1
|
Boulanger MC, Schneider JL, Lin JJ. Advances and future directions in ROS1 fusion-positive lung cancer. Oncologist 2024; 29:943-956. [PMID: 39177972 PMCID: PMC11546726 DOI: 10.1093/oncolo/oyae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
ROS1 gene fusions are an established oncogenic driver comprising 1%-2% of non-small cell lung cancer (NSCLC). Successful targeting of ROS1 fusion oncoprotein with oral small-molecule tyrosine kinase inhibitors (TKIs) has revolutionized the treatment landscape of metastatic ROS1 fusion-positive (ROS1+) NSCLC and transformed outcomes for patients. The preferred Food and Drug Administration-approved first-line therapies include crizotinib, entrectinib, and repotrectinib, and currently, selection amongst these options requires consideration of the systemic and CNS efficacy, tolerability, and access to therapy. Of note, resistance to ROS1 TKIs invariably develops, limiting the clinical benefit of these agents and leading to disease relapse. Progress in understanding the molecular mechanisms of resistance has enabled the development of numerous next-generation ROS1 TKIs, which achieve broader coverage of ROS1 resistance mutations and superior CNS penetration than first-generation TKIs, as well as other therapeutic strategies to address TKI resistance. The approach to subsequent therapy depends on the pace and pattern of progressive disease on the initial ROS1 TKI and, if known, the mechanisms of TKI resistance. Herein, we describe a practical approach for the selection of initial and subsequent therapies for metastatic ROS1+ NSCLC based on these clinical considerations. Additionally, we explore the evolving evidence for the optimal treatment of earlier-stage, non-metastatic ROS1+ NSCLC, while, in parallel, highlighting future research directions with the goal of continuing to build on the tremendous progress in the management of ROS1+ NSCLC and ultimately improving the longevity and well-being of people living with this disease.
Collapse
Affiliation(s)
- Mary C Boulanger
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Jaime L Schneider
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Jessica J Lin
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
2
|
Kramer A, Rubio‐Alarcón C, van den Broek D, Vessies DCL, van't Erve I, Meijer GA, Vink GR, Schuuring E, Fijneman RJA, Coupé VMH, Retèl VP. A scenario-drafting study to explore potential future implementation pathways of circulating tumor DNA testing in oncology. Mol Oncol 2024; 18:2730-2742. [PMID: 38060377 PMCID: PMC11547223 DOI: 10.1002/1878-0261.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
Circulating tumor DNA (ctDNA) detection has multiple promising applications in oncology, but the road toward implementation in clinical practice is unclear. We aimed to support the implementation process by exploring potential future pathways of ctDNA testing. To do so, we studied four ctDNA-testing applications in two cancer types and elicited opinions from 30 ctDNA experts in the Netherlands. Our results showed that the current available evidence differed per application and cancer type. Tumor profiling and monitoring treatment response were found most likely to be implemented in non-small cell lung cancer (NSCLC) within 5 years. For colorectal cancer, applications of ctDNA testing were found to be at an early stage in the implementation process. Demonstrating clinical utility was found a key aspect for successful implementation, but there was no consensus regarding the evidence requirements. The next step toward implementation is to define how clinical utility of biomarkers should be evaluated. Finally, these data indicate that specific challenges for each clinical application and tumor type should be appropriately addressed in a deliberative process involving all stakeholders to ensure implementation of ctDNA testing and timely access for patients.
Collapse
Affiliation(s)
- Astrid Kramer
- Department of Epidemiology and Data ScienceAmsterdam UMCThe Netherlands
| | | | - Daan van den Broek
- Department of Laboratory MedicineNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daan C. L. Vessies
- Department of Laboratory MedicineNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Iris van't Erve
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Gerrit A. Meijer
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Geraldine R. Vink
- Department of Medical Oncology, University Medical Center UtrechtUniversity of UtrechtThe Netherlands
- Department of Research and DevelopmentIKNLUtrechtThe Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenThe Netherlands
| | | | | | - Valesca P. Retèl
- Department of Psychosocial Research and EpidemiologyNetherlands Cancer InstituteAmsterdamThe Netherlands
- Erasmus School of Health Policy and ManagementErasmus University RotterdamThe Netherlands
| |
Collapse
|
3
|
Ntzifa A, Marras T, Kallergi G, Kotsakis A, Georgoulias V, Lianidou E. Comprehensive liquid biopsy analysis for monitoring NSCLC patients under second-line osimertinib treatment. Front Oncol 2024; 14:1435537. [PMID: 39497713 PMCID: PMC11532185 DOI: 10.3389/fonc.2024.1435537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 11/07/2024] Open
Abstract
Background The heterogeneous and complex genetic landscape of NSCLC impacts the clinical outcomes of patients who will eventually develop resistance to osimertinib. Liquid biopsy (LB) analysis as a minimally invasive approach is a key step to efficiently identify resistance mechanisms and adjust to proper subsequent treatments. Materials and methods In the present study, we combined plasma-cfDNA and CTC analysis from 30 NSCLC patients in samples collected before treatment and at the progression of disease (PD). We detected molecular alterations at the DNA mutation (EGFR, PIK3CA, KRAS G12C, BRAF V600E), DNA methylation (RASSF1A, BRMS1, FOXA1, SLFN1, SHISA3, RARβ,, WIF-1, RASSF10 and APC), gene expression (CK-19, CK-18, CK-8, AXL, TWIST-1, PD-L1, PIM-1, Vimentin, ALDH-1, and B2M) and chromosomal level (HER2 and MET amplification) as possible resistance mechanisms and druggable targets. We also studied the expression of PD-L1 in single CTCs using immunofluorescence. Results In some cases, T790M resistance EGFR mutation was detected at baseline in CTCs but not in the corresponding plasma cfDNA. PIK3CA mutations were detected only in plasma-cfDNA but not in corresponding CTCs. KRAS G12C and BRAF V600E mutations were not detected in the samples analyzed. MET amplification was detected in the CTCs of two patients before treatment whereas HER2 amplification was detected in the CTCs of three patients at baseline and in one patient at PD. DNA methylation analysis revealed low concordance between CTCs and cfDNA, indicating the complementary information obtained through parallel LB analysis. Results from gene expression analysis indicated high rates of vimentin-positive CTCs detected at all time points during osimertinib. Moreover, there was an increased number of NSCLC patients at PD harboring CTCs positive in PD-L1. AXL and PIM-1 expression detected in CTCs during treatment suggesting new possible therapeutic strategies. Discussion Our results reveal that comprehensive liquid biopsy analysis can efficiently represent the heterogeneous molecular landscape and provide prominent information on subsequent treatments for NSCLC patients at PD since druggable molecular alterations were detected in CTCs.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, General University Hospital of Larissa, Larissa, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Zhang L, Chi W, Wang X, Li J, Li F, Ma Y, Zhang Q. miR-6884-5p inhibits proliferation and epithelial-mesenchymal transition in non-small cell lung cancer cells. Heliyon 2024; 10:e38428. [PMID: 39391483 PMCID: PMC11466542 DOI: 10.1016/j.heliyon.2024.e38428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is associated with a high mortality and morbidity rate. MicroRNAs participate in tumorigenesis, progression and metastasis of NSCLC. However, miR-6884-5p has not been previously studied. This study aimed to investigate the role of miR-6884-5p in NSCLC and explore its underlying mechanisms. Methods We used miR-6884-5p mimics and inhibitors to assess its effects in NSCLC. miR-6884-5p expression levels in NSCLC cell lines were quantified using qRT-PCR. Cell viability was determined using a cell-counting kit 8 assay. Western blot analysis was employed to measure apoptotic proteins. The impact of miR-6884-5p on cell proliferation was assessed via colony formation assay. Furthermore, Transwell assays were utilized to visualize and quantify the effects of miR-6884-5p on NSCLC migration and invasion. Results miR-6884-5p mimic significantly inhibited NSCLC cell proliferation to 71.21 % and 72.26 % of control at 5 days of culture time in H460 and HC9 cells (both p < 0.01), respectively, while miR-6884-5p inhibitor significantly promoted cell proliferation to 119.66 % and 126.44 % of control at 5 days of culture time in H460 and HC9 cells (both p < 0.05), respectively. In addition, miR-6884-5p promoted apoptosis by reducing the anti-apoptotic protein B-cell lymphoma 2 (BCL2) protein and increasing apoptotic protein BCL2 associated X protein (all p < 0.01 at least). Moreover, miR-6884-5p effectively suppressed transforming growth factor β1-induced epithelial-mesenchymal transition, as evidenced by the restored expression of E-cadherin (p < 0.01), N-cadherin (p < 0.01) and Vimentin (p < 0.05), leading to the inhibition of migration and invasion in NSCLC cell lines. Conclusions Our findings demonstrate that miR-6884-5p can inhibit NSCLC cell proliferation, migration, and invasion, suggesting its potential as a therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Lianyong Zhang
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Wei Chi
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Xue Wang
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Jingjing Li
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Fei Li
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Yuxia Ma
- Department of Geriatrics, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Qianyun Zhang
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| |
Collapse
|
5
|
Fu SW, Tang C, Tan X, Srivastava S. Liquid biopsy for early cancer detection: technological revolutions and clinical dilemma. Expert Rev Mol Diagn 2024:1-19. [PMID: 39360748 DOI: 10.1080/14737159.2024.2408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Liquid biopsy is an innovative advancement in oncology, offering a noninvasive method for early cancer detection and monitoring by analyzing circulating tumor cells, DNA, RNA, and other biomarkers in bodily fluids. This technique has the potential to revolutionize precision oncology by providing real-time analysis of tumor dynamics, enabling early detection, monitoring treatment responses, and tailoring personalized therapies based on the molecular profiles of individual patients. AREAS COVERED In this review, the authors discuss current methodologies, technological challenges, and clinical applications of liquid biopsy. This includes advancements in detecting minimal residual disease, tracking tumor evolution, and combining liquid biopsy with other diagnostic modalities for precision oncology. Key areas explored are the sensitivity, specificity, and integration of multi-omics, AI, ML, and LLM technologies. EXPERT OPINION Liquid biopsy holds great potential to revolutionize cancer care through early detection and personalized treatment strategies. However, its success depends on overcoming technological and clinical hurdles, such as ensuring high sensitivity and specificity, interpreting results amidst tumor heterogeneity, and making tests accessible and affordable. Continued innovation and collaboration are crucial to fully realize the potential of liquid biopsy in improving early cancer detection, treatment, and monitoring.
Collapse
Affiliation(s)
- Sidney W Fu
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Xiaohui Tan
- Division of LS Research, LSBioscience, LLC, Frederick, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
6
|
MacKay H, Fernandes I. Cell-free DNA in recurrent and metastatic endometrial cancer: The future is now? Promises and potential pitfalls. Cancer 2024; 130:3275-3277. [PMID: 38985823 DOI: 10.1002/cncr.35448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Blanc‐Durand and colleagues present a prospective analysis of cell‐free DNA in patients with recurrent, advanced, or metastatic endometrial cancer, which offers insights into its potential application in molecular classification and the evolving targeted therapy landscape of this disease. More research is needed to validate cell‐free DNA's clinical utility but its potential to guide therapy and improve patient outcomes warrants ongoing exploration.
Collapse
Affiliation(s)
- Helen MacKay
- Odette Cancer Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Italo Fernandes
- Odette Cancer Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Ospina AV. Overview of the Role of Liquid Biopsy in Non-small Cell Lung Cancer (NSCLC). Clin Oncol (R Coll Radiol) 2024; 36:e371-e380. [PMID: 39048406 DOI: 10.1016/j.clon.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Solid tumour tissue has traditionally been used for cancer molecular diagnostics. Recently, biomarker assessment in blood or liquid biopsies has become relevant because it allows genotyping in a less invasive and costly manner. In addition, it is a very useful technique in cases with insufficient tumour samples. Recent data have shown that this method can provide the baseline molecular characteristics of the tumour and resistance changes that emerge during cancer treatment. In terms of diagnostic application, the platforms available for clinical use in lung cancer focus on the isolation and detection of circulating DNA (ctDNA) and generally cover a limited number of mutations in genes such as epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS) and BRAF, as well as anaplastic lymphoma kinase (ALK) rearrangements. In parallel, there are plasma genotyping platforms based on next-generation sequencing (NGS) techniques, which are much broader in scope, allowing multiple genes to be studied simultaneously in a more efficient manner. More recently, promising research scenarios for liquid biopsy have emerged, such as its utility for early diagnosis and evaluation of minimal residual disease after oncological treatment. In light of these advances, knowledge of the benefits and limitations of liquid biopsy, as well as awareness of emerging information on new indications for this technique in non-small cell lung cancer (NSCLC), are of paramount importance in developing more effective management strategies for patients with this neoplasm.
Collapse
Affiliation(s)
- A V Ospina
- Instituto Investigación Sanitaria Puerta de Hierro - Segovia de Arana (IDIPHISA), Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, C/Manuel de Falla, 1 Majadahonda, Madrid, 28222, Spain.
| |
Collapse
|
8
|
Reina C, Šabanović B, Lazzari C, Gregorc V, Heeschen C. Unlocking the future of cancer diagnosis - promises and challenges of ctDNA-based liquid biopsies in non-small cell lung cancer. Transl Res 2024; 272:41-53. [PMID: 38838851 DOI: 10.1016/j.trsl.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The advent of liquid biopsies has brought significant changes to the diagnosis and monitoring of non-small cell lung cancer (NSCLC), presenting both promise and challenges. Molecularly targeted drugs, capable of enhancing survival rates, are now available to around a quarter of NSCLC patients. However, to ensure their effectiveness, precision diagnosis is essential. Circulating tumor DNA (ctDNA) analysis as the most advanced liquid biopsy modality to date offers a non-invasive method for tracking genomic changes in NSCLC. The potential of ctDNA is particularly rooted in its ability to furnish comprehensive (epi-)genetic insights into the tumor, thereby aiding personalized treatment strategies. One of the key advantages of ctDNA-based liquid biopsies in NSCLC is their ability to capture tumor heterogeneity. This capability ensures a more precise depiction of the tumor's (epi-)genomic landscape compared to conventional tissue biopsies. Consequently, it facilitates the identification of (epi-)genetic alterations, enabling informed treatment decisions, disease progression monitoring, and early detection of resistance-causing mutations for timely therapeutic interventions. Here we review the current state-of-the-art in ctDNA-based liquid biopsy technologies for NSCLC, exploring their potential to revolutionize clinical practice. Key advancements in ctDNA detection methods, including PCR-based assays, next-generation sequencing (NGS), and digital PCR (dPCR), are discussed, along with their respective strengths and limitations. Additionally, the clinical utility of ctDNA analysis in guiding treatment decisions, monitoring treatment response, detecting minimal residual disease, and identifying emerging resistance mechanisms is examined. Liquid biopsy analysis bears the potential of transforming NSCLC management by enabling non-invasive monitoring of Minimal Residual Disease and providing early indicators for response to targeted treatments including immunotherapy. Furthermore, considerations regarding sample collection, processing, and data interpretation are highlighted as crucial factors influencing the reliability and reproducibility of ctDNA-based assays. Addressing these challenges will be essential for the widespread adoption of ctDNA-based liquid biopsies in routine clinical practice, ultimately paving the way toward personalized medicine and improved outcomes for patients with NSCLC.
Collapse
Affiliation(s)
- Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Chiara Lazzari
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Christopher Heeschen
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy;.
| |
Collapse
|
9
|
Roy-Chowdhuri S, Mani H, Fox AH, Tsao A, Sholl LM, Farjah F, Johnson BE, Osarogiagbon RU, Rivera MP, Silvestri GA, Smith RA, Wistuba II. The American Cancer Society National Lung Cancer Roundtable strategic plan: Methods for improving turnaround time of comprehensive biomarker testing in non-small cell lung cancer. Cancer 2024. [PMID: 39347608 DOI: 10.1002/cncr.34926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 10/01/2024]
Abstract
Comprehensive biomarker testing for patients with non-small cell lung cancer is critical for selecting appropriate targeted therapy or immunotherapy. Ensuring timely ordering, processing, and reporting is key to optimizing patient outcomes. However, various factors can prevent or delay patients from being offered the option of treatment selection based on comprehensive biomarker testing. These factors include problems with access to testing, tissue adequacy, turnaround time, and health insurance coverage and billing practices. Turnaround time depends on several logistical and tissue handling factors, which involve institutional policies, processes, resources, testing methodology, and testing algorithms that vary across different practices. In this article, the authors identify key factors that prolong biomarker testing turnaround time, propose strategies to reduce it, and present a process map to aid physicians and key organizational stakeholders in improving testing efficiency.
Collapse
Affiliation(s)
- Sinchita Roy-Chowdhuri
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haresh Mani
- Department of Pathology, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Adam H Fox
- Division of Pulmonary Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anne Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lynette M Sholl
- Brigham and Women's Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Farhood Farjah
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Bruce E Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond U Osarogiagbon
- Multidisciplinary Thoracic Oncology Program, Baptist Cancer Center, Memphis, Tennessee, USA
| | - M Patricia Rivera
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Wilmot Cancer Institute, The University of Rochester Medical Center, Rochester, New York, USA
| | - Gerard A Silvestri
- Division of Pulmonary Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert A Smith
- Center for Early Cancer Detection Science, American Cancer Society, Atlanta, Georgia, USA
| | - Ignacio I Wistuba
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Chen C, Douglas MP, Ragavan MV, Phillips KA, Jansen JP. Clinical Validity and Utility of Circulating Tumor DNA (ctDNA) Testing in Advanced Non-small Cell Lung Cancer (aNSCLC): A Systematic Literature Review and Meta-analysis. Mol Diagn Ther 2024; 28:525-536. [PMID: 39093546 PMCID: PMC11349784 DOI: 10.1007/s40291-024-00725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Circulating tumor DNA (ctDNA) testing has become a promising tool to guide first-line (1L) targeted treatment for advanced non-small cell lung cancer (aNSCLC). This study aims to estimate the clinical validity (CV) and clinical utility (CU) of ctDNA-based next-generation sequencing (NGS) for oncogenic driver mutations to inform 1L treatment decisions in aNSCLC through a systematic literature review and meta-analysis. METHODS A systematic literature search was conducted in PubMed/MEDLINE and Embase to identify randomized control trials or observational studies reporting CV/CU on ctDNA testing in patients with aNSCLC. Meta-analyses were performed using bivariate random-effects models to estimate pooled sensitivity and specificity. Progression-free/overall survival (PFS/OS) was summarized for CU studies. RESULTS A total of 20 studies were identified: 17 CV only, 2 CU only, and 1 both, and 13 studies were included for the meta-analysis on multi-gene detection. The overall sensitivity and specificity for ctDNA detection of any mutation were 0.69 (95% CI 0.63-0.74) and 0.99 (95% CI 0.97-1.00), respectively. However, sensitivity varied greatly by driver gene, ranging from 0.29 (95% CI 0.13-0.53) for ROS1 to 0.77 (95% CI 0.63-0.86) for KRAS. Two studies that compared PFS with ctDNA versus tissue-based testing followed by 1L targeted therapy found no significant differences. One study reported OS curves on ctDNA-matched and tissue-matched therapies but no hazard ratios were provided. CONCLUSIONS ctDNA testing demonstrated an overall acceptable diagnostic accuracy in patients with aNSCLC, however, sensitivity varied greatly by driver mutation. Further research is needed, especially for uncommon driver mutations, to better understand the CU of ctDNA testing in guiding targeted treatments for aNSCLC.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA
| | - Michael P Douglas
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA
| | - Meera V Ragavan
- Division of Hematology and Oncology, UCSF Department of Medicine, San Francisco, CA, USA
| | - Kathryn A Phillips
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- UCSF Philip R. Lee Institute for Health Policy, San Francisco, CA, USA
| | - Jeroen P Jansen
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
- UCSF Philip R. Lee Institute for Health Policy, San Francisco, CA, USA.
- Department of Clinical Pharmacy, School of Pharmacy, University of California San Francisco, 490 Illinois St. Valley Tower, 3rd Floor, Box 0613, San Francisco, CA, 94143, USA.
| |
Collapse
|
11
|
Itchins M, Liang S, Brown C, Barnes T, Marx G, Chin V, Kao S, Yip PY, Mersiades AJ, Nagrial A, Bray V, Peters G, Parakh S, Garg K, Li BT, McKay M, O'Byrne K, John T, Gill AJ, Molloy MP, Solomon BJ, Pavlakis N. ALKTERNATE: A Pilot Study Alternating Lorlatinib With Crizotinib in ALK-Positive NSCLC With Prior ALK Inhibitor Resistance. JTO Clin Res Rep 2024; 5:100703. [PMID: 39309618 PMCID: PMC11416292 DOI: 10.1016/j.jtocrr.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction ALK-positive lung cancers represent a molecularly diverse disease. With drug exposure, driving selection pressure, and resistance pathways, disease relapse will emerge. There is compelling rationale to investigate novel treatment strategies, informed by dynamic circulating tumor DNA (ctDNA) monitoring. Methods The single-arm, pilot study ALKTERNATE investigated fixed alternating cycles of lorlatinib intercalated with crizotinib in individuals resistant to second-generation ALK inhibitors. Dynamic ctDNA explored the correlation with disease response and disease recurrence and defined disease resistance. The primary outcome was time-to-treatment failure, a composite of tolerability, feasibility, and efficacy. Secondary outcomes included standard survival measures, toxicity, pharmacokinetic analysis, and patient-reported outcomes. Tertiary outcomes were proteogenomic analyses of tissue and plasma. Results A total of 15 individuals were enrolled; three encountered primary resistance to lorlatinib induction. There were 12 participants who received alternating therapy, and this approach revealed safety, feasibility, and effectiveness. Patient-reported outcomes were maintained or improved on therapy, and toxicity was consistent with previous reports. The pharmacokinetic measures were similar to the single-arm drug experience. Median time-to-treatment failure was 10 months; overall survival was 23 months. ctDNA profiles indicated inferior survival in those with preexistent TP53 mutations and those without clear or cleared ctDNA at trial induction. The study defined a vastly heterogeneous population with an abundance of ALK coexisting with non-ALK resistance variants. Conclusions ALKTERNATE revealed feasibility with a novel alternating ALK inhibitor strategy in ALK-positive NSCLC. Results support progressing inquiry into this approach and propose a flexible design with drug(s) selected and alternating time frames, informed by real-time plasma profiling. Moving this concept to treatment naive may also optimize impact.
Collapse
Affiliation(s)
- Malinda Itchins
- Royal North Shore Hospital, St Leonards, Australia
- Northern Clinical School, University of Sydney, St Leonards, Australia
- Chris O'Brien Lifehouse, Camperdown, Australia
| | | | - Chris Brown
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Australia
| | | | - Gavin Marx
- Sydney Adventist Hospital, Wahroonga, Australia
- Australian National University, Sydney, Australia
| | - Venessa Chin
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Darlinghurst, Australia
- The Garvan Institute of Medical Research, Darlinghurst, Australia
- University of New South Wales, Darlinghurst, Australia
| | - Steven Kao
- Chris O'Brien Lifehouse, Camperdown, Australia
- Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Po Yee Yip
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown, Australia
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Antony J. Mersiades
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Australia
- Northern Beaches Hospital, Frenchs Forest, Australia
| | - Adnan Nagrial
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, Australia
- Blacktown Hospital, Blacktown, Australia
- Westmead Clinical School, University of Sydney, Westmead, Australia
| | | | - Geoffrey Peters
- Canberra Hospital, Canberra, Australia
- Australian National University, Canberra, Australia
| | - Sagun Parakh
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | | | - Bob T. Li
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew McKay
- Kolling Institute, University of Sydney, St Leonards, Australia
| | | | - Thomas John
- Peter MacCallum Cancer Centre, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Anthony J. Gill
- Royal North Shore Hospital, St Leonards, Australia
- Northern Clinical School, University of Sydney, St Leonards, Australia
| | - Mark P. Molloy
- Northern Clinical School, University of Sydney, St Leonards, Australia
- Kolling Institute, University of Sydney, St Leonards, Australia
| | - Benjamin J. Solomon
- Peter MacCallum Cancer Centre, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Nick Pavlakis
- Royal North Shore Hospital, St Leonards, Australia
- Northern Clinical School, University of Sydney, St Leonards, Australia
| |
Collapse
|
12
|
Schrader AMR, van Engeland J, Willemze R, Vermaat JSP, Ottevanger R, Kersten JM, Zoutman WH, Jansen PM, van Eijk R, van Egmond D, Versluis M, Quint KD, Vermeer MH. Detection of Circulating Tumor DNA for Disease Monitoring in Patients with Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type. J Invest Dermatol 2024:S0022-202X(24)01996-1. [PMID: 39154990 DOI: 10.1016/j.jid.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 08/20/2024]
Affiliation(s)
- Anne M R Schrader
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Julia van Engeland
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosanne Ottevanger
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Juliette M Kersten
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patty M Jansen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ronald van Eijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Demi van Egmond
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen D Quint
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Ntzifa A, Marras T, Georgoulias V, Lianidou E. Liquid biopsy for the management of NSCLC patients under osimertinib treatment. Crit Rev Clin Lab Sci 2024; 61:347-369. [PMID: 38305080 DOI: 10.1080/10408363.2024.2302116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Therapeutic management of NSCLC patients is quite challenging as they are mainly diagnosed at a late stage of disease, and they present a high heterogeneous molecular profile. Osimertinib changed the paradigm shift in treatment of EGFR mutant NSCLC patients achieving significantly better clinical outcomes. To date, osimertinib is successfully administered not only as first- or second-line treatment, but also as adjuvant treatment while its efficacy is currently investigated during neoadjuvant treatment or in stage III, unresectable EGFR mutant NSCLC patients. However, resistance to osimertinib may occur due to clonal evolution, under the pressure of the targeted therapy. The utilization of liquid biopsy as a minimally invasive tool provides insight into molecular heterogeneity of tumor clonal evolution and potent resistance mechanisms which may help to develop more suitable therapeutic approaches. Longitudinal monitoring of NSCLC patients through ctDNA or CTC analysis could reveal valuable information about clinical outcomes during osimertinib treatment. Therefore, several guidelines suggest that liquid biopsy in addition to tissue biopsy should be considered as a standard of care in the advanced NSCLC setting. This practice could significantly increase the number of NSCLC patients that will eventually benefit from targeted therapies, such as EGFR TKIs.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Schouten RD, Schouten I, Schuurbiers MMF, van der Noort V, Damhuis RAM, van der Heijden EHFM, Burgers JA, Barlo NP, van Lindert ASR, Maas KW, van den Brand JJG, Smit AAJ, van Haarst JMW, van der Maat B, Schuuring E, Blaauwgeers H, Willems SM, Monkhorst K, van den Broek D, van den Heuvel MM. Optimising primary molecular profiling in non-small cell lung cancer. PLoS One 2024; 19:e0290939. [PMID: 39083479 PMCID: PMC11290658 DOI: 10.1371/journal.pone.0290939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 05/02/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Molecular profiling of NSCLC is essential for optimising treatment decisions, but often incomplete. We assessed the efficacy of protocolised molecular profiling in the current standard-of-care (SoC) in a prospective observational study in the Netherlands and measured the effect of providing standardised diagnostic procedures. We also explored the potential of plasma-based molecular profiling in the primary diagnostic setting. METHODS This multi-centre prospective study was designed to explore the performance of current clinical practice during the run-in phase using local SoC tissue profiling procedures. The subsequent phase was designed to investigate the extent to which comprehensive molecular profiling (CMP) can be maximized by protocolising tumour profiling. Successful molecular profiling was defined as completion of at least EGFR and ALK testing. Additionally, PD-L1 tumour proportions scores were explored. Lastly, the additional value of centralised plasma-based testing for EGFR and KRAS mutations using droplet digital PCR was evaluated. RESULTS Total accrual was 878 patients, 22.0% had squamous cell carcinoma and 78.0% had non-squamous NSCLC. Stage I-III was seen in 54.0%, stage IV in 46.0%. Profiling of EGFR and ALK was performed in 69.9% of 136 patients included in the run-in phase, significantly more than real-world data estimates of 55% (p<0.001). Protocolised molecular profiling increased the rate to 77.0% (p = 0.049). EGFR and ALK profiling rates increased from 77.9% to 82.1% in non-squamous NSCLC and from 43.8% to 57.5% in squamous NSCLC. Plasma-based testing was feasible in 98.4% and identified oncogenic driver mutations in 7.1% of patients for whom tissue profiling was unfeasible. CONCLUSION This study shows a high success rate of tissue-based molecular profiling that was significantly improved by a protocolised approach. Tissue-based profiling remains unfeasible for a substantial proportion of patients. Combined analysis of tumour tissue and circulating tumour DNA is a promising approach to allow adequate molecular profiling of more patients.
Collapse
Affiliation(s)
- R. D. Schouten
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - I. Schouten
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M. M. F. Schuurbiers
- Department of Pulmonology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - V. van der Noort
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R. A. M. Damhuis
- Integraal Kankercentrum Nederland (IKNL), Utrecht, The Netherlands
| | | | - J. A. Burgers
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - N. P. Barlo
- Pulmonology, Noordwest Ziekenhuis Groep, Alkmaar, The Netherlands
| | - A. S. R. van Lindert
- Department of Pulmonology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - K. W. Maas
- Department of Pulmonology, Haaglanden Medical Centre, The Hague, The Netherlands
| | | | - A. A. J. Smit
- Department of Pulmonology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | | | - B. van der Maat
- Department of Pulmonology, Flevoziekenhuis, Almere, The Netherlands
| | - E. Schuuring
- Department of Pathology, University Medical Centre Groningen, Groningen, The Netherlands
| | - H. Blaauwgeers
- Department of Pathology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - S. M. Willems
- Department of Pathology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - K. Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D. van den Broek
- Department of Clinical Chemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M. M. van den Heuvel
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pulmonology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Liu Y, Li H, Li X, Zhang T, Zhang Y, Zhu J, Cui H, Li R, Cheng Y. Highly consistency of PIK3CA mutation spectrum between circulating tumor DNA and paired tissue in lung cancer patients. Heliyon 2024; 10:e34013. [PMID: 39071569 PMCID: PMC11277437 DOI: 10.1016/j.heliyon.2024.e34013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA) mutations are associated with drug resistance and prognosis in lung cancer; however, the consistency and clinical value of PIK3CA mutations between tissue and liquid samples are unknown. Methods Circulating tumor DNA (ctDNA) and matched tumor tissue samples from 405 advanced lung cancer patients were collected at Jilin Cancer Hospital between 2018 and 2022, and the PIK3CA mutation status was sequenced using next-generation sequencing based on a 520 gene panel. The viability of different mutant lung cancer cells was detected using MTT assay. Results PIK3CA mutations were detected in 46 (5.68 %) of 810 lung cancer samples, with 21 (5.19 %) of 405 plasma samples and 25 (6.17 %) of 405 matched tissues. p.Glu542Lys, p.Glu545Lys, and p.His1047Arg were the most common mutation types of PIK3CA in both the ctDNA and tissue samples. The concordance of PIK3CA mutations was 97.53 % between ctDNA and matched tissues (kappa: 0.770, P = 0.000), with sensitivity/true positive rate of 72.0 %, specificity/true negative rate of 99.2 %, and negative predictive value and positive predictive value of 0.982 and 0.857, respectively (AUC = 0.856, P = 0.000). Furthermore, the concordance of PIK3CA mutations was 98.26 % in lung adenocarcinoma and 96.43 % in lung squamous cell carcinoma. TP53 and EGFR were the most common concomitant mutations in ctDNA and tissues. Patients with PIK3CA mutations showed a high tumor mutational burden (TMB) (P < 0.001) and a significant correlation between bTMB and tTMB (r = 0.5986, P = 0.0041). For the tPIK3CAmut/ctDNA PIK3CAmut cohort, PI3K pathways alteration was associated with male sex (P = 0.022), old age (P = 0.007), and smoking (P = 0.001); tPIK3CAmut/ctDNA PIK3CAwt patients harbored clinicopathological factors of adenocarcinoma stage IV, with low PS score (≤1) and TMB. Conclusion This study showed that ctDNA is highly concordant and sensitive for identifying PIK3CA mutations, suggesting that PIK3CA mutation detection in liquid samples may be an alternative clinical practice for tissues.
Collapse
Affiliation(s)
- Yan Liu
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
| | - Hui Li
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
| | - Xiang Li
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
| | - Tingting Zhang
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Yang Zhang
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Jing Zhu
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Heran Cui
- Biobank, Jilin Cancer Hospital, Changchun, 130012, China
| | - Rixin Li
- Biobank, Jilin Cancer Hospital, Changchun, 130012, China
| | - Ying Cheng
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| |
Collapse
|
16
|
Restrepo JC, Martínez Guevara D, Pareja López A, Montenegro Palacios JF, Liscano Y. Identification and Application of Emerging Biomarkers in Treatment of Non-Small-Cell Lung Cancer: Systematic Review. Cancers (Basel) 2024; 16:2338. [PMID: 39001401 PMCID: PMC11240412 DOI: 10.3390/cancers16132338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) comprises approximately 85% of all lung cancer cases, often diagnosed at advanced stages, which diminishes the effective treatment options and survival rates. This systematic review assesses the utility of emerging biomarkers-circulating tumor DNA (ctDNA), microRNAs (miRNAs), and the blood tumor mutational burden (bTMB)-enhanced by next-generation sequencing (NGS) to improve the diagnostic accuracy, prognostic evaluation, and treatment strategies in NSCLC. Analyzing data from 37 studies involving 10,332 patients from 2020 to 2024, the review highlights how biomarkers like ctDNA and PD-L1 expression critically inform the selection of personalized therapies, particularly beneficial in the advanced stages of NSCLC. These biomarkers are critical for prognostic assessments and in dynamically adapting treatment plans, where high PD-L1 expression and specific genetic mutations (e.g., ALK fusions, EGFR mutations) significantly guide the use of targeted therapies and immunotherapies. The findings recommend integrating these biomarkers into standardized clinical pathways to maximize their potential in enhancing the treatment precision, ultimately fostering significant advancements in oncology and improving patient outcomes and quality of life. This review substantiates the prognostic and predictive value of these biomarkers and emphasizes the need for ongoing innovation in biomarker research.
Collapse
Affiliation(s)
- Juan Carlos Restrepo
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Darly Martínez Guevara
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Andrés Pareja López
- Grupo de Investigación Unidad de Toxicidad In Vitro-UTi, Facultad de Ciencias, Universidad CES, Medellin 050021, Colombia
| | | | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
17
|
Ewalt MD, Hsiao SJ. Molecular Methods: Clinical Utilization and Designing a Test Menu. Clin Lab Med 2024; 44:123-135. [PMID: 38821636 DOI: 10.1016/j.cll.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Pre-analytical factors in molecular oncology diagnostics are reviewed. Issues around sample collection, storage, and transport that might affect the stability of nucleic acids and the ability to perform molecular testing are addressed. In addition, molecular methods used commonly in clinical diagnostic laboratories, including newer technologies such as next-generation sequencing and digital droplet polymerase chain reaction, as well as their applications, are reviewed. Finally, we discuss considerations in designing a molecular test menu to deliver accurate and timely results in an efficient and cost-effective manner.
Collapse
Affiliation(s)
- Mark D Ewalt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, S-801C, New York, NY 10065, USA
| | - Susan J Hsiao
- Department of Pathology & Cell Biology, Columbia University Medical Center, 630 West 168th Street, P&S16-408CB, New York, NY 10032, USA.
| |
Collapse
|
18
|
Huang W, Xu K, Liu Z, Wang Y, Chen Z, Gao Y, Peng R, Zhou Q. Circulating tumor DNA- and cancer tissue-based next-generation sequencing reveals comparable consistency in targeted gene mutations for advanced or metastatic non-small cell lung cancer. Chin Med J (Engl) 2024:00029330-990000000-01055. [PMID: 38711358 DOI: 10.1097/cm9.0000000000003117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Molecular subtyping is an essential complementarity after pathological analyses for targeted therapy. This study aimed to investigate the consistency of next-generation sequencing (NGS) results between circulating tumor DNA (ctDNA)-based and tissue-based in non-small cell lung cancer (NSCLC) and identify the patient characteristics that favor ctDNA testing. METHODS Patients who diagnosed with NSCLC and received both ctDNA- and cancer tissue-based NGS before surgery or systemic treatment in Lung Cancer Center, Sichuan University West China Hospital between December 2017 and August 2022 were enrolled. A 425-cancer panel with a HiSeq 4000 NGS platform was used for NGS. The unweighted Cohen's kappa coefficient was employed to discriminate the high-concordance group from the low-concordance group with a cutoff value of 0.6. Six machine learning models were used to identify patient characteristics that relate to high concordance between ctDNA-based and tissue-based NGS. RESULTS A total of 85 patients were enrolled, of which 22.4% (19/85) had stage III disease and 56.5% had stage IV disease. Forty-four patients (51.8%) showed consistent gene mutation types between ctDNA-based and tissue-based NGS, while one patient (1.2%) tested negative in both approaches. Advanced diseases and metastases to other organs would be fit for the ctDNA-based NGS, and the generalized linear model showed that T stage, M stage, and tumor mutation burden were the critical discriminators to predict the consistency of results between ctDNA-based and tissue-based NGS. CONCLUSION ctDNA-based NGS showed comparable detection performance in the targeted gene mutations compared with tissue-based NGS, and it could be considered in advanced or metastatic NSCLC.
Collapse
Affiliation(s)
- Weijia Huang
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai Xu
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenkun Liu
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yifeng Wang
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijia Chen
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
| | - Renwang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
19
|
Spagnolo CC, Pepe F, Ciappina G, Nucera F, Ruggeri P, Squeri A, Speranza D, Silvestris N, Malapelle U, Santarpia M. Circulating biomarkers as predictors of response to immune checkpoint inhibitors in NSCLC: Are we on the right path? Crit Rev Oncol Hematol 2024; 197:104332. [PMID: 38580184 DOI: 10.1016/j.critrevonc.2024.104332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Immune checkpoints inhibitors (ICIs) have markedly improved the therapeutic management of advanced NSCLC and, more recently, they have demonstrated efficacy also in the early-stage disease. Despite better survival outcomes with ICIs compared to standard chemotherapy, a large proportion of patients can derive limited clinical benefit from these agents. So far, few predictive biomarkers, including the programmed death-ligand 1 (PD-L1), have been introduced in clinical practice. Therefore, there is an urgent need to identify novel biomarkers to select patients for immunotherapy, to improve efficacy and avoid unnecessary toxicity. A deeper understanding of the mechanisms involved in antitumor immunity and advances in the field of liquid biopsy have led to the identification of a wide range of circulating biomarkers that could potentially predict response to immunotherapy. Herein, we provide an updated overview of these circulating biomarkers, focusing on emerging data from clinical studies and describing modern technologies used for their detection.
Collapse
Affiliation(s)
- Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Via S. Pansini, Naples 80131, Italy
| | - Giuliana Ciappina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina 98122, Italy
| | - Paolo Ruggeri
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina 98122, Italy
| | - Andrea Squeri
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Via S. Pansini, Naples 80131, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy.
| |
Collapse
|
20
|
Sujit SJ, Aminu M, Karpinets TV, Chen P, Saad MB, Salehjahromi M, Boom JD, Qayati M, George JM, Allen H, Antonoff MB, Hong L, Hu X, Heeke S, Tran HT, Le X, Elamin YY, Altan M, Vokes NI, Sheshadri A, Lin J, Zhang J, Lu Y, Behrens C, Godoy MCB, Wu CC, Chang JY, Chung C, Jaffray DA, Wistuba II, Lee JJ, Vaporciyan AA, Gibbons DL, Heymach J, Zhang J, Cascone T, Wu J. Enhancing NSCLC recurrence prediction with PET/CT habitat imaging, ctDNA, and integrative radiogenomics-blood insights. Nat Commun 2024; 15:3152. [PMID: 38605064 PMCID: PMC11009351 DOI: 10.1038/s41467-024-47512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
While we recognize the prognostic importance of clinicopathological measures and circulating tumor DNA (ctDNA), the independent contribution of quantitative image markers to prognosis in non-small cell lung cancer (NSCLC) remains underexplored. In our multi-institutional study of 394 NSCLC patients, we utilize pre-treatment computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to establish a habitat imaging framework for assessing regional heterogeneity within individual tumors. This framework identifies three PET/CT subtypes, which maintain prognostic value after adjusting for clinicopathologic risk factors including tumor volume. Additionally, these subtypes complement ctDNA in predicting disease recurrence. Radiogenomics analysis unveil the molecular underpinnings of these imaging subtypes, highlighting downregulation in interferon alpha and gamma pathways in the high-risk subtype. In summary, our study demonstrates that these habitat imaging subtypes effectively stratify NSCLC patients based on their risk levels for disease recurrence after initial curative surgery or radiotherapy, providing valuable insights for personalized treatment approaches.
Collapse
Affiliation(s)
- Sheeba J Sujit
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingjun Chen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maliazurina B Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Morteza Salehjahromi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Boom
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mohamed Qayati
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M George
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Haley Allen
- Natural Sciences, Rice University, Houston, TX, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingzhi Hong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Hu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hai T Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie I Vokes
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julie Lin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Myrna C B Godoy
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carol C Wu
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David A Jaffray
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Lung Cancer Genomics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Lung Cancer Interception Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute of Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
May T, Clement MS, Halait H, Kohlmann A, Kohlmann M, Lai J, Lee N, Li-Sucholeiki X, Meldgaard P, Joshi S, Scudder S, Shrestha N, Sorensen B, Kiral M, O’Donnell P. Performance characteristics of a polymerase chain reaction-based assay for the detection of EGFR mutations in plasma cell-free DNA from patients with non-small cell lung cancer using cell-free DNA collection tubes. PLoS One 2024; 19:e0295987. [PMID: 38593164 PMCID: PMC11003689 DOI: 10.1371/journal.pone.0295987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/03/2023] [Indexed: 04/11/2024] Open
Abstract
Survival rates in non-small cell lung cancer (NSCLC) are low. Detection of circulating tumor DNA in liquid biopsy (plasma) is increasingly used to identify targeted therapies for clinically actionable mutations, including EGFR mutations in NSCLC. The cobas® EGFR Mutation Test v2 (cobas EGFR test) is FDA-approved for EGFR mutation detection in tissue or liquid biopsy from NSCLC. Standard K2EDTA tubes require plasma separation from blood within 4 to 8 hours; however, Roche Cell-Free DNA (cfDNA) Collection Tubes (Roche cfDNA tube) enable whole blood stability for up to 7 days prior to plasma separation. This analysis assessed performance of Roche cfDNA tubes with the cobas EGFR test for the detection of EGFR mutations in plasma from healthy donors or patients with NSCLC. Overall, test performance was equally robust with either blood collection tube, eg, regarding limit of detection, linearity, and reproducibility, making Roche cfDNA tubes suitable for routine clinical laboratory use in this setting. Importantly, the Roche cfDNA tubes provided more flexibility for specimen handling versus K2EDTA tubes, eg, in terms of tube mixing, plasma separation, and sample stability, and do not require processing of blood within 8 hours thereby increasing the reach of plasma biopsies in NSCLC.
Collapse
Affiliation(s)
- Theresa May
- Research and Development, Roche Molecular Systems, Inc., Pleasanton, CA, United States of America
| | - Michelle S. Clement
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Harkanwal Halait
- Research and Development, Roche Molecular Systems, Inc., Pleasanton, CA, United States of America
| | - Alexander Kohlmann
- Oncology R&D, Precision Medicine and Biosamples, AstraZeneca, Gaithersburg, MD, United States of America
| | - Milena Kohlmann
- Oncology R&D, Precision Medicine and Biosamples, AstraZeneca, Gaithersburg, MD, United States of America
| | - Jason Lai
- Research and Development, Roche Molecular Systems, Inc., Pleasanton, CA, United States of America
| | - Nitta Lee
- Research and Development, Roche Molecular Systems, Inc., Pleasanton, CA, United States of America
| | - Xiaocheng Li-Sucholeiki
- Oncology R&D, Precision Medicine and Biosamples, AstraZeneca, Boston, MA, United States of America
| | - Peter Meldgaard
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Snehal Joshi
- Research and Development, Roche Molecular Systems, Inc., Pleasanton, CA, United States of America
| | - Sidney Scudder
- Research and Development, Roche Molecular Systems, Inc., Pleasanton, CA, United States of America
| | - Neelima Shrestha
- Research and Development, Roche Molecular Systems, Inc., Pleasanton, CA, United States of America
| | - Boe Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Marilyn Kiral
- Oncology R&D, Precision Medicine and Biosamples, AstraZeneca, Gaithersburg, MD, United States of America
| | - Patrick O’Donnell
- Research and Development, Roche Molecular Systems, Inc., Pleasanton, CA, United States of America
| |
Collapse
|
22
|
Wang YT, Yang PC, Zhang JY, Sun JF. Synthetic Routes and Clinical Application of Representative Small-Molecule EGFR Inhibitors for Cancer Therapy. Molecules 2024; 29:1448. [PMID: 38611728 PMCID: PMC11012680 DOI: 10.3390/molecules29071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in cancer therapeutics, with small-molecule EGFR inhibitors emerging as significant agents in combating this disease. This review explores the synthesis and clinical utilization of EGFR inhibitors, starting with the indispensable role of EGFR in oncogenesis and emphasizing the intricate molecular aspects of the EGFR-signaling pathway. It subsequently provides information on the structural characteristics of representative small-molecule EGFR inhibitors in the clinic. The synthetic methods and associated challenges pertaining to these compounds are thoroughly examined, along with innovative strategies to overcome these obstacles. Furthermore, the review discusses the clinical applications of FDA-approved EGFR inhibitors such as erlotinib, gefitinib, afatinib, and osimertinib across various cancer types and their corresponding clinical outcomes. Additionally, it addresses the emergence of resistance mechanisms and potential counterstrategies. Taken together, this review aims to provide valuable insights for researchers, clinicians, and pharmaceutical scientists interested in comprehending the current landscape of small-molecule EGFR inhibitors.
Collapse
Affiliation(s)
- Ya-Tao Wang
- First People’s Hospital of Shangqiu, Shangqiu 476100, China
| | - Peng-Cheng Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou 450044, China;
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China;
| |
Collapse
|
23
|
Choi SJ, Lee JB, Kim JH, Hong MH, Cho BC, Lim SM. Analysis of tumor mutational burden and mutational landscape comparing whole-exome sequencing and comprehensive genomic profiling in patients with resectable early-stage non-small-cell lung cancer. Ther Adv Med Oncol 2024; 16:17588359241240657. [PMID: 38523846 PMCID: PMC10958800 DOI: 10.1177/17588359241240657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Background Identifying actionable driver mutations via tissue-based comprehensive genomic profiling (CGP) is paramount in treatment decisions for metastatic non-squamous, non-small-cell lung cancer (NSCLC). However, the role of CGP remains elusive in resectable NSCLC. Here, we elucidate the feasibility of CGP in early-stage NSCLC Korean patients and compare the tumor mutational burden (TMB) and mutation landscape using three different platforms. Methods All surgically resected NSCLC samples (N = 96) were analyzed to assess the concordance in TMB calculation and targetable mutations using whole-exome sequencing (WES) and TruSight Oncology 500 (TSO500). In all, 26 samples were analyzed with Foundation One CDx Assay (F1CDx). Programmed death-ligand 1 (PD-L1) expression was evaluated using Vectra Polaris. Results Stage distribution post-surgery was 80% I (N = 77) and 20% II (N = 19). Ninety-nine percent (N = 95) were adenocarcinoma. The median TMB with WES and TSO500 was 1.6 and 4.7 mut/Mb, respectively (p < 0.05). Using all three platforms, the median TMB was 1.9, 5.5, and 4 mut/Mb for WES, TSO500, and F1CDx, respectively (p = 0.0048). Linear regression analysis of TMB values calculated between WES and TSO500 resulted in a concordance correlation coefficient of 0.83. For the PD-L1 tumor proportion score of <1% (negative, N = 18), 1-49% (low, N = 68), and ⩾50% (high, N = 10), the R2 values were 0.075, 0.79, and 0.95, respectively. The R2 values for TMB concordance were variable between the three platforms. Mutation landscape revealed EGFR mutation (51%, N = 49) as the most common actionable driver mutation, comprising L858R (N = 22), E19del (N = 20), and other non-common EGFR mutations (N = 7). Conclusion TSO500 and F1CDx showed robust analytical performance for TMB assessment with TSO500 showing stronger concordance of TMB with high PD-L1 expression. As the paradigm for the management of early-resected NSCLC continues to evolve, understanding TMB and the mutation landscape may help advance clinical outcomes for this subset of patients.
Collapse
Affiliation(s)
- Su-Jin Choi
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Hee Hong
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, South Korea
| |
Collapse
|
24
|
Ohmura H, Hanamura F, Okumura Y, Ando Y, Masuda T, Mimori K, Akashi K, Baba E. Liquid biopsy for breast cancer and other solid tumors: a review of recent advances. Breast Cancer 2024:10.1007/s12282-024-01556-8. [PMID: 38492205 DOI: 10.1007/s12282-024-01556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Liquid biopsy using circulating tumor DNA (ctDNA) has been reported to be less invasive and effective for comprehensive genetic analysis of heterogeneous solid tumors, including decision-making for therapeutic strategies, predicting recurrence, and detecting genetic factors related to treatment resistance in various types of cancers. Breast cancer, colorectal cancer, and lung cancer are among the most prevalent malignancies worldwide, and clinical studies of liquid biopsy for these cancers are ongoing. Liquid biopsy has been used as a companion diagnostic tool in clinical settings, and research findings have accumulated, especially in cases of colorectal cancer after curative resection and non-small cell lung cancer (NSCLC) after curative chemoradiotherapy, in which ctDNA detection helps predict eligibility for adjuvant chemotherapy. Liquid biopsy using ctDNA shows promise across a wide range of cancer types, including breast cancer, and its clinical applications are expected to expand further through ongoing research. In this article, studies on liquid biopsy in breast cancer, colorectal cancer, and NSCLC are compared focusing on ctDNA.
Collapse
Affiliation(s)
- Hirofumi Ohmura
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Fumiyasu Hanamura
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Yuta Okumura
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yuki Ando
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
25
|
Friedlaender A, Perol M, Banna GL, Parikh K, Addeo A. Oncogenic alterations in advanced NSCLC: a molecular super-highway. Biomark Res 2024; 12:24. [PMID: 38347643 PMCID: PMC10863183 DOI: 10.1186/s40364-024-00566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer ranks among the most common cancers world-wide and is the first cancer-related cause of death. The classification of lung cancer has evolved tremendously over the past two decades. Today, non-small cell lung cancer (NSCLC), particularly lung adenocarcinoma, comprises a multitude of molecular oncogenic subsets that change both the prognosis and management of disease.Since the first targeted oncogenic alteration identified in 2004, with the epidermal growth factor receptor (EGFR), there has been unprecedented progress in identifying and targeting new molecular alterations. Almost two decades of experience have allowed scientists to elucidate the biological function of oncogenic drivers and understand and often overcome the molecular basis of acquired resistance mechanisms. Today, targetable molecular alterations are identified in approximately 60% of lung adenocarcinoma patients in Western populations and 80% among Asian populations. Oncogenic drivers are largely enriched among non-smokers, east Asians, and younger patients, though each alteration has its own patient phenotype.The current landscape of druggable molecular targets includes EGFR, anaplastic lymphoma kinase (ALK), v-raf murine sarcoma viral oncogene homolog B (BRAF), ROS proto-oncogene 1 (ROS1), Kirstin rat sarcoma virus (KRAS), human epidermal receptor 2 (HER2), c-MET proto-oncogene (MET), neurotrophic receptor tyrosine kinase (NTRK), rearranged during transfection (RET), neuregulin 1 (NRG1). In addition to these known targets, others including Phosphoinositide 3-kinases (PI3K) and fibroblast growth factor receptor (FGFR) have garnered significant attention and are the subject of numerous ongoing trials.In this era of personalized, precision medicine, it is of paramount importance to identify known or potential oncogenic drivers in each patient. The development of targeted therapy is mirrored by diagnostic progress. Next generation sequencing offers high-throughput, speed and breadth to identify molecular alterations in entire genomes or targeted regions of DNA or RNA. It is the basis for the identification of the majority of current druggable alterations and offers a unique window into novel alterations, and de novo and acquired resistance mechanisms.In this review, we discuss the diagnostic approach in advanced NSCLC, focusing on current oncogenic driver alterations, through their pathophysiology, management, and future perspectives. We also explore the shortcomings and hurdles encountered in this rapidly evolving field.
Collapse
Affiliation(s)
- Alex Friedlaender
- Clinique Générale Beaulieu, Geneva, Switzerland
- Oncology Department, University Hospital Geneva, Rue Gentil Perret 4. 1205, Geneva, Switzerland
| | - Maurice Perol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Giuseppe Luigi Banna
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, Rue Gentil Perret 4. 1205, Geneva, Switzerland.
| |
Collapse
|
26
|
Wang X, Wang L, Lin H, Zhu Y, Huang D, Lai M, Xi X, Huang J, Zhang W, Zhong T. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front Oncol 2024; 14:1303335. [PMID: 38333685 PMCID: PMC10850354 DOI: 10.3389/fonc.2024.1303335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and extracellular vehicles (EVs) have received significant attention in recent times as emerging biomarkers and subjects of transformational studies. The three main branches of liquid biopsy have evolved from the three primary tumor liquid biopsy detection targets-CTC, ctDNA, and EVs-each with distinct benefits. CTCs are derived from circulating cancer cells from the original tumor or metastases and may display global features of the tumor. ctDNA has been extensively analyzed and has been used to aid in the diagnosis, treatment, and prognosis of neoplastic diseases. EVs contain tumor-derived material such as DNA, RNA, proteins, lipids, sugar structures, and metabolites. The three provide different detection contents but have strong complementarity to a certain extent. Even though they have already been employed in several clinical trials, the clinical utility of three biomarkers is still being studied, with promising initial findings. This review thoroughly overviews established and emerging technologies for the isolation, characterization, and content detection of CTC, ctDNA, and EVs. Also discussed were the most recent developments in the study of potential liquid biopsy biomarkers for cancer diagnosis, therapeutic monitoring, and prognosis prediction. These included CTC, ctDNA, and EVs. Finally, the potential and challenges of employing liquid biopsy based on CTC, ctDNA, and EVs for precision medicine were evaluated.
Collapse
Affiliation(s)
- Xiaoling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Lijuan Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Haihong Lin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yifan Zhu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuxiang Xi
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
27
|
Crucitta S, Pasqualetti F, Gonnelli A, Ruglioni M, Luculli GI, Cantarella M, Ortenzi V, Scatena C, Paiar F, Naccarato AG, Danesi R, Del Re M. IDH1 mutation is detectable in plasma cell-free DNA and is associated with survival outcome in glioma patients. BMC Cancer 2024; 24:31. [PMID: 38172718 PMCID: PMC10763009 DOI: 10.1186/s12885-023-11726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA, liquid biopsy) is a powerful tool to detect molecular alterations. However, depending on tumor characteristics, biology and anatomic localization, cfDNA detection and analysis may be challenging. Gliomas are enclosed into an anatomic sanctuary, which obstacles the release of cfDNA into the peripheral blood. Therefore, the advantages of using liquid biopsy for brain tumors is still to be confirmed. The present study evaluates the ability of liquid biopsy to detect IDH1 mutations and its correlation with survival and clinical characteristics of glioma patients. METHODS Blood samples obtained from glioma patients were collected after surgery prior to the adjuvant therapy. cfDNA was extracted from plasma and IDH1 p.R132H mutation analysis was performed on a digital droplet PCR. χ2-test and Cohen k were used to assess the correlation between plasma and tissue IDH1 status, while Kaplan Meier curve and Cox regression analysis were applied to survival analysis. Statistical calculations were performed by MedCalc and GraphPad Prism software. RESULTS A total of 67 samples were collected. A concordance between IDH1 status in tissue and in plasma was found (p = 0.0024), and the presence of the IDH1 mutation both in tissue (138.8 months vs 24.4, p < 0.0001) and cfDNA (116.3 months vs 35.8, p = 0.016) was associated with longer median OS. A significant association between IDH1 mutation both in tissue and cfDNA, age, tumor grade and OS was demonstrated by univariate Cox regression analysis. No statistically significant association between IDH1 mutation and tumor grade was found (p = 0.10). CONCLUSIONS The present study demonstrates that liquid biopsy may be used in brain tumors to detect IDH1 mutation which represents an important prognostic biomarker in patients with different types of gliomas, being associated to OS.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
- Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandra Gonnelli
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Martina Cantarella
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Valerio Ortenzi
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Department of Oncology and Hemato-Oncology, University of Milano, Via Festa del Perdono, 7, Milano, 20122, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Bronkhorst AJ, Holdenrieder S. A pocket companion to cell-free DNA (cfDNA) preanalytics. Tumour Biol 2024; 46:S297-S308. [PMID: 37840517 DOI: 10.3233/tub-230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The cumulative pool of cell-free DNA (cfDNA) molecules within bodily fluids represents a highly dense and multidimensional information repository. This "biological mirror" provides real-time insights into the composition, function, and dynamics of the diverse genomes within the body, enabling significant advancements in personalized molecular medicine. However, effective use of this information necessitates meticulous classification of distinct cfDNA subtypes with exceptional precision. While cfDNA molecules originating from different sources exhibit numerous genetic, epigenetic, and physico-chemical variations, they also share common features that complicate analyses. Considerable progress has been achieved in mapping the landscape of cfDNA features, their clinical correlations, and optimizing extraction procedures, analytical approaches, bioinformatics pipelines, and machine learning algorithms. Nevertheless, preanalytical workflows, despite their profound impact on cfDNA measurements, have not progressed at a corresponding pace. In this perspective article, we emphasize the pivotal role of robust preanalytical procedures in the development and clinical integration of cfDNA assays, highlighting persistent obstacles and emerging challenges.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, Munich, Germany
| |
Collapse
|
29
|
Kästner A, Kron A, van den Berg N, Moon K, Scheffler M, Schillinger G, Pelusi N, Hartmann N, Rieke DT, Stephan-Falkenau S, Schuler M, Wermke M, Weichert W, Klauschen F, Haller F, Hummel HD, Sebastian M, Gattenlöhner S, Bokemeyer C, Esposito I, Jakobs F, von Kalle C, Büttner R, Wolf J, Hoffmann W. Evaluation of the effectiveness of a nationwide precision medicine program for patients with advanced non-small cell lung cancer in Germany: a historical cohort analysis. THE LANCET REGIONAL HEALTH. EUROPE 2024; 36:100788. [PMID: 38034041 PMCID: PMC10687333 DOI: 10.1016/j.lanepe.2023.100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Background The national Network Genomic Medicine (nNGM) Lung Cancer provides comprehensive and high-quality multiplex molecular diagnostics and standardized personalized treatment recommendation for patients with advanced non-small cell lung cancer (aNSCLC) in Germany. The primary aim of this study was to investigate the effectiveness of the nNGM precision medicine program in terms of overall survival (OS) using real-world data (RWD). Methods A historical nationwide cohort analysis of patients with aNSCLC and initial diagnosis between 04/2019 and 06/2020 was conducted to compare treatment and OS of patients with and without nNGM-participation. Patients participating within the nNGM (nNGM group) were selected based on a prospective nNGM database. The electronic health records (EHR) of the prospective nNGM database were case-specifically linked to claims data (AOK, German health insurance). The control group was selected from claims data of patients receiving usual care without nNGM-participation (non-nNGM group). The minimum follow-up period was six months. Findings Overall, n = 509 patients in the nNGM group and n = 7213 patients in the non-nNGM group met the inclusion criteria. Patients participating in the nNGM had a significantly improved OS compared to the non-nNGM group (median OS: 10.5 months vs. 8.7 months, p = 0.008, HR = 0.84, 95% CI: 0.74-0.95). The 1-year survival rates were 46.8% (nNGM) and 41.3% (non-nNGM). The use of approved tyrosine kinase inhibitors (TKI) in the first-line setting was significantly higher in the nNGM group than in the non-nNGM group (nNGM: 8.4% (43/509) vs. non-nNGM: 5.1% (366/7213), p = 0.001). Overall, patients receiving first-line TKI treatment had significantly higher 1-year OS rates than patients treated with PD-1/PD-L1 inhibitors and/or chemotherapy (67.2% vs. 40.2%, p < 0.001). Interpretation This is the first study to demonstrate a significant survival benefit and higher utilization of targeted therapies for aNSCLC patients participating within nNGM. Our data indicate that precision medicine programs can enhance collaborative personalized lung cancer care and promote the implementation of treatment innovations and the latest scientific knowledge into clinical routine care. Funding The study was funded by the AOK Federal Association Germany.
Collapse
Affiliation(s)
- Anika Kästner
- Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Greifswald, Germany
| | - Anna Kron
- National Network Genomic Medicine Lung Cancer, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany
| | - Neeltje van den Berg
- Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Greifswald, Germany
| | - Kilson Moon
- Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Scheffler
- National Network Genomic Medicine Lung Cancer, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany
| | | | - Natalie Pelusi
- National Network Genomic Medicine Lung Cancer, Germany
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Nils Hartmann
- National Network Genomic Medicine Lung Cancer, Germany
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Damian Tobias Rieke
- National Network Genomic Medicine Lung Cancer, Germany
- Charité Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Susann Stephan-Falkenau
- National Network Genomic Medicine Lung Cancer, Germany
- Institute of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Martin Schuler
- National Network Genomic Medicine Lung Cancer, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Martin Wermke
- National Network Genomic Medicine Lung Cancer, Germany
- Clinic for Internal Medicine I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Wilko Weichert
- National Network Genomic Medicine Lung Cancer, Germany
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Frederick Klauschen
- National Network Genomic Medicine Lung Cancer, Germany
- Institute of Pathology, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Florian Haller
- National Network Genomic Medicine Lung Cancer, Germany
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Horst-Dieter Hummel
- National Network Genomic Medicine Lung Cancer, Germany
- Translational Oncology/Early Clinical Trial Unit (ECTU), Comprehensive Cancer Center Mainfranken and Bavarian Cancer Research Center (BZKF), University Hospital Würzburg, Würzburg, Germany
| | - Martin Sebastian
- National Network Genomic Medicine Lung Cancer, Germany
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Gattenlöhner
- National Network Genomic Medicine Lung Cancer, Germany
- Department of Pathology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Carsten Bokemeyer
- National Network Genomic Medicine Lung Cancer, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irene Esposito
- National Network Genomic Medicine Lung Cancer, Germany
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Florian Jakobs
- National Network Genomic Medicine Lung Cancer, Germany
- Department of Hematology and Stem Cell Transplantation, Faculty of Medicine and University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christof von Kalle
- National Network Genomic Medicine Lung Cancer, Germany
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhard Büttner
- National Network Genomic Medicine Lung Cancer, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Lung Cancer Group Cologne, University of Cologne, Cologne, Germany
| | - Jürgen Wolf
- National Network Genomic Medicine Lung Cancer, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany
| | - Wolfgang Hoffmann
- Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
30
|
Trulson I, Klawonn F, von Pawel J, Holdenrieder S. Improvement of differential diagnosis of lung cancer by use of multiple protein tumor marker combinations. Tumour Biol 2024; 46:S81-S98. [PMID: 38277317 DOI: 10.3233/tub-230021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Differential diagnosis of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) in hospitalized patients is crucial for appropriate treatment choice. OBJECTIVE To investigate the relevance of serum tumor markers (STMs) and their combinations for the differentiation of NSCLC and SCLC subtypes. METHODS Between 2000 and 2003, 10 established STMs were assessed retrospectively in 311 patients with NSCLC, 128 with SCLC prior systemic first-line therapy and 51 controls with benign lung diseases (BLD), by automatized electrochemiluminescence immunoassay technology. Receiver operating characteristic (ROC) curves and logistic regression analyses were used to evaluate the diagnostic efficacy of both individual and multiple STMs with corresponding sensitivities at 90% specificity. Standards for Reporting of Diagnostic Accuracy (STARD guidelines) were followed. RESULTS CYFRA 21-1 (cytokeratin-19 fragment), CEA (carcinoembryonic antigen) and NSE (neuron specific enolase) were significantly higher in all lung cancers vs BLD, reaching AUCs of 0.81 (95% CI 0.76-0.87), 0.78 (0.73-0.84), and 0.88 (0.84-0.93), respectively. By the three marker combination, the discrimination between benign and all malignant cases was improved resulting in an AUC of 0.93 (95% CI 0.90-0.96). In NSCLC vs. BLD, CYFRA 21-1, CEA and NSE were best discriminative STMs, with AUCs of 0.86 (95% CI 0.81-0.91), 0.80 (0.74-0.85), and 0.85 (0.79-0.91). The three marker combination also improved the AUC: 0.92; 95% CI 0.89-0.96). In SCLC vs. BLD, ProGRP (pro-gastrin-releasing peptide) and NSE were best discriminative STMs, with AUCs of 0.89 (95% CI 0.84-0.94) and 0.96 (0.93-0.98), respectively, and slightly improved AUC of 0.97 (95% CI 0.95-0.99) when in combination. Finally, discrimination between SCLC and NSCLC was possible by ProGRP (AUC 0.86; 95% CI 0.81-0.91), NSE (AUC 0.83; 0.78-0.88) and CYFRA 21-1 (AUC 0.69; 0.64-0.75) and by the combination of the 3 STMs (AUC 0.93; 0.91-0.96), with a sensitivity of 88% at 90% specificity. CONCLUSIONS The results confirm the power of STM combinations for the differential diagnosis of lung cancer from benign lesions and between histological lung cancer subtypes.
Collapse
Affiliation(s)
- Inga Trulson
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre Munich, Munich, Germany
| | - Frank Klawonn
- Ostfalia University, Department of Computer Science, Wolfenbüttel, Germany
- Helmholtz Centre for Infection Research, Biostatistics, Braunschweig, Germany
| | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre Munich, Munich, Germany
| |
Collapse
|
31
|
Fernandes MGO, Vilariça AS, Fernandes B, Camacho C, Saraiva C, Estevinho F, Novais E Bastos H, Lopes JM, Fidalgo P, Garrido P, Alves S, Silva S, Sequeira T, Barata F. Improving non-small-cell lung cancer survival through molecular characterization: Perspective of a multidisciplinary expert panel. Pulmonology 2024; 30:4-7. [PMID: 37210340 DOI: 10.1016/j.pulmoe.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 05/22/2023] Open
Affiliation(s)
- M G O Fernandes
- Pulmonology Department, Centro Hospitalar e Universitário de São João, EPE, Porto, Portugal; Faculdade de Medicina da Universidade do Porto, Porto, Portugal; IBMC/i3S - Instituto de Biologia Molecular e Celular/Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal Pulmonology Department, Centro Hospitalar e Universitário de São João, EPE, Porto, Portugal.
| | - A S Vilariça
- Pulmonology Department, Centro Hospitalar e Universitário de Lisboa Norte, EPE - Hospital Pulido Valente, Lisboa, Portugal
| | - B Fernandes
- Pulmonology Department, Hospital de Braga, Braga, Portugal
| | - C Camacho
- Oncology Department, Serviço de Saúde da Região Autónoma da Madeira, Funchal, Portugal
| | - C Saraiva
- Pulmonology Department, Centro Hospitalar e Universitário do Algarve, EPE - Hospital de Portimão, Portugal
| | - F Estevinho
- Oncology Department, Unidade Local de Saúde de Matosinhos, EPE - Hospital Pedro Hispano, Matosinhos, Portugal
| | - H Novais E Bastos
- Pulmonology Department, Centro Hospitalar e Universitário de São João, EPE, Porto, Portugal; Faculdade de Medicina da Universidade do Porto, Porto, Portugal; IBMC/i3S - Instituto de Biologia Molecular e Celular/Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal Pulmonology Department, Centro Hospitalar e Universitário de São João, EPE, Porto, Portugal
| | - J M Lopes
- Pulmonology Department, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - P Fidalgo
- Oncology Department, Centro Hospitalar e Universitário do Porto, EPE - Hospital de Santo António, Porto, Portugal
| | - P Garrido
- Pulmonology Department, Fundação Champalimaud, Lisboa, Portugal
| | - S Alves
- Oncology Department, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal
| | - S Silva
- Pulmonology Department, Centro Hospital de Leiria, EPE - Hospital de Santo André, Leiria, Portugal
| | - T Sequeira
- Oncology Department, Centro Hospitalar e Universitário de Lisboa Central, EPE - Hospital Santo António dos Capuchos, Lisboa, Portugal
| | - F Barata
- Pulmonology Department; Centro Hospitalar e Universitário de Coimbra, EPE - Hospitais da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Najafi S, Asemani Y, Majidpoor J, Mahmoudi R, Aghaei-Zarch SM, Mortezaee K. Tumor-educated platelets. Clin Chim Acta 2024; 552:117690. [PMID: 38056548 DOI: 10.1016/j.cca.2023.117690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Beyond traditional roles in homeostasis and coagulation, growing evidence suggests that platelets also reflect malignant transformation in cancer. Platelets are present in the tumor microenvironment where they interact with cancer cells. This interaction results in direct and indirect "education" as evident by platelet alterations in adhesion molecules, glycoproteins, nucleic acids, proteins and various receptors. Subsequently, these tumor-educated platelets (TEPs) circulate throughout the body and play pivotal roles in promotion of tumor growth and dissemination. Accordingly, platelet status can be considered a unique blood-based biomarker that can potentially predict prognosis and therapeutic success. Recently, liquid biopsies including TEPs have received much attention as safe, minimally invasive and sensitive alternatives for patient management. Herein, we provide an overview of TEPs and explore their benefits and limitations in cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
33
|
Gray JE, Han JY, Telaranta-Keerie A, Huang X, Kohlmann A, Hodge R, Rukazenkov Y, Chmielecki J, Espenschied CR, Lefterova M, Wu YL, Ramalingam SS, Barrett JC, Odegaard JI. Pan-Tumor Analytical Validation and Osimertinib Clinical Validation in EGFR Mutant Non-Small-Cell Lung Cancer, Supporting the First Next-Generation Sequencing Liquid Biopsy in Vitro Diagnostic. J Mol Diagn 2024; 26:73-84. [PMID: 37981090 DOI: 10.1016/j.jmoldx.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
Comprehensive genotyping is necessary to identify therapy options for patients with advanced cancer; however, many cancers are not tested, partly because of tissue limitations. Next-generation sequencing (NGS) liquid biopsies overcome some limitations, but clinical validity is not established and adoption is limited. Herein, clinical bridging studies used pretreatment plasma samples and data from FLAURA (NCT02296125; n = 441) and AURA3 (NCT02151981; n = 450) pivotal studies to demonstrate clinical validity of Guardant360 CDx (NGS LBx) to identify patients with advanced EGFR mutant non-small-cell lung cancer who may benefit from osimertinib. The primary end point was progression-free survival (PFS). Patients with EGFR mutation as identified by NGS LBx had significant PFS benefit with first-line osimertinib over standard of care (15.2 versus 9.6 months; hazard ratio, 0.41; P < 0.0001) and with later-line osimertinib over chemotherapy (8.3 versus 4.2 months; hazard ratio, 0.34; P < 0.0001). PFS benefits were similar to the original trial cohorts selected by tissue-based EGFR testing. Analytical validation included accuracy, precision, limit of detection, and specificity. Analytical validity was established for EGFR mutation detection and pan-tumor profiling. Panel-wide limit of detection was 0.1% to 0.5%, with 98% to 100% per-sample specificity. Patients with EGFR mutant non-small-cell lung cancer by NGS LBx had improved PFS with osimertinib, confirming clinical validity. Analytical validity was established for guideline-recommended therapeutic targets across solid tumors. The resulting US Food and Drug Administration approval of NGS LBx demonstrated safety and effectiveness for its intended use and is expected to improve adherence to guideline-recommended targeted therapy use.
Collapse
Affiliation(s)
- Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Ji-Youn Han
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Aino Telaranta-Keerie
- Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Melbourn Royston, United Kingdom
| | - Xiangning Huang
- Oncology Biometrics, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alexander Kohlmann
- Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Rachel Hodge
- Oncology Biometrics, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Yuri Rukazenkov
- Global Medicines Development, AstraZeneca, Cambridge, United Kingdom
| | - Juliann Chmielecki
- Translational Medicine, Early Research and Development, AstraZeneca, Waltham, Massachusetts
| | | | | | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Peoples Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Suresh S Ramalingam
- Emory University School of Medicine, Winship Cancer Institute, Atlanta, Georgia
| | - J Carl Barrett
- Translational Medicine, Early Research and Development, AstraZeneca, Waltham, Massachusetts
| | | |
Collapse
|
34
|
Franzi S, Seresini G, Borella P, Raviele PR, Bonitta G, Croci GA, Bareggi C, Tosi D, Nosotti M, Tabano S. Liquid biopsy in non-small cell lung cancer: a meta-analysis of state-of-the-art and future perspectives. Front Genet 2023; 14:1254839. [PMID: 38116291 PMCID: PMC10728669 DOI: 10.3389/fgene.2023.1254839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: To date, tissue biopsy represents the gold standard for characterizing non-small-cell lung cancer (NSCLC), however, the complex architecture of the disease has introduced the need for new investigative approaches, such as liquid biopsy. Indeed, DNA analyzed in liquid biopsy is much more representative of tumour heterogeneity. Materials and methods: We performed a meta-analysis of 17 selected papers, to attest to the diagnostic performance of liquid biopsy in identifying EGFR mutations in NSCLC. Results: In the overall studies, we found a sensitivity of 0.59, specificity of 0.96 and diagnostic odds ratio of 24,69. Since we noticed a high heterogeneity among different papers, we also performed the meta-analysis in separate subsets of papers, divided by 1) stage of disease, 2) experimental design and 3) method of mutation detection. Liquid biopsy has the highest sensitivity/specificity in high-stage tumours, and prospective studies are more reliable than retrospective ones in terms of sensitivity and specificity, both NGS and PCR-based techniques can be used to detect tumour DNA in liquid biopsy. Discussion: Overall, liquid biopsy has the potential to help the management of NSCLC, but at present the non-homogeneous literature data, lack of optimal detection methods, together with relatively high costs make its applicability in routine diagnostics still challenging.
Collapse
Affiliation(s)
- Sara Franzi
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriele Seresini
- Laboratory of Medical Genetics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Borella
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Gianluca Bonitta
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giorgio Alberto Croci
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Bareggi
- Medical Oncology Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Tosi
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Nosotti
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Silvia Tabano
- Laboratory of Medical Genetics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
35
|
Figueiredo A, Rodrigues A, Gaspar C, Felizardo M. Diagnosis and Treatment of Advanced ALK Rearrangement-Positive Non-Small-Cell Lung Cancer in Portugal: Results of a National Questionnaire. Drugs Real World Outcomes 2023; 10:545-555. [PMID: 37787868 PMCID: PMC10730491 DOI: 10.1007/s40801-023-00393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Rearrangements in the anaplastic lymphoma kinase (ALK) gene define a molecular subgroup of non-small-cell lung carcinoma (NSCLC) that should be treated with ALK-targeting tyrosine kinase inhibitors (TKIs). OBJECTIVE This study aimed to portray the Portuguese reality about the diagnosis and treatment of stage IV ALK-positive NSCLC. METHODS Institutions that treat lung cancer in Portugal were invited to participate in an anonymous electronic questionnaire. A total of 22/35 geographically dispersed institutions responded. A descriptive statistical analysis of the results was performed. RESULTS Reflex molecular testing was done in 54.6% of the institutions. Next-generation sequencing (NGS) was the preferred diagnostic method (90.9%). Typically, physicians obtained molecular study results within 14-21 days. Alectinib was the most commonly used first-line treatment. For patients with brain metastases, 86.4% of the physicians preferred alectinib and 13.6% preferred first-line brigatinib. In the case of asymptomatic oligoprogression in the central nervous system, 85.7% of physicians performed local treatment and kept the patient on a TKI; if symptomatic, 66.7% gave local treatment and stayed with the TKI, while 28.6% gave local treatment and altered the TKI. For patients with symptomatic systemic progression, 47.6% and 38.1% of physicians prescribed lorlatinib after initial treatment with alectinib or brigatinib, respectively. After progression on lorlatinib, 42.9% of respondents chose chemotherapy and 57.1% requested detection of resistance mutations. CONCLUSIONS NGS is widely used for the molecular characterization of ALK-positive NSCLC in Portugal. The country has access to up-to-date therapy. Overall, national clinical practice follows international recommendations for the diagnosis and treatment of ALK-positive NSCLC.
Collapse
Affiliation(s)
- Ana Figueiredo
- Department of Pulmonology, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3004-561, Coimbra, Portugal.
| | - Ana Rodrigues
- Department of Medical Oncology, Instituto Português de Oncologia do Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Carina Gaspar
- Medical & Scientific Management, Syneos Health, Avenida Duque d Ávilla, nº46, 3ºC, 1050-083, Lisboa, Portugal
| | - Margarida Felizardo
- Department of Pulmonology, Hospital Beatriz Ângelo, Av. Carlos Teixeira 3, 2674-514, Loures, Portugal
| |
Collapse
|
36
|
Cuello M, García-Rivello H, Huamán-Garaicoa F, Irigoyen-Piñeiros P, Lara-Torres CO, Rizzo MM, Ticona-Castro M, Trejo R, Zoroquiain P. Detection of NTRK gene fusions in solid tumors: recommendations from a Latin American group of oncologists and pathologists. Future Oncol 2023; 19:2669-2682. [PMID: 38088163 DOI: 10.2217/fon-2023-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
NTRK gene fusions have been detected in more than 25 types of tumors and their prevalence is approximately 0.3% in solid tumors. This low prevalence makes identifying patients who could benefit from TRK inhibitors a considerable challenge. Furthermore, while numerous papers on the evaluation of NTRK fusion genes are available, not all countries have guidelines that are suitable for their setting, as is the case with Latin America. Therefore, a group of oncologists and pathologists from several countries in Latin America (Argentina, Chile, Ecuador, Mexico, Peru and Uruguay) met to discuss and reach consensus on how to identify patients with NTRK gene fusions in solid tumors. To do so, they developed a practical algorithm, considering their specific situation and limitations.
Collapse
Affiliation(s)
- Mauricio Cuello
- Academic Unit of Oncology, Hospital de Clínicas Dr. Manuel Quintela, Montevideo, Uruguay
| | - Hernán García-Rivello
- Departmento of Clinical Pathology, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Hospital Italiano, Buenos Aires, Argentina
| | - Fuad Huamán-Garaicoa
- Instituto de Salud Integral (ISAIN), Universidad Católica, Santiago de Guayaquil (Ecuador), Department of Pathology, Sociedad de Lucha Contra el Cáncer del Ecuador (SOLCA), Guayaquil, Ecuador
| | | | - César O Lara-Torres
- Laboratory of Molecular Pathology, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Manglio M Rizzo
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, Derqui-Pilar, Argentina
- Department of Medical Oncology, Hospital Universitario Austral, Derqui-Pilar, Argentina
| | - Miguel Ticona-Castro
- Service of Medical Oncology, Hospital Nacional Edgardo Rebagliati Martins, EsSalud - Jesús María, Lima (Perú), Clínica Montefiori, La Molina, Lima, Perú
| | - Rogelio Trejo
- Department of Medical Oncology, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Pablo Zoroquiain
- Pathology Department, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
37
|
Jansen JP, Ragavan MV, Chen C, Douglas MP, Phillips KA. The Health Inequality Impact of Liquid Biopsy to Inform First-Line Treatment of Advanced Non-Small Cell Lung Cancer: A Distributional Cost-Effectiveness Analysis. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2023; 26:1697-1710. [PMID: 37741446 PMCID: PMC10859998 DOI: 10.1016/j.jval.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVES To perform a distributional cost-effectiveness analysis of liquid biopsy (LB) followed by, if needed, tissue biopsy (TB) (LB-first strategy) relative to a TB-only strategy to inform first-line treatment of advanced non-small cell lung cancer (aNSCLC) from a US payer perspective by which we quantify the impact of LB-first on population health inequality according to race and ethnicity. METHODS With a health economic model, quality-adjusted life-years (QALYs) and costs per patient were estimated for each subgroup. Given the lifetime risk of aNSCLC, and assuming equally distributed opportunity costs, the incremental net health benefits of LB-first were calculated, which were used to estimate general population quality-adjusted life expectancy at birth (QALE) by race and ethnicity with and without LB-first. The degree of QALYs and QALE differences with the strategies was expressed with inequality indices. Their differences were defined as the inequality impact of LB-first. RESULTS LB-first resulted in an additional 0.21 (95% uncertainty interval: 0.07-0.39) QALYs among treated patients, with the greatest gain observed among Asian patients (0.31 QALYs [0.09-0.61]). LB-first resulted in an increase in relative inequality in QALYs among patients, but a minor decrease in relative inequality in QALE. CONCLUSIONS LB-first to inform first-line aNSCLC therapy can improve health outcomes. With current diagnostic performance, the benefit is the greatest among Asian patients, thereby potentially widening racial and ethnic differences in survival among patients with aNSCLC. Assuming equally distributed opportunity costs and access, LB-first does not worsen and, in fact, may reduce inequality in general population health according to race and ethnicity.
Collapse
Affiliation(s)
- Jeroen P Jansen
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; UCSF Philip R. Lee Institute for Health Policy, San Francisco, CA, USA.
| | - Meera V Ragavan
- Division of Hematology and Oncology, UCSF Department of Medicine, San Francisco, CA, USA
| | - Cheng Chen
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA
| | - Michael P Douglas
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA
| | - Kathryn A Phillips
- Department of Clinical Pharmacy, UCSF Center for Translational and Policy Research on Precision Medicine (TRANSPERS), San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; UCSF Philip R. Lee Institute for Health Policy, San Francisco, CA, USA
| |
Collapse
|
38
|
Ntzifa A, Lianidou E. Pre-analytical conditions and implementation of quality control steps in liquid biopsy analysis. Crit Rev Clin Lab Sci 2023; 60:573-594. [PMID: 37518938 DOI: 10.1080/10408363.2023.2230290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Over the last decade, great advancements have been made in the field of liquid biopsy through extensive research and the development of new technologies that facilitate the use of liquid biopsy for cancer patients. This is shown by the numerous liquid biopsy tests that gained clearance by the US Food and Drug Administration (FDA) in recent years. Liquid biopsy has significantly altered cancer treatment by providing clinicians with powerful and immediate information about therapeutic decisions. However, the clinical integration of liquid biopsy is still challenging and there are many critical factors to consider prior to its implementation into routine clinical practice. Lack of standardization due to technical challenges and the definition of the clinical utility of specific assays further complicates the establishment of Standard Operating Procedures (SOPs) in liquid biopsy. Harmonization of laboratories to established guidelines is of major importance to overcome inter-lab variabilities observed. Quality control assessment in diagnostic laboratories that offer liquid biopsy testing will ensure that clinicians can base their therapeutic decisions on robust results. The regular participation of laboratories in external quality assessment schemes for liquid biopsy testing aims to promptly pinpoint deficiencies and efficiently educate laboratories to improve their quality of services. Accreditation of liquid biopsy diagnostic laboratories based on the ISO15189 standard in Europe or by CLIA/CAP accreditation procedures in the US is the best way to achieve the adaptation of liquid biopsy into the clinical setting by assuring reliable results for the clinicians and their cancer patients. Nowadays, various organizations from academia, industry, and regulatory agencies collaborate to set a framework that will include all procedures from the pre-analytical phase and the analytical process to the final interpretation of results. In this review, we underline several challenges in the analysis of circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) concerning standardization of protocols, quality control assessment, harmonization of laboratories, and compliance to specific guidelines that need to be thoroughly considered before liquid biopsy enters the clinic.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
39
|
Le X, Nadler E, Costa DB, Heymach JV. EGFR Tyrosine Kinase Inhibitors for the Treatment of Metastatic Non-Small Cell Lung Cancer Harboring Uncommon EGFR Mutations: A Podcast. Target Oncol 2023; 18:807-817. [PMID: 37792237 PMCID: PMC10663258 DOI: 10.1007/s11523-023-00994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/05/2023]
Abstract
Supplementary file1 (MP4 21169 KB).
Collapse
Affiliation(s)
- Xiuning Le
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Eric Nadler
- Baylor University Medical Center, Dallas, TX, USA
| | - Daniel B Costa
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
40
|
Le Tourneau C, André F, Helland Å, Mileshkin L, Minnaard W, Schiel A, Taskén K, Thomas DM, Veronese ML, Durán-Pacheco G, Leyens L, Rufibach K, Thomas M, Krämer A. Modified study designs to expand treatment options in personalised oncology: a multistakeholder view. Eur J Cancer 2023; 194:113278. [PMID: 37820553 DOI: 10.1016/j.ejca.2023.113278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023]
Abstract
Personalised oncology, whereby patients are given therapies based on their molecular tumour profile, is rapidly becoming an essential part of optimal clinical care, at least partly facilitated by recent advances in next-generation sequencing-based technology using liquid- and tissue-based biopsies. Consequently, clinical trials have shifted in approach, from traditional studies evaluating cytotoxic chemotherapy in largely histology-based populations to modified, biomarker-driven studies (e.g. basket, umbrella, platform) of molecularly guided therapies and cancer immunotherapies in selected patient subsets. Such modified study designs may assess, within the same trial structure, multiple cancer types and treatments, and should incorporate a multistakeholder perspective. This is key to generating complementary, fit-for-purpose and timely evidence for molecularly guided therapies that can be used as proof-of-concept to inform further study designs, lead to approval by regulatory authorities and be used as confirmation of clinical benefit for health technology assessment bodies. In general, the future of cancer clinical trials requires a framework for the application of innovative technologies and dynamic design methodologies, in order to efficiently transform scientific discoveries into clinical utility. Next-generation, modified studies that involve the joint efforts of all key stakeholders will offer individualised strategies that ultimately contribute to globalised knowledge and collective learning. In this review, we outline the background and purpose of such modified study designs and detail key aspects from a multistakeholder perspective. We also provide methodological considerations for designing the studies and highlight how insights from already-ongoing studies may address current challenges and opportunities in the era of personalised oncology.
Collapse
Affiliation(s)
- Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, INSERM U900 Research Unit, Paris-Saclay University, Paris, France
| | | | - Åslaug Helland
- Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linda Mileshkin
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | | | | | - Kjetil Taskén
- Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - David M Thomas
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | - Lada Leyens
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
41
|
Chen C, Douglas MP, Ragavan MV, Phillips KA, Jansen JP. Clinical validity and utility of circulating tumor DNA (ctDNA) testing in advanced non-small cell lung cancer (aNSCLC): a systematic literature review and meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.27.23297657. [PMID: 37961510 PMCID: PMC10635208 DOI: 10.1101/2023.10.27.23297657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Purpose Circulating tumor DNA (ctDNA) testing has become a promising tool to guide first-line (1L) targeted treatment for advanced non-small cell lung cancer (aNSCLC). This study aims to estimate the clinical validity (CV) and clinical utility (CU) of ctDNA-based next-generation sequencing (NGS) for oncogenic driver mutations to inform 1L treatment decisions in aNSCLC through a systematic literature review and meta-analysis. Methods A systematic literature search was conducted in PubMed/MEDLINE and Embase to identify randomized control trials or observational studies reporting CV/CU on ctDNA testing in patients with aNSCLC. Meta-analyses were performed using bivariate random-effects models to estimate pooled sensitivity and specificity. Progression-free/overall survival (PFS/OS) was summarized for CU studies. Results Eighteen studies were identified: 17 CV only, 2 CU only, and 1 both. Thirteen studies were included for the meta-analysis on multi-gene detection. The overall sensitivity and specificity for ctDNA detection of any mutation were 0.69 (95% CI, 0.63-0.74) and 0.99 (95% CI, 0.97-1.00) respectively. However, sensitivity varied greatly by driver gene, ranging from 0.29 (95% CI, 0.13-0.53) for ROS 1 to 0.77 (95% CI, 0.63-0.86) for KRAS . Two studies compared PFS with ctDNA versus tissue-based testing followed by 1L targeted therapy found no significant differences. One study reported OS curves on ctDNA-matched and tissue-matched therapies but no hazard ratios were provided. Conclusion ctDNA testing demonstrated an overall acceptable diagnostic accuracy in aNSCLC patients, however, sensitivity varied greatly by driver mutation. Further research is needed, especially for uncommon driver mutations, to better understand the CU of ctDNA testing in guiding targeted treatments for aNSCLC.
Collapse
|
42
|
Yuan J, Xu L, Chien CY, Yang Y, Yue Y, Fadera S, Stark AH, Schwetye KE, Nazeri A, Desai R, Athiraman U, Chaudhuri AA, Chen H, Leuthardt EC. First-in-human prospective trial of sonobiopsy in high-grade glioma patients using neuronavigation-guided focused ultrasound. NPJ Precis Oncol 2023; 7:92. [PMID: 37717084 PMCID: PMC10505140 DOI: 10.1038/s41698-023-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
Sonobiopsy is an emerging technology that combines focused ultrasound (FUS) with microbubbles to enrich circulating brain disease-specific biomarkers for noninvasive molecular diagnosis of brain diseases. Here, we report the first-in-human prospective trial of sonobiopsy in high-grade glioma patients to evaluate its feasibility and safety in enriching plasma circulating tumor biomarkers. A nimble FUS device integrated with a clinical neuronavigation system was used to perform sonobiopsy following an established clinical workflow for neuronavigation. Analysis of blood samples collected before and after FUS sonication showed that sonobiopsy enriched plasma circulating tumor DNA (ctDNA), including a maximum increase of 1.6-fold for the mononucleosome cell-free DNA (cfDNA) fragments (120-280 bp), 1.9-fold for the patient-specific tumor variant ctDNA level, and 5.6-fold for the TERT mutation ctDNA level. Histological analysis of surgically resected tumors confirmed the safety of the procedure. Transcriptome analysis of sonicated and nonsonicated tumor tissues found that FUS sonication modulated cell physical structure-related genes. Only 2 out of 17,982 total detected genes related to the immune pathways were upregulated. These feasibility and safety data support the continued investigation of sonobiopsy for noninvasive molecular diagnosis of brain diseases.
Collapse
Affiliation(s)
- Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Siaka Fadera
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Andrew H Stark
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Katherine E Schwetye
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rupen Desai
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Umeshkumar Athiraman
- Department of Anesthesia, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aadel A Chaudhuri
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Division of Neurotechnology, Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Division of Neurotechnology, Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
43
|
Blaquier JB, Ortiz-Cuaran S, Ricciuti B, Mezquita L, Cardona AF, Recondo G. Tackling Osimertinib Resistance in EGFR-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:3579-3591. [PMID: 37093192 DOI: 10.1158/1078-0432.ccr-22-1912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The current landscape of targeted therapies directed against oncogenic driver alterations in non-small cell lung cancer (NSCLC) is expanding. Patients with EGFR-mutant NSCLC can derive significant benefit from EGFR tyrosine kinase inhibitor (TKI) therapy, including the third-generation EGFR TKI osimertinib. However, invariably, all patients will experience disease progression with this therapy mainly due to the adaptation of cancer cells through primary or secondary molecular mechanisms of resistance. The comprehension and access to tissue and cell-free DNA next-generation sequencing have fueled the development of innovative therapeutic strategies to prevent and overcome resistance to osimertinib in the clinical setting. Herein, we review the biological and clinical implications of molecular mechanisms of osimertinib resistance and the ongoing development of therapeutic strategies to overcome or prevent resistance.
Collapse
Affiliation(s)
- Juan Bautista Blaquier
- Thoracic Oncology Unit, Medical Oncology, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Laura Mezquita
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Andrés Felipe Cardona
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
- Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Cancer-CTIC, Bogotá, Colombia
| | - Gonzalo Recondo
- Thoracic Oncology Unit, Medical Oncology, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
- Medical Oncology Department, Bradford Hill Clinical Research Center, Santiago, Chile
| |
Collapse
|
44
|
Bi Y, Xia C, Zhang X, Liu H. Targeted treatments after chemoradiotherapy failure in a patient with relapsed, advanced non‑small cell lung cancer with on‑therapy circulating tumor biomarker monitoring: A case report. Oncol Lett 2023; 26:407. [PMID: 37600327 PMCID: PMC10436159 DOI: 10.3892/ol.2023.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Ongoing investigations of targeted therapeutic agents and their increased clinical applications, together with research in genomics and proteomics, have explored a variety of novel approaches for treatment of lung cancer, and 'molecular subtypes' have been defined based on specific actionable genetic aberrations. Liquid biopsies, including circulating tumor DNA (ctDNA) testing, are of value for cancer diagnosis and comprehensive genomic profiling, such as the identification of cancer subtypes and major genetic alterations in cancer cells. The case of a 66-year-old male patient with newly-diagnosed driver mutation-negative advanced non-small cell lung cancer (NSCLC) who underwent conventional therapy is described in the present report. The patient underwent regular monitoring, including continuous ctDNA analysis, imaging and assessment of tumor marker levels such as carcinoembryonic antigen (CEA). The patient initially presented with deep vein thrombosis which affected both lower extremities and without any symptoms in the lung, with a positron emission tomography scan identifying irregular pulmonary nodules in the right lower lobe and enlarged right supraclavicular lymph nodes. Subsequent ultrasound-guided fine-needle aspiration with nodule biopsy indicated advanced unresectable disease at stage IIIB based on the Tumor-Node-Metastasis staging system by the American Joint Committee on Cancer. Next-generation sequencing of tumor tissue and peripheral blood confirmed driver mutation-negative genes, including epidermal growth factor receptor, rat sarcoma, ALK receptor tyrosine kinase, ROS1 proto-oncogene receptor tyrosine kinase and rearrangement during transfection (RET). After 5 years of chemoradiotherapy and surveillance of ctDNA and CEA levels, detectable kinesin family member 5B (KIF5B)-RET fusion in ctDNA and rising CEA levels prompted early scans, which identified disease progression. The patient subsequently received the oral RET inhibitor pralsetinib, with treatment being currently ongoing for ≥17 months without detectable KIF5B-RET ctDNA or elevated CEA levels, with an ongoing minor response and stable disease based on Response Evaluation Criteria in Solid Tumors v1.1 on imaging. The present case illustrates the potential role of on-therapy circulating tumor biomarker monitoring as a non-traumatic method to evaluate therapy response and detect early disease progression in patients with advanced NSCLC. Integration of circulating tumor biomarker testing into the management of patients with advanced NSCLC requires additional prospective studies to actively assess and elucidate optimal treatment strategies.
Collapse
Affiliation(s)
- Yinghui Bi
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong 266012, P.R. China
| | - Chaoran Xia
- Zhejiang Shaoxing Topgen Biomedical Technology Co. Ltd., Shanghai 200120, P.R. China
| | - Xinglin Zhang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong 266012, P.R. China
| | - Haixin Liu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong 266012, P.R. China
| |
Collapse
|
45
|
Ma W, Wei S, Long S, Tian EC, McLaughlin B, Jaimes M, Montoya DJ, Viswanath VR, Chien J, Zhang Q, Van Dyke JE, Chen S, Li T. Dynamic evaluation of blood immune cells predictive of response to immune checkpoint inhibitors in NSCLC by multicolor spectrum flow cytometry. Front Immunol 2023; 14:1206631. [PMID: 37638022 PMCID: PMC10449448 DOI: 10.3389/fimmu.2023.1206631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) only benefit a subset of cancer patients, underlining the need for predictive biomarkers for patient selection. Given the limitations of tumor tissue availability, flow cytometry of peripheral blood mononuclear cells (PBMCs) is considered a noninvasive method for immune monitoring. This study explores the use of spectrum flow cytometry, which allows a more comprehensive analysis of a greater number of markers using fewer immune cells, to identify potential blood immune biomarkers and monitor ICI treatment in non-small-cell lung cancer (NSCLC) patients. Methods PBMCs were collected from 14 non-small-cell lung cancer (NSCLC) patients before and after ICI treatment and 4 healthy human donors. Using spectrum flow cytometry, 24 immune cell markers were simultaneously monitored using only 1 million PBMCs. The results were also compared with those from clinical flow cytometry and bulk RNA sequencing analysis. Results Our findings showed that the measurement of CD4+ and CD8+ T cells by spectrum flow cytometry matched well with those by clinical flow cytometry (Pearson R ranging from 0.75 to 0.95) and bulk RNA sequencing analysis (R=0.80, P=1.3 x 10-4). A lower frequency of CD4+ central memory cells before treatment was associated with a longer median progression-free survival (PFS) [Not reached (NR) vs. 5 months; hazard ratio (HR)=8.1, 95% confidence interval (CI) 1.5-42, P=0.01]. A higher frequency of CD4-CD8- double-negative (DN) T cells was associated with a longer PFS (NR vs. 4.45 months; HR=11.1, 95% CI 2.2-55.0, P=0.003). ICIs significantly changed the frequency of cytotoxic CD8+PD1+ T cells, DN T cells, CD16+CD56dim and CD16+CD56- natural killer (NK) cells, and CD14+HLDRhigh and CD11c+HLADR + monocytes. Of these immune cell subtypes, an increase in the frequency of CD16+CD56dim NK cells and CD14+HLADRhigh monocytes after treatment compared to before treatment were associated with a longer PFS (NR vs. 5 months, HR=5.4, 95% CI 1.1-25.7, P=0.03; 7.8 vs. 3.8 months, HR=5.7, 95% CI 169 1.0-31.7, P=0.04), respectively. Conclusion Our preliminary findings suggest that the use of multicolor spectrum flow cytometry helps identify potential blood immune biomarkers for ICI treatment, which warrants further validation.
Collapse
Affiliation(s)
- Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Dartmouth, NH, United States
| | - Sixi Wei
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Siqi Long
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Eddie C. Tian
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Bridget McLaughlin
- University of California Davis, Flow cytometry Shared Resource, Davis, CA, United States
| | | | - Dennis J. Montoya
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, United States
| | - Varun R. Viswanath
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, United States
| | - Qianjun Zhang
- Beckman Coulter Life Sciences, San Jose, CA, United States
| | - Jonathan E. Van Dyke
- University of California Davis, Flow cytometry Shared Resource, Davis, CA, United States
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
- Medical Service, Hematology and Oncology, Veterans Affairs Northern California Health Care System, Mather, CA, United States
| |
Collapse
|
46
|
Shegekar T, Vodithala S, Juganavar A. The Emerging Role of Liquid Biopsies in Revolutionising Cancer Diagnosis and Therapy. Cureus 2023; 15:e43650. [PMID: 37719630 PMCID: PMC10505053 DOI: 10.7759/cureus.43650] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
A potential non-invasive technique for identifying and tracking cancer is a liquid biopsy. This review article provides a comprehensive overview of the principles, applications, and challenges associated with liquid biopsies. The circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), exosomes, and microRNAs are just a few of the biomarkers we cover in this article that are discovered in liquid biopsies. The clinical application of liquid biopsies in many stages of cancer management, including early cancer identification, therapy selection and response monitoring, and minimum residual illness, is also investigated. The technical advancements in liquid biopsy techniques, including digital polymerase chain reaction (dPCR) and next-generation sequencing (NGS), have improved the sensitivity and specificity of biomarker identification. Liquid biopsies require assistance with cost-effectiveness, sensitivity, and standardisation despite the potential benefits. We talk about these restrictions and potential solutions. In conclusion, liquid biopsies revolutionise personalised therapies and cancer diagnostics by providing a real-time, non-invasive tool for characterising and monitoring tumours. It will be possible to expand the use of liquid biopsies in clinical practises by having a better understanding of their current state and predicted future developments.
Collapse
Affiliation(s)
- Tejas Shegekar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sahitya Vodithala
- Department of Pathology and Laboratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anup Juganavar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
47
|
Maity AP, Gangireddy M, Degen KC, Al-Saleem FH, Bramson J, Ciocca V, Dessain SK, Evans TL. Impact of Simultaneous Circulating Tumor DNA and Tissue Genotyping in the Workup of Stage IV Lung Adenocarcinoma on Quality of Care in an Academic Community Medical Center. JCO Oncol Pract 2023; 19:620-625. [PMID: 37319386 DOI: 10.1200/op.22.00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE In patients with metastatic lung adenocarcinoma, evidence-based first-line treatment decisions require analysis of tumors for genomic alterations (GAs). Optimizing the genotyping paradigm may improve the delivery of precision oncology care. Actionable GAs can be identified by analyzing tumor tissue or circulating tumor DNA using liquid biopsy. Consensus guidelines for when to use liquid biopsy have not been established. We evaluated the routine use of liquid biopsy performed simultaneously with tissue testing in patients with newly diagnosed, stage IV lung adenocarcinoma. METHODS We performed a retrospective study comparing patients who underwent tissue genotyping alone (standard biopsy group) with patients who had simultaneous liquid and tissue genotyping (combined biopsy group). We examined the time to reach a final diagnosis, the need for repeat biopsies, and diagnostic accuracy. RESULTS Forty two patients in the combined biopsy group and 78 in the standard biopsy group met the inclusion criteria. The standard group had a mean time to diagnosis of 33.5 days, compared with 20.6 days in the combined group (P < .001 by two-tailed t-test). In the combined group, 14 patients did not have sufficient tissue for molecular analysis (30%); however, in 11 (79%) of these patients, liquid biopsy identified a GA that eliminated the need for a second tissue biopsy. In patients who completed both tests, each test found actionable GAs missed by the other. CONCLUSION Performing liquid biopsy simultaneously with tissue genotyping is feasible in an academic community medical center. Potential advantages of simultaneous liquid and tissue biopsies include shorter time to obtain a definitive molecular diagnosis, reduced need for a repeat biopsy, and improved detection of actionable mutations, although a sequential strategy that saves costs by beginning with a liquid biopsy may be ideal.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Scott K Dessain
- Lankenau Medical Center, Wynnewood, PA
- Lankenau Institute for Medical Research, Wynnewood, PA
| | - Tracey L Evans
- Lankenau Institute for Medical Research, Wynnewood, PA
- Paoli Hematology Oncology Association, Paoli, PA
| |
Collapse
|
48
|
Yang M, Vioix H, Hook ES, Hatswell AJ, Batteson RL, Gaumond BR, O'Brate A, Popat S, Paik PK. Health Utility Analysis of Tepotinib in Patients With Non-Small Cell Lung Cancer Harboring MET Exon 14 Skipping. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2023; 26:1155-1163. [PMID: 36805576 PMCID: PMC11145519 DOI: 10.1016/j.jval.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES The VISION trial showed durable activity of tepotinib in MET exon 14 (METex14) skipping non-small cell lung cancer. We analyzed health state utilities using patient-reported outcomes from VISION. METHODS 5-level version of EQ-5D (EQ-5D-5L) and European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 responses were collected at baseline, every 6 to 12 weeks during treatment, and at the end of treatment and safety follow-up. EQ-5D-5L and European Organisation for Research and Treatment of Cancer Quality of Life Utility Measure-Core 10 Dimensions (QLU-C10D) utilities were derived using United States, Canada, United Kingdom, and Taiwan value sets, where available. Utilities were analyzed with linear mixed models including covariates for progression or time-to-death (TTD). RESULTS Utilities were derived for 273/291 patients (EQ-5D-5L, 1545 observations; QLU-C10D, 1546 observations). Mean (± SD) US EQ-5D-5L utilities increased after tepotinib initiation, from 0.687 ± 0.287 at baseline to 0.754 ± 0.250 before independently assessed progression, and decreased post progression (0.704 ± 0.288). US QLU-C10D utilities showed similar trends (0.705 ± 0.215, 0.753 ± 0.195, and 0.708 ± 0.209, respectively). Progression-based models demonstrated a statistically significant impact of progression on utilities and predicted higher utilities pre versus post progression. TTD-based models showed statistically significant associations of TTD with utilities and predicted declining utilities as TTD decreased. Prior treatment (yes/no) did not significantly predict utilities in progression- or TTD-based models. Utilities for Canada, United Kingdom, and Taiwan showed comparable trends. CONCLUSIONS In this first analysis of health state utilities in patients with METex14 skipping non-small cell lung cancer, who received tepotinib, utilities were significantly associated with progression and TTD, but not prior treatment.
Collapse
Affiliation(s)
- Mo Yang
- EMD Serono, Rockland, MA, USA.
| | - Helene Vioix
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | | | | | - Aurora O'Brate
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Paul K Paik
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
49
|
Wang H, Zhu H, Ding L, Yang K. A diagnostic classification of lung nodules using multiple-scale residual network. Sci Rep 2023; 13:11322. [PMID: 37443333 PMCID: PMC10345110 DOI: 10.1038/s41598-023-38350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Computed tomography (CT) scans have been shown to be an effective way of improving diagnostic efficacy and reducing lung cancer mortality. However, distinguishing benign from malignant nodules in CT imaging remains challenging. This study aims to develop a multiple-scale residual network (MResNet) to automatically and precisely extract the general feature of lung nodules, and classify lung nodules based on deep learning. The MResNet aggregates the advantages of residual units and pyramid pooling module (PPM) to learn key features and extract the general feature for lung nodule classification. Specially, the MResNet uses the ResNet as a backbone network to learn contextual information and discriminate feature representation. Meanwhile, the PPM is used to fuse features under four different scales, including the coarse scale and the fine-grained scale to obtain more general lung features of the CT image. MResNet had an accuracy of 99.12%, a sensitivity of 98.64%, a specificity of 97.87%, a positive predictive value (PPV) of 99.92%, and a negative predictive value (NPV) of 97.87% in the training set. Additionally, its area under the receiver operating characteristic curve (AUC) was 0.9998 (0.99976-0.99991). MResNet's accuracy, sensitivity, specificity, PPV, NPV, and AUC in the testing set were 85.23%, 92.79%, 72.89%, 84.56%, 86.34%, and 0.9275 (0.91662-0.93833), respectively. The developed MResNet performed exceptionally well in estimating the malignancy risk of pulmonary nodules found on CT. The model has the potential to provide reliable and reproducible malignancy risk scores for clinicians and radiologists, thereby optimizing lung cancer screening management.
Collapse
Affiliation(s)
- Hongfeng Wang
- School of Network Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Hai Zhu
- School of Network Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaili Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
50
|
Roldan Ruiz J, Fuentes Gago MG, Chinchilla Tabora LM, Gonzalez Morais I, Sayagués JM, Abad Hernández M, Cordovilla Pérez MR, Ludeña de la Cruz MD, del Barco Morillo E, Rodriguez Gonzalez M. The Impact of Liquid Biopsies Positive for EGFR Mutations on Overall Survival in Non-Small Cell Lung Cancer Patients. Diagnostics (Basel) 2023; 13:2347. [PMID: 37510091 PMCID: PMC10377956 DOI: 10.3390/diagnostics13142347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, non-small cell lung cancer treatment has been revolutionized. EGFR tyrosine kinase inhibitors and our improved understanding of its alterations have driven new diagnostic strategies. Liquid biopsies have emerged as a useful tool in these contexts, showing potential utility in early diagnosis combined with low-dose CT scans, as well as potential in monitoring treatment response and predicting the development of patients. We studied the circulating tumor DNA (ctDNA) of 38 EGFR-mutated non-small cell lung cancer patients at diagnosis in different moments of their disease by liquid biopsy techniques. Our results show that mean overall survival was significantly lower when a liquid biopsy was positive for the detection of EGFR mutations compared with wild-type patients in their liquid biopsy in both univariate (29 ± 4 vs. 104 ± 19 months; p = 0.004) and multivariate analysis (p = 0.008). Taking this into consideration, liquid biopsies could be key to improving the control of this disease.
Collapse
Affiliation(s)
- Jonnathan Roldan Ruiz
- Department of Clinical Oncology, Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (J.R.R.); (E.d.B.M.)
| | | | - Luis Miguel Chinchilla Tabora
- Department of Pathology, Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (L.M.C.T.); (I.G.M.); (J.M.S.); (M.A.H.); (M.D.L.d.l.C.)
| | - Idalia Gonzalez Morais
- Department of Pathology, Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (L.M.C.T.); (I.G.M.); (J.M.S.); (M.A.H.); (M.D.L.d.l.C.)
| | - José María Sayagués
- Department of Pathology, Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (L.M.C.T.); (I.G.M.); (J.M.S.); (M.A.H.); (M.D.L.d.l.C.)
| | - Mar Abad Hernández
- Department of Pathology, Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (L.M.C.T.); (I.G.M.); (J.M.S.); (M.A.H.); (M.D.L.d.l.C.)
| | | | - Maria Dolores Ludeña de la Cruz
- Department of Pathology, Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (L.M.C.T.); (I.G.M.); (J.M.S.); (M.A.H.); (M.D.L.d.l.C.)
| | - Edel del Barco Morillo
- Department of Clinical Oncology, Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (J.R.R.); (E.d.B.M.)
| | - Marta Rodriguez Gonzalez
- Department of Pathology, Biomedical Research Institute of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (L.M.C.T.); (I.G.M.); (J.M.S.); (M.A.H.); (M.D.L.d.l.C.)
| |
Collapse
|