1
|
Egbuniwe IC, Akogwu MS, Obetta TU. Mechanisms underlying reproductive responses of Japanese quails to heat stress conditions. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2173-2184. [PMID: 39075280 DOI: 10.1007/s00484-024-02742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Exposure to heat stress can cause a significant increase in the death rate and disease susceptibility of poultry birds, ultimately impacting the profitability of the poultry industry. Despite being a more economical choice, Japanese quails (Coturnix japonica) are not immune to the harmful effects of heat stress. Quails may experience negative effects on their reproductive performance due to excessive reactive molecules caused by heat stress. However, they have developed various mechanisms to maintain their reproductive abilities in such conditions. The neuroendocrine system in birds plays a vital role in regulating their reproductive responses to thermal stress, and it is also connected to other environmental factors such as photoperiod that can impact their reproductive performance. Hormones are crucial in the complex interactions necessary for sexual maturation and reproductive responses to heat stress in Japanese quails living in stressful thermal conditions.
Collapse
Affiliation(s)
| | - Martins Steven Akogwu
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Timothy Ugochukwu Obetta
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
2
|
Bai H, Zhao N, Li X, Ding Y, Guo Q, Chen G, Chang G. Whole-genome resequencing identifies candidate genes associated with heat adaptation in chickens. Poult Sci 2024; 103:104139. [PMID: 39127007 PMCID: PMC11367107 DOI: 10.1016/j.psj.2024.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The wide distribution and diverse varieties of chickens make them important models for studying genetic adaptation. The aim of this study was to identify genes that alter heat adaptation in commercial chicken breeds by comparing genetic differences between tropical and cold-resistant chickens. We analyzed whole-genome resequencing data of 186 chickens across various regions in Asia, including the following breeds: Bian chickens (B), Dagu chickens (DG), Beijing-You chickens (BY), and Gallus gallus jabouillei from China; Gallus gallus murghi from India; Vietnam native chickens (VN); Thailand native chickens (TN) and Gallus gallus spadiceus from Thailand; and Indonesia native chickens (IN), Gallus gallus gallus, and Gallus gallus bankiva from Indonesia. In total, 5,454,765 SNPs were identified for further analyses. Population genetic structure analysis revealed that each local chicken breed had undergone independent evolution. Additionally, when K = 5, B, BY, and DG chickens shared a common ancestor and exhibited high levels of inbreeding, suggesting that northern cold-resistant chickens are likely the result of artificial selection. In contrast, the runs of homozygosity (ROH) and the ROH-based genomic inbreeding coefficient (FROH) results for IN, TN, and VN chickens showed low levels of inbreeding. Low population differentiation index values indicated low differentiation levels, suggesting low genetic diversity in tropical chickens, implying increased vulnerability to environmental changes, decreased adaptability, and disease resistance. Whole-genome selection sweep analysis revealed 69 candidate genes, including LGR4, G6PC, and NBR1, between tropical and cold-resistant chickens. The genes were further subjected to GO and KEGG enrichment analyses, revealing that most of the genes were primarily enriched in biological synthesis processes, metabolic processes, central nervous system development, ion transmembrane transport, and the Wnt signaling pathway. Our study identified heat adaptation genes and their functions in chickens that primarily affect chickens in high-temperature environments through metabolic pathways. These heat-resistance genes provide a theoretical basis for improving the heat-adaptation capacity of commercial chicken breeds.
Collapse
Affiliation(s)
- Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ning Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xing Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yifan Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Fayed RH, Ali SE, Yassin AM, Madian K, Bawish BM. Terminalia bellirica and Andrographis paniculata dietary supplementation in mitigating heat stress-induced behavioral, metabolic and genetic alterations in broiler chickens. BMC Vet Res 2024; 20:388. [PMID: 39227945 PMCID: PMC11370032 DOI: 10.1186/s12917-024-04233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Heat stress (HS) is one of the most significant environmental stressors on poultry production and welfare worldwide. Identification of innovative and effective solutions is necessary. This study evaluated the effects of phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata on behavioral patterns, hematological and biochemical parameters, Oxidative stress biomarkers, and HSP70, I-FABP2, IL10, TLR4, and mTOR genes expression in different organs of broiler chickens under chronic HS conditions. A total of 208 one-day-old Avian-480 broiler chicks were randomly allocated into four treatments (4 replicate/treatment, 52 birds/treatment): Thermoneutral control treatment (TN, fed basal diet); Thermoneutral treatment (TN, fed basal diet + 1 kg/ton feed PHY); Heat stress treatment (HS, fed basal diet); Heat stress treatment (HS, fed basal diet + 1 kg/ton feed PHY). RESULTS The findings of the study indicate that HS led to a decrease in feeding, foraging, walking, and comfort behavior while increasing drinking and resting behavior, also HS increased red, and white blood cells (RBCs and WBCs) counts, and the heterophile/ lymphocyte (H/L) ratio (P < 0.05); while both mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were decreased (P < 0.05). In addition, HS negatively impacted lipid, protein, and glucose levels, liver and kidney function tests, and oxidative biomarkers by increasing malondialdehyde (MDA) levels and decreasing reduced glutathion (GSH) activity (P < 0.05). Heat stress (HS) caused the upregulation in HSP70, duodenal TLR4 gene expression, and the downregulation of I-FABP2, IL10, mTOR in all investigated tissues, and hepatic TLR4 (P < 0.05) compared with the TN treatment. Phytogenic feed additives (PHY) effectively mitigated heat stress's negative impacts on broilers via an improvement of broilers' behavior, hematological, biochemical, and oxidative stress biomarkers with a marked decrease in HSP70 expression levels while all tissues showed increased I-FABP2, IL10, TLR4, and mTOR (except liver) levels (P < 0.05). CONCLUSION Phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata have ameliorated the HS-induced oxidative stress and improved the immunity as well as the gut health and welfare of broiler chickens.
Collapse
Affiliation(s)
- Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - K Madian
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Basma M Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
4
|
Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, Odeyemi AJ, Adjei-Mensah B, Uyanga VA, Abioja MO. Oxidative stress in poultry production. Poult Sci 2024; 103:104003. [PMID: 39084145 PMCID: PMC11341942 DOI: 10.1016/j.psj.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Oxidative stress (OS) is a major concern that impacts the overall health of chickens in modern production systems. It is characterized by an imbalance between antioxidant defence mechanisms and the production of reactive oxygen species (ROS). This literature review aims to provide a comprehensive overview of oxidative stress in poultry production, with an emphasis on its effects on growth performance, immune responses, and reproductive outcomes. This review highlights the intricate mechanisms underlying OS and discusses how various factors, including dietary components, genetic predispositions, and environmental stressors can exacerbate the production of ROS. Additionally, the impact of oxidative stress on the production performance and physiological systems of poultry is examined. The study also emphasizes the relationship between oxidative stress and poultry diseases, highlighting how impaired antioxidant defenses increase bird's susceptibility to infections. The review assesses the existing approaches to reducing oxidative stress in chickens in response to these challenges. This includes managing techniques to lower stress in the production environment, antioxidant supplements, and nutritional interventions. The effectiveness of naturally occurring antioxidants, including plant extracts, minerals, and vitamins to improve poultry resistance to oxidative damage is also examined. To improve the antioxidant defenses of poultry under stress conditions, the activation of cellular homeostatic networks termed vitagenes, such as Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is necessary for the synthesis of protective factors that can counteract the increased production of ROS and RNS. Future studies into novel strategies for managing oxidative stress in chicken production would build on these research advances and the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo.
| | - O A Akosile
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A I Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Opowoye
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - C A Ishola
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Adebiyi
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A J Odeyemi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - B Adjei-Mensah
- Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo
| | - V A Uyanga
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
5
|
Poochipakorn C, Wonghanchao T, Sanigavatee K, Chanda M. Stress Responses in Horses Housed in Different Stable Designs during Summer in a Tropical Savanna Climate. Animals (Basel) 2024; 14:2263. [PMID: 39123789 PMCID: PMC11311062 DOI: 10.3390/ani14152263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Single-confinement housing can pose welfare risks to domestic horses. This study investigated horses' stress responses when confined to single stalls in different stable designs in a tropical savanna region to address a gap in the literature. In total, 23 horses were assigned to a stable with a central corridor and solid external walls (A) (N = 8), a stable with one side corridor and solid external walls (B) (N = 6), or a stable with a central corridor and no solid external walls (C) (N = 9). Air velocity, relative humidity, air temperature, and noxious gases were measured inside the stables, and the heart rate and HRV of the horses were also determined. The relative humidity was lower in stable C than in stable A (p < 0.05), while the air temperature was higher in stable C than in stable B (p < 0.05) during the day. The airflow and ammonia levels were higher in stable C than in stables B and A (p < 0.01-0.0001). Overall, horses' HRV in stable A was lower than in those in stables B and C (p < 0.05-0.01). Horses in stable A tended to experience more stress than those in other stables.
Collapse
Affiliation(s)
- Chanoknun Poochipakorn
- Science and Innovation for Animal Health Program, Faculty of Veterinary Medicine, Kasetsart University Bang Khen Campus, Bangkok 10900, Thailand;
- Thailand Equestrian Federation, Sports Authority of Thailand, Bangkok 10330, Thailand;
| | - Thita Wonghanchao
- Thailand Equestrian Federation, Sports Authority of Thailand, Bangkok 10330, Thailand;
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakorn Pathom 73140, Thailand
- Center for Veterinary Research and Innovation, Faculty of Veterinary Medicine, Kasetsart University Bang Khen Campus, Bangkok 10900, Thailand
| | - Kanokpan Sanigavatee
- Thailand Equestrian Federation, Sports Authority of Thailand, Bangkok 10330, Thailand;
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakorn Pathom 73140, Thailand
- Center for Veterinary Research and Innovation, Faculty of Veterinary Medicine, Kasetsart University Bang Khen Campus, Bangkok 10900, Thailand
| | - Metha Chanda
- Thailand Equestrian Federation, Sports Authority of Thailand, Bangkok 10330, Thailand;
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakorn Pathom 73140, Thailand
- Center for Veterinary Research and Innovation, Faculty of Veterinary Medicine, Kasetsart University Bang Khen Campus, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Danmaigoro A, Muhammad MA, Abubakar K, Magiri RB, Bakare AG, Iji PA. Morphological and physiological features in small ruminants: an adaptation strategy for survival under changing climatic conditions. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1497-1505. [PMID: 38700715 DOI: 10.1007/s00484-024-02694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 07/28/2024]
Abstract
Climate change due to natural human activity is a significant global phenomenon affecting the sustainability of most countries' livestock industries. Climate change factors such as ambient temperature, relative humidity, direct and indirect sun radiation, and wind have significant consequences on feed, water, pasture availability, and the re-emergence of diseases in livestock. All these variables have a considerable impact on livestock production and welfare. However, animals' ability to respond and adapt to changes in climate differs within species and breeds. Comparatively, small ruminants are more adaptive to the adverse effects of climate change than large ruminants in terms of reproduction performance, survival, production yield, and resistance to re-emerging diseases. This is mainly due to their morphological features against harsh climate effects. Tropical breeds are more adaptive to the adverse effects of climate change than small temperate ruminants. However, the difference in morphological characteristics towards adaptation to the impact of climate change will guide the development of suitable policies on the selection of breeding stock suitable for different regions in the world. The choice of breeds based on morphological features and traits is an essential strategy in mitigating and minimizing the effects of climate change on small ruminants' production and welfare. This review highlights the adaptive morphological features within and among breeds of small ruminants toward adaptation to climate change.
Collapse
Affiliation(s)
- Abubakar Danmaigoro
- Department of Veterinary Sciences, College of Agriculture, Fisheries and Forestry, Fiji National University, Koronivia Campus, P. O. Box 1544, Nausori, Suva, Fiji.
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Kelantan Malaysia, Pengkalan Chepa 16100 Kota Bharu, Kelantan, Malaysia.
| | - Mahmud Abdullahi Muhammad
- Department of Animal Health and Production Technology, Niger State College of Agriculture, Mokwa, Niger State, Nigeria
| | - Kabeer Abubakar
- Institut de Neurosciences des Systemes, Aix-Marselille Uneversite, 27 Bd Jean Moulin, Marseille, 13005, France
| | - Royford Bundi Magiri
- Department of Veterinary Sciences, College of Agriculture, Fisheries and Forestry, Fiji National University, Koronivia Campus, P. O. Box 1544, Nausori, Suva, Fiji
| | - Archibold Garikayi Bakare
- Department of Veterinary Sciences, College of Agriculture, Fisheries and Forestry, Fiji National University, Koronivia Campus, P. O. Box 1544, Nausori, Suva, Fiji
| | - Paul Ade Iji
- Department of Veterinary Sciences, College of Agriculture, Fisheries and Forestry, Fiji National University, Koronivia Campus, P. O. Box 1544, Nausori, Suva, Fiji
| |
Collapse
|
7
|
do Nascimento Barreto A, Jacintho MAC, Barioni Junior W, Pereira AMF, Nanni Costa L, Zandonadi Brandão F, Romanello N, Novais Azevedo G, Rossetto Garcia A. Adaptive integumentary features of beef cattle raised on afforested or non-shaded tropical pastures. Sci Rep 2024; 14:16951. [PMID: 39043710 PMCID: PMC11266545 DOI: 10.1038/s41598-024-66675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
We aimed to analyze the seasonal acclimatization process of Nelore and Canchim cattle raised on two production systems (non-shaded, NS, and integrated crop-livestock-forest, ICLF), based on the dynamics of the morphological and functional attributes of the hair coat and skin during winter and summer. The study was conducted in Brazil, in a low-altitude tropical climate region. A completely randomized 2 × 2 factorial design was adopted as follows: two production systems (NS and ICLF), two breeds (Nelore and Canchim) in a longitudinal structure, with measurements repeated over time through two stations (winter and summer). The experimental animals consisted of 32 Nelore (Bos indicus) and 32 Canchim (5/8 Bos taurus × 3/8 Bos indicus) bulls. The animals were equally distributed between two intensive rotational grazing systems. In both breeds, the hair coat was significantly thicker in winter but longer in summer, which increased epidermal protection. The Nelore bulls had shorter, wider, and thicker hairs, which are attributes that promote heat loss via conduction. The Canchim bulls showed significantly lower hair density and higher epithelium distance to sweat glands, which resulted in higher core temperature and respiratory rate. In turn, Nelore bulls had higher serum concentrations of triiodothyronine and lower serum concentrations of cortisol. However, Canchim bulls more frequently and intensely activated their thermoregulatory system and markedly adjusted their hair coat and hair features to reduce heat gain, especially in summer. Therefore, the anatomical plasticity and functional integumentary characteristics of Nelore and Canchim bulls reflect their acclimatization to tropical conditions.
Collapse
Affiliation(s)
- Andréa do Nascimento Barreto
- Institute of Veterinary Medicine, Federal University of Pará, Av. dos Universitários, s/n, Castanhal, PA, 68746-360, Brazil
| | - Manuel Antonio Chagas Jacintho
- Laboratory of Biotechnology and Animal Reproduction, Brazilian Agricultural Research Corporation (Embrapa), Embrapa Southeast Livestock, Rod. Washington Luiz, km 234, São Carlos, SP, 13560-970, Brazil
| | - Waldomiro Barioni Junior
- Laboratory of Biotechnology and Animal Reproduction, Brazilian Agricultural Research Corporation (Embrapa), Embrapa Southeast Livestock, Rod. Washington Luiz, km 234, São Carlos, SP, 13560-970, Brazil
| | - Alfredo Manuel Franco Pereira
- Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Leonardo Nanni Costa
- Department of Agri-Food Science and Technology, University of Bologna, Viale Fanin, 46, 40127, Bologna, Italy
| | | | - Narian Romanello
- School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 255, Pirassununga, SP, 13635-900, Brazil
| | - Gabriela Novais Azevedo
- Laboratory of Biotechnology and Animal Reproduction, Brazilian Agricultural Research Corporation (Embrapa), Embrapa Southeast Livestock, Rod. Washington Luiz, km 234, São Carlos, SP, 13560-970, Brazil
| | - Alexandre Rossetto Garcia
- Institute of Veterinary Medicine, Federal University of Pará, Av. dos Universitários, s/n, Castanhal, PA, 68746-360, Brazil.
- Laboratory of Biotechnology and Animal Reproduction, Brazilian Agricultural Research Corporation (Embrapa), Embrapa Southeast Livestock, Rod. Washington Luiz, km 234, São Carlos, SP, 13560-970, Brazil.
- School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 255, Pirassununga, SP, 13635-900, Brazil.
| |
Collapse
|
8
|
Lee J, Kim DH, Lee K. Myostatin gene role in regulating traits of poultry species for potential industrial applications. J Anim Sci Biotechnol 2024; 15:82. [PMID: 38825693 PMCID: PMC11145818 DOI: 10.1186/s40104-024-01040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024] Open
Abstract
The myostatin (MSTN) gene is considered a potential genetic marker to improve economically important traits in livestock, since the discovery of its function using the MSTN knockout mice. The anti-myogenic function of the MSTN gene was further demonstrated in farm animal species with natural or induced mutations. In poultry species, myogenesis in cell culture was regulated by modulation of the MSTN gene. Also, different expression levels of the MSTN gene in poultry models with different muscle mass have been reported, indicating the conserved myogenic function of the MSTN gene between mammalian and avian species. Recent advances of CRISPR/Cas9-mediated genome editing techniques have led to development of genome-edited poultry species targeting the MSTN gene to clearly demonstrate its anti-myogenic function and further investigate other potential functions in poultry species. This review summarizes research conducted to understand the function of the MSTN gene in various poultry models from cells to whole organisms. Furthermore, the genome-edited poultry models targeting the MSTN gene are reviewed to integrate diverse effects of the MSTN gene on different traits of poultry species.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Gouda A, Al-Khalaifah H, Al-Nasser A, Kamel NN, Gabr S, Eid KMA. Early Feeding Strategy Mitigates Major Physiological Dynamics Altered by Heat Stress in Broilers. Animals (Basel) 2024; 14:1485. [PMID: 38791702 PMCID: PMC11117284 DOI: 10.3390/ani14101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heat stress is one of the stressors that negatively affect broiler chickens, leading to a reduction in production efficiency and profitability. This reduction affects the economy in general, especially in hot and semi-hot countries. Therefore, improving heat tolerance of broiler chicks is a key to sustained peak performance, especially under adverse environmental heat stress conditions. The present study investigated three early feed withdrawal regimes (FWD) as a potential mitigation for thermal stress exposure. A total of 240 unsexed one-day-old Cobb-500 chicks were randomly recruited to one of four experimental groups using a completely randomized design (10 birds × 6 replicates). The experimental groups included the control group with no feed withdrawal (control), while the other three groups were subjected to early feed withdrawal for either 24 h on the 5th day of age (FWD-24), 12 h on the 3rd and 5th day of age (FWD-12), or 8 h on the 3rd, 4th, and 5th day of age (FWD-8), respectively. Production performance was monitored throughout the experiment. Meanwhile, blood and liver samples were taken at the end of the experimental period to evaluate major physiological dynamic changes. Our findings demonstrated that under chronic heat stress conditions, FWD treatments significantly improved broilers' production performance and enhanced several physiological parameters compared with the control. Serum levels of thyroid hormones were elevated, whereas leptin hormone was decreased in FWD groups compared with the control. Moreover, serum total protein, globulin, and hemoglobin levels were higher, while total cholesterol and uric acid were lower in the FWD groups. Furthermore, FWD groups showed significantly higher antioxidant marker activity with a significantly lower lipid peroxidation level. Immunoglobulin levels, lysozyme, complement factor C3, and liver heat shock protein 70 (HSP70) concentration were also elevated in FWD compared with the control. Also, serum interleukin-1β (IL-1β) and interferon-gamma (IFN-γ) significantly increased with FWD. Based on our findings, early feed withdrawal can be applied as a promising non-invasive nutritional strategy for broilers reared under chronic heat stress conditions. Such a strategy promotes the alleviation of the deleterious effects of heat stress on broiler performance, immunity, and redox status, owing to the onset of physiological adaptation and the development of thermotolerance ability.
Collapse
Affiliation(s)
- Ahmed Gouda
- Department of Animal Production, National Research Center, El Buhouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Hanan Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, Kuwait City 13109, Kuwait; (H.A.-K.); (A.A.-N.)
| | - Afaf Al-Nasser
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, Kuwait City 13109, Kuwait; (H.A.-K.); (A.A.-N.)
| | - Nancy N. Kamel
- Department of Animal Production, National Research Center, El Buhouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Sherin Gabr
- Department of Poultry Breeding Research, Animal Production Research Institute, Ministry of Agriculture, Dokki, Giza P.O. Box 12611, Egypt; (S.G.); (K.M.A.E.)
| | - Kamal M. A. Eid
- Department of Poultry Breeding Research, Animal Production Research Institute, Ministry of Agriculture, Dokki, Giza P.O. Box 12611, Egypt; (S.G.); (K.M.A.E.)
| |
Collapse
|
10
|
Luo Y, Huang X, Hu H, Wang Y, Feng X, Chen S, Luo H. Intestinal microflora promotes Th2-mediated immunity through NLRP3 in damp and heat environments. Front Immunol 2024; 15:1367053. [PMID: 38756775 PMCID: PMC11096527 DOI: 10.3389/fimmu.2024.1367053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background With the worsening of the greenhouse effect, the correlation between the damp-heat environment (DH) and the incidence of various diseases has gained increasing attention. Previous studies have demonstrated that DH can lead to intestinal disorders, enteritis, and an up-regulation of NOD-like receptor protein 3 (NLRP3). However, the mechanism of NLRP3 in this process remains unclear. Methods We established a DH animal model to observe the impact of a high temperature and humidity environment on the mice. We sequenced the 16S rRNA of mouse feces, and the RNA transcriptome of intestinal tissue, as well as the levels of cytokines including interferon (IFN)-γ and interleukin (IL)-4 in serum. Results Our results indicate that the intestinal macrophage infiltration and the expression of inflammatory genes were increased in mice challenged with DH for 14 days, while the M2 macrophages were decreased in Nlrp3 -/- mice. The alpha diversity of intestinal bacteria in Nlrp3 -/- mice was significantly higher than that in control mice, including an up-regulation of the Firmicutes/Bacteroidetes ratio. Transcriptomic analysis revealed 307 differentially expressed genes were decreased in Nlrp3 -/- mice compared with control mice, which was related to humoral immune response, complement activation, phagocytic recognition, malaria and inflammatory bowel disease. The ratio of IFN-γ/IL-4 was decreased in control mice but increased in Nlrp3 -/- mice. Conclusions Our study found that the inflammation induced by DH promotes Th2-mediated immunity via NLRP3, which is closely related to the disruption of intestinal flora.
Collapse
Affiliation(s)
- Yi Luo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinhua Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiying Hu
- West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangrong Feng
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huanhuan Luo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Oke OE, Akosile OA, Uyanga VA, Oke FO, Oni AI, Tona K, Onagbesan OM. Climate change and broiler production. Vet Med Sci 2024; 10:e1416. [PMID: 38504607 PMCID: PMC10951626 DOI: 10.1002/vms3.1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Climate change has emerged as a significant occurrence that adversely affects broiler production, especially in tropical climates. Broiler chickens, bred for rapid growth and high meat production, rely heavily on optimal environmental conditions to achieve their genetic potential. However, climate change disrupts these conditions and poses numerous challenges for broiler production. One of the primary impacts of climate change on broiler production is the decreased ability of birds to attain their genetic potential for faster growth. Broilers are bred to possess specific genetic traits that enable them to grow rapidly and efficiently convert feed into meat. However, in tropical climates affected by climate change, the consequent rise in daily temperatures, increased humidity and altered precipitation patterns create an unfavourable environment for broilers. These conditions impede their growth and development, preventing them from reaching their maximum genetic influence, which is crucial for achieving desirable production outcomes. Furthermore, climate change exacerbates the existing challenges faced by broiler production systems. Higher feed costs impact the industry's economic viability and limit the availability of quality nutrition for the birds, further hampering their growth potential. In addition to feed scarcity, climate change also predisposes broiler chickens to thermal stress. This review collates existing information on climate change and its impact on broiler production, including nutrition, immune function, health and disease susceptibility. It also summarizes the challenges of broiler production under hot and humid climate conditions with different approaches to ameliorating the effects of harsh climatic conditions in poultry.
Collapse
Affiliation(s)
- Oyegunle Emmanuel Oke
- Department of Animal PhysiologyFederal University of AgricultureAbeokutaNigeria
- Centre of Excellence in Poultry SciencesUniversity of LomeLomeTogo
| | | | | | - Folasade Olukemi Oke
- Department of Agricultural Economics and Farm ManagementFederal University of AgricultureAbeokutaNigeria
| | | | - Kokou Tona
- Centre of Excellence in Poultry SciencesUniversity of LomeLomeTogo
| | | |
Collapse
|
12
|
Oni AI, Adeleye OO, Adebowale TO, Oke OE. The role of phytogenic feed additives in stress mitigation in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2024; 108:81-98. [PMID: 37587717 DOI: 10.1111/jpn.13869] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
The increase in global temperature and consumers' welfare has increased the use of phytogenic feed additives (PFA) to mitigate the negative effects of heat stress on chickens in recent years. Various bioactive compounds capable of improving the thermotolerance of broiler chickens during exposure to thermal challenges have been identified in different plant species and parts. This review is an overview of the roles of bioactive compounds of different PFA, such as polyphenols and flavonoids, antioxidants, growth-promoting and immune-modulating agents, in heat stress management in broiler chickens. Common PFA in use, particularly in tropical environments, are also discussed. An understanding of the roles of the PFA in chickens' thermotolerance could further stimulate interest in their use, thereby improving the birds' productivity and addressing consumers' concerns. This review collates the existing data on the roles of herbs in mitigating heat stress on chickens and highlights future research perspectives.
Collapse
Affiliation(s)
- Aderanti Ifeoluwa Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oluwagbemiga O Adeleye
- Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
13
|
Barreto-Cruz OT, Henao Zambrano JC, Castañeda-Serrano RD, Peñuela Sierra LM. Assessing the In Vitro and In Vivo Effect of Supplementation with a Garlic ( Allium sativum) and Oregano ( Origanum vulgare) Essential Oil Mixture on Digestibility in West African Sheep. Vet Sci 2023; 10:695. [PMID: 38133246 PMCID: PMC10747443 DOI: 10.3390/vetsci10120695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
This study assessed the impact of a mixture of garlic (Allium sativum) and oregano (Origanum vulgare) essential oils (EOGOs) on in vitro dry matter digestibility (IVDMD) and in vivo apparent nutrient digestibility. Different EOGO inclusion levels were evaluated to assess the dose response and potential effects of the mixture. Three EOGO inclusion levels (0.5, 0.75, and 1 mL/kg of incubated dry matter) were evaluated in vitro, while four treatments (0.5, 0.75, and 1 mL/day of EOGO and a control group) were tested in vivo on 12 West African sheep. A randomized controlled trial was conducted using a 4 × 4 design. Blood parameters (glucose, blood urea nitrogen, and β-hydroxybutyrate) were measured to observe the effect of EOGO on the metabolism. The results showed that the inclusion of EOGO significantly enhanced IVDMD at low levels (p < 0.052) compared with the highest levels in treatments containing 0.5 and 0.75 mL/kg of EOGO dry matter. A higher intake of dry matter (DM), crude protein (CP), and neutral detergent fiber (NDF) (p < 0.05) was observed in the in vivo diets with the inclusion of EOGO. In terms of in vivo apparent digestibility, significant differences were found among treatments in the digestibility coefficients of DM, CP, and NDF. EOGO inclusion increased the digestibility of DM. CP digestibility displayed a cubic effect (p < 0.038), with the lowest values of digestibility observed at 1 mL EOGO inclusion. Additionally, NDF digestibility showed a cubic effect (p < 0.012), with the highest value obtained at 0.75 mL of EOGO inclusion. The inclusion levels above 0.75 mL EOGO showed a cubic effect, which indicates that higher concentrations of EOGO may not be beneficial for the digestibility of CP and NDF. Although no significant difference was observed in total digestible nutrients, a linear trend was observed (p < 0.059). EOGO improved the intake of DM, CP, and NDF. EOGO supplementation improved the digestibility of DM and NDF, with optimal levels observed at 0.5 mL/day. No significant effects were observed in the blood parameters. These results suggest that EOGO has the potential as an additive in ruminal nutrition to improve food digestibility and serve as an alternative to antibiotic additives. The use of EOGO potentially improves fiber digestion and may reduce the use of antibiotics in livestock production. Garlic (A. sativum) and oregano (O. vulgare) essential oils effectively modulated fiber digestibility at 0.75 mL/day. Garlic (A. sativum) and oregano (O. vulgare) essential oils have the potential to improve digestibility at low inclusion levels and serve as an alternative to antibiotic additives. The effectiveness of essential oils is greater in a mixture and at lower doses.
Collapse
Affiliation(s)
- Olga Teresa Barreto-Cruz
- Block 5 Laboratory of Animal Nutrition, Veterinary Medicine and Animal Science Program, Department of Animal Production, University Cooperative of Colombia, Ibague 730003, Colombia;
| | - Juan Carlos Henao Zambrano
- Block 5 Laboratory of Animal Nutrition, Veterinary Medicine and Animal Science Program, Department of Animal Production, University Cooperative of Colombia, Ibague 730003, Colombia;
| | - Roman David Castañeda-Serrano
- Department of Animal Production, University of Tolima, Santa Helena 42 Street n 2, Ibague 730006, Colombia; (R.D.C.-S.); (L.M.P.S.)
| | - Lina Maria Peñuela Sierra
- Department of Animal Production, University of Tolima, Santa Helena 42 Street n 2, Ibague 730006, Colombia; (R.D.C.-S.); (L.M.P.S.)
| |
Collapse
|
14
|
Fontes GRG, Gois GC, Rodrigues RTDS, da Rocha DR, Silva TS, Simão JF, Araújo NS, Turco SHN, Matias FB, da Silva JG, Ferreira BJM, Menezes DR, Queiroz MAÁ. Non-invasive methods to quantify the carcass parameters of sheep: Interaction between thermal environment and residual feed intake. J Therm Biol 2023; 117:103709. [PMID: 37717402 DOI: 10.1016/j.jtherbio.2023.103709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
The thermal environment is important in unit production because the perception of thermal stress can reduce fertility, and productive performance, therefore its management is necessary. The use of non-invasive methods, such as infrared thermography and real-time ultrasonography, are widely used to evaluate indicators in animal production, without the need to slaughter the animals. Thus, we aimed to assess the effect of the thermal environment on the physiological parameters and carcass characteristics of Dorper sheep with positive and negative residual feed intake (RFI) using infrared thermography and real-time ultrasonography techniques. Twenty uncastrated male Dorper sheep (17.8 ± 2.4 kg) were confined for 40 days for RFI classification. Sheep were separated into positive RFI (n = 10) and negative RFI (n = 10). The experimental design was in randomized blocks, in a 2 × 2 factorial arrangement, with 2 thermal environments (full sun or shade) and two feed efficiency groups (positive RFI or negative RFI), with 5 replications. The sheep remained in confinement for 60 days. The animals were slaughtered at the end of the experiment and the carcasses dissected for tissue separation. Rectal temperature (RT) and respiratory rate (RR) were measured at two times (14:00 h and 18:00 h) for periods of 5 days. The RR was determined by indirect auscultation of heart sounds at the level of the laryngotracheal region. The RT was measured introduced a digital clinical thermometer into the animal's rectum. Surface temperature (ST) was obtained using a thermographic infrared camera, collecting the temperatures of the eyeball and skin surface in the regions of the head, ribs, rump, flank and shin. Sheep confined in full sun showed higher RR (P = 0.0001), ST ribs (P = 0.0020), ST rumb (P = 0.0055), ST flank (P = 0.0001) and heat tolerance coefficient (HTC) (P = 0.0010). For sheep confined in full sun, a strong correlation was observed between the RR and the mean ST (MST; r = 0.6826; P = 0.0236) and between the final loin eye area (LEAf) with the real LEA (LEAr) (r = 0.9263; P = 0.0001) and slaughter body weight (SBW) (r = 0.7532; P = 0.0325). For negative RFI sheep, a positive correlation was observed between the RR and the ST rump (r = 0.7343; P = 0.0025) and ST ribs (r = 0.6560; P = 0.0178) and the MST (r = 0.7435; P = 0.0001), between the MST and the LEAr (r = 0.6837; P = 0.0025) and the final LEA (r = 0.6771; P = 0.0144), and between the final LEA and LEAr (r = 0.9942; P = 0.0001), BW (r = 0.8415; P = 0.0277) and MST (r = 0.6771; P = 0.0045). Positive RFI sheep confined to shade showed a high correlation between final LEA and LEAr (r = 0.9372; P = 0.0001). The use of shading in confined Dorper sheep, regardless of the RFI classification, reduces the effects of heat stress on physiological parameters.
Collapse
Affiliation(s)
- Gabriel Ravi Gama Fontes
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Vale Do São Francisco, 56310-770, Petrolina, Pernambuco, Brazil
| | - Glayciane Costa Gois
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Maranhão, 65500-000, Chapadinha, Maranhão, Brazil
| | - Rafael Torres de Souza Rodrigues
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Vale Do São Francisco, 56310-770, Petrolina, Pernambuco, Brazil
| | - David Ramos da Rocha
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Vale Do São Francisco, 56310-770, Petrolina, Pernambuco, Brazil
| | - Tiago Santos Silva
- Instituto Federal de Educação, Ciência e Tecnologia Do Sertão, 56200-000, Ouricuri, Pernambuco, Brazil
| | - Joanigo Fernando Simão
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Vale Do São Francisco, 56310-770, Petrolina, Pernambuco, Brazil
| | - Nataline Silva Araújo
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Vale Do São Francisco, 56310-770, Petrolina, Pernambuco, Brazil
| | - Silvia Helena Nogueira Turco
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Vale Do São Francisco, 56310-770, Petrolina, Pernambuco, Brazil
| | - Flávio Barbosa Matias
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Vale Do São Francisco, 56310-770, Petrolina, Pernambuco, Brazil
| | - José Gledyson da Silva
- Programa de Pós-Graduação Em Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco, Recife, Pernambuco, 52171-900, Brazil
| | - Bernardo José Marques Ferreira
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Vale Do São Francisco, 56310-770, Petrolina, Pernambuco, Brazil
| | - Daniel Ribeiro Menezes
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Vale Do São Francisco, 56310-770, Petrolina, Pernambuco, Brazil
| | - Mário Adriano Ávila Queiroz
- Programa de Pós-Graduação Em Ciência Animal, Universidade Federal Do Vale Do São Francisco, 56310-770, Petrolina, Pernambuco, Brazil.
| |
Collapse
|
15
|
Onagbesan OM, Uyanga VA, Oso O, Tona K, Oke OE. Alleviating heat stress effects in poultry: updates on methods and mechanisms of actions. Front Vet Sci 2023; 10:1255520. [PMID: 37841463 PMCID: PMC10569619 DOI: 10.3389/fvets.2023.1255520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heat stress is a threat that can lead to significant financial losses in the production of poultry in the world's tropical and arid regions. The degree of heat stress (mild, moderate, severe) experienced by poultry depends mainly on thermal radiation, humidity, the animal's thermoregulatory ability, metabolic rate, age, intensity, and duration of the heat stress. Contemporary commercial broiler chickens have a rapid metabolism, which makes them produce higher heat and be prone to heat stress. The negative effect of heat stress on poultry birds' physiology, health, production, welfare, and behaviors are reviewed in detail in this work. The appropriate mitigation strategies for heat stress in poultry are equally explored in this review. Interestingly, each of these strategies finds its applicability at different stages of a poultry's lifecycle. For instance, gene mapping prior to breeding and genetic selection during breeding are promising tools for developing heat-resistant breeds. Thermal conditioning during embryonic development or early life enhances the ability of birds to tolerate heat during their adult life. Nutritional management such as dietary manipulations, nighttime feeding, and wet feeding often, applied with timely and effective correction of environmental conditions have been proven to ameliorate the effect of heat stress in chicks and adult birds. As long as the climatic crises persist, heat stress may continue to require considerable attention; thus, it is imperative to explore the current happenings and pay attention to the future trajectory of heat stress effects on poultry production.
Collapse
Affiliation(s)
| | | | - Oluwadamilola Oso
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Kokou Tona
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
16
|
Adejuyigbe AE, Sogunle OM, Onagbesan OM, Oke OE. Growth performance and physiological responses of broilers fed Stylosanthes hamata leaf meal in a hot tropical environment. Vet Med Sci 2023; 9:2150-2159. [PMID: 37549043 PMCID: PMC10508513 DOI: 10.1002/vms3.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Forage plants are considered an essential source of vitamins, protein and energy and could decrease the intake of the conventional diets by up to 10% if young quality forage plants are offered and about 7% of a broiler's daily protein needs and 3% of their daily calorie needs can be met by pasture. However, there is a paucity of data on the quantification of the herbage intake in broiler chickens. OBJECTIVES This trial was designed to determine the performance and physiological response of broilers fed diets containing Stylosanthes hamata leaf meal (SHLM) at 0%, 1%, 5%, 10%, 15% and 20% inclusion (weight for weight) in a basal diet of poultry. METHODS Two hundred and forty-day-old Arbor Acres broiler chicks were used for this trial. They were allocated at random to each of the 6 dietary treatment groups with 4 replicates of 10 chickens each. The study lasted for 35 days, during which data were collected weekly. RESULTS Results indicated no difference (p > 0.05) in body weight gain, feed consumption and feed conversion ratio of broiler chickens across all ages. Although the plasma triiodothyronine (T3 ) concentration of the birds was influenced at the sixth week of age, there was no consistency in the trend. At the eighth week of age, chickens on 15% SHLM had significantly (p < 0.05) higher cortisol (3.22 ng/mL) concentrations compared to 10% (3.13 ng/mL) and 20% (3.16 ng/mL) SHLM treatment groups. Treatment groups, regardless of the age of the chickens, had similar (p > 0.05) mean plasma creatinine values. CONCLUSIONS The study concluded that SHLM could be incorporated into broiler feed up to 20% without a deleterious impact on physiology and performance indices.
Collapse
Affiliation(s)
| | - Olajide M. Sogunle
- Animal Production and Health DepartmentFederal University of AgricultureAbeokutaNigeria
| | | | - Oyegunle E. Oke
- Animal Physiology DepartmentFederal University of AgricultureAbeokutaNigeria
- Centre of Excellence in Avian SciencesUniversity of LomeLomeTogo
| |
Collapse
|
17
|
Pasciu V, Nieddu M, Sotgiu FD, Baralla E, Berlinguer F. An Overview on Assay Methods to Quantify ROS and Enzymatic Antioxidants in Erythrocytes and Spermatozoa of Small Domestic Ruminants. Animals (Basel) 2023; 13:2300. [PMID: 37508077 PMCID: PMC10376267 DOI: 10.3390/ani13142300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to provide an overview of the assay methods for the quantification of ROS and principal enzymatic antioxidants as biomarkers of oxidative stress in erythrocytes and spermatozoa of small domestic ruminants. A complete literature search was carried out in PubMed, Scopus and the World Wide Web using relevant keywords and focusing on the last five years (2018-2023). Among spectrophotometry, fluorometry and chemiluminescence, the most widely used method for ROS assay is fluorometry, probably because it allows to simultaneously assay several ROS, using different probes, with greater economic advantages. Regarding intracellular antioxidant enzymes, recent literature reports only spectrophotometric methods, many of which use commercial kits. The use of a less sensitive but cheapest method is suitable because both erythrocytes and spermatozoa samples are highly concentrated in domestic ruminant species. All methods considered in this review have been found to be appropriate; in general, the differences are related to their costs and sensitivity. Quantification of ROS and enzymatic antioxidant activity in erythrocytes and spermatozoa may find application in the study of the welfare and health status of small domestic ruminants for monitoring livestock production.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | | | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | | |
Collapse
|
18
|
Zhong ZQ, Li R, Wang Z, Tian SS, Xie XF, Wang ZY, Na W, Wang QS, Pan YC, Xiao Q. Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance. Animal 2023; 17:100882. [PMID: 37406393 DOI: 10.1016/j.animal.2023.100882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Heat stress is a major problem that constrains pig productivity. Understanding and identifying adaptation to heat stress has been the focus of recent studies, and the identification of genome-wide selection signatures can provide insights into the mechanisms of environmental adaptation. Here, we generated whole-genome re-sequencing data from six Chinese indigenous pig populations to identify genomic regions with selection signatures related to heat tolerance using multiple methods: three methods for intra-population analyses (Integrated Haplotype Score, Runs of Homozygosity and Nucleotide diversity Analysis) and three methods for inter-population analyses (Fixation index (FST), Cross-population Composite Likelihood Ratio and Cross-population Extended Haplotype Homozygosity). In total, 1 966 796 single nucleotide polymorphisms were identified in this study. Genetic structure analyses and FST indicated differentiation among these breeds. Based on information on the location environment, the six breeds were divided into heat and cold groups. By combining two or more approaches for selection signatures, outlier signals in overlapping regions were identified as candidate selection regions. A total of 163 candidate genes were identified, of which, 29 were associated with heat stress injury and anti-inflammatory effects. These candidate genes were further associated with 78 Gene Ontology functional terms and 30 Kyoto Encyclopedia of Genes and Genomes pathways in enrichment analysis (P < 0.05). Some of these have clear relevance to heat resistance, such as the AMPK signalling pathway and the mTOR signalling pathway. The results improve our understanding of the selection mechanisms responsible for heat resistance in pigs and provide new insights of introgression in heat adaptation.
Collapse
Affiliation(s)
- Z Q Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - R Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Z Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S S Tian
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - X F Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Z Y Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - W Na
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Q S Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y C Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Q Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|
19
|
Bokharaeian M, Toghdory A, Ghoorchi T. Effects of dietary curcumin nano-micelles on growth performance, blood metabolites, antioxidant status, immune and physiological responses of fattening lambs under heat-stress conditions. J Therm Biol 2023; 114:103585. [PMID: 37344033 DOI: 10.1016/j.jtherbio.2023.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023]
Abstract
The aim of the current study was to investigate the effects of dietary curcumin nano-micelles (C-NM) on the growth performance, blood metabolites, antioxidant status, and immune and physiological responses of fattening lambs under heat stress conditions. Thirty-two crossbred male lambs [Île-de-France × (Dalagh × Romanov)] with an average weight of 31.2 ± 1.55 kg and age of 4-5 months were assigned to experimental treatments in a completely randomized design including four treatments and eight replications. The treatments were T0, T20, T40, and T80, representing dietary supplementation of C-NM at 0, 20, 40, and 80 mg per head per day, respectively. The study lasted for 37 days including 7 days of adaptation period. Lambs were weighed on days 0 and 30 of the experiment before morning feeding to determine the average daily gain (ADG) and feed conversion ratio (FCR). Blood samples were collected from the jugular vein on day 30 of the experiment and physiological parameters, including rectal temperature (RT), skin temperature (ST), respiration rate (RR), and pulse rate (PR), were measured once a week on a certain day during the study. Lambs in the T40 group showed higher final live weight (FLW) and ADG, while exhibiting lower FCR (P < 0.01). Regression analysis predicted the optimum levels of dietary inclusion of C-NM to be 44.7, 38.3, and 42.0 mg/day for FLW, ADG, and FCR, respectively. Dietary supplementation of C-NM decreased RT, ST, and RR, while increasing PR (P < 0.01). The levels of immunoglobulins G (IgG) and A (IgA) increased linearly with the dietary inclusion of C-NM (P < 0.01), while levels of immunoglobulin M (IgM) remained unaffected (P > 0.05). Dietary inclusion of C-NM had a quadratic reducing effect on the serum concentration of malondialdehyde (MDA) and a cubic increasing effect on the serum activities of glutathione peroxidase (GPx) (P < 0.05). Superoxide dismutase (SOD) was linearly increased in T80, while total antioxidant capacity (TAC) showed a linear increase in T40 and T80 groups (P < 0.01). Based on the results of this study, we recommend the administration of C-NM in the diet of fattening lambs during hot months in tropical and subtropical areas. However, further studies are needed to assess the long-term effects of C-NM during various physiological and production statuses.
Collapse
Affiliation(s)
- Mostafa Bokharaeian
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Abdolhakim Toghdory
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Taghi Ghoorchi
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
20
|
Uyanga VA, Musa TH, Oke OE, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Global trends and research frontiers on heat stress in poultry from 2000 to 2021: A bibliometric analysis. Front Physiol 2023; 14:1123582. [PMID: 36824469 PMCID: PMC9941544 DOI: 10.3389/fphys.2023.1123582] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Background: Heat stress remains a major environmental factor affecting poultry production. With growing concerns surrounding climate change and its antecedent of global warming, research on heat stress in poultry has gradually gained increased attention. Therefore, this study aimed to examine the current status, identify the research frontiers, and highlight the research trends on heat stress in poultry research using bibliometric analysis. Methods: The literature search was performed on the Web of Science Core Collection database for documents published from 2000 to 2021. The documents retrieved were analyzed for their publication counts, countries, institutions, keywords, sources, funding, and citation records using the bibliometric app on R software. Network analysis for co-authorship, co-occurrence, citation, co-citation, and bibliographic coupling was visualized using the VOSviewer software. Results: A total of 468 publications were retrieved, and over the past two decades, there was a gradual increase in the annual number of publications (average growth rate: 4.56%). China had the highest contribution with respect to the number of publications, top contributing authors, collaborations, funding agencies, and institutions. Nanjing Agricultural University, China was the most prolific institution. Kazim Sahin from Firat University, Turkey contributed the highest number of publications and citations to heat stress in poultry research, and Poultry Science was the most productive and the most cited journal. The top 10 globally cited documents mainly focused on the effects of heat stress, alleviation of heat stress, and the association between heat stress and oxidative stress in poultry. All keywords were grouped into six clusters which included studies on "growth performance", "intestinal morphology", "heat stress", "immune response", "meat quality", and "oxidative stress" as current research hotspots. In addition, topics such as; "antioxidants", "microflora", "intestinal barrier", "rna-seq", "animal welfare", "gene expression", "probiotics", "feed restriction", and "inflammatory pathways" were identified for future research attention. Conclusion: This bibliometric study provides a detailed and comprehensive analysis of the global research trends on heat stress in poultry over the last two decades, and it is expected to serve as a useful reference for potential research that will help address the impacts of heat stress on poultry production globally.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,*Correspondence: Victoria Anthony Uyanga, ; Hai Lin,
| | - Taha H. Musa
- Biomedical Research Institute, Darfur University College, Nyala, Sudan
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | | | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,*Correspondence: Victoria Anthony Uyanga, ; Hai Lin,
| |
Collapse
|
21
|
Sumanu VO, Naidoo V, Oosthuizen MC, Chamunorwa JP. Adverse effects of heat stress during summer on broiler chickens production and antioxidant mitigating effects. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2379-2393. [PMID: 36169706 DOI: 10.1007/s00484-022-02372-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Broiler chicken meat is a good source of protein consumed universally, and is one of the most commonly farmed species in world. In addition to providing food, poultry non-edible byproducts also have value. A major advantage of broiler chicken production is their short production cycle, which results in a greater rate of production in comparison to other species. However, as with any production system, there are constraints in broiler production with one of the most pressing being energy requirements to keep the birds warm as chicks and cool later in the growth cycle, as a result of the cost needing mechanical heating and cooling. While this is feasible in more advanced economies, this is not readily affordable in developing economies. As a result, farmers rely on natural ventilation to cool the rearing houses, which generally becoming excessively warm with the resultant heat stress on the birds. Since little can be done without resorting to mechanical ventilation and cooling, exploring the use of other means to reduce heat stress is needed. For this review, we cover the various factors that induce heat stress, the physiological and behavioral responses of broiler chickens to heat stress. We also look at mitigating the adverse effect of heat stress through the use of antioxidants which possess either an anti-stress and/or antioxidant effects.
Collapse
Affiliation(s)
- V O Sumanu
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| | - V Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - M C Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - J P Chamunorwa
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
22
|
Abioja M, Logunleko M, Majekodunmi B, Adekunle E, Shittu O, Odeyemi A, Nwosu E, Oke O, Iyasere O, Abiona J, Williams T, James I, Smith O, Daramola J. Roles of Candidate Genes in the Adaptation of Goats to Heat Stress: A Review. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Zhang X, Wei Y, Li X, Li C, Zhang L, Liu Z, Cao Y, Li W, Zhang X, Zhang J, Shen M, Liu H. The Corticosterone–Glucocorticoid Receptor–AP1/CREB Axis Inhibits the Luteinizing Hormone Receptor Expression in Mouse Granulosa Cells. Int J Mol Sci 2022; 23:ijms232012454. [PMID: 36293309 PMCID: PMC9604301 DOI: 10.3390/ijms232012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Under stress conditions, luteinizing hormone (LH)-mediated ovulation is inhibited, resulting in insufficient oocyte production and excretion during follicular development. When the body is stressed, a large amount of corticosterone (CORT) is generated, which will lead to a disorder of the body’s endocrine system and damage to the body. Our previous work showed that CORT can block follicular development in mice. Since LH acts through binding with the luteinizing hormone receptor (Lhcgr), the present study aimed to investigate whether and how corticosterone (CORT) influences Lhcgr expression in mouse ovarian granulosa cells (GCs). For this purpose, three-week-old ICR female mice were injected intraperitoneally with pregnant mare serum gonadotropin (PMSG). In addition, the treatment group was injected with CORT (1 mg/mouse) at intervals of 8 h and the control group was injected with the same volume of methyl sulfoxide (DMSO). GCs were collected at 24 h, 48 h, and 55 h after PMSG injection. For in vitro experiments, the mouse GCs obtained from healthy follicles were treated with CORT alone, or together with inhibitors against the glucocorticoid receptor (Nr3c1). The results showed that the CORT caused a downregulation of Lhcgr expression in GCs, which was accompanied by impaired cell viability. Moreover, the effect of the CORT was mediated by binding to its receptor (Nr3c1) in GCs. Further investigation revealed that Nr3c1 might regulate the transcription of Lhcgr through inhibiting the expression of Lhcgr transcription factors, including AP1 and Creb. Taken together, our findings suggested a possible mechanism of CORT-induced anovulation involving the inhibition of Lhcgr expression in GCs by the CORT–Nr3c1–AP1/Creb axis.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Xiaoxuan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangliang Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiying Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.S.); (H.L.)
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.S.); (H.L.)
| |
Collapse
|
24
|
Ajayi OI, Smith OF, Oso AO, Oke OE. Evaluation of in ovo feeding of low or high mixtures of cysteine and lysine on performance, intestinal morphology and physiological responses of thermal-challenged broiler embryos. Front Physiol 2022; 13:972041. [PMID: 36134329 PMCID: PMC9483814 DOI: 10.3389/fphys.2022.972041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the effect of in ovo feeding cysteine, lysine or their combinations on the perinatal and post-hatch physiological responses of broiler embryos exposed to heat stress during incubation. A total of two thousand fertile eggs of broiler breeders (Ross 308) flock (at 38 weeks of age) were used for this study. In the first 10 days, the eggs were incubated using the conventional protocol of relative humidity and temperature of 55% and 37.8°C respectively. From day ten onward, the temperature was increased to 39.6°C for 6 h per day. On day 17.5, 1,500 eggs with the evidence of living embryos were randomly selected and assigned to 6 treatments having five replicates of 50 eggs each. The treatments were: un-injected eggs (UI), eggs injected with only 0.5 ml distilled water (DW), 3.5 mg/egg cysteine (CY), 2mg/egg lysine (LY), 3.4 mg cysteine+2 mg lysine (CLH) and 1.7 mg cysteine+1 mg lysine (CLL). On day 21, the hatchability, anatomical characteristics, chick quality and the antioxidant status of the chicks were evaluated. During the post-hatch phase, data were collected on the haematology, biochemical parameters, growth performance and intestinal morphology of the birds. The results revealed that the hatchability of CY chicks was higher (p < 0.05) than in the other treatments, while the lowest values were recorded in CLH. The hatching muscle of the chicks of CLL was similar to those of CY but higher (p < 0.05) than the others. The MDA of DW and UI chickens was similar and higher than birds in the other treatment groups. The serum SOD of CLL birds was comparable to that of CY but higher than the values recorded in the other treatments. The final weights of CLL chickens were similar to those of LY but significantly higher (p < 0.05) than those of the other treatments. The duodenal villus heights of the birds of CLL were higher than those of the other treatment groups, whereas the villus height of the birds of CLH was higher than those of UI, DW and CY. Overall, in ovo feeding of cysteine alone improved the hatchability of thermally-challenged broiler embryos. In contrast, a low-dose mixture of cysteine plus lysine improved the post-hatch growth performance.
Collapse
Affiliation(s)
- O. I. Ajayi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - O. F. Smith
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A. O. Oso
- Department of Animal Nutrition, Federal University of Agriculture, Abeokuta, Nigeria
| | - O. E. Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
- *Correspondence: O. E. Oke,
| |
Collapse
|
25
|
Akinyemi F, Adewole D. Effects of brown seaweed products on growth performance, plasma biochemistry, immune response, and antioxidant capacity of broiler chickens challenged with heat stress. Poult Sci 2022; 101:102215. [PMID: 36288626 PMCID: PMC9593180 DOI: 10.1016/j.psj.2022.102215] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Brown seaweed (Ascophyllum nodosum) is an exceptional bioactive substance known for its excellent antioxidant ability. Given the potential benefits of brown seaweed, the current study was conducted to determine its efficacy on growth performance, blood biochemistry, immunoglobulins (IgG and IgM), and the antioxidant capacity of broiler chickens challenged with heat stress (HS). A total of 336 mixed-sex Ross 308 broiler chicks (one-day-old) were randomly assigned into two groups; The thermoneutral group (TN, broilers were raised at 24 ± 1°C); and the heat stress group (HS; broilers were exposed to 32°C to 34°C, 8 h/d from day 21 to 27; the temperature in the remaining time was same as TN group). All birds in each group were randomly allotted to 4 dietary treatments—Negative control (NC) (without seaweed), NC + 1 mL seaweed extract (SWE) in drinking water, NC + 2 mL SWE in drinking water, and NC + 2% seaweed meal (SWM) in feed. Each treatment was assigned to six replicates with 7 broilers/replicate. Average body weight gain (ABWG), average feed intake (AFI), average water intake (AWI), feed conversion ratio (FCR), and mortality were determined weekly. On day 28, two male birds/cage were euthanized to collect blood and immune organs for subsequent biochemical, antioxidant, and immune status analysis. Data were analyzed as a 4 × 2 factorial analysis of variance using the GLM procedure of Minitab software. Overall, 2% SWM inclusion significantly increased (P < 0.05) the AFI, ABWG, and AWI of broiler chickens irrespective of HS. HS significantly reduced (P < 0.05) AFI and increased (P < 0.05) the bird's rectal temperature, plasma concentrations of sodium, chloride, glucose, amylase, and uric acid compared to TN birds. HS increased (P < 0.05) serum IgM and IgG and decreased plasma glutathione reductase and glutathione peroxidase compared to TN birds, while the activity of superoxide dismutase was not affected by HS and dietary treatments. 1 mL SWE in water and 2% SWM in feed significantly reduced (P < 0.05) the plasma activity of alanine aminotransferase and gamma-glutamyl transferase of heat-stressed broilers, respectively compared to other treatments. Conclusively, dietary supplementation of brown seaweed improved the growth performance of birds irrespective of HS and may help to reduce the negative effects of HS by improving the plasma enzyme activities of heat-stressed birds.
Collapse
Affiliation(s)
- Fisayo Akinyemi
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
26
|
Azeez OM, Olaifa FH, Adah AS, Basiru A, Akorede GJ, Ambali HM, Suleiman KY, Sanusi F, Bolaji M. Effect of heat stress on vital and hematobiochemical parameters of healthy dogs. Vet World 2022; 15:722-727. [PMID: 35497950 PMCID: PMC9047135 DOI: 10.14202/vetworld.2022.722-727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Heat stress is a major challenge for animals, impairing their welfare and performance. This study aimed to determine the effect of heat stress on the vital and hematobiochemical parameters of healthy dogs. Materials and Methods: The experimental subjects comprised 10 dogs, encompassing seven males and three non-pregnant females between 2 and 3 years of age. Ambient temperature (AT) and relative humidity (RH) were recorded 2 hourly during the day and the temperature humidity index was calculated. Vital parameters [i.e., rectal temperature (RT), respiratory rate, and heart rate (HR)] were assessed and blood was collected from each dog daily for hematobiochemical analysis. Results: The RT (38.5±0.2°C) of dogs exposed to high AT and high RH (HA/HR) conditions was significantly (p<0.05) higher than that of dogs exposed to HA and low RH (LR) conditions (37.2±0.11°C). Under HA/HR conditions, packed cell volume, hemoglobin concentrations, and white blood cell counts were significantly lower than those of the same dogs exposed to HA/LR conditions. Conversely, under HA/HR conditions, the lymphocyte, monocyte, eosinophil, alanine aminotransferase, aspartate aminotransferase, and cortisol values were significantly higher (p<0.05) than the values obtained in dogs exposed to HA/LR conditions. Meanwhile, the alkaline phosphatase, urea, and glucose levels were significantly lower (p<0.05) in dogs exposed to HA/HR conditions. Conclusion: The exposure of healthy dogs to HA/HR conditions induced heat stress, which may have an adverse effect on their immune status, thereby affecting their health and welfare.
Collapse
Affiliation(s)
- Oyebisi Mistura Azeez
- Department of Veterinary Physiology and Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Folashade Helen Olaifa
- Department of Veterinary Physiology and Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Adakole Sylvanus Adah
- Department of Veterinary Physiology and Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Afisu Basiru
- Department of Veterinary Physiology and Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Ganiu Jimoh Akorede
- Department of Veterinary Pharmacology and Toxicology, University of Ilorin, Ilorin, Nigeria
| | | | | | - Fatima Sanusi
- Department of Veterinary Physiology and Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Mashood Bolaji
- Department of Veterinary Pathology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|