1
|
Zhang JJ, Ye XR, Liu XS, Zhang HL, Qiao Q. Impact of sodium-glucose cotransporter-2 inhibitors on pulmonary vascular cell function and arterial remodeling. World J Cardiol 2025; 17:101491. [DOI: 10.4330/wjc.v17.i1.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 12/17/2024] [Indexed: 01/21/2025] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling. Specifically, these inhibitors exhibit promising potential in enhancing pulmonary vascular endothelial cell function, suppressing pulmonary smooth muscle cell proliferation and migration, reversing pulmonary arterial remodeling, and maintaining hemodynamic equilibrium. This comprehensive review synthesizes current literature to delineate the mechanisms by which SGLT-2 inhibitors enhance pulmonary vascular cell function and reverse pulmonary remodeling, thereby offering novel therapeutic perspectives for pulmonary vascular diseases.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Rui Ye
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Song Liu
- Department of Biochemistry, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Qian Qiao
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| |
Collapse
|
2
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2025; 287:33-60. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Mroueh A, Algara-Suarez P, Fakih W, Gong DS, Matsushita K, Park SH, Amissi S, Auger C, Kauffenstein G, Meyer N, Ohlmann P, Jesel L, Pieper MP, Marchandot B, Morel O, Mazzucotelli JP, Schini-Kerth VB. SGLT2 expression in human vasculature and heart correlates with low-grade inflammation and causes eNOS-NO/ROS imbalance. Cardiovasc Res 2024:cvae257. [PMID: 39739876 DOI: 10.1093/cvr/cvae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/31/2024] [Accepted: 11/12/2024] [Indexed: 01/02/2025] Open
Abstract
AIMS Sodium-glucose co-transporter 2 inhibitors (SGLT2i) show a cardioprotective effect in heart failure and myocardial infarction, pathologies often associated with low-grade inflammation. This cross-sectional study aims to investigate whether low-grade inflammation regulates SGLT2 expression and function in human vasculature, heart, and endothelial cells (ECs). METHODS AND RESULTS Human internal thoracic artery (ITA), left ventricle (LV) specimens, and cultured porcine coronary artery ECs were used. Expression of target molecules was assessed using RT-qPCR, western blot analysis, and immunofluorescence staining, and the generation of reactive oxygen species (ROS) and nitric oxide (NO) using fluorescent probes. The function of SGLT2 was investigated using empagliflozin and SGLT1 or 2 siRNA. SGLT2 mRNA and protein levels in ITA and LV specimens were correlated with the level of low-grade inflammation, markers of the angiotensin system, and EC activation. SGLT2 staining was observed in the ITA endothelium and smooth muscle, the coronary microcirculation, and cardiomyocytes. Elevated ROS formation in high SGLT2-expressing specimens was reduced by inhibition of the angiotensin system, SGLT2, and TNF-α. Exposure of ECs to IL-1ß, IL-6, and TNF-α led to an increase in SGLT1 and SGLT2 mRNA and protein expression, up-regulation of components of the angiotensin system, enhanced ROS and decreased NO formation, and activation of NF-κB. The stimulatory effect of TNF-α was prevented by N-acetylcysteine and inhibition of the angiotensin system, SGLT2 but not SGLT1, and NF-κB. CONCLUSION Low-grade inflammation is closely associated with SGLT2 expression in human vasculature and heart, and this response contributes to a feedforward mechanism with the AT1R/NADPH oxidase pathway to cause eNOS-NO/ROS imbalance.
Collapse
Affiliation(s)
- Ali Mroueh
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
| | - Paola Algara-Suarez
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
- Faculty of Pharmacy, Strasbourg University, Strasbourg 67000, France
| | - Walaa Fakih
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
| | - Dal-Seong Gong
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
| | - Kensuke Matsushita
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
- Division of Cardiovascular Medicine, Nouvel Hoôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Sin-Hee Park
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
| | - Said Amissi
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
| | - Cyril Auger
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
| | - Gilles Kauffenstein
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
| | - Nicolas Meyer
- Department of Biostatistics, Strasbourg University Hospital, Strasbourg, France
| | - Patrick Ohlmann
- Division of Cardiovascular Medicine, Nouvel Hoôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Laurence Jesel
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
- Division of Cardiovascular Medicine, Nouvel Hoôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | | | - Benjamin Marchandot
- Division of Cardiovascular Medicine, Nouvel Hoôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Olivier Morel
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
- Division of Cardiovascular Medicine, Nouvel Hoôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Jean-Philippe Mazzucotelli
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
- Division of Cardiac Surgery and Heart Transplant, Nouvel Hoôpital Civil, Strasbourg University Hospital, Strasbourg 67091, France
| | - Valérie B Schini-Kerth
- Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France
- Faculty of Pharmacy, Strasbourg University, Strasbourg 67000, France
| |
Collapse
|
4
|
Antar AAR, Cox AL. Translating insights into therapies for Long Covid. Sci Transl Med 2024; 16:eado2106. [PMID: 39536116 DOI: 10.1126/scitranslmed.ado2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Long Covid is defined by a wide range of symptoms that persist after the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Commonly reported symptoms include fatigue, weakness, postexertional malaise, and cognitive dysfunction, with many other symptoms reported. Symptom range, duration, and severity are highly variable and partially overlap with symptoms of myalgic encephalomyelitis/chronic fatigue syndrome and other post-acute infectious syndromes, highlighting opportunities to define shared mechanisms of pathogenesis. Potential mechanisms of Long Covid are diverse, including persistence of viral reservoirs, dysregulated immune responses, direct viral damage of tissues targeted by SARS-CoV-2, inflammation driven by reactivation of latent viral infections, vascular endothelium activation or dysfunction, and subsequent thromboinflammation, autoimmunity, metabolic derangements, microglial activation, and microbiota dysbiosis. The heterogeneity of symptoms and baseline characteristics of people with Long Covid, as well as the varying states of immunity and therapies given at the time of acute infection, have made etiologies of Long Covid difficult to determine. Here, we examine progress on preclinical models for Long Covid and review progress being made in clinical trials, highlighting the need for large human studies and further development of models to better understand Long Covid. Such studies will inform clinical trials that will define treatments to benefit those living with this condition.
Collapse
Affiliation(s)
- Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Almulla AF, Thipakorn Y, Zhou B, Vojdani A, Maes M. Immune activation and immune-associated neurotoxicity in Long-COVID: A systematic review and meta-analysis of 103 studies comprising 58 cytokines/chemokines/growth factors. Brain Behav Immun 2024; 122:75-94. [PMID: 39127088 DOI: 10.1016/j.bbi.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Multiple studies have shown that Long COVID (LC) disease is associated with heightened immune activation, as evidenced by elevated levels of inflammatory mediators. However, there is no comprehensive meta-analysis focusing on activation of the immune inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS) along with other immune phenotypes in LC patients. OBJECTIVES This meta-analysis is designed to explore the IRS and CIRS profiles in LC patients, the individual cytokines, chemokines, growth factors, along with C-reactive protein (CRP) and immune-associated neurotoxicity. METHODS To gather relevant studies for our research, we conducted a thorough search using databases such as PubMed, Google Scholar, and SciFinder, covering all available literature up to July 5th, 2024. RESULTS The current meta-analysis encompassed 103 studies that examined multiple immune profiles, C-reactive protein, and 58 cytokines/chemokines/growth factors in 5502 LC patients versus 5962 normal controls (NC). LC patients showed significant increases in IRS/CIRS ratio (standardized mean difference (SMD: 0.156, confidence interval (CI): 0.062;0.250), IRS (SMD: 0.338, CI: 0.236;0.440), M1 macrophage (SMD: 0.371, CI: 0.263;0.480), T helper (Th)1 (SMD: 0.316, CI: 0.185;0.446), Th17 (SMD: 0.439, CI: 0.302;0.577) and immune-associated neurotoxicity (SMD: 0.384, CI: 0.271;0.497). In addition, CRP and 21 different cytokines displayed significantly elevated levels in LC patients compared to NC. CONCLUSION LC disease is characterized by IRS activation and increased immune-associated neurotoxicity.
Collapse
Affiliation(s)
- Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA; Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine. Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Strategic Research and Innovation Program for the Development of MU - PLOVDIV-(SRIPD-MUP), European Union - NextGenerationEU; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
6
|
Fakih W, Mroueh A, Gong DS, Kikuchi S, Pieper MP, Kindo M, Mazzucottelli JP, Mommerot A, Kanso M, Ohlmann P, Morel O, Schini-Kerth V, Jesel L. Activated factor X stimulates atrial endothelial cells and tissues to promote remodelling responses through AT1R/NADPH oxidases/SGLT1/2. Cardiovasc Res 2024; 120:1138-1154. [PMID: 38742661 DOI: 10.1093/cvr/cvae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 05/16/2024] Open
Abstract
AIMS Atrial fibrillation (AF), the most common cardiac arrhythmia favouring ischemic stroke and heart failure involves left atrial remodelling, fibrosis and a complex interplay between cardiovascular risk factors. This study examined whether activated factor X (FXa) induces pro-remodelling and pro-fibrotic responses in atrial endothelial cells (AECs) and human atrial tissues and determined the underlying mechanisms. METHODS AND RESULTS AECs collected from porcine hearts and human right atrial appendages (RAA) from patients undergoing heart surgery. Protein expression levels were assessed by Western blot and immunofluorescence staining, mRNA levels by RT-qPCR, formation of reactive oxygen species (ROS) and NO using fluorescent probes, thrombin and angiotensin II generation by specific assays, fibrosis by Sirius red staining and senescence by senescence-associated beta-galactosidase (SA-β-gal) activity. In AECs, FXa increased ROS formation, senescence (SA-β-gal activity, p53, p21), angiotensin II generation and the expression of pro-inflammatory (VCAM-1, MCP-1), pro-thrombotic (tissue factor), pro-fibrotic (TGF-β and collagen-1/3a) and pro-remodelling (MMP-2/9) markers whereas eNOS levels and NO formation were reduced. These effects were prevented by inhibitors of FXa but not thrombin, protease-activated receptors antagonists (PAR-1/2) and inhibitors of NADPH oxidases, ACE, AT1R, SGLT1/SGLT2. FXa also increased expression levels of ACE1, AT1R, SGLT1/2 proteins which were prevented by SGLT1/2 inhibitors. Human RAA showed tissue factor mRNA levels that correlated with markers of endothelial activation, pro-remodelling and pro-fibrotic responses and SGLT1/2 mRNA levels. They also showed protein expression levels of ACE1, AT1R, p22phox, SGLT1/2, and immunofluorescence signals of nitrotyrosine and SGLT1/2 colocalized with those of CD31. FXa increased oxidative stress levels which were prevented by inhibitors of the AT1R/NADPH oxidases/SGLT1/2 pathway. CONCLUSION FXa promotes oxidative stress triggering premature endothelial senescence and dysfunction associated with pro-thrombotic, pro-remodelling and pro-fibrotic responses in AECs and human RAA involving the AT1R/NADPH oxidases/SGLT1/2 pro-oxidant pathway. Targeting this pathway may be of interest to prevent atrial remodelling and the progression of atrial fibrillation substrate.
Collapse
Affiliation(s)
- Walaa Fakih
- University of Strasbourg, UR 3074, Translational Cardiovascular Medicine, Biomedicine Research Center of Strasbourg, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Ali Mroueh
- University of Strasbourg, UR 3074, Translational Cardiovascular Medicine, Biomedicine Research Center of Strasbourg, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Dal-Seong Gong
- University of Strasbourg, UR 3074, Translational Cardiovascular Medicine, Biomedicine Research Center of Strasbourg, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Shinnosuke Kikuchi
- University of Strasbourg, UR 3074, Translational Cardiovascular Medicine, Biomedicine Research Center of Strasbourg, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Cardiology Department, Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Michael Paul Pieper
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Cardio-Metabolic Diseases, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Michel Kindo
- Cardiology Department, Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | | | - Arnaud Mommerot
- Cardiology Department, Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Mohamad Kanso
- Cardiology Department, Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Patrick Ohlmann
- Cardiology Department, Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Olivier Morel
- University of Strasbourg, UR 3074, Translational Cardiovascular Medicine, Biomedicine Research Center of Strasbourg, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Cardiology Department, Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Valérie Schini-Kerth
- University of Strasbourg, UR 3074, Translational Cardiovascular Medicine, Biomedicine Research Center of Strasbourg, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Laurence Jesel
- University of Strasbourg, UR 3074, Translational Cardiovascular Medicine, Biomedicine Research Center of Strasbourg, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Cardiology Department, Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| |
Collapse
|
7
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H, Sako A. The Significance of Endothelial Dysfunction in Long COVID-19 for the Possible Future Pandemic of Chronic Kidney Disease and Cardiovascular Disease. Biomolecules 2024; 14:965. [PMID: 39199353 PMCID: PMC11352301 DOI: 10.3390/biom14080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Various symptoms have been reported to persist beyond the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is referred to as long coronavirus disease 19 (long COVID-19). Over 65 million individuals suffer from long COVID-19. However, the causes of long COVID-19 are largely unknown. Since long COVID-19 symptoms are observed throughout the body, vascular endothelial dysfunction is a strong candidate explaining the induction of long COVID-19. The angiotensin-converting enzyme 2 (ACE2), the entry receptor for SARS-CoV-2, is ubiquitously expressed in endothelial cells. We previously found that the risk factors for atherosclerotic cardiovascular disease (ASCVD) and a history of ASCVD raise the risk of severe COVID-19, suggesting a contribution of pre-existing endothelial dysfunction to severe COVID-19. Here, we show a significant association of endothelial dysfunction with the development of long COVID-19 and show that biomarkers for endothelial dysfunction in patients with long COVID-19 are also crucial players in the development of ASCVD. We consider the influence of long COVID-19 on the development of chronic kidney disease (CKD) and ASCVD. Future assessments of the outcomes of long COVID-19 in patients resulting from therapeutic interventions that improve endothelial function may imply the significance of endothelial dysfunction in the development of long COVID-19.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | - Akahito Sako
- Department of General Medicine, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan;
| |
Collapse
|
8
|
Tisch C, Xourgia E, Exadaktylos A, Ziaka M. Potential use of sodium glucose co-transporter 2 inhibitors during acute illness: a systematic review based on COVID-19. Endocrine 2024; 85:660-675. [PMID: 38448675 PMCID: PMC11291544 DOI: 10.1007/s12020-024-03758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE SGLT-2i are increasingly recognized for their benefits in patients with cardiometabolic risk factors. Additionally, emerging evidence suggests potential applications in acute illnesses, including COVID-19. This systematic review aims to evaluate the effects of SGLT-2i in patients facing acute illness, particularly focusing on SARS-CoV-2 infection. METHODS Following PRISMA guidelines, a systematic search of PubMed, Scopus, medRxiv, Research Square, and Google Scholar identified 22 studies meeting inclusion criteria, including randomized controlled trials and observational studies. Data extraction and quality assessment were conducted independently. RESULTS Out of the 22 studies included in the review, six reported reduced mortality in DM-2 patients taking SGLT-2i, while two found a decreased risk of hospitalization. Moreover, one study demonstrated a lower in-hospital mortality rate in DM-2 patients under combined therapy of metformin plus SGLT-2i. However, three studies showed a neutral effect on the risk of hospitalization. No increased risk of developing COVID-19 was associated with SGLT-2i use in DM-2 patients. Prior use of SGLT-2i was not associated with ICU admission and need for MV. The risk of acute kidney injury showed variability, with inconsistent evidence regarding diabetic ketoacidosis. CONCLUSION Our systematic review reveals mixed findings on the efficacy of SGLT-2i use in COVID-19 patients with cardiometabolic risk factors. While some studies suggest potential benefits in reducing mortality and hospitalizations, others report inconclusive results. Further research is needed to clarify optimal usage and mitigate associated risks, emphasizing caution in clinical interpretation.
Collapse
Affiliation(s)
- Carmen Tisch
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland
| | - Eleni Xourgia
- Department of Cardiology, Inselspital, University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Mairi Ziaka
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Wang X, Zhu Y, Liu D, Zhu L, Tong J, Zheng C. Can COVID-19 Increase Platelet in Adult Immune Thrombocytopenia During the TPO-RA Administration? A Real-World Observational Study. J Blood Med 2024; 15:217-225. [PMID: 38737581 PMCID: PMC11088401 DOI: 10.2147/jbm.s457545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction COVID-19 infection has brought new challenges to the treatment of adult patients with immune thrombocytopenia (ITP). In adult ITP patients, there have been no relevant reports exploring the incidence, clinical characteristics, and risk factors of platelet elevation after COVID-19 infection. Materials and Methods A total of 66 patients with previously diagnosed ITP from December 2022 to February 2023 in a single-center were collected and analyzed for this real-world clinical retrospective observational study. Results In the platelet count increased group (n = 19), 13 patients (68.4%) were using thrombopoietin receptor agonists (TPO-RA) treatment at the time of COVID-19 infection; the median platelet count was 52 (2-207) ×109/L at the last visit before infection and 108 (19-453) ×109/L at the first visit after infection. In the platelet count stable group (n = 19) and platelet count decreased group (n = 28), 9 (47.4%) and 8 (28.6%) patients were using TPO-RA at the time of infection, respectively. ITP patients treated with TPO-RA had a significantly higher risk of increased platelet count than those not treated with TPO-RA at the time of infection (platelet count increased group vs platelet count decreased group: OR: 5.745, p = 0.009; platelet count increased group vs the non-increased group: OR: 3.616, p = 0.031). In the platelet count increased group, the median platelet count at 6 months post-infection was 67 (14-235) × 109/L, which was significantly higher than the platelet level at the last visit before infection (p = 0.040). Conclusion This study showed that some adult ITP patients had an increase in platelet count after COVID-19 infection, and this phenomenon was strongly associated with the use of TPO-RA at the time of infection. Although no thrombotic events were observed in this study, it reminds clinicians that they should be alert to the possibility of thrombotic events in the long-term management of adult ITP patients during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yingqiao Zhu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Dan Liu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Lijun Zhu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Juan Tong
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Changcheng Zheng
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
10
|
Mashayekhi M, Safa BI, Gonzalez MSC, Kim SF, Echouffo-Tcheugui JB. Systemic and organ-specific anti-inflammatory effects of sodium-glucose cotransporter-2 inhibitors. Trends Endocrinol Metab 2024; 35:425-438. [PMID: 38423898 PMCID: PMC11096060 DOI: 10.1016/j.tem.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Inflammation plays an essential role and is a common feature in the pathogenesis of many chronic diseases. The exact mechanisms through which sodium-glucose cotransporter-2 (SGLT2) inhibitors achieve their much-acclaimed clinical benefits largely remain unknown. In this review, we detail the systemic and tissue- or organ-specific anti-inflammatory effects of SGLT2 inhibitors using evidence from animal and human studies. We discuss the potential pathways through which SGLT2 inhibitors exert their anti-inflammatory effects, including oxidative stress, mitochondrial, and inflammasome pathways. Finally, we highlight the need for further investigation of the extent of the contribution of the anti-inflammatory effects of SGLT2 inhibition to improvements in cardiometabolic and renal outcomes in clinical studies.
Collapse
Affiliation(s)
- Mona Mashayekhi
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN, USA
| | - Bilgunay Ilkin Safa
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN, USA
| | - Matthew S C Gonzalez
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN, USA
| | - Sangwon F Kim
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, USA
| | - Justin B Echouffo-Tcheugui
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, USA.
| |
Collapse
|
11
|
Das A, Dhangadamajhi G. Association of common variant rs9934336 of SLC5A2 (SGLT2) gene with SARS-CoV-2 infection and mortality. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:10. [DOI: 10.1186/s43042-024-00481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/18/2024] [Indexed: 01/03/2025] Open
Abstract
AbstractCOVID-19 has its life-threatening complications more pronounced in people with underlying health conditions such as diabetes, cardiovascular disease and kidney disease. Inhibition of the sodiumglucose cotransporter 2 (SGLT2), which primarily increases urinary glucose excretion, is shown to be beneficial in patients with type 2 diabetes mellitus (T2D) and other comorbidities. SGLT2 is encoded by SLC5A2 gene, and of the several genetic variants, SNP rs9934336 is gaining importance for being associated with reduced HbA1c level and lower incidence of T2D. Since a complex bidirectional relationship exists between COVID-19 and hyperglycaemia, we conducted a worldwide association study to investigate the effect of rs9934336 on COVID-19 outcomes. Worldwide prevalence data of SLC5A2 SNP rs9934336 were obtained from relevant published articles and databases for genomic variants. COVID-19 data procured from the Worldometer website were used for conducting Spearman’s correlation analysis with minor allele frequency data of rs9934336. Significant positive correlation was observed between rs9934336 and COVID-19 incidence (p < 0.0001, r = 0.6225) as well as deaths (p < 0.0001, r = 0.5837). The present finding of significant association of SLC5A2 variant rs9934336 with COVID-19 risk has to be validated by case–control studies in diverse populations along with other variants regulating the expression and function of SGLT2.
Collapse
|