1
|
Freitas RMP, Pires AR, Ferreira FF, Vilela EF, Azevedo FS, Sarandy MM, Gonçalves RV, Dergam JA, Sperber CF, Freitas MB. Metal concentrations, oxidative status and histopathological evaluation of fish species from Doce River, Brazil, after the Fundao dam collapse. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107204. [PMID: 39721178 DOI: 10.1016/j.aquatox.2024.107204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
Eight years after the tailings dam collapse in Mariana, MG, Brazil, several aspects of this massive disaster are yet to be elucidated. Our goal was to investigate the impact of the mud flow on 16 fish species collected across 15 points from the Doce River, addressing 12 metal concentrations, tissue oxidative status (antioxidant enzymes and stress biomarkers), and histopathological analyses. The species Trachelyopterus striatulus, Prochilodus vimboides, Loricariichthys castaneus, Lophiosilurus alexandri, Hypostomus affinis, Hoplias intermedius were shown to be the most affected regarding the gills tissue integrity; Hypostomus affinis, Oligosarcus acutirostris, Lophiosilurus alexandri, Pygocentrus nattereri, Hoplosternum littorale, and Loricariichthys castaneus showed the highest levels of liver health. Overall, H. affinis was the most affected species, showing high levels of oxidative and histopathological damage, associated with high arsenic (As) and mercury (Hg) concentrations. In fish sampled from impacted regions, As and Hg exhibited higher concentrations compared to fish from unaffected sites, surpassing all the other analyzed metals. These high metal concentrations might be associated to the tailings dam failure, and As and Hg concentrations were positively correlated with alterations in oxidative stress biomarkers and histopathologies. Our results may be used as baseline for monitoring the environmental challenges that the Doce River fish species are facing at the moment.
Collapse
Affiliation(s)
- Renata M P Freitas
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Allan R Pires
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Federico F Ferreira
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Emerson F Vilela
- Minas Gerais Agricultural Research Agency (EPAMIG-Sudeste), Viçosa, MG, Brazil
| | - Filipe S Azevedo
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Mariáurea M Sarandy
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | - Jorge A Dergam
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Carlos F Sperber
- Department of General Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Mariella B Freitas
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
2
|
Fan X, Mao Q, Zou D, Guo P, Du H, Chen T, He C, Xiong B, Ma M. Responses of Brassica napus to soil cadmium under elevated CO 2 concentration based on rhizosphere microbiome, root transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109127. [PMID: 39284252 DOI: 10.1016/j.plaphy.2024.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Rising atmospheric carbon dioxide (CO2) and soil heavy metal pollution affect crop safety and production. Exposure to elevated CO2 (ECO2) increases cadmium (Cd) uptake in some crops like wheat and rice, however, it remains unclear how ECO2 affects Cd uptake by Brassica napus. Here, we investigated the responses of B. napus seedlings exposed to ECO2 and Cd through analyses of physiology, transcriptome, metabolome, and rhizosphere microbes. Compared with Cd-stress alone (Cd50_ACO2), ECO2 boosted the uptake of Cd by B. napus roots by 38.78% under coupled stresses (Cd50_ECO2). The biomass and leaf chlorophyll a content increased by 38.49% and 79.66% respectively in Cd50_ECO2 relative to Cd50_ACO2. Activities of superoxide dismutase (SOD) and peroxidase (POD) enhanced by 8.42% and 185.01%, respectively, while glutathione (GSH) and ascorbic acid (AsA) contents increased by 16.44% and 52.48%, and abundances of rhizosphere microbes changed significantly under coupled stresses (Cd50_ECO2) relative to Cd-stress alone (Cd50_ACO2). Also, the upregulation of glutathione, glutathione transferase genes, and heavy metal ATPase expression promoted the detoxification effect of rapeseed on Cd. Changes in the expression of transcription factors like MAPK, WRKY, BAK1 and PR1, as well as changes in metabolic pathways like β-alanine, may be involved in the regulatory mechanism of stress response. These findings provide new insights for studying the regulatory mechanism of rapeseed under ECO2 on soil Cd stress, and also provide a basis for further research on Cd tolerant rapeseed varieties in the future climate context.
Collapse
Affiliation(s)
- Xu Fan
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Qiaozhi Mao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Dongchen Zou
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Hongxia Du
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Tingting Chen
- Meishan Vocational & Technical College, Meishan, 620010, PR China
| | - Chen He
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Bingcai Xiong
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
3
|
Kapkaç HA, Arslanyolu M. Molecular Cloning, Expression and Enzymatic Characterization of Tetrahymena thermophila Glutathione-S-Transferase Mu 34. Protein J 2024; 43:613-626. [PMID: 38743189 DOI: 10.1007/s10930-024-10204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Glutathione-S-transferase enzymes (GSTs) are essential components of the phase II detoxification system and protect organisms from oxidative stress induced by xenobiotics and harmful toxins such as 1-chloro-2,4-dinitrobenzene (CDNB). In Tetrahymena thermophila, the TtGSTm34 gene was previously reported to be one of the most responsive GST genes to CDNB treatment (LD50 = 0.079 mM). This study aimed to determine the kinetic features of recombinantly expressed and purified TtGSTm34 with CDNB and glutathione (GSH). TtGSTm34-8xHis was recombinantly produced in T. thermophila as a 25-kDa protein after the cloning of the 660-bp full-length ORF of TtGSTm34 into the pIGF-1 vector. A three-dimensional model of the TtGSTm34 protein constructed by the AlphaFold and PyMOL programs confirmed that it has structurally conserved and folded GST domains. The recombinant production of TtGSTm34-8xHis was confirmed by SDS‒PAGE and Western blot analysis. A dual-affinity chromatography strategy helped to purify TtGSTm34-8xHis approximately 3166-fold. The purified recombinant TtGSTm34-8xHis exhibited significantly high enzyme activity with CDNB (190 µmol/min/mg) as substrate. Enzyme kinetic analysis revealed Km values of 0.68 mM with GSH and 0.40 mM with CDNB as substrates, confirming its expected high affinity for CDNB. The optimum pH and temperature were determined to be 7.0 and 25 °C, respectively. Ethacrynic acid inhibited fully TtGSTm34-8xHis enzyme activity. These results imply that TtGSTm34 of T. thermophila plays a major role in the detoxification of xenobiotics, such as CDNB, as a first line of defense in aquatic protists against oxidative damage.
Collapse
Affiliation(s)
- Handan Açelya Kapkaç
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| |
Collapse
|
4
|
Wang J, Liu X, Chen Y, Zhu FL, Sheng J, Diao Y. Physiological and transcriptomic analyses reveal the cadmium tolerance mechanism of Miscanthus lutarioriparia. PLoS One 2024; 19:e0302940. [PMID: 38748679 PMCID: PMC11095687 DOI: 10.1371/journal.pone.0302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Miscanthus lutarioriparia is a promising energy crop that is used for abandoned mine soil phytoremediation because of its high biomass yield and strong tolerance to heavy metals. However, the biological mechanism of heavy metal resistance is limited, especially for applications in the soil restoration of mining areas. Here, through the investigation of soil cadmium(Cd) in different mining areas and soil potted under Cd stress, the adsorption capacity of Miscanthus lutarioriparia was analyzed. The physiological and transcriptional effects of Cd stress on M. lutarioriparia leaves and roots under hydroponic conditions were analyzed. The results showed that M. lutarioriparia could reduce the Cd content in mining soil by 29.82%. Moreover, different Cd varieties have different Cd adsorption capacities in soils with higher Cd concentration. The highest cadmium concentrations in the aboveground and belowground parts of the plants were 185.65 mg/kg and 186.8 mg/kg, respectively. The total chlorophyll content, superoxide dismutase and catalase activities all showed a trend of increasing first and then decreasing. In total, 24,372 differentially expressed genes were obtained, including 7735 unique to leaves, 7725 unique to roots, and 8912 unique to leaves and roots, which showed differences in gene expression between leaves and roots. These genes were predominantly involved in plant hormone signal transduction, glutathione metabolism, flavonoid biosynthesis, ABC transporters, photosynthesis and the metal ion transport pathway. In addition, the number of upregulated genes was greater than the number of downregulated genes at different stress intervals, which indicated that M. lutarioriparia adapted to Cd stress mainly through positive regulation. These results lay a solid foundation for breeding excellent Cd resistant M. lutarioriparia and other plants. The results also have an important theoretical significance for further understanding the detoxification mechanism of Cd stress and the remediation of heavy metal pollution in mining soil.
Collapse
Affiliation(s)
- Jia Wang
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430023, P. R. China
| | - Xinyu Liu
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yiran Chen
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Feng lin Zhu
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jiajing Sheng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430023, P. R. China
| | - Ying Diao
- School of life science and technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
5
|
Jócsák I, Csima F, Somfalvi-Tóth K. Alterations of Photosynthetic and Oxidative Processes Influenced by the Presence of Different Zinc and Cadmium Concentrations in Maize Seedlings: Transition from Essential to Toxic Functions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1150. [PMID: 38674559 PMCID: PMC11055138 DOI: 10.3390/plants13081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The study examined the impact of varying the concentrations of zinc (Zn) on plant responses, particularly on photosynthetic and oxidative metabolic processes. This investigation aimed to distinguish between the beneficial and harmful effects of Zn on plants, highlighting significant nutrient supply concerns. METHODS The investigation methods were centered around non-invasive methods, such as biophoton emission (delayed fluorescence-DF, ultra-weak bioluminescence-UWLE), fluorescence induction (Fv/Fm) measurements, chlorophyll content estimation (SPAD) and vegetation index (NDVI) determination. Furthermore, the analytical determination of lipid oxidation (MDA level) and antioxidant capacity (FRAP) as well as gene expression studies of the antioxidative enzymes glutathione reductase (GR), glutathione S-transferase (GST) and lipoxygenase (LOX) for essential Zn and nonessential cadmium (Cd) were also carried out in order to clarify toxic symptoms through different Zn investigation approaches. RESULTS It was possible to identify a metabolic enhancement from 1000 µM; however, stress symptoms from the 2000 µM Zn treatment were noted for both the investigated photosynthetic and oxidative processes. The outcomes of this research contribute to the improvement of Zn mineral-supplementation technology, which is essential for maize growth, and the optimization of agricultural practices.
Collapse
Affiliation(s)
- Ildikó Jócsák
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary; (F.C.); (K.S.-T.)
| | | | | |
Collapse
|
6
|
Fernandes IF, Fujiwara GH, Moraes Utsunomiya HS, Souza IC, Monteiro DA, Monferrán MV, Wunderlin DA, Fernandes MN, Carvalho CDS. Oxidative stress and neurotoxicity induced by exposure to settleable atmospheric particulate matter in bullfrog tadpoles, Aquarana catesbeiana, (Shaw, 1802). CHEMOSPHERE 2024; 353:141576. [PMID: 38462180 DOI: 10.1016/j.chemosphere.2024.141576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Bullfrog tadpoles, Aquarana catesbeiana, were exposed to settleable particulate matter (SePM), (1 g L-1, 96 h) and their organs were collected for analysis of metal/metalloid, oxidative stress and neurotoxicity in liver, muscle, kidney and brain. The SePM water of the exposed groups contained 18 of the 28 metals/metalloids detected in ambient particulate matter (APM). Fe56 and Al were those that presented the highest concentrations, Cr, Mn, Pb and Cu increased from 10 to 20 times and Ti, V, Sr, Rb, Cd, Sn and Ni increased from 1 to 3 times compared to the control. Bioaccumulation of metals/metalloids in the exposure water varied significantly between organs, with the muscle and liver showing the highest concentrations of metals, followed by the brain. Lipoperoxidation and malondialdehyde increased only in muscle, while carbonyl proteins increased only in the liver and brain. Regarding nitric oxide synthase, there was an increase in the liver and brain in the group exposed to SePM. Catalase activity decreased in the liver and muscle, while the activity of glutathione peroxidase, increased in the liver and kidney and decreased in muscle. Glutathione S-transferase, which is mainly responsible for detoxification, increased in the liver and decreased in muscle and the kidney. Cholinesterase activity increased only in the muscle. The results indicate oxidative stress, due to oxidation catalyzed by metals, components of SePM. Thus, the results contribute to the understanding that SePM has a deleterious effect on the aquatic environment, negatively affecting bullfrog tadpoles, in different ways and levels in relation to the analyzed organs.
Collapse
Affiliation(s)
- Isabela Ferreira Fernandes
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil
| | - Gabriel Hiroshi Fujiwara
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil
| | - Heidi Samantha Moraes Utsunomiya
- Departamento de Biologia (DBio), Centro de Ciências Humanas e Biológicas (CCHB), Universidade Federal de São Carlos (UFSCar), 18052-780, São Carlos, São Paulo, Brazil
| | - Iara Costa Souza
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil; Grupo de Mutagênese Ambiental, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil
| | - Diana Amaral Monteiro
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, and CONICET, CIBICI, Ciudad Universitaria, Medina Allende esq. Haya de la Torre s/n, 5000, Córdoba, Argentina; Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Cleoni Dos Santos Carvalho
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil; Departamento de Biologia (DBio), Centro de Ciências Humanas e Biológicas (CCHB), Universidade Federal de São Carlos (UFSCar), 18052-780, São Carlos, São Paulo, Brazil.
| |
Collapse
|
7
|
Leite C, Russo T, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. From the cellular to tissue alterations induced by two rare earth elements in the mussel species Mytilus galloprovincialis: Comparison between exposure and recovery periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169754. [PMID: 38163599 DOI: 10.1016/j.scitotenv.2023.169754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The global effort to achieve carbon neutrality has led to an increased demand for renewable energy technologies and their raw materials, namely rare earth elements (REEs). These elements possess unique properties and are used in various applications. However, the increased use of REE-based technologies has resulted in higher amounts of electronic waste, leading to elevated REEs concentrations found in the aquatic environment, with poorly understood threats to wildlife. Praseodymium (Pr) and europium (Eu) are two REEs that, despite their potential environmental risks, have almost unknown effects on aquatic organisms. Therefore, the present study aimed to assess the impacts of different concentrations of Pr and Eu (0, 10, 20, 40, and 80 μg/L) in the mussel species Mytilus galloprovincialis, as well as their ability to recover from exposure to the highest concentration. Mussels accumulated both elements in a dose-dependent manner, with the accumulation of Pr being higher. Accompanying the increase of metabolism, mussels exposed to Pr not only enhanced the activity of the antioxidant enzymes superoxide dismutase (up to 40 μg/L) and glutathione reductase (at 80 μg/L) but also the activity of the biotransformation enzymes carboxylesterases (CbE's) and glutathione S-transferases (GSTs) (at 80 μg/L). Nevertheless, these defence mechanisms were not sufficient to prevent cellular damage. All the Eu concentrations induced cellular damage, despite an increase in the activity of biotransformation enzymes (CbE's and GSTs) in mussel tissue. According to the histopathology assessment, mussels were not able to recover after exposure to both elements and lower concentrations induced higher injuries in digestive tubules. This study highlights that exposure to Pr and Eu had adverse effects on M. galloprovincialis, even at the lowest tested concentration, which may eventually impact mussels' growth, reproductive capacity, and survival.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal.
| |
Collapse
|
8
|
Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. How predicted temperature and salinity changes will modulate the impacts induced by terbium in bivalves? CHEMOSPHERE 2024; 351:141168. [PMID: 38215828 DOI: 10.1016/j.chemosphere.2024.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The threat of climate change, which includes shifts in salinity and temperature, has generated a global concern for marine organisms. These changes directly impact them and may alter their susceptibility to contaminants, such as terbium (Tb), found in electronic waste. This study assessed how decreased and increased salinity, as well as increased temperature, modulates Tb effects in Mytilus galloprovincialis mussels. After an exposure period of 28 days, Tb bioaccumulation and biochemical changes were evaluated. Results indicated no significant modulation of salinity and temperature on Tb accumulation, suggesting detoxification mechanisms and adaptations. Further analysis showed that Tb exposure alone caused antioxidant inhibition and neurotoxicity. When exposed to decreased salinity, these Tb-exposed organisms activated defense mechanisms, a response indicative of osmotic stress. Moreover, increased salinity also led to increased oxidative stress and metabolic activity in Tb-exposed organisms. Additionally, Tb-exposed organisms responded to elevated temperature with altered biochemical activities indicative of damage and stress response. Such responses suggested that Tb effects were masked by osmotic and heat stress. This study provides valuable insights into the interactions between temperature, salinity, and contaminants such as Tb, impacting marine organisms. Understanding these relationships is crucial for mitigating climate change and electronic waste effects on marine ecosystems.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Dos Santos RL, Mariz CF, Mascarenhas-Júnior PB, Barboza RSL, Dos Santos EM, de Sousa Correia JM, de Carvalho PSM. Nondestructive Evaluation of Metal Bioaccumulation and Biochemical Biomarkers in Blood of Broad-Snouted Caiman (Caiman latirostris) from Northeastern Brasil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38411291 DOI: 10.1002/etc.5823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024]
Abstract
Studies on the bioaccumulation and toxicity of contaminants in Crocodylians are scarce. We evaluated alterations in concentrations of the nondestructive biomarkers butyrylcholinesterase (BChE), glutathione-S-transferase (GST), superoxide dismutase (SOD), and reduced glutathione (GSH), together with bioaccumulation of the metals iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), chronium (Cr), aluminium (Al), and lead (Pb) in Caiman latirostris captured in Tapacurá Reservoir (TR; São Lourenço da Mata, Pernambuco, Brasil), in urbanized areas of Pernambuco State (UA; Brasil) and from the AME Brasil caiman farm (AF; Marechal Deodoro, Alagoas, Brasil); the latter was used as a potential reference with low levels of contamination. For metal analysis, 500 µL of blood was digested in 65% HNO3 and 30% H2 O2 . The samples were analyzed by inductively coupled plasma-optical emission spectrometry. For analysis of biomarkers, an aliquot of blood was centrifuged to obtain plasma in which biochemical assays were performed. Blood concentrations of metals analyzed in animals from AF were lower compared with TR and UA, confirming that animals from the caiman farm could be used as references with low levels of contamination. Iron, Cu, Mn, Al, and Pb exceeded toxic levels for other vertebrates in animals from TR and UA. Butyrylcholinesterase activity showed significant reduction in adults from UA and TR compared with AF. An increase in the activity of GST and GSH, in adults of TR and UA in relation to AF, was verified. Superoxide dismutase activity showed a significant reduction in adults of TR in relation to AF, and the concentrations of Cu and Mn were negatively correlated with SOD activity. Animals from UA and TR showed greater concentrations of the analyzed metals compared with reference animals, and changes in biomarkers were seen, confirming the potential of these nondestructive chemical and biological parameters in blood of C. latirostris for biomonitoring of pollution. Environ Toxicol Chem 2024;00:1-18. © 2024 SETAC.
Collapse
Affiliation(s)
- Rayssa Lima Dos Santos
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Brasil
- Laboratório Interdisciplinar de Anfibios e Répteis, Universidade Federal de Pernambuco, Recife, Brasil
- Laboratório de Ecotoxicologia Aquática, Universidade Federal de Pernambuco, Recife, Brasil
| | - Célio Freire Mariz
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Brasil
- Laboratório de Ecotoxicologia Aquática, Universidade Federal de Pernambuco, Recife, Brasil
| | - Paulo Braga Mascarenhas-Júnior
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Brasil
- Laboratório Interdisciplinar de Anfibios e Répteis, Universidade Federal de Pernambuco, Recife, Brasil
| | - Rafael Sá Leitão Barboza
- Laboratório Interdisciplinar de Anfibios e Répteis, Universidade Federal de Pernambuco, Recife, Brasil
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal Rural de Pernambuco, Recife, Brasil
| | | | | | | |
Collapse
|
10
|
Medkova D, Hollerova A, Blahova J, Marsalek P, Mares J, Hodkovicova N, Doubkova V, Hesova R, Tichy F, Faldyna M, Taştan Y, Kotoucek J, Svobodova Z, Lakdawala P. Medicine designed to combat diseases of affluence affects the early development of fish. How do plastic microparticles contribute? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166378. [PMID: 37595903 DOI: 10.1016/j.scitotenv.2023.166378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The incidence of diseases of affluence, such as diabetes mellitus, cardiovascular diseases, high blood pressure, and high cholesterol has been reported to rise. Consequently, the concentrations of residues of drugs designed to treat these diseases have been rising in water bodies. Moreover, the toxicity of these pharmaceuticals towards fish and other non-target organisms can be even enhanced by microplastic particles that are reportedly present in surface water. Therefore, the aim of this study was to describe the effects of three highly prescribed drugs, in particular metoprolol, enalapril, and metformin on fish early-life stages. Also, it was hypothesized that polystyrene microparticles will increase the toxicity of metoprolol to fish early-life stages. Embryonal acute toxicity tests on Danio rerio and Cyprinus carpio were carried out in order to describe the possible toxic effects of metoprolol, enalapril, and metformin. Also, the acute toxicity of polystyrene microparticles and the combination of metoprolol with polystyrene microparticles were tested on D. rerio embryos. Additionally, a 31-day long embryo-larval subchronic toxicity test was carried out with C. carpio in order to describe the long-term effects of low concentrations of metoprolol. The results of the study show that both metoprolol and enalapril have the potential to disrupt the early development of the heart in the embryonal stages of fish. Also, enalapril and metformin together with polystyrene microparticles seem to possibly disrupt the reproduction cycle and act as endocrine disruptors. Both pure polystyrene microparticles and the combination of them with metoprolol affect inflammatory processes in organisms. Additionally, metformin alters several metabolism pathways in fish early-life stages. The results of the study bring new evidence that even low, environmentally-relevant concentrations of pharmaceuticals have the potential to disrupt the early development of fish, particularly on a molecular level.
Collapse
Affiliation(s)
- Denisa Medkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic; Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, Brno, Czech Republic; Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic
| | - Aneta Hollerova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic; Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic
| | - Renata Hesova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Yiğit Taştan
- Department of Aquaculture, Faculty of Fisheries, Kastamonu University, Kastamonu, Turkiye
| | - Jan Kotoucek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic
| | - Pavla Lakdawala
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic.
| |
Collapse
|
11
|
Ma S, Wang WX. Physiological trade-off of marine fish under Zn deficient and excess conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166187. [PMID: 37586517 DOI: 10.1016/j.scitotenv.2023.166187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Fish can regulate their Zn body bioaccumulation, but the mechanisms and physiological responses at the organ level are still largely unknown. In the present study, we exposed the marine seabreams under different Zn levels (deficient, optimum and excess levels) over a period of 4 weeks and examined how fish maintained its regulation of bioaccumulation with associated physiological effects at the fish intestinal organ. Our results indicated that fish intestinal organs constantly controlled the Zip family to "rob" more Zn under Zn-deficiency (with a dietary level of 7.9 mg/kg), whereas restricted the Zn efflux to preserve the intestinal function. Under Zn-excess conditions (193.3 mg/kg), the fish intestine maintained a limited Zn homeostasis (37.8-44.6 μg/mg) by initially inhibiting the influx through the Zip family receptor, but later accelerating both influx and efflux of Zn. Based on the WGCNA method, Zn deficient dietary exposure first resulted in defense response with subsequent switching to antioxidant defense. Instead, excess Zn first triggered the immunological response, but then led to physiological toxicity (abnormal in lipid metabolism). Although Zn had multiple biological functions, it was preferentially involved in lipid metabolism under different dietary Zn doses. This study provided direct evidence for Zn regulation at the organ level and detoxification mechanisms against potential environmental toxicity in fish.
Collapse
Affiliation(s)
- Shuoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
12
|
Zhang S, Hou J, Zhang X, Cheng L, Hu W, Zhang Q. Biochar-assisted degradation of oxytetracycline by Achromobacter denitrificans and underlying mechanisms. BIORESOURCE TECHNOLOGY 2023; 387:129673. [PMID: 37579863 DOI: 10.1016/j.biortech.2023.129673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Contamination of the environment with large amounts of residual oxytetracycline (OTC) and the corresponding resistance genes poses a potential threat to natural ecosystems and human health. In this study, an effective OTC-degrading strain, identified as Achromobacter denitrificans OTC-F, was isolated from activated sludge. In the degradation experiment, the degradation rates of OTC in the degradation systems with and without biochar addition were 95.01-100% and 73.72-99.66%, respectively. Biochar promotes the biodegradation of OTC, particularly under extreme environmental conditions. Toxicity evaluation experiments showed that biochar reduced biotoxicity and increased the proportion of living cells by 17.36%. Additionally, biochar increased the activity of antioxidant enzymes by 34.1-91.0%. Metabolomic analysis revealed that biochar promoted the secretion of antioxidant substances such as glutathione and tetrahydrofolate, which effectively reduced oxidative stress induced by OTC. This study revealed the mechanism at the molecular level and provided new strategies for the bioremediation of OTC in the environment.
Collapse
Affiliation(s)
- Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Cheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenjin Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, China.
| |
Collapse
|
13
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Gadolinium accumulation and its biochemical effects in Mytilus galloprovincialis under a scenario of global warming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116120-116133. [PMID: 37910362 PMCID: PMC10682062 DOI: 10.1007/s11356-023-30439-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Electrical and electronic equipment reaching the end of its useful life is currently being disposed of at such an alarmingly high pace that raises environmental concerns. Together with other potentially dangerous compounds, electronic waste contains the rare-earth element gadolinium (Gd), which has already been reported in aquatic systems. Additionally, the vulnerability of aquatic species to this element may also be modified when climate change related factors, like increase in temperature, are taken into consideration. Thus, the present study aimed to evaluate the toxicity of Gd under a scenario of increased temperature in Mytilus galloprovincialis mussels. A multi-biomarker approach and Gd bioaccumulation were assessed in mussels exposed for 28 days to 0 and 10 μg/L of Gd at two temperatures (control - 17 °C; increased - 22 °C). Results confirmed that temperature had a strong influence on the bioaccumulation of Gd. Moreover, mussels exposed to Gd alone reduced their metabolism, possibly to prevent further accumulation, and despite catalase and glutathione S-transferases were activated, cellular damage seen as increased lipid peroxidation was not avoided. Under enhanced temperature, cellular damage in Gd-exposed mussels was even greater, as defense mechanisms were not activated, possibly due to heat stress. In fact, with increased temperature alone, organisms experienced a general metabolic depression, particularly evidenced in defense enzymes, similar to the results obtained under Gd-exposure. Overall, this study underlines the importance of conducting environmental risk assessment taking into consideration anticipated climate change scenarios and exposures to emerging contaminants at relevant environmental concentrations.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Zhao S, Zhang Q, Xiao W, Chen D, Hu J, Gao N, Huang M, Ye X. Comparative transcriptome analysis reveals key genes and coordinated mechanisms in two rice cultivars differing in cadmium accumulation. CHEMOSPHERE 2023; 338:139489. [PMID: 37451631 DOI: 10.1016/j.chemosphere.2023.139489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Although Cd accumulation varies among rice varieties is recognized, the underlying mechanisms are not well clarified. In this study, comparative transcriptome analysis were performed by hydroponic culture system with two rice varieties, Y1540 (high Cd accumulator) and Y15 (low Cd accumulator) under 20 μM Cd stress. Results revealed 17,320 differentially expressed genes (DEGs) in roots of Y15 (7,655 upregulated and 9,665 downregulated) and 17,386 DEGs in roots of Y1540 (8,823 upregulated and 8,563 downregulated) expose to 20 μM Cd stress. Gene ontology (GO) analysis enriched 24 and 26 terms in Y15 and Y1540 respectively, including 23 common terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed 27 and 28 significant pathways in Y15 and Y1540 respectively, with 19 common pathways. Different responses to Cd stress between cultivars were not only reflected in differently enriched GO terms and KEGG pathways but also in different DEGs of 23 common GO terms and significant sequences represented by p-values of 19 common KEGG pathways. Both cultivars resist Cd through common processes with different weights; hence glutathione metabolism, mineral absorption, biosynthesis of secondary metabolites, and degradation of aromatic compounds could be playing a more important role in Y1540, whereas ribosome biogenesis in eukaryotes, mismatch repair, aminoacyl-tRNA biosynthesis, and the cell cycle maybe playing a more important role in Y15. Weighted gene co-expression network analysis (WGCNA) showed that five and three modules were clustered in Y15 and Y1540, respectively, with yellow and brown modules in Y15 and brown modules in Y1540 being significantly related to Cd stress. Further analysis showed that most of hub genes in Y15 were related to signal transduction or transcription factors, while most of hub genes in Y1540 were related to binding, metabolic, and secondary metabolic processes, which demonstrated their different response patterns at transcriptomic level to Cd stress.
Collapse
Affiliation(s)
- Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
15
|
Gong Z, Duan Y, Liu D, Zong Y, Zhang D, Shi X, Hao X, Li P. Physiological and transcriptome analysis of response of soybean (Glycine max) to cadmium stress under elevated CO 2 concentration. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130950. [PMID: 36860078 DOI: 10.1016/j.jhazmat.2023.130950] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The continuous accumulation of Cd has long-lasting detrimental effects on plant growth and food safety. Although elevated CO2 concentration (EC) has been reported to reduce Cd accumulation and toxicity in plants, evidence on the functions of elevated CO2 concentration and its mechanisms in the possible alleviation of Cd toxicity in soybean are limited. Here, we used physiological and biochemical methods together with transcriptomic comparison to explore the effects of EC on Cd-stressed soybean. Under Cd stress, EC significantly increased the weight of roots and leaves, promoted the accumulations of proline, soluble sugars, and flavonoid. In addition, the enhancement of GSH activity and GST gene expressions promoted Cd detoxification. These defensive mechanisms reduced the contents of Cd2+, MDA, and H2O2 in soybean leaves. The up-regulation of genes encoding phytochelatin synthase, MTPs, NRAMP, and vacuoles protein storage might play vital roles in the transportation and compartmentalization process of Cd. The MAPK and some transcription factors such as bHLH, AP2/ERF, and WRKY showed changed expressions and might be engaged in mediation of stress response. These findings provide a boarder view on the regulatory mechanism of EC on Cd stress and provide numerous potential target genes for future engineering of Cd-tolerant cultivars in soybean breeding programs under climate changes scenarios.
Collapse
Affiliation(s)
- Zehua Gong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yuqian Duan
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Danmei Liu
- School of Life Science, Shanxi University, 030036, Taiyuan, China
| | - Yuzheng Zong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Dongsheng Zhang
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xinrui Shi
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
16
|
Işık K, Taş Ö, Ekinci D. Partial Purification of Glutathione S-transferase Enzyme From the Seed of Mallow (Malva Slyvestris L.) and Investigation of the Inhibition Kinetics of Some Heavy Metals. Protein J 2023:10.1007/s10930-023-10104-w. [PMID: 36920725 DOI: 10.1007/s10930-023-10104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Glutathione S-Transferase (GST) enzyme is abundant in mammals, insects, fish and microorganisms, as well as in various tissues of these species, particularly in tissues exposed to xenobiotics from the environment. As a result, the enzyme execute detoxifying function by scavenging a diverse range of xenobiotics, such as chemotherapeutic medicines, environmental carcinogens and endogenous compounds. In this study, GST enzyme was partially purified from mallow (Malva slyvestris L.) seed for the first time and the kinetic parameters were determined. The optimum ionic intensity was found in 400 mM Tris-Buffer, optimum pH: 7.0, and optimum substrate concentration was determined as 0.2 mM. One of the biggest reasons for deterioration of ecological balance in nature is heavy metal accumulation in soil, air and water which becomes a major threat to the vital activities of living things. In this study, inhibitory effects of Cd+ 2, Ag+, Zn+ 2 and Fe+ 3 heavy metals, which are common in nature, on mallow seed glutathione S-transferase enzyme were investigated. Each heavy metal showed micromolar inhibitory effects on enzyme activity. IC50 values of the metals were calculated as 60.93, 74.602, 178.22 and 369 µM, respectively.
Collapse
Affiliation(s)
- Kübra Işık
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun, 55139, Turkey
| | - Ömer Taş
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun, 55139, Turkey
| | - Deniz Ekinci
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun, 55139, Turkey.
| |
Collapse
|
17
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Threats of Pollutants Derived from Electronic Waste to Marine Bivalves: The Case of the Rare-Earth Element Yttrium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:166-177. [PMID: 36511525 PMCID: PMC10107937 DOI: 10.1002/etc.5508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 10/24/2022] [Indexed: 06/01/2023]
Abstract
The production of electrical and electronic equipment waste (e-waste) is increasing at an alarming rate worldwide. This may eventually lead to its accumulation in aquatic environments, mainly because of the presence of nonbiodegradable components. The rare-earth element yttrium (Y) is particularly relevant because it is present in a wide variety of electro-based equipment. Within this context, the present study investigated the biological consequences of anthropogenic Y exposure in Mytilus galloprovincialis. Mussels were exposed to Y (0, 5, 10, 20, 40 μg/L) for 28 days, and their bioaccumulation and biomarkers related to metabolism, oxidative stress defenses, cellular damage, and neurotoxicity were evaluated. The results revealed that tissue Y content increased at increasing exposure concentrations (though the bioconcentration factor decreased). At the lowest Y dosage (5 µg/L), mussels lowered their electron transport system (ETS) activity, consumed more energy reserves (glycogen), and activated superoxide dismutase activity, thus preventing cellular damage. At the highest Y dosage (40 μg/L), mussels reduced their biotransformation activities with no signs of cellular damage, which may be associated with the low toxicity of Y and the lower/maintenance of ETS activity. Although only minor effects were observed, the present findings raise an environmental concern for aquatic systems where anthropogenic Y concentrations are generally low but still may compromise organisms' biochemical performance. Particularly relevant are the alterations in energy metabolism and detoxification processes for their longer-term impacts on growth and reproduction but also as defense mechanisms against other stressors. Environ Toxicol Chem 2023;42:166-177. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAMUniversidade de AveiroAveiroPortugal
| | | | - Montserrat Solé
- Departamento de Recursos Marinos RenovablesInstituto de Ciencias del Mar ICM‐CSICBarcelonaSpain
| | - Eduarda Pereira
- Departamento de Química & CESAM/LAQV‐REQUIMTEUniversidade de AveiroAveiroPortugal
| | - Rosa Freitas
- Departamento de Biologia & CESAMUniversidade de AveiroAveiroPortugal
| |
Collapse
|
18
|
Machado BR, Silva PGP, Garda-Buffon J, Santos LO. Magnetic fields as inducer of glutathione and peroxidase production by Saccharomyces cerevisiae. Braz J Microbiol 2022; 53:1881-1891. [PMID: 36199005 PMCID: PMC9679107 DOI: 10.1007/s42770-022-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/25/2022] [Indexed: 01/13/2023] Open
Abstract
Glutathione (GSH) and peroxidase (POD) are biomolecules of interest in the global market; thus, it is desirable to seek ways to increase their production. Magnetic field (MF) application is one of the technologies used in cultivation that has shown promising results to increase bioproducts. Therefore, this study aimed at evaluating the influence of MFs on GSH and POD production by Saccharomyces cerevisiae ATCC 7754. Different periods of MF application (35 mT) were evaluated over 72 h. The highest GSH production was reached in 48 h of cultivation in assays MF 0-24 (155.32 ± 9.12 mg L-1) and MF 0-72 (149.27 ± 3.62 mg L-1), which showed an increase of 121.9 % and 113 %, respectively, by comparison with the control without any MF application. The highest POD activity was achieved when MFs were applied throughout the culture (36.31 U mg-1) and POD productivity of 0.72 U mg-1 h-1. MF application throughout cultivation proved to be a promising strategy since all responses increased, i.e., GSH concentration, GSH productivity, POD activity, and POD productivity increased 113.7 %, 113 %, 20.4 %, and 28.6 %, respectively. This study is one of the first to consider MFs as a viable and low-cost alternative to produce GSH and POD in bioprocesses.
Collapse
Affiliation(s)
- Bruno Roswag Machado
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Pedro Garcia Pereira Silva
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Jaqueline Garda-Buffon
- Laboratory of Mycotoxin and Food Science, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
19
|
Esterhuizen M, von Wolff MA, Kim YJ, Pflugmacher S. Ecotoxicological implications of leachates from concrete demolition debris on oligochaetes: survival and oxidative stress status. Heliyon 2022; 8:e11237. [PMID: 36339987 PMCID: PMC9626945 DOI: 10.1016/j.heliyon.2022.e11237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Urbanization and population growth demand the construction of structures to facilitate the need for space, and old infrastructures must make space for new ones leading to demolition and concrete debris. In addition to demolition, aging and weather are factors leading to concrete deterioration and, thus, a new challenge as an environmental pollutant. Studies on how concrete debris and leachate affect biota in the environment are limited. The present study aimed to understand the effects of leachate from various sizes of concrete debris on the three oligochaete species Enchytraeus crypticus, Tubifex, and Lumbriculus variegatus. Acute toxicity testing was carried out to determine the adverse effects over time. The oligochaetes’ survival was monitored as well as the activity of the biotransformation enzyme glutathione S-transferase and the antioxidative enzyme catalase as indicators of the oxidative stress status. Leachate from the smallest concrete particle size (<1 mm) was found to be the most toxic as it caused, on average, 6-fold increased oligochaete mortality compared to the larger pieces (2–5 cm) after 96 h of exposure, potentially due to the larger surface area facilitating the release of toxicants. Substrate buffered the toxic effect of the leachate with 42 ± 12% fewer mortalities and reduced adverse effects on the enzymes. Of the three oligochaetes, E. crypticus was the most resilient to the concrete leachate. The study is the first to investigate the effects of concrete leachate on oligochaetes. Leachate from smaller concrete particles was the most toxic. Enchytraeus crypticus was the most resilient to concrete leachate. Sediment decreased the adverse effects of the concrete leachate.
Collapse
Affiliation(s)
- Maranda Esterhuizen
- University of Helsinki, Aquatic Ecotoxicology in an Urban Environment, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland,Helsinki Institute of Sustainability (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland,Korean Institute of Science and Technology Europe, Joint Laboratory of Applied Ecotoxicology, Campus E7 1, 66123 Saarbrücken, Germany,University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Wallace Building, 125 Dysart Road, Winnipeg, MB R3T 2N2, Canada,Corresponding author.
| | - Marya Anne von Wolff
- Technische Universität Berlin, Department of Civil Engineering, Group of Building Materials and Construction Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany,Knoell Germany GmbH, Eastsite XII, Konrad-Zuse-Ring 25, 68163 Mannheim, Germany
| | - Young Jun Kim
- Korean Institute of Science and Technology Europe, Joint Laboratory of Applied Ecotoxicology, Campus E7 1, 66123 Saarbrücken, Germany
| | - Stephan Pflugmacher
- University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Wallace Building, 125 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
20
|
Rahbar MH, Samms-Vaughan M, Zhao Y, Saroukhani S, Bressler J, Hessabi M, Grove ML, Shakespeare-Pellington S, Loveland KA. Interactions between Environmental Factors and Glutathione S-Transferase (GST) Genes with Respect to Detectable Blood Aluminum Concentrations in Jamaican Children. Genes (Basel) 2022; 13:genes13101907. [PMID: 36292793 PMCID: PMC9601654 DOI: 10.3390/genes13101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Aluminum (Al) is a metallic toxicant at high concentrations following natural or unnatural exposures. Dietary intake is considered as the main source of aluminum exposure in children. We used data from 366 typically developing (TD) children (ages 2−8 years) who participated as controls in an age- and sex-matched case−control study in Jamaica. We investigated additive and interactive associations among environmental factors and children’s genotypes for glutathione S-transferase (GST) genes (GSTT1, GSTM1, GSTP1), in relation to having a detectable blood aluminum concentration (BAlC) of >5.0 μg/L, using multivariable logistic regression models. Findings from interactive models revealed that the odds of having a detectable BAlC was significantly higher among children who ate string beans (p ≤ 0.01), whereas about 40% lower odds of having a detectable BAlC was observed in children with higher parental education level, (p = 0.02). A significant interaction between consumption of saltwater fish and GSTP1 in relation to having a detectable BAlC using either co-dominant or dominant genetic models (overall interaction p = 0.02 for both models) indicated that consumption of saltwater fish was associated with higher odds of having a detectable BAlC only among children with the GSTP1 Ile105Val Ile/Ile genotype using either co-dominant or dominant models [OR (95% CI) = 2.73 (1.07, 6.96), p = 0.04; and OR (95% CI) = 2.74 (1.08, 6.99), p = 0.03]. Since this is the first study from Jamaica that reports such findings, replication in other populations is warranted.
Collapse
Affiliation(s)
- Mohammad H. Rahbar
- Department of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-500-7901; Fax: +1-713-500-0766
| | - Maureen Samms-Vaughan
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston 7, Jamaica
| | - Yuansong Zhao
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Biostatistics & Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sepideh Saroukhani
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Megan L. Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Katherine A. Loveland
- Louis A Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| |
Collapse
|
21
|
Alistar CF, Nica IC, Nita-Lazar M, Vasile GG, Gheorghe S, Croitoru AM, Dolete G, Mihaiescu DE, Ficai A, Craciun N, Gradisteanu Pircalabioru G, Chifiriuc MC, Stan MS, Dinischiotu A. Antioxidative Defense and Gut Microbial Changes under Pollution Stress in Carassius gibelio from Bucharest Lakes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7510. [PMID: 35742758 PMCID: PMC9224152 DOI: 10.3390/ijerph19127510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Fish are able to accumulate by ingestion various contaminants of aquatic environment, with negative consequences on their intestine, being continuously threatened worldwide by heavy metals, pesticides and antibiotics resulted from the human activities. Consequently, the health of other species can be affected by eating the contaminated fish meat. In this context, our study aimed to perform a comparison between the changes in intestine samples of Carassius gibelio individuals collected from different artificial lakes in Bucharest (Romania), used by people for leisure and fishing. The presence of various metals, pesticides and antibiotics in the gut of fish was assessed in order to correlate their accumulation with changes of antioxidative enzymes activities and microbiome. Our results showed that fish from Bucharest lakes designed for leisure (Chitila, Floreasca and Tei lakes) have an increased level of oxidative stress in intestine tissue, revealed by affected antioxidant enzymes activities and GSH levels, as well as the high degree of lipid peroxidation, compared to the fish from protected environment (Vacaresti Lake). Some heavy metals (Fe, Ni and Pb) and pesticides (aldrin and dieldrin) were in high amount in the gut of fish with modified antioxidative status. In conclusion, our study could improve the knowledge regarding the current state of urban aquatic pollution in order to impose several environmental health measures.
Collapse
Affiliation(s)
- Cristina F. Alistar
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
| | - Ionela C. Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
| | - Mihai Nita-Lazar
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (M.N.-L.); (G.G.V.); (S.G.)
| | - Gabriela Geanina Vasile
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (M.N.-L.); (G.G.V.); (S.G.)
| | - Stefania Gheorghe
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (M.N.-L.); (G.G.V.); (S.G.)
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Nicolai Craciun
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
| |
Collapse
|
22
|
Rodríguez-Martín D, Murciano A, Herráiz M, de Francisco P, Amaro F, Gutiérrez JC, Martín-González A, Díaz S. Arsenate and arsenite differential toxicity in Tetrahymena thermophila. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128532. [PMID: 35248958 DOI: 10.1016/j.jhazmat.2022.128532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A comparative analysis of toxicities of both arsenic forms (arsenite and arsenate) in the model eukaryotic microorganism Tetrahymena thermophila (ciliate protozoa) has shown the presence of various detoxification mechanisms and cellular effects comparable to those of animal cells under arsenic stress. In the wild type strain SB1969 arsenate is almost 2.5 times more toxic than arsenite. According to the concentration addition model used in binary metallic mixtures their toxicities show an additive effect. Using fluorescent assays and flow cytometry, it has been detected that As(V) generates elevated levels of ROS/RNS compared to As(III). Both produce the same levels of superoxide anion, but As(V) also causes greater increases in hydrogen peroxide and peroxynitrite. The mitochondrial membrane potential is affected by both As(V) and As(III), and electron microscopy has also revealed that mitochondria are the main target of both arsenic ionic forms. Fusion/fission and swelling mitochondrial and mitophagy, together with macroautophagy, vacuolization and mucocyst extruction are mainly associated to As(V) toxicity, while As(III) induces an extensive lipid metabolism dysfunction (adipotropic effect). Quantitative RT-PCR analysis of some genes encoding antioxidant proteins or enzymes has shown that glutathione and thioredoxin metabolisms are involved in the response to arsenic stress. Likewise, the function of metallothioneins seems to be crucial in arsenic detoxification processes, after using both metallothionein knockout and knockdown strains and cells overexpressing metallothionein genes from this ciliate. The analysis of the differential toxicity of As(III) and As(V) shown in this study provides cytological and molecular tools to be used as biomarkers for each of the two arsenic ionic forms.
Collapse
Affiliation(s)
- Daniel Rodríguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain.
| | - Antonio Murciano
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Marta Herráiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | | | - Francisco Amaro
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Juan Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| |
Collapse
|
23
|
McLaughlin QR, Gunderson MP. Effects of selenium treatment on endogenous antioxidant capacity in signal crayfish (Pacifastacus leniusculus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109324. [PMID: 35248758 PMCID: PMC9055979 DOI: 10.1016/j.cbpc.2022.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022]
Abstract
Selenium is an essential element that plays a role in numerous physiological processes and is critical for the maintenance of a strong endogenous antioxidant system. Previous work by our research group reported that the organophosphate pesticide dimethoate decreased glutathione S-transferase activity (GST) in signal crayfish (Pacifastacus leniusculus) collected from the Boise River (Idaho, USA). The goals of this study were to examine whether: 1) sodium selenite modulated the endogenous antioxidants glutathione (GSH), metallothionein (MT), and glutathione S-transferase (GST), thus suggesting a mechanism of antioxidant activity, 2) dimethoate exposure (pro-oxidant stressor) decreased GST activity in a localized population of signal crayfish collected from the Snake River (Idaho, USA), and 3) investigate whether selenium cotreatment ameliorated the adverse effects of dimethoate on GST activity due to the antioxidant properties associated with selenium. Selenium and dimethoate treatments (and co-treatments) did not modulate GSH or MT concentrations at the doses tested in this study. Furthermore, neither selenium nor dimethoate was factors influencing GST activity, and no interaction was found between the treatments. While our results did not support our predictions, they are suggestive and future studies examining the protective role of selenium in pro-oxidant exposure in this species are warranted. Population-specific responses as well as seasonal variations in endogenous antioxidant expression should be considered in future experiments.
Collapse
Affiliation(s)
- Quinlan R McLaughlin
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, United States of America
| | - Mark P Gunderson
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, United States of America.
| |
Collapse
|
24
|
Thévenod F, Schreiber T, Lee WK. Renal hypoxia-HIF-PHD-EPO signaling in transition metal nephrotoxicity: friend or foe? Arch Toxicol 2022; 96:1573-1607. [PMID: 35445830 PMCID: PMC9095554 DOI: 10.1007/s00204-022-03285-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
The kidney is the main organ that senses changes in systemic oxygen tension, but it is also the key detoxification, transit and excretion site of transition metals (TMs). Pivotal to oxygen sensing are prolyl-hydroxylases (PHDs), which hydroxylate specific residues in hypoxia-inducible factors (HIFs), key transcription factors that orchestrate responses to hypoxia, such as induction of erythropoietin (EPO). The essential TM ion Fe is a key component and regulator of the hypoxia–PHD–HIF–EPO (HPHE) signaling axis, which governs erythropoiesis, angiogenesis, anaerobic metabolism, adaptation, survival and proliferation, and hence cell and body homeostasis. However, inadequate concentrations of essential TMs or entry of non-essential TMs in organisms cause toxicity and disrupt health. Non-essential TMs are toxic because they enter cells and displace essential TMs by ionic and molecular mimicry, e. g. in metalloproteins. Here, we review the molecular mechanisms of HPHE interactions with TMs (Fe, Co, Ni, Cd, Cr, and Pt) as well as their implications in renal physiology, pathophysiology and toxicology. Some TMs, such as Fe and Co, may activate renal HPHE signaling, which may be beneficial under some circumstances, for example, by mitigating renal injuries from other causes, but may also promote pathologies, such as renal cancer development and metastasis. Yet some other TMs appear to disrupt renal HPHE signaling, contributing to the complex picture of TM (nephro-)toxicity. Strikingly, despite a wealth of literature on the topic, current knowledge lacks a deeper molecular understanding of TM interaction with HPHE signaling, in particular in the kidney. This precludes rationale preventive and therapeutic approaches to TM nephrotoxicity, although recently activators of HPHE signaling have become available for therapy.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Strasse 12, 58453, Witten, Germany.
| | - Timm Schreiber
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Strasse 12, 58453, Witten, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School EWL, Bielefeld University, R.1 B2-13, Morgenbreede 1, 33615 Bielefeld, Germany
| |
Collapse
|
25
|
Gunderson MP, Boyd HM, Kelly CI, Lete IR, McLaughlin QR. Modulation of endogenous antioxidants by zinc and copper in signal crayfish (Pacifastacus leniusculus). CHEMOSPHERE 2021; 275:129982. [PMID: 33662728 PMCID: PMC8119340 DOI: 10.1016/j.chemosphere.2021.129982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
Metal pollution is a long-standing concern and bioindicators are commonly used in ecotoxicological studies to monitor impacted wildlife populations for evidence of sublethal effects. Significant variation in the response of common biomarkers to metals is reported across taxa, thus necessitating careful characterization in model organisms. In this study, we describe the regulation of glutathione S-transferase (GST), glutathione (GSH), and metallothionein (MT) by zinc chloride (0.6, 0.9, 1.2, 2.4, 4.8, 9.6 μg g-1) and copper chloride (0.6, 0.9, 1.2 μg g-1) in signal crayfish (Pacifastacus leniusculus). Zinc chloride did not alter GST activity relative to controls in the hepatopancreas. Crayfish exposed to copper chloride exhibited decreased GST activity at the lowest dose tested (0.6 μg g-1) with no change observed at the higher doses. GSH did not change in response to either metal when sexes were grouped together. MT concentrations increased in response to zinc (2.4, 4.6, and 9.6 μg g-1 doses) and copper (0.6, 0.9, and 1.2 μg g-1 doses) in gill tissue. In tail tissue, MT increased at the 2.4 and 4.8 μg g-1 zinc chloride doses and all the concentrations of copper tested. Sex-specific differences in endogenous antioxidant expression were also analyzed with no clear patterns emerging. We concluded that these endpoints are sensitive to zinc and copper in signal crayfish, although careful interpretation is needed when applying them in field studies given the variation in responses, non-monotonic dose responses, and differences in biotic and abiotic factors that inevitably exist in different aquatic ecosystems.
Collapse
Affiliation(s)
- Mark P Gunderson
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID, 83605, USA.
| | - Hailey M Boyd
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID, 83605, USA
| | - Courtney I Kelly
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID, 83605, USA
| | - Isabela R Lete
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID, 83605, USA
| | - Quinlan R McLaughlin
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID, 83605, USA
| |
Collapse
|
26
|
Federici L, Masulli M, Allocati N. An Overview of Biosensors Based on Glutathione Transferases and for the Detection of Glutathione. ELECTROANAL 2021. [DOI: 10.1002/elan.202100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry University “G. d' Annunzio” Chieti Italy
- CAST (Center for Advanced Studies and Technology) University “G. d' Annunzio” Chieti Italy
- UniCamillus – Saint Camillus International University of Health Sciences Rome Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry University “G. d' Annunzio” Chieti Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry University “G. d' Annunzio” Chieti Italy
| |
Collapse
|
27
|
Bio S, Nunes B. Twists and turns of an oyster's life: effects of different depuration periods on physiological biochemical functions of oysters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29601-29614. [PMID: 33559825 DOI: 10.1007/s11356-021-12683-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture activities are often established in the vicinity of highly populated, potentially contaminated areas. Animals cultured at such locations, namely bivalves, are frequently used as test organisms in ecotoxicological testing. In this case, a period of depuration is required to allow the normalization of physiological processes, which are likely to be altered after exposure to a multiplicity of waterborne contaminants occurring in the wild. One of the most important species in modern marine aquaculture is the oyster species Crassostrea gigas. The aim of this study was to assess if the current depuration time frame of 24 h (adopted by most aquaculture facilities), is long enough to permit oysters to revert potential toxic effects exerted by environmental contaminants, allowing their use in laboratory-based ecotoxicological studies. The selected approach involved the monitoring of biochemical (antioxidant defence, oxidative damage, phase II metabolism, and neurological homeostasis) and physiological (condition index) parameters, along a period of 42 days. The obtained results showed that a period of 24 h does not revert any of the potential toxic effects caused by environmental contaminants to which animals may have been previously subjected; even a period of 42 days was not long enough for the oysters to completely normalize the levels of their antioxidant defences, namely total GPx activity, which increased over time. Lipid peroxidation was also increased during the depuration period, and the activity of the metabolic isoenzymes GSTs was significantly decreased. Furthermore, AChE activity measured in the adductor muscle of oysters was increased over time. These assumptions suggest that a period of depuration longer than 24 h is mandatory to obtain adequate test organisms of this oyster species, to be used for ecotoxicological testing purposes.
Collapse
Affiliation(s)
- Sofia Bio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Bursal E, Turkan F, Buldurun K, Turan N, Aras A, Çolak N, Murahari M, Yergeri MC. Transition metal complexes of a multidentate Schiff base ligand containing pyridine: synthesis, characterization, enzyme inhibitions, antioxidant properties, and molecular docking studies. Biometals 2021; 34:393-406. [PMID: 33528765 DOI: 10.1007/s10534-021-00287-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023]
Abstract
A series of Fe(II), Ni(II), and Pd(II) complexes were prepared with a novel Schiff base ligand containing pyridine moiety. The prepared compounds were characterized using FT-IR, 1H and 13 C NMR, UV-Vis, powder XRD, thermogravimetric analysis, mass spectra, magnetic susceptibility, and elemental analysis. The coordination geometry of Fe(II) and Ni(II) complexes were octahedral, where Fe(II) and Ni(II) metal ions were coordinated by an oxygen atom of the carbonyl group, a nitrogen atom of the azomethine moiety, and a phenolic oxygen atom. The Pd(II) complex had square planar geometry. All of the synthesized compounds were tested for their biochemical properties, including enzyme inhibition and antioxidant activities. According to the in vitro DPPH and FRAP antioxidant methods, the Schiff base ligand and its Fe(II)/Pd(II) complexes showed close antioxidant activities against the standards (BHA, BHT, ascorbic acid, and α-tocopherol). Enzyme inhibitions of the metal complexes were investigated against glutathione S-transferase (GST), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes. The best inhibition value (Ki) was observed for the Ni(II) complex against GST (2.63 ± 0.04 µM). Also, the Pd(II) complex showed the best inhibition value (10.17 ± 1.88 µM) against AChE. Molecular docking specified significant interactions at the active pockets of respective target enzymes. The Ni(II) complex exhibited good binding affinity against both BChE (- 9.0 kcal/mol and 9.36 ± 2.03 µM) and GST (- 7.0 kcal/mol and 2.63 ± 0.04 µM) enzymes.
Collapse
Affiliation(s)
- Ercan Bursal
- Department of Nursing, Faculty of Health, Muş Alparslan University, 49250, Muş, Turkey.
| | - Fikret Turkan
- Health Services Vocational School, Igdır University, 76000, Igdır, Turkey
| | - Kenan Buldurun
- Department of Food Processing, Vocational School of Technical Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Abdulmelik Aras
- Department of Biochemistry, Faculty of Arts and Sciences, Igdır University, 76100, Igdır, Turkey
| | - Naki Çolak
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Mayur C Yergeri
- Department of Pharmaceutical Chemistry, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, 400 056, India
| |
Collapse
|
29
|
Georgakis N, Poudel N, Vlachakis D, Papageorgiou AC, Labrou NE. Phi class glutathione transferases as molecular targets towards multiple-herbicide resistance: Inhibition analysis and pharmacophore design. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:342-352. [PMID: 33257232 DOI: 10.1016/j.plaphy.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Multiple-herbicide resistance (MHR) is a global threat to weed control in cereal crops. MHR weeds express a specific phi class glutathione transferase (MHR-GSTF) that confers resistance against multiple herbicides and therefore represents a promising target against MHR weeds. Kinetics inhibition analysis of MHR-GSTFs from grass weeds Lolium rigidum (LrGSTF) Alopecurus myosuroides (AmGSTF) and crops Hordeum vulgare (HvGSTF) and Triticum aestivum (TaGSTF) allowed the identification of the acetanilide herbicide butachlor as a potent and selective inhibitor towards MHR-GSTFs. Also, butachlor is a stronger inhibitor for LrGSTF and AmGSTF compared to HvGSTF and TaGSTF from crops. The crystal structure of LrGSTF was determined at 1.90 Å resolution in complex with the inhibitor S-(4-nitrobenzyl)glutathione. A specific 3D pharmacophore targeting the MHR-GSTFs was designed and used to identify structural elements important for potent and selective inhibition. Structural analysis of GSTFs revealed a decisive role of conserved Tyr118 in ligand binding and pharmacophore design. Its positioning is dependent on an outer patch of adjacent residues that span from position 132 to 134 which are similar for both LrGSTF and AmGSTF but different in HvGSTF and TaGSTF. The results presented here provide new knowledge that may be adopted to cope with MHR weeds.
Collapse
Affiliation(s)
- Nikolaos Georgakis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR, 11855, Athens, Greece
| | - Nirmal Poudel
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20521, Finland
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR, 11855, Athens, Greece
| | | | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR, 11855, Athens, Greece.
| |
Collapse
|
30
|
Xie Y, Hou X. Assessments on the molecular toxic mechanisms of fipronil and neonicotinoids with glutathione transferase Phi8. Int J Biol Macromol 2020; 162:1862-1868. [PMID: 32791279 DOI: 10.1016/j.ijbiomac.2020.08.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
As the most widely used pesticides, fipronils and neonicotinoids exhibit harmful effects to many species including crops mainly via the oxidative damages. However, the potential toxic mechanisms of these pesticides to plants remain unclear. In this work, glutathione S-transferase Phi8 was employed as the biomarker to assess the adverse oxidative effects of these two kinds of pesticides. The structural changes and binding characteristics of AtGSTF8 with the pesticides were investigated by multispectral techniques and the latest generation neonicotinoid dinotefuran exhibited the most evident effects on the structure of AtGSTF8. Then dinotefuran displayed weak binding ability to AtGSTF8 comparing with fipronil and clothianidin based on the bio-layer interferometry technique. Besides, the glutathione S-transferase activities of AtGSTF8 were decreased upon binding with these two kinds of pesticides but dinotefuran displayed minor effect on the enzyme activity. At last, dinotefuran and clothianidin were presumed to locate on the molecular surface of AtGSTF8, while fipronil was predicted to insert into the cavity of AtGSTF8 which was adjacent to the active G-site based on the molecular docking results. The molecular investigations on the toxic mechanisms would help to evaluate the harmful effects of these two kinds of prevalent pesticides to plants.
Collapse
Affiliation(s)
- Yanhua Xie
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
31
|
Nallanthighal S, Tierney L, Cady NC, Murray TM, Chittur SV, Reliene R. Surface coatings alter transcriptional responses to silver nanoparticles following oral exposure. NANOIMPACT 2020; 17:100205. [PMID: 32864508 PMCID: PMC7453744 DOI: 10.1016/j.impact.2019.100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are used in food packaging materials, dental care products and other consumer goods and can result in oral exposure. To determine whether AgNP coatings modulate transcriptional responses to AgNP exposure, we exposed mice orally to 20 nm citrate (cit)-coated AgNPs (cit-AgNPs) or polyvinylpyrrolidone (PVP)-coated AgNPs (PVP-AgNPs) at a 4 mg/kg dose for 7 consecutive days and analyzed changes in the expression of protein-coding genes and long noncoding RNAs (lncRNAs), a new class of regulatory RNAs, in the liver. We identified unique and common expression signatures of protein-coding and lncRNA genes, altered biological processes and signaling pathways, and coding-non-coding gene interactions for cit-AgNPs and PVP-AgNPs. Commonly regulated genes comprised only about 10 and 20 percent of all differentially expressed genes in PVP-AgNP and cit-AgNP exposed mice, respectively. Commonly regulated biological processes included glutathione metabolic process and cellular oxidant detoxification. Commonly regulated pathways included Keap-Nrf2, PPAR, MAPK and IL-6 signaling pathways. The coding-non-coding gene co-expression analysis revealed that protein-coding genes were co-expressed with a variable number of lncRNAs ranging from one to twenty three and may share functional roles with the protein-coding genes. PVP-AgNP exposure induced a more robust transcriptional response than cit-AgNP exposure characterized by more than two-fold higher number of differentially expressed both protein- coding and lncRNA genes. Our data demonstrate that the surface coating strongly modulates the spectrum and the number of differentially expressed genes after oral AgNP exposure. On the other hand, our data suggest that AgNP exposure can alter drug and chemical sensitivity, metabolic homeostasis and cancer risk irrespective of the coating type, warranting further investigations.
Collapse
Affiliation(s)
- Sameera Nallanthighal
- Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Lukas Tierney
- Colleges of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Nathaniel C. Cady
- Colleges of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Thomas M. Murray
- Colleges of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Sridar V. Chittur
- Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Ramune Reliene
- Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|