-h pre-exposure, phosphorylation of S6 also displayed higher sensitivity to sub-cytotoxic Mn2+ when compared to AKT phosphorylation at Ser473. This indicates a synergistic effect of sub-cytotoxic Mn2+ on IIS and mTORC1 signaling. Furthermore, elevated intracellular Mn2+, with both durations, led to a prolonged activation in AKT and S6 upon stimulation. Our data demonstrate that the downstream regulator S6 is a highly sensitive target of elevated Mn2+ and is well below the established acute cytotoxicity thresholds (<50 μM). These findings indicate that the IIS/mTORC1 pathways, in which Mn2+ normally serves as an essential co-factor, are dually responsible for the cellular changes in exposures to real-world Mn2+ concentrations.
Collapse
Affiliation(s)
- Xueqi Tang
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (X.T.)
| | - Rekha C. Balachandran
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (X.T.)
- Exponent Inc., Alexandria, VA 22314, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (X.T.)
| |
Collapse
|
6
|
Xu L, Liu R, Qin Y, Wang T. Brain metabolism in Alzheimer's disease: biological mechanisms of exercise. Transl Neurodegener 2023; 12:33. [PMID: 37365651 DOI: 10.1186/s40035-023-00364-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major subtype of neurodegenerative dementia caused by long-term interactions and accumulation of multiple adverse factors, accompanied by dysregulation of numerous intracellular signaling and molecular pathways in the brain. At the cellular and molecular levels, the neuronal cellular milieu of the AD brain exhibits metabolic abnormalities, compromised bioenergetics, impaired lipid metabolism, and reduced overall metabolic capacity, which lead to abnormal neural network activity and impaired neuroplasticity, thus accelerating the formation of extracellular senile plaques and intracellular neurofibrillary tangles. The current absence of effective pharmacological therapies for AD points to the urgent need to investigate the benefits of non-pharmacological approaches such as physical exercise. Despite the evidence that regular physical activity can improve metabolic dysfunction in the AD state, inhibit different pathophysiological molecular pathways associated with AD, influence the pathological process of AD, and exert a protective effect, there is no clear consensus on the specific biological and molecular mechanisms underlying the advantages of physical exercise. Here, we review how physical exercise improves crucial molecular pathways and biological processes associated with metabolic disorders in AD, including glucose metabolism, lipid metabolism, Aβ metabolism and transport, iron metabolism and tau pathology. How metabolic states influence brain health is also presented. A better knowledge on the neurophysiological mechanisms by which exercise improves AD metabolism can contribute to the development of novel drugs and improvement of non-pharmacological interventions.
Collapse
Affiliation(s)
- Longfei Xu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Ran Liu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Yingkai Qin
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
| | - Tianhui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
7
|
Pajarillo E, Nyarko-Danquah I, Digman A, Multani HK, Kim S, Gaspard P, Aschner M, Lee E. Mechanisms of manganese-induced neurotoxicity and the pursuit of neurotherapeutic strategies. Front Pharmacol 2022; 13:1011947. [PMID: 36605395 PMCID: PMC9808094 DOI: 10.3389/fphar.2022.1011947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to elevated levels of manganese via occupational or environmental settings causes a neurological disorder known as manganism, resembling the symptoms of Parkinson's disease, such as motor deficits and cognitive impairment. Numerous studies have been conducted to characterize manganese's neurotoxicity mechanisms in search of effective therapeutics, including natural and synthetic compounds to treat manganese toxicity. Several potential molecular targets of manganese toxicity at the epigenetic and transcriptional levels have been identified recently, which may contribute to develop more precise and effective gene therapies. This review updates findings on manganese-induced neurotoxicity mechanisms on intracellular insults such as oxidative stress, inflammation, excitotoxicity, and mitophagy, as well as transcriptional dysregulations involving Yin Yang 1, RE1-silencing transcription factor, transcription factor EB, and nuclear factor erythroid 2-related factor 2 that could be targets of manganese neurotoxicity therapies. This review also features intracellular proteins such as PTEN-inducible kinase 1, parkin, sirtuins, leucine-rich repeat kinase 2, and α-synuclein, which are associated with manganese-induced dysregulation of autophagy/mitophagy. In addition, newer therapeutic approaches to treat manganese's neurotoxicity including natural and synthetic compounds modulating excitotoxicity, autophagy, and mitophagy, were reviewed. Taken together, in-depth mechanistic knowledge accompanied by advances in gene and drug delivery strategies will make significant progress in the development of reliable therapeutic interventions against manganese-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Harpreet Kaur Multani
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Patric Gaspard
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
8
|
Ge X, Ye G, He J, Bao Y, Zheng Y, Cheng H, Feng X, Yang W, Wang F, Zou Y, Yang X. Metal mixtures with longitudinal changes in lipid profiles: findings from the manganese-exposed workers healthy cohort. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85103-85113. [PMID: 35793018 DOI: 10.1007/s11356-022-21653-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The majority of epidemiological investigations on metal exposures and lipid metabolism employed cross-sectional designs and focused on individual metal. We explored the associations between metal mixture exposures and longitudinal changes in lipid profiles and potential sexual heterogeneity. We recruited 250 men and 73 women, aged 40 years at baseline (2012), and followed them up in 2020, from the manganese-exposed workers healthy cohort. We detected metal concentrations of blood cells at baseline with inductively coupled plasma mass spectrometry. Lipid profiles were repeatedly measured over 8 years of follow-up. We performed sparse partial least squares (sPLS) model to evaluate multi-pollutant associations. Bayesian kernel machine regression was utilized for metal mixtures as well as evaluating their joint impacts on lipid changes. In sPLS models, a positive association was found between manganese and change in total cholesterol (TC) (beta = 0.169), while a negative association was observed between cobalt (beta = - 0.134) and change in low density lipoprotein cholesterol (LDL-C) (beta = - 0.178) among overall participants, which were consistent in men. Interestingly, rubidium was positively associated with change in LDL-C (beta = 0.273) in women, while copper was negatively associated with change in TC (beta = - 0.359) and LDL-C (beta = - 0.267). Magnesium was negatively associated with change in TC (beta = - 0.327). We did not observe the significantly cumulative effect of metal mixtures on lipid changes. In comparison to other metals, manganese had a more significant influence on lipid change [group PIP (0.579) and conditional PIP (0.556) for TC change in men]. Furthermore, male rats exposed to manganese (20 mg/kg) had higher levels of LDL-C in plasma and more apparent inflammatory infiltration, vacuolation of liver cells, nuclear pyknosis, and fatty change than the controls. These findings highlight the potential role of metal mixtures in lipid metabolism with sex-dependent heterogeneity. More researches are needed to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoting Ge
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Guohong Ye
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yuan Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Wenjun Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobo Yang
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
9
|
Xu L, Li M, Wei A, Yang M, Li C, Liu R, Zheng Y, Chen Y, Wang Z, Wang K, Wang T. Treadmill exercise promotes E3 ubiquitin ligase to remove amyloid β and P-tau and improve cognitive ability in APP/PS1 transgenic mice. J Neuroinflammation 2022; 19:243. [PMID: 36195875 PMCID: PMC9531430 DOI: 10.1186/s12974-022-02607-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background Moderate physical exercise is conducive to the brains of healthy humans and AD patients. Previous reports have suggested that treadmill exercise plays an anti-AD role and improves cognitive ability by promoting amyloid clearance, inhibiting neuronal apoptosis, reducing oxidative stress level, alleviating brain inflammation, and promoting autophagy–lysosome pathway in AD mice. However, few studies have explored the relationships between the ubiquitin–proteasome system and proper exercise in AD. The current study was intended to investigate the mechanism by which the exercise-regulated E3 ubiquitin ligase improves AD. Methods Both wild type and APP/PS1 transgenic mice were divided into sedentary (WTC and ADC) and exercise (WTE and ADE) groups (n = 12 for each group). WTE and ADE mice were subjected to treadmill exercise of 12 weeks in order to assess the effect of treadmill running on learning and memory ability, Aβ plaque burden, hyperphosphorylated Tau protein and E3 ubiquitin ligase. Results The results indicated that exercise restored learning and memory ability, reduced Aβ plaque areas, inhibited the hyperphosphorylation of Tau protein activated PI3K/Akt/Hsp70 signaling pathway, and improved the function of the ubiquitin–proteasome system (increased UCHL-1 and CHIP levels, decreased BACE1 levels) in APP/PS1 transgenic mice. Conclusions These findings suggest that exercise may promote the E3 ubiquitin ligase to clear β-amyloid and hyperphosphorylated Tau by activating the PI3K/Akt signaling pathway in the hippocampus of AD mice, which is efficient in ameliorating pathological phenotypes and improving learning and memory ability. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02607-7.
Collapse
Affiliation(s)
- Longfei Xu
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China.,Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, People's Republic of China
| | - Mingzhe Li
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Aili Wei
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Miaomiao Yang
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Chao Li
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Ran Liu
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China.,Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, People's Republic of China
| | - Yuejun Zheng
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China.,Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, People's Republic of China
| | - Yuxin Chen
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China.,Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, People's Republic of China
| | - Zixi Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Kun Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China.
| | - Tianhui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medicine Sciences, Academy of Military Sciences, 1 Dali Road, Heping District, Tianjin, 300050, People's Republic of China. .,Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
10
|
EIF3C Promotes Lung Cancer Tumorigenesis by Regulating the APP/HSPA1A/LMNB1 Axis. DISEASE MARKERS 2022; 2022:9464094. [PMID: 36157221 PMCID: PMC9492341 DOI: 10.1155/2022/9464094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
Objective This study was designed to explore the role and mechanism of eukaryotic initiation factor 3C (EIF3C) in the proliferation and apoptosis of lung cancer cells. Methods EIF3C expression in clinic lung cancer tissues was detected by immunohistochemistry assay. Cell transfection with lentivirus EIF3C short hairpin RNA (shRNA) was performed with Lipofectamine 2000. Cell proliferation was evaluated by Celigo and MTT assays. Caspase-3/7 activity was assessed using caspase-3/7 assay kit for cell apoptosis detection. The apoptosis rate of lung cancer cells was assessed by flow cytometry. A transplanted tumor nude-mouse model was established to clarify the role of EIF3C in lung cancer. The potential mechanism of EIF3C was explored by mRNA microarray analysis. Among the top 30 up- and downregulated mRNAs selected for RT-qPCR, 5 were chosen for western blot analysis. Results EIF3C was abnormally overexpressed in lung cancer cell lines and tissues. Silencing EIF3C suppressed the proliferation and promoted the apoptosis of lung cancer cells. In vivo experiments using transplanted tumor nude-mouse model suggested that EIF3C promoted lung cancer tumorigenesis. Further, mRNA microarray analyses identified 189 upregulated and 83 downregulated differentially expressed mRNA between the KD and negative control groups. After validation by RT-qPCR and western blot, three downstream genes (APP, HSPA1A, and LMNB1) were confirmed. Conclusion EIF3C overexpression may facilitate the proliferation and hamper the apoptosis of lung cancer cells by regulating the APP/HSPA1A/LMNB1 axis.
Collapse
|
11
|
Ijomone OM, Iroegbu JD, Morcillo P, Ayodele AJ, Ijomone OK, Bornhorst J, Schwerdtle T, Aschner M. Sex-dependent metal accumulation and immunoexpression of Hsp70 and Nrf2 in rats' brain following manganese exposure. ENVIRONMENTAL TOXICOLOGY 2022; 37:2167-2177. [PMID: 35596948 PMCID: PMC9357062 DOI: 10.1002/tox.23583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Manganese (Mn), although important for multiple cellular processes, has posed environmental health concerns due to its neurotoxic effects. In recent years, there have been extensive studies on the mechanism of Mn-induced neuropathology, as well as the sex-dependent vulnerability to its neurotoxic effects. Nonetheless, cellular mechanisms influenced by sex differences in susceptibility to Mn have yet to be adequately characterized. Since oxidative stress is a key mechanism of Mn neurotoxicity, here, we have probed Hsp70 and Nrf2 proteins to investigate the sex-dependent changes following exposure to Mn. Male and female rats were administered intraperitoneal injections of MnCl2 (10 mg/kg and 25 mg/kg) 48 hourly for a total of eight injections (15 days). We evaluated changes in body weight, as well as Mn accumulation, Nrf2 and Hsp70 expression across four brain regions; striatum, cortex, hippocampus and cerebellum in both sexes. Our results showed sex-specific changes in body-weight, specifically in males but not in females. Additionally, we noted sex-dependent accumulation of Mn in the brain, as well as in expression levels of Nrf2 and Hsp70 proteins. These findings revealed sex-dependent susceptibility to Mn-induced neurotoxicity corresponding to differential Mn accumulation, and expression of Hsp70 and Nrf2 across several brain regions.
Collapse
Affiliation(s)
- Omamuyovwi M. Ijomone
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Joy D. Iroegbu
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Patricia Morcillo
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akinyemi J. Ayodele
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Olayemi K. Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- TraceAge – DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Tanja Schwerdtle
- TraceAge – DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Michael Aschner
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
12
|
Chen P, Cheng H, Zheng F, Li S, Bornhorst J, Yang B, Lee KH, Ke T, Li Y, Schwerdtle T, Yang X, Bowman AB, Aschner M. BTBD9 attenuates manganese-induced oxidative stress and neurotoxicity by regulating insulin growth factor signaling pathway. Hum Mol Genet 2022; 31:2207-2222. [PMID: 35134179 PMCID: PMC9262395 DOI: 10.1093/hmg/ddac025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/29/2021] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Manganese (Mn) is an essential mineral, but excess exposure can cause dopaminergic neurotoxicity. Restless legs syndrome (RLS) is a common neurological disorder, but the etiology and pathology remain largely unknown. The purpose of this study was to identify the role of Mn in the regulation of an RLS genetic risk factor BTBD9, characterize the function of BTBD9 in Mn-induced oxidative stress and dopaminergic neuronal dysfunction. We found that human subjects with high blood Mn levels were associated with decreased BTBD9 mRNA levels, when compared with subjects with low blood Mn levels. In A549 cells, Mn exposure decreased BTBD9 protein levels. In Caenorhabditis elegans, loss of hpo-9 (BTBD9 homolog) resulted in more susceptibility to Mn-induced oxidative stress and mitochondrial dysfunction, as well as decreased dopamine levels and alternations of dopaminergic neuronal morphology and behavior. Overexpression of hpo-9 in mutant animals restored these defects and the protection was eliminated by mutation of the forkhead box O (FOXO). In addition, expression of hpo-9 upregulated FOXO protein levels and decreased protein kinase B levels. These results suggest that elevated Mn exposure might be an environmental risk factor for RLS. Furthermore, BTBD9 functions to alleviate Mn-induced oxidative stress and neurotoxicity via regulation of insulin/insulin-like growth factor signaling pathway.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 53021, China
| | - Fuli Zheng
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shaojun Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 53021, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal 42119, Germany
| | - Bobo Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kun He Lee
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yunhui Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210000, China
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal 14558, Germany
- TraceAge—DFG Research Group on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena 14558, Germany
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 53021, China
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545026, China
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
13
|
Zhao T, Lv WH, Hogstrand C, Zhang DG, Xu YC, Xu YH, Luo Z. Sirt3-Sod2-mROS-Mediated Manganese Triggered Hepatic Mitochondrial Dysfunction and Lipotoxicity in a Freshwater Teleost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8020-8033. [PMID: 35653605 DOI: 10.1021/acs.est.2c00585] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exposure to excessive manganese (Mn) is toxic to humans and animals. However, the toxic effects and mechanisms of excessive Mn influencing the vertebrates have been highly overlooked. In the present study, dietary Mn overload significantly increased hepatic lipid and Mn contents, decreased superoxide dismutase 2 (Sod2) activity, increased the Sod2 acetylation level, and induced mitochondrial dysfunction; Mn induced mitochondrial dysfunction through Mtf1/sirtuin 3 (Sirt3)-mediated acetylation of Sod2 at the sites K55 and K70. Meanwhile, mitochondrial oxidative stress was involved in Mn-induced lipotoxicity. Mechanistically, Mn-induced lipotoxicity was via oxidative stress-induced Hsf1 nucleus translocation and its DNA binding capacity to the regions of a peroxisome proliferator-activated receptor g (pparg) promoter, which in turn induced the transcription of lipogenic-related target genes. For the first time, our study demonstrated that Mn-induced hepatic lipotoxicity via a mitochondrial oxidative stress-dependent Hsf1/Pparg pathway and Mtf1/sirt3-mediated Sod2 acetylation participated in mitochondrial dysfunction. Considering that lipid metabolism and lipotoxicity are widely used as the biomarkers for environmental assessments of pollutants, our study provided innovative and important insights into Mn toxicological and environmental evaluation in aquatic environments.
Collapse
Affiliation(s)
- Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Hong Lv
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London SE1 9NH, U.K
| | - Dian-Guang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Huan Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
14
|
Yang Y, Liu Y, Zhang AL, Tang SF, Ming Q, Ao CY, Liu Y, Li CZ, Yu C, Zhao H, Chen L, Li J. Curcumin protects against manganese-induced neurotoxicity in rat by regulating oxidative stress-related gene expression via H3K27 acetylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113469. [PMID: 35367881 DOI: 10.1016/j.ecoenv.2022.113469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Long-term manganese exposure causes a neurodegenerative disorder referred to as manganese poisoning, but the mechanism remains unclear and no specific treatment is available. Oxidative stress is widely recognised as one of the main causes of manganese-induced neurotoxicity. In recent years, the role of histone acetylation in neurodegenerative diseases has been widely concerned. curcumin is a natural polyphenol compound extracted from the rhizome of turmeric and exhibits both antioxidant and neuroprotective properties. Therefore, we aimed to investigate whether and how curcumin protects against manganese-induced neurotoxicity from the perspective of histone acetylation, based on the reversibility of histone acetylation modification. In this study, rats were treated with or without curcumin and subjected to long-term manganese exposure. Results that treatment of manganese decreased the protein expression of H3K18 acetylation and H3K27 acetylation at the promoters of oxidative stress-related genes and inhibited the expression of these genes. Nevertheless, curcumin increased the H3K27 acetylation level at the manganese superoxide dismutase (SOD2) gene promoter and promoted the expression of SOD2 gene. Oxidative damage in the rat striatum as well as learning and memory dysfunction were ameliorated after curcumin treatment. Taken together, our results suggest that the regulation of oxidative stress by histone acetylation may be a key mechanism of manganese-induced neurotoxicity. In addition, curcumin ameliorates Mn-induced neurotoxicity may be due to alleviation of oxidative damage mediated by increased activation of H3K27 acetylation at the SOD2 gene promoter.
Collapse
Affiliation(s)
- Yue Yang
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ying Liu
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - An-Liu Zhang
- Guiyang Center for Disease Control and Prevention, Guiyang, Guizhou 550003, China
| | - Shun-Fang Tang
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qian Ming
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Chun-Yan Ao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yan Liu
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Chang-Zhe Li
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Chun Yu
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hua Zhao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Li Chen
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jun Li
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
15
|
Tan Y, Cheng H, Su C, Chen P, Yang X. PI3K/Akt Signaling Pathway Ameliorates Oxidative Stress-Induced Apoptosis upon Manganese Exposure in PC12 Cells. Biol Trace Elem Res 2022; 200:749-760. [PMID: 33772736 DOI: 10.1007/s12011-021-02687-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Manganese (Mn)-induced neurotoxicity has aroused public concerns for many years, but its precise mechanism is still poorly understood. Herein, we report the impacts of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway in mediating neurological effects induced by manganese sulfate (MnSO4) exposure in PC12 cells. In this study, cells were treated with MnSO4 for 24 h in the absence or presence of LY294002 (a special inhibitor of PI3K). We investigated cell viability and apoptosis signals, as well as levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA). The mRNA levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase-3 were also quantified through real-time quantitative PCR (RT-qPCR); protein levels of serine/threonine protein kinase (Akt) and forkhead box O3A (Foxo3a) were determined by western blot. Increasing of MnSO4 doses led to decreased SOD, GSH-Px, and CAT activities, while the level of MDA was upregulated. Moreover, cell apoptosis was significantly increased, as the mRNA of Bcl-2 and Caspase-3 was significantly decreased, while Bax mRNA was increased. Phosphorylated Akt (p-Akt) and Foxo3a (p-Foxo3a) were upregulated in a dose-dependent manner. In addition, LY294002 pretreatment reduced the activity of SOD, GSH-Px, and CAT but elevated MDA levels. Meanwhile, LY294002 pretreatment also increased cell apoptosis given the upregulated Bax and Caspase-3 mRNAs and decreased Bcl-2 mRNA. In summary, the PI3K/Akt signaling pathway can be activated by MnSO4 exposure and mediate MnSO4-induced neurotoxicity.
Collapse
Affiliation(s)
- Yanli Tan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hong Cheng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Cheng Su
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China.
| |
Collapse
|
16
|
Martins AC, Ruella Oliveira S, Barbosa F, Tinkov AA, V A, Santamaría A, Lee E, Bowman AB, Aschner M. Evaluating the risk of manganese-induced neurotoxicity of parenteral nutrition: review of the current literature. Expert Opin Drug Metab Toxicol 2021; 17:581-593. [PMID: 33620266 PMCID: PMC8122055 DOI: 10.1080/17425255.2021.1894123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Several diseases and clinical conditions can affect enteral nutrition and adequate gastrointestinal uptake. In this respect, parenteral nutrition (PN) is necessary for the provision of deficient trace elements. However, some essential elements, such as manganese (Mn) may be toxic to children and adults when parenterally administered in excess, leading to toxic, especially neurotoxic effects. AREAS COVERED Here, we briefly provide an overview on Mn, addressing its sources of exposure, the role of Mn in the etiology of neurodegenerative diseases, and focusing on potential mechanisms associated with Mn-induced neurotoxicity. In addition, we discuss the potential consequences of overexposure to Mn inherent to PN. EXPERT OPINION In this critical review, we suggest that additional research is required to safely set Mn levels in PN, and that eliminating Mn as an additive should be considered by physicians and nutritionists on a case by case basis in the meantime to avoid the greater risk of neurotoxicity by its presence. There is a need to better define clinical biomarkers for Mn toxicity by PN, as well as identify new effective agents to treat Mn-neurotoxicity. Moreover, we highlight the importance of the development of new guidelines and practice safeguards to protect patients from excessive Mn exposure and neurotoxicity upon PN administration.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvana Ruella Oliveira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anatoly V
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
17
|
Martins AC, Ke T, Bowman AB, Aschner M. New insights on mechanisms underlying methylmercury-induced and manganese-induced neurotoxicity. CURRENT OPINION IN TOXICOLOGY 2021; 25:30-35. [PMID: 33898886 PMCID: PMC8061890 DOI: 10.1016/j.cotox.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toxic and essential elements are widely distributed in the Earth's crust and individuals may be exposed to several of them. Indeed, exposure to toxic elements such as mercury (Hg) can be a potential health risk factor of health, mainly by ingestion of fish containing methylmercury (MeHg). On the other hand, essential elements such as manganese (Mn) play an important role in physiological process in human body. However, Mn overexposure may cause toxic effects. In this respect, the neurotoxic effects of MeHg and Mn on the developing brain are well recognized. Therefore, in this critical review, we address the effects of MeHg and Mn on cell signaling pathways which may contribute to molecular mechanisms involved in MeHg- and Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
18
|
Aoki S, Harada K, Kawai S, Abe Y, Nagata S, Imataki R, Arita K. Expression of Heat Shock Proteins in Response to Mild Short-term Heat Shock in Human Deciduous Dental Pulp Fibroblast-like Cells. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sho Aoki
- Graduate School of Dentistry, Department of Pediatric Dentistry, Osaka Dental University
| | - Kyoko Harada
- Department of Pediatric Dentistry, School of Dentistry, Osaka Dental University
| | - Saki Kawai
- Department of Pediatric Dentistry, School of Dentistry, Osaka Dental University
| | - Yoko Abe
- Department of Pediatric Dentistry, School of Dentistry, Osaka Dental University
| | - Sachiko Nagata
- Department of Pediatric Dentistry, School of Dentistry, Osaka Dental University
| | - Rie Imataki
- Department of Pediatric Dentistry, School of Dentistry, Osaka Dental University
| | - Kenji Arita
- Department of Pediatric Dentistry, School of Dentistry, Osaka Dental University
| |
Collapse
|
19
|
Chen Y, Wang K, Di J, Guan C, Wang S, Li Q, Qu Y. Mutation of the BAG-1 domain decreases its protective effect against hypoxia/reoxygenation by regulating HSP70 and the PI3K/AKT signalling pathway in SY-SH5Y cells. Brain Res 2020; 1751:147192. [PMID: 33152339 DOI: 10.1016/j.brainres.2020.147192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
BCL-2-associated athanogene-1 (BAG-1) is a multifunctional protein that was first identified as a binding partner of BCL-2. Our previous results indicated that BAG-1 large (BAG-1L) overexpression significantly increases cell viability and decreases apoptosis by upregulating HSP70 and p-AKT in response to hypoxia/reoxygenation in SY-SH5Y cells. However, the functional domain of BAG-1L that exerts these protective effects against hypoxic damage has not been identified. In this study, we examined changes in HSP70 and p-AKT protein levels in SH-SY5Y cells with or without BAG-1L domain mutation after six hours of hypoxia/reoxygenation treatment. The BAG-1 domain mutant (BAG-1MUT) attenuated neuronal viability and proliferation while enhancing apoptosis after hypoxia/reoxygenation, which was achieved in part by inhibiting the HSP70 and p-AKT signalling pathways. This evidence illustrates that the BAG-1 domain plays a key role in protecting cells from hypoxia/reoxygenation injury.
Collapse
Affiliation(s)
- Ying Chen
- School of Nursing, Medical College of Qingdao University, Qingdao 26600, Shandong, China; Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Keke Wang
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Jie Di
- School of Nursing, Medical College of Qingdao University, Qingdao 26600, Shandong, China; Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Chun Guan
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Sumei Wang
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Qingshu Li
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| | - Yan Qu
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| |
Collapse
|
20
|
Martins AC, Gubert P, Villas Boas GR, Paes MM, Santamaría A, Lee E, Tinkov AA, Bowman AB, Aschner M. Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Rev Neurother 2020; 20:1109-1121. [PMID: 32799578 PMCID: PMC7657997 DOI: 10.1080/14737175.2020.1807330] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion disease represent important public health concerns. Exposure to high levels of heavy metals such as manganese (Mn) may contribute to their development. AREAS COVERED In this critical review, we address the role of Mn in the etiology of neurodegenerative diseases and discuss emerging treatments of Mn overload, such as chelation therapy. In addition, we discuss natural and synthetic compounds under development as prospective therapeutics. Moreover, bioinformatic approaches to identify new potential targets and therapeutic substances to reverse the neurodegenerative diseases are discussed. EXPERT OPINION Here, the authors highlight the importance of better understanding the molecular mechanisms of toxicity associated with neurodegenerative diseases, and the role of Mn in these diseases. Additional emphasis should be directed to the discovery of new agents to treat Mn-induced diseases, since present day chelator therapies have limited bioavailability. Furthermore, the authors encourage the scientific community to develop research using libraries of compounds to screen those compounds that show efficacy in regulating brain Mn levels. In addition, bioinformatics may provide novel insight for pathways and clinical treatments associated with Mn-induced neurodegeneration, leading to a new direction in Mn toxicological research.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Priscila Gubert
- Department of Biochemistry, Laboratory of Immunopathology Keizo Asami, LIKA, Federal, University of Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Gustavo R Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Alexey A. Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
21
|
Moyano P, García JM, García J, Anadon MJ, Naval MV, Frejo MT, Sola E, Pelayo A, Pino JD. Manganese increases Aβ and Tau protein levels through proteasome 20S and heat shock proteins 90 and 70 alteration, leading to SN56 cholinergic cell death following single and repeated treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110975. [PMID: 32678756 DOI: 10.1016/j.ecoenv.2020.110975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) produces cholinergic neuronal loss in basal forebrain (BF) region that was related to cognitive dysfunction induced after single and repeated Mn treatment. All processes that generate cholinergic neuronal loss in BF remain to be understood. Mn exposure may produce the reduction of BF cholinergic neurons by increasing amyloid beta (Aβ) and phosphorylated Tau (pTau) protein levels, altering heat shock proteins' (HSPs) expression, disrupting proteasome P20S activity and generating oxidative stress. These mechanisms, described to be altered by Mn in regions different than BF, could lead to the memory and learning process alteration produced after Mn exposure. The research performed shows that single and repeated Mn treatment of SN56 cholinergic neurons from BF induces P20S inhibition, increases Aβ and pTau protein levels, produces HSP90 and HSP70 proteins expression alteration, and oxidative stress generation, being the last two effects mediated by NRF2 pathway alteration. The increment of Aβ and pTau protein levels was mediated by HSPs and proteasome dysfunction. All these mechanisms mediated the cell decline observed after Mn treatment. Our results are relevant because they may assist to reveal the processes leading to the neurotoxicity and cognitive alterations observed after Mn exposure.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacolgy, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Botany, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Ma Z, Liu K, Li XR, Wang C, Liu C, Yan DY, Deng Y, Liu W, Xu B. Alpha-synuclein is involved in manganese-induced spatial memory and synaptic plasticity impairments via TrkB/Akt/Fyn-mediated phosphorylation of NMDA receptors. Cell Death Dis 2020; 11:834. [PMID: 33033239 PMCID: PMC7545185 DOI: 10.1038/s41419-020-03051-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Manganese (Mn) overexposure produces long-term cognitive deficits and reduces brain-derived neurotrophic factor (BDNF) in the hippocampus. However, it remains elusive whether Mn-dependent enhanced alpha-synuclein (α-Syn) expression, suggesting a multifaceted mode of neuronal toxicities, accounts for interference with BDNF/TrkB signaling. In this study, we used C57BL/6J WT and α-Syn knockout (KO) mice to establish a model of manganism and found that Mn-induced impairments in spatial memory and synaptic plasticity were related to the α-Syn protein. In addition, consistent with the long-term potentiation (LTP) impairments that were observed, α-Syn KO relieved Mn-induced degradation of PSD95, phosphorylated CaMKIIα, and downregulated SynGAP protein levels. We transfected HT22 cells with lentivirus (LV)-α-Syn shRNA, followed by BDNF and Mn stimulation. In vitro experiments indicated that α-Syn selectively interacted with TrkB receptors and inhibited BDNF/TrkB signaling, leading to phosphorylation and downregulation of GluN2B. The binding of α-Syn to TrkB and Fyn-mediated phosphorylation of GluN2B were negatively regulated by BDNF. Together, these findings indicate that Mn-dependent enhanced α-Syn expression contributes to further exacerbate BDNF protein-level reduction and to inhibit TrkB/Akt/Fyn signaling, thereby disturbing Fyn-mediated phosphorylation of the NMDA receptor GluN2B subunit at tyrosine. In KO α-Syn mice treated with Mn, spatial memory and LTP impairments were less pronounced than in WT mice. However, the same robust neuronal death was observed as a result of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Xin-Ru Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Can Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Chang Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Dong-Ying Yan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
23
|
Bryan MR, O'Brien MT, Nordham KD, Rose DIR, Foshage AM, Joshi P, Nitin R, Uhouse MA, Di Pardo A, Zhang Z, Maglione V, Aschner M, Bowman AB. Acute manganese treatment restores defective autophagic cargo loading in Huntington's disease cell lines. Hum Mol Genet 2020; 28:3825-3841. [PMID: 31600787 DOI: 10.1093/hmg/ddz209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
The molecular etiology linking the pathogenic mutations in the Huntingtin (Htt) gene with Huntington's disease (HD) is unknown. Prior work suggests a role for Htt in neuronal autophagic function and mutant HTT protein disrupts autophagic cargo loading. Reductions in the bioavailability of the essential metal manganese (Mn) are seen in models of HD. Excess cellular Mn impacts autophagic function, but the target and molecular basis of these changes are unknown. Thus, we sought to determine if changes in cellular Mn status impact autophagic processes in a wild-type or mutant Htt-dependent manner. We report that the HD genotype is associated with reduced Mn-induced autophagy and that acute Mn exposure increases autophagosome induction/formation. To determine if a deficit in bioavailable Mn is mechanistically linked to the autophagy-related HD cellular phenotypes, we examined autophagosomes by electron microscopy. We observed that a 24 h 100 uM Mn restoration treatment protocol attenuated an established HD 'cargo-recognition failure' in the STHdh HD model cells by increasing the percentage of filled autophagosomes. Mn restoration had no effect on HTT aggregate number, but a 72 h co-treatment with chloroquine (CQ) in GFP-72Q-expressing HEK293 cells increased the number of visible aggregates in a dose-dependent manner. As CQ prevents autophagic degradation this indicates that Mn restoration in HD cell models facilitates incorporation of aggregates into autophagosomes. Together, these findings suggest that defective Mn homeostasis in HD models is upstream of the impaired autophagic flux and provide proof-of-principle support for increasing bioavailable Mn in HD to restore autophagic function and promote aggregate clearance.
Collapse
Affiliation(s)
- Miles R Bryan
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Michael T O'Brien
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Kristen D Nordham
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Daniel I R Rose
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | | | - Piyush Joshi
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Rachana Nitin
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Michael A Uhouse
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | | | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aaron B Bowman
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry.,Department of Cell and Developmental Biology.,Vanderbilt Kennedy Center.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN, 37240, USA.,Purdue University, School of Health Sciences, West Lafayette, IN, 47907, USA
| |
Collapse
|
24
|
Pyrroloquinoline Quinine and LY294002 Changed Cell Cycle and Apoptosis by Regulating PI3K-AKT-GSK3β Pathway in SH-SY5Y Cells. Neurotox Res 2020; 38:266-273. [PMID: 32385839 DOI: 10.1007/s12640-020-00210-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
To verify the role of PI3K-AKT-GSK3β pathway during manganese (Mn)-induced cell death, apoptosis, related indicators were investigated. SH-SY5Y cells were directly exposed to different concentrations of MnCl2. Then, cell viability, apoptosis, necrosis rate, and cell cycle were detected by MTT, FITC Annexin V Apoptosis Detection Kit with PI and PI staining. Then, in two intervention groups, cells were preconditioned with agonist (PQQ) and suppressant (LY294002). The cell viability decreased with a dose-response relationship (p < 0.05), while apoptosis and necrosis increased (p < 0.05). The ratio of G0/G1 and G2/M also decreased, but the percentage of S phase increased (p < 0.05). During above process, PI3K-AKT-GSK3β pathway was involved by regulating the expression of PI3K, AKT, p-AKT, and GSK3β (p < 0.05). For further research, cell cycle and apoptosis were detected pretreatment with PQQ and LY294002 before Mn exposure. The result showed cell ability, apoptosis, and necrosis rate changed obviously compared with non-pretreated group (p < 0.05). The variance of G0/G1 and G2/M ratio and percentage of S phase were also different, especially in 2.0 mM (p < 0.05). Mn can cause apoptosis and necrosis, varying cell cycle of SH-SY5Y cells, which could be changed by PQQ and LY294002 by regulating PI3K-AKT-GSK3β pathway.
Collapse
|
25
|
Chen X, Liu Z, Ge X, Luo X, Huang S, Zhou Y, Li D, Cheng H, Li L, Huang L, Hou Q, Zan G, Tan Y, Liu C, Zou Y, Yang X. Associations between manganese exposure and multiple immunological parameters in manganese-exposed workers healthy cohort. J Trace Elem Med Biol 2020; 59:126454. [PMID: 31954213 DOI: 10.1016/j.jtemb.2020.126454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/26/2019] [Accepted: 01/09/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Manganese (Mn) ions play a crucial role in the immune response. The immunotoxicity of Mn is rarely reported compared with the neurotoxicity of Mn. OBJECTIVES The purpose of this study was to investigate the associations between chronic Mn exposure and immunological parameters in occupational Mn-exposed workers. METHODS A total of 538 workers were selected from the follow-up of manganese-exposed workers healthy cohort (MEWHC) in 2017. We divided the workers into the low-exposure group and the high-exposure group by the cutoff of the manganese-time weighted average (Mn-TWA) setting at 0.15 mg/m3. We examined serum immunological parameters by the immunoturbidimetric method and leukocyte counts and ratios in blood routine. Then we used the generalized linear model analyses and spline analyses to explore the associations between external exposure of Mn and multiple immunological parameters adjusted for variables. Based on the epidemiological analyses, we used Elisa (enzyme-linked immune sorbent assay) to detect plasma complement C3 of Mn-exposed rats. RESULTS In male workers, the mean value of complement C3 was 1.20 ± 0.16 g/L in the high-exposure group, which was significantly lower as compared to the low-exposure group (1.25 ± 0.18 g/L, P = 0.023). The generalize linear models' analyses showed that complement C3 value had a significantly negative association with external exposure of Mn included adjustment for variables (β = -0.04, P = 0.035). Moreover, in male rats, the high-exposure group also had a lower level of complement C3 compared with the low-exposure group (P < 0.001). None significant association was observed in immunological parameters among female workers and rats (all P > 0.05). CONCLUSIONS Mn exposure from inhalable dust was associated with decreased complement C3 among occupationally Mn-exposed male individuals but not in female workers, which was further confirmed by the rat model. Further research into the possible mechanism of C3 reduction is needed in the future.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyu Luo
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sifang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanting Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Defu Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qingzhi Hou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanli Tan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
26
|
Miah MR, Ijomone OM, Okoh COA, Ijomone OK, Akingbade GT, Ke T, Krum B, da Cunha Martins A, Akinyemi A, Aranoff N, Antunes Soares FA, Bowman AB, Aschner M. The effects of manganese overexposure on brain health. Neurochem Int 2020; 135:104688. [PMID: 31972215 PMCID: PMC7926190 DOI: 10.1016/j.neuint.2020.104688] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is the twelfth most abundant element on the earth and an essential metal to human health. Mn is present at low concentrations in a variety of dietary sources, which provides adequate Mn content to sustain support various physiological processes in the human body. However, with the rise of Mn utility in a variety of industries, there is an increased risk of overexposure to this transition metal, which can have neurotoxic consequences. This risk includes occupational exposure of Mn to workers as well as overall increased Mn pollution affecting the general public. Here, we review exposure due to air pollution and inhalation in industrial settings; we also delve into the toxic effects of manganese on the brain such as oxidative stress, inflammatory response and transporter dysregulation. Additionally, we summarize current understandings underlying the mechanisms of Mn toxicity.
Collapse
Affiliation(s)
- Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Omamuyovwi M Ijomone
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria
| | - Comfort O A Okoh
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria
| | - Olayemi K Ijomone
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria; Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Grace T Akingbade
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bárbara Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Ayodele Akinyemi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicole Aranoff
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Stern College for Women, Yeshiva University, New York, NY, USA
| | - Felix Alexandre Antunes Soares
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
27
|
Manganese Acts upon Insulin/IGF Receptors to Phosphorylate AKT and Increase Glucose Uptake in Huntington's Disease Cells. Mol Neurobiol 2019; 57:1570-1593. [PMID: 31797328 DOI: 10.1007/s12035-019-01824-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
Perturbations in insulin/IGF signaling and manganese (Mn2+) uptake and signaling have been separately reported in Huntington's disease (HD) models. Insulin/IGF supplementation ameliorates HD phenotypes via upregulation of AKT, a known Mn2+-responsive kinase. Limited evidence both in vivo and in purified biochemical systems suggest Mn2+ enhances insulin/IGF receptor (IR/IGFR), an upstream tyrosine kinase of AKT. Conversely, Mn2+ deficiency impairs insulin release and associated glucose tolerance in vivo. Here, we test the hypothesis that Mn2+-dependent AKT signaling is predominantly mediated by direct Mn2+ activation of the insulin/IGF receptors, and HD-related impairments in insulin/IGF signaling are due to HD genotype-associated deficits in Mn2+ bioavailability. We examined the combined effects of IGF-1 and/or Mn2+ treatments on AKT signaling in multiple HD cellular models. Mn2+ treatment potentiates p-IGFR/IR-dependent AKT phosphorylation under physiological (1 nM) or saturating (10 nM) concentrations of IGF-1 directly at the level of intracellular activation of IGFR/IR. Using a multi-pharmacological approach, we find that > 70-80% of Mn2+-associated AKT signaling across rodent and human neuronal cell models is specifically dependent on IR/IGFR, versus other signaling pathways upstream of AKT activation. Mn2+-induced p-IGFR and p-AKT were diminished in HD cell models, and, consistent with our hypothesis, were rescued by co-treatment of Mn2+ and IGF-1. Lastly, Mn2+-induced IGF signaling can modulate HD-relevant biological processes, as the reduced glucose uptake in HD STHdh cells was partially reversed by Mn2+ supplementation. Our data demonstrate that Mn2+ supplementation increases peak IGFR/IR-induced p-AKT likely via direct effects on IGFR/IR, consistent with its role as a cofactor, and suggests reduced Mn2+ bioavailability contributes to impaired IGF signaling and glucose uptake in HD models.
Collapse
|
28
|
Chen Q, Wu K, Qin X, Yu Y, Wang X, Wei K. LASP1 promotes proliferation, metastasis, invasion in head and neck squamous cell carcinoma and through direct interaction with HSPA1A. J Cell Mol Med 2019; 24:1626-1639. [PMID: 31793711 PMCID: PMC6991697 DOI: 10.1111/jcmm.14854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 01/02/2023] Open
Abstract
LIM and SH3 protein 1 (LASP1) is a specific focal adhesion protein that promotes metastasis in a variety of tumours. However, its role in head and neck squamous cell carcinoma (HNSCC) has not been fully validated. The purpose of this study was to analyse the interaction of LASP1 and its binding partner in HNSCC. The expression of LASP1 and HSPA1A in HNSCC was analysed by real-time PCR and Western blot. The effects of LASP1 on the biology behaviour of HNSCC cell lines were observed in vivo and in vitro. Co-immunoprecipitation analysis was performed to confirm the interaction between LASP1 and HSPA1A. LASP1 was highly expressed in HNSCC and associated with poor prognosis for patients. LASP1 also promoted cell proliferation, colony formation, invasion and cell cycle G2/M phase transition. Heat shock protein family A member 1A (HSPA1A) is identified as a chaperone protein of LASP1 and co-localized in the cytoplasm. HSPA1A positively regulates the interaction of LASP1 with P-AKT and enhances the malignant behaviour of HNSCC cells. LASP1 and HSPA1A are both up-regulated in HNSCC, and directly binds to each other. Double inhibition of LASP1 and HSPA1A expression may be an effective method for the treatment of HNSCC.
Collapse
Affiliation(s)
- Qi Chen
- Department of Stomatology Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Wu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youcheng Yu
- Department of Stomatology of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kuijie Wei
- Department of Stomatology Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Fernandes J, Chandler JD, Lili LN, Uppal K, Hu X, Hao L, Go YM, Jones DP. Transcriptome Analysis Reveals Distinct Responses to Physiologic versus Toxic Manganese Exposure in Human Neuroblastoma Cells. Front Genet 2019; 10:676. [PMID: 31396262 PMCID: PMC6668488 DOI: 10.3389/fgene.2019.00676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Manganese (Mn) is an essential trace element, which also causes neurotoxicity in exposed occupational workers. Mn causes mitochondrial toxicity; however, little is known about transcriptional responses discriminated by physiological and toxicological levels of Mn. Identification of such mechanisms could provide means to evaluate risk of Mn toxicity and also potential avenues to protect against adverse effects. To study the Mn dose-response effects on transcription, analyzed by RNA-Seq, we used human SH-SY5Y neuroblastoma cells exposed for 5 h to Mn (0 to 100 μM), a time point where no immediate cell death occurred at any of the doses. Results showed widespread effects on abundance of protein-coding genes for metabolism of reactive oxygen species, energy sensing, glycolysis, and protein homeostasis including the unfolded protein response and transcriptional regulation. Exposure to a concentration (10 μM Mn for 5 h) that did not result in cell death after 24-h increased abundance of differentially expressed genes (DEGs) in the protein secretion pathway that function in protein trafficking and cellular homeostasis. These include BET1 (Golgi vesicular membrane-trafficking protein), ADAM10 (ADAM metallopeptidase domain 10), and ARFGAP3 (ADP-ribosylation factor GTPase-activating protein 3). In contrast, 5-h exposure to 100 μM Mn, a concentration that caused cell death after 24 h, increased abundance of DEGs for components of the mitochondrial oxidative phosphorylation pathway. Integrated pathway analysis results showed that protein secretion gene set was associated with amino acid metabolites in response to 10 μM Mn, while oxidative phosphorylation gene set was associated with energy, lipid, and neurotransmitter metabolites at 100 μM Mn. These results show that differential effects of Mn occur at a concentration which does not cause subsequent cell death compared to a concentration that causes subsequent cell death. If these responses translate to effects on the secretory pathway and mitochondrial functions in vivo, differential activities of these systems could provide a sensitive basis to discriminate sub-toxic and toxic environmental and occupational Mn exposures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
30
|
Impact of Cold Exposure on the Reproductive Function in Female Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3674906. [PMID: 30596088 PMCID: PMC6282150 DOI: 10.1155/2018/3674906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 02/08/2023]
Abstract
Female reproductive system diseases caused by exposure to a cold environment are widely considered as important human health challenges. Although the projection of female reproduction in cold temperature has been studied, a holistic view on the probable effects of cold exposure on the functions of the female reproductive system has not been achieved. Our aim was to evaluate the effects of cold exposure to the functions of the ovary and uterus in female rats. For this purpose, female rats were randomly grouped as follows: (1) the cold group was exposed to -10°C, 4 h per day for 2 weeks, and (2) the normal temperature (23 ± 1°C) group was used as control. Alterations were observed in different parameters, including body weight gain, organ coefficients, estrus cycle, and pathology of the cold-exposed female rats. Similarly, the serum reproductive hormones and mRNA expression were evaluated. Cold exposure induced estrus cycle irregularity and some alterations in the morphology of the ovary. Cold exposure impairs the function of the ovary probably by changing the level of serum LH and increasing LHR expression. Cold exposure induced a significant reduction of uterine epithelium height. Cold exposure causes alterations in the morphology of the uterus probably because of the effect of progesterone, the increase in the PR level, and the decrease in the ER level.
Collapse
|