1
|
Anastasiou P, Moore C, Rana S, Tomaschko M, Pillsbury CE, de Castro A, Boumelha J, Mugarza E, de Carné Trécesson S, Mikolajczak A, Blaj C, Goldstone R, Smith JAM, Quintana E, Molina-Arcas M, Downward J. Combining RAS(ON) G12C-selective inhibitor with SHP2 inhibition sensitises lung tumours to immune checkpoint blockade. Nat Commun 2024; 15:8146. [PMID: 39322643 PMCID: PMC11424635 DOI: 10.1038/s41467-024-52324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Mutant selective drugs targeting the inactive, GDP-bound form of KRASG12C have been approved for use in lung cancer, but resistance develops rapidly. Here we use an inhibitor, (RMC-4998) that targets RASG12C in its active, GTP-bound form, to treat KRAS mutant lung cancer in various immune competent mouse models. RAS pathway reactivation after RMC-4998 treatment could be delayed using combined treatment with a SHP2 inhibitor, which not only impacts tumour cell RAS signalling but also remodels the tumour microenvironment to be less immunosuppressive. In an immune inflamed model, RAS and SHP2 inhibitors in combination drive durable responses by suppressing tumour relapse and inducing development of immune memory. In an immune excluded model, combined RAS and SHP2 inhibition sensitises tumours to immune checkpoint blockade, leading to efficient tumour immune rejection. These preclinical results demonstrate the potential of the combination of RAS(ON) G12C-selective inhibitors with SHP2 inhibitors to sensitize tumours to immune checkpoint blockade.
Collapse
Affiliation(s)
| | | | - Sareena Rana
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Mona Tomaschko
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Andrea de Castro
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Edurne Mugarza
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Ania Mikolajczak
- Experimental Histopathology, Francis Crick Institute, London, UK
| | | | - Robert Goldstone
- Bioinformatics & Biostatistics Science Technology Platform, Francis Crick Institute, London, UK
| | | | | | | | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Chour A, Toffart AC, Berton E, Duruisseaux M. Mechanisms of resistance to KRASG12C inhibitors in KRASG12C-mutated non-small cell lung cancer. Front Oncol 2024; 14:1328728. [PMID: 39301544 PMCID: PMC11410594 DOI: 10.3389/fonc.2024.1328728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/25/2024] [Indexed: 09/22/2024] Open
Abstract
The KRAS protein, a product of the KRAS gene (V-ki-ras2 Kirsten rat sarcoma viral oncogene homolog), functions as a small GTPase that alternates between an active GTP-bound state (KRAS(ON)) and an inactive GDP-bound state (KRAS(OFF)). The KRASG12C mutation results in the accumulation of KRASG12C(OFF), promoting cell cycle survival and proliferation primarily through the canonical MAPK and PI3K pathways. The KRASG12C mutation is found in 13% of lung adenocarcinomas. Previously considered undruggable, sotorasib and adagrasib are the first available OFF-state KRASG12C inhibitors, but treatment resistance is frequent. In this review, after briefly summarizing the KRAS pathway and the mechanism of action of OFF-state KRASG12C inhibitors, we discuss primary and acquired resistance mechanisms. Acquired resistance is the most frequent, with "on-target" mechanisms such as a new KRAS mutation preventing inhibitor binding; and "off-target" mechanisms leading to bypass of KRAS through gain-of-function mutations in other oncogenes such as NRAS, BRAF, and RET; or loss-of-function mutations in tumor suppressor genes such as PTEN. Other "off-target" mechanisms described include epithelial-to-mesenchymal transition and histological transformation. Multiple co-existing mechanisms can be found in patients, but few cases have been published. We highlight the lack of data on non-genomic resistance and the need for comprehensive clinical studies exploring histological, genomic, and non-genomic changes at resistance. This knowledge could help foster new treatment initiatives in this challenging context.
Collapse
Affiliation(s)
- Ali Chour
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
- Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Lyon, France
- Université Claude Bernard, Université de Lyon, Lyon, France
| | - Anne-Claire Toffart
- Service de Pneumologie et Physiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, Grenoble, France
| | - Elodie Berton
- Service de Pneumologie et Physiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Michael Duruisseaux
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
- Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Lyon, France
- Université Claude Bernard, Université de Lyon, Lyon, France
| |
Collapse
|
3
|
Reyes A, Muddasani R, Massarelli E. Overcoming Resistance to Checkpoint Inhibitors with Combination Strategies in the Treatment of Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:2919. [PMID: 39199689 PMCID: PMC11353073 DOI: 10.3390/cancers16162919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer continues to contribute to the highest percentage of cancer-related deaths worldwide. Advancements in the treatment of non-small cell lung cancer like immune checkpoint inhibitors have dramatically improved survival and long-term disease response, even in curative and perioperative settings. Unfortunately, resistance develops either as an initial response to treatment or more commonly as a progression after the initial response. Several modalities have been utilized to combat this. This review will focus on the various combination treatments with immune checkpoint inhibitors including the addition of chemotherapy, various immunotherapies, radiation, antibody-drug conjugates, bispecific antibodies, neoantigen vaccines, and tumor-infiltrating lymphocytes. We discuss the status of these agents when used in combination with immune checkpoint inhibitors with an emphasis on lung cancer. The early toxicity signals, tolerability, and feasibility of implementation are also reviewed. We conclude with a discussion of the next steps in treatment.
Collapse
Affiliation(s)
| | | | - Erminia Massarelli
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.); (R.M.)
| |
Collapse
|
4
|
Harris E, Thawani R. Current perspectives of KRAS in non-small cell lung cancer. Curr Probl Cancer 2024; 51:101106. [PMID: 38879917 DOI: 10.1016/j.currproblcancer.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
NSCLC has a diverse genomic background with mutations in key proto-oncogenic drivers including Kirsten rat sarcoma (KRAS) and epidermal growth factor receptor (EGFR). Roughly 40% of adenocarcinoma harbor Kras activating mutations regardless of smoking history. Most KRAS mutations are located at G12, which include G12C (roughly 40%), G12V (roughly 20%), and G12D (roughly 15%). KRAS mutated NSCLC have higher tumor mutational burden and some have increased PD-1 expression, which has resulted in better responses to immunotherapy than other oncogenes. While initial treatment for metastatic NSCLC still relies on chemo-immunotherapy, directly targeting KRAS has proven to be efficacious in treating patients with KRAS mutated metastatic NSCLC. To date, two G12C inhibitors have been FDA-approved, namely sotorasib and adagrasib. In this review, we summarize the different drug combinations used to target KRAS G12c, upcoming G12D inhibitors and novel therapies targeting KRAS.
Collapse
Affiliation(s)
- Ethan Harris
- Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637. USA
| | - Rajat Thawani
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637. USA.
| |
Collapse
|
5
|
Principe DR, Pasquinelli MM, Nguyen RH, Munshi HG, Hulbert A, Aissa AF, Weinberg F. Loss of STK11 Suppresses Lipid Metabolism and Attenuates KRAS-Induced Immunogenicity in Patients with Non-Small Cell Lung Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2282-2294. [PMID: 39113608 PMCID: PMC11362717 DOI: 10.1158/2767-9764.crc-24-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
As many as 30% of the patients with non-small cell lung cancer harbor oncogenic KRAS mutations, which leads to extensive remodeling of the tumor immune microenvironment. Although co-mutations in several genes have prognostic relevance in KRAS-mutated patients, their effect on tumor immunogenicity are poorly understood. In the present study, a total of 189 patients with non-small cell lung cancer underwent a standardized analysis including IHC, whole-exome DNA sequencing, and whole-transcriptome RNA sequencing. Patients with activating KRAS mutations demonstrated a significant increase in PDL1 expression and CD8+ T-cell infiltration. Both were increased in the presence of a co-occurring TP53 mutation and lost with STK11 co-mutation. Subsequent genomic analysis demonstrated that KRAS/TP53 co-mutated tumors had a significant decrease in the expression of glycolysis-associated genes and an increase in several genes involved in lipid metabolism, notably lipoprotein lipase, low-density lipoprotein receptor, and LDLRAD4. Conversely, in the immune-excluded KRAS/STK11 co-mutated group, we observed diminished lipid metabolism and no change in anaerobic glycolysis. Interestingly, in patients with low expression of lipoprotein lipase, low-density lipoprotein receptor, or LDLRAD4, KRAS mutations had no effect on tumor immunogenicity. However, in patients with robust expression of these genes, KRAS mutations were associated with increased immunogenicity and associated with improved overall survival. Our data further suggest that the loss of STK11 may function as a metabolic switch, suppressing lipid metabolism in favor of glycolysis, thereby negating KRAS-induced immunogenicity. Hence, this concept warrants continued exploration, both as a predictive biomarker and potential target for therapy in patients receiving ICI-based immunotherapy. SIGNIFICANCE In patients with lung cancer, we demonstrate that KRAS mutations increase tumor immunogenicity; however, KRAS/STK11 co-mutated patients display an immune-excluded phenotype. KRAS/STK11 co-mutated patients also demonstrated significant downregulation of several key lipid metabolism genes, many of which were associated with increased immunogenicity and improved overall survival in KRAS-mutated patients. Hence, alteration to lipid metabolism warrants further study as a potential biomarker and target for therapy in patients with KRAS-mutated lung cancer.
Collapse
Affiliation(s)
| | - Mary M. Pasquinelli
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois.
| | - Ryan H. Nguyen
- Division of Hematology and Oncology, University of Illinois Chicago and Translational Oncology Program, University of Illinois Cancer Center, Chicago, Illinois.
| | - Hidayatullah G. Munshi
- Division of Hematology and Oncology, University of Illinois Chicago and Translational Oncology Program, University of Illinois Cancer Center, Chicago, Illinois.
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
- Jesse Brown VA Medical Center, Chicago, Illinois.
| | - Alicia Hulbert
- Department of Surgery, University of Illinois Chicago, Chicago, Illinois.
| | - Alexandre F. Aissa
- Division of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil.
| | - Frank Weinberg
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois.
| |
Collapse
|
6
|
Boumelha J, de Castro A, Bah N, Cha H, de Carné Trécesson S, Rana S, Tomaschko M, Anastasiou P, Mugarza E, Moore C, Goldstone R, East P, Litchfield K, Lee SH, Molina-Arcas M, Downward J. CRISPR-Cas9 Screening Identifies KRAS-Induced COX2 as a Driver of Immunotherapy Resistance in Lung Cancer. Cancer Res 2024; 84:2231-2246. [PMID: 38635884 PMCID: PMC11247323 DOI: 10.1158/0008-5472.can-23-2627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Oncogenic KRAS impairs antitumor immune responses. As effective strategies to combine KRAS inhibitors and immunotherapies have so far proven elusive, a better understanding of the mechanisms by which oncogenic KRAS drives immune evasion is needed to identify approaches that could sensitize KRAS-mutant lung cancer to immunotherapy. In vivo CRISPR-Cas9 screening in an immunogenic murine lung cancer model identified mechanisms by which oncogenic KRAS promotes immune evasion, most notably via upregulation of immunosuppressive COX2 in cancer cells. Oncogenic KRAS potently induced COX2 in both mouse and human lung cancer, which was suppressed using KRAS inhibitors. COX2 acted via prostaglandin E2 (PGE2) to promote resistance to immune checkpoint blockade (ICB) in lung adenocarcinoma. Targeting COX2/PGE2 remodeled the tumor microenvironment by inducing proinflammatory polarization of myeloid cells and influx of activated cytotoxic CD8+ T cells, which increased the efficacy of ICB. Restoration of COX2 expression contributed to tumor relapse after prolonged KRAS inhibition. These results provide the rationale for testing COX2/PGE2 pathway inhibitors in combination with KRASG12C inhibition or ICB in patients with KRAS-mutant lung cancer. Significance: COX2 signaling via prostaglandin E2 is a major mediator of immune evasion driven by oncogenic KRAS that promotes immunotherapy and KRAS-targeted therapy resistance, suggesting effective combination treatments for KRAS-mutant lung cancer.
Collapse
Affiliation(s)
- Jesse Boumelha
- Oncogene Biology Laboratory, Francis Crick Institute, London, United Kingdom.
| | - Andrea de Castro
- Oncogene Biology Laboratory, Francis Crick Institute, London, United Kingdom.
| | - Nourdine Bah
- Bioinformatics and Biostatistics, Francis Crick Institute, London, United Kingdom.
| | - Hongui Cha
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom.
| | | | - Sareena Rana
- Oncogene Biology Laboratory, Francis Crick Institute, London, United Kingdom.
| | - Mona Tomaschko
- Oncogene Biology Laboratory, Francis Crick Institute, London, United Kingdom.
| | | | - Edurne Mugarza
- Oncogene Biology Laboratory, Francis Crick Institute, London, United Kingdom.
| | - Christopher Moore
- Oncogene Biology Laboratory, Francis Crick Institute, London, United Kingdom.
| | - Robert Goldstone
- Bioinformatics and Biostatistics, Francis Crick Institute, London, United Kingdom.
| | - Phil East
- Bioinformatics and Biostatistics, Francis Crick Institute, London, United Kingdom.
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom.
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Miriam Molina-Arcas
- Oncogene Biology Laboratory, Francis Crick Institute, London, United Kingdom.
| | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
7
|
Oya Y, Imaizumi K, Mitsudomi T. The next-generation KRAS inhibitors…What comes after sotorasib and adagrasib? Lung Cancer 2024; 194:107886. [PMID: 39047616 DOI: 10.1016/j.lungcan.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the first driver oncogenes identified in human cancer in the early 1980s. However, it has been deemed 'undruggable' for nearly four decades until the discovery of KRAS G12C covalent inhibitors, which marked a pivotal breakthrough. Currently, sotorasib and adagrasib have been approved by the US FDA to treat patients with non-small cell lung cancer (NSCLC) harboring KRAS G12C mutation. However, their efficacy is somewhat limited compared to that of other targeted therapies owing to intrinsic resistance or early acquisition of resistance. While G12C is the predominant subtype of KRAS mutations in NSCLC, G12D/V is prevalent in colorectal and pancreatic cancers. These facts have spurred active research to develop more potent KRAS G12C inhibitors as well as inhibitors targeting non-G12C KRAS mutations. Novel approaches, such as molecular shielding or targeted protein degradation, are also under development. Combining KRAS inhibitors with inhibitors of the receptor-tyrosine kinase-RAS-mitogen-activated protein kinase (MAPK) pathway is underway to counteract redundant feedback mechanisms. Additionally, immunological approaches utilizing T-cell receptor (TCR)-engineered T cell therapy or vaccines, and Hapimmune antibodies are ongoing. This review delineates the recent advancements in KRAS inhibitor development in the post-sotorasib/adagrasib era, with a focus on NSCLC.
Collapse
Affiliation(s)
- Yuko Oya
- Department of Respiratory Medicine, Fujita Health University, Japan
| | | | - Tetsuya Mitsudomi
- Department of Thoracic Surgery, Izumi City General Hospital, Japan; Kindai University, Faculty of Medicine, Japan.
| |
Collapse
|
8
|
Mausey N, Halford Z. Targeted Therapies for Previously "Undruggable" KRAS-Mutated Non-Small Cell Lung Cancer: A Review of Sotorasib and Adagrasib. Ann Pharmacother 2024; 58:622-635. [PMID: 37700573 DOI: 10.1177/10600280231197459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE To evaluate the safety and efficacy of the novel KRAS-targeting agents, sotorasib and adagrasib, in treating KRAS G12C-mutated non-small cell lung cancer (NSCLC). DATA SOURCES A comprehensive English-based literature search of PubMed and Clinicaltrials.gov between January 2000 and July 2023 was conducted using the terms sotorasib, Lumakras, AMG 510, adagrasib, Krazati, and MRTX849. STUDY SELECTION AND DATA EXTRACTION Relevant prescribing information, clinical trials, and treatment guidelines were evaluated. DATA SYNTHESIS Sotorasib and adagrasib received accelerated US Food and Drug Administration (FDA) approval following pivotal phase I/II clinical trials. Sotorasib, a first-in-class KRAS inhibitor, demonstrated an overall response rate (ORR) of 41% and a progression-free survival (PFS) of 6.3 months. In a phase III confirmatory trial, sotorasib showed significantly longer PFS compared with docetaxel (5.6 vs. 4.5 months; P = 0.0017). Adagrasib produced an ORR of 42.9% and a PFS of 6.5 months. Both drugs present unique safety profiles, with common toxicities, including diarrhea, musculoskeletal pain, fatigue, and hepatotoxicity. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE With KRAS mutations being among the most common oncogenic alterations in NSCLC, sotorasib and adagrasib offer new therapeutic avenues for this previously "undruggable" target. Current treatment guidelines list sotorasib and adagrasib as second-line options in patients with confirmed KRAS G12C-mutated NSCLC. Additional studies are required to further differentiate the safety and efficacy profiles of these 2 agents and identify their optimal place in therapy. CONCLUSION Sotorasib and adagrasib demonstrated promising outcomes in targeting the constitutively active KRAS G12C oncogenic driver, underscoring the need for further research to optimize their therapeutic application in this high-risk population.
Collapse
|
9
|
Xu J, Tian L, Qi W, Lv Q, Wang T. Advancements in NSCLC: From Pathophysiological Insights to Targeted Treatments. Am J Clin Oncol 2024; 47:291-303. [PMID: 38375734 PMCID: PMC11107893 DOI: 10.1097/coc.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
With the global incidence of non-small cell lung cancer (NSCLC) on the rise, the development of innovative treatment strategies is increasingly vital. This review underscores the pivotal role of precision medicine in transforming NSCLC management, particularly through the integration of genomic and epigenomic insights to enhance treatment outcomes for patients. We focus on the identification of key gene mutations and examine the evolution and impact of targeted therapies. These therapies have shown encouraging results in improving survival rates and quality of life. Despite numerous gene mutations being identified in association with NSCLC, targeted treatments are available for only a select few. This paper offers an exhaustive analysis of the pathogenesis of NSCLC and reviews the latest advancements in targeted therapeutic approaches. It emphasizes the ongoing necessity for research and development in this domain. In addition, we discuss the current challenges faced in the clinical application of these therapies and the potential directions for future research, including the identification of novel targets and the development of new treatment modalities.
Collapse
Affiliation(s)
- Jianan Xu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine
| | - Lin Tian
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Wenlong Qi
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Qingguo Lv
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Tan Wang
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| |
Collapse
|
10
|
Miyashita H, Kato S, Hong DS. KRAS G12C inhibitor combination therapies: current evidence and challenge. Front Oncol 2024; 14:1380584. [PMID: 38756650 PMCID: PMC11097198 DOI: 10.3389/fonc.2024.1380584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Although KRAS G12C inhibitors have proven that KRAS is a "druggable" target of cancer, KRAS G12C inhibitor monotherapies have demonstrated limited clinical efficacy due to primary and acquired resistance mechanisms. Multiple combinations of KRAS G12C inhibitors with other targeted therapies, such as RTK, SHP2, and MEK inhibitors, have been investigated in clinical trials to overcome the resistance. They have demonstrated promising efficacy especially by combining KRAS G12C and EGFR inhibitors for KRAS G12C-mutated colorectal cancer. Many clinical trials of combinations of KRAS G12C inhibitors with other targeted therapies, such as SOS1, ERK, CDK4/6, and wild-type RAS, are ongoing. Furthermore, preclinical data have suggested additional promising KRAS G12C combinations with YAP/TAZ-TEAD inhibitors, FAK inhibitors, and farnesyltransferase inhibitors. The combinations of KRAS G12C inhibitors with immunotherapies and chemotherapies have also been investigated, and the preliminary results were reported. More recently, KRAS-targeted therapies not limited to KRAS G12C are being developed, potentially broadening the treatment landscape of KRAS-mutated cancers. Rationally combining KRAS inhibitors with other therapeutics is likely to play a significant role in future treatment for KRAS-mutated solid tumors.
Collapse
Affiliation(s)
- Hirotaka Miyashita
- Hematology and Oncology, Dartmouth Cancer Center, Lebanon, NH, United States
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, United States
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Torres-Jiménez J, Espinar JB, de Cabo HB, Berjaga MZ, Esteban-Villarrubia J, Fraile JZ, Paz-Ares L. Targeting KRAS G12C in Non-Small-Cell Lung Cancer: Current Standards and Developments. Drugs 2024; 84:527-548. [PMID: 38625662 DOI: 10.1007/s40265-024-02030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Among the most common molecular alterations detected in non-small-cell lung cancer (NSCLC) are mutations in Kristen Rat Sarcoma viral oncogene homolog (KRAS). KRAS mutant NSCLC is a heterogenous group of diseases, different from other oncogene-driven tumors in terms of biology and response to therapies. Despite efforts to develop drugs aimed at inhibiting KRAS or its signaling pathways, KRAS had remained undruggable for decades. The discovery of a small pocket in the binding switch II region of KRASG12C has revolutionized the treatment of KRASG12C-mutated NSCLC patients. Sotorasib and adagrasib, direct KRASG12C inhibitors, have been approved by the US Food and Drug Administration (FDA) and other regulatory agencies for patients with previously treated KRASG12C-mutated NSCLC, and these advances have become practice changing. However, first-line treatment in KRASG12C-mutated NSCLC does not differ from NSCLC without actionable driver genomic alterations. Treatment with KRASG12C inhibitors is not curative and patients develop progressive disease, so understanding associated mechanisms of drug resistance is key. New KRASG12C inhibitors and several combination therapy strategies, including with immune checkpoint inhibitors, are being studied in clinical trials. The aim of this review is to explore the clinical impact of KRAS, and outline different treatment approaches, focusing on the novel treatment of KRASG12C-mutated NSCLC.
Collapse
Affiliation(s)
- Javier Torres-Jiménez
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain.
| | - Javier Baena Espinar
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Helena Bote de Cabo
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - María Zurera Berjaga
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Jorge Esteban-Villarrubia
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Jon Zugazagoitia Fraile
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO (Centro Nacional de Investigaciones Oncológicas) and Instituto de Investigación i+12, Madrid, Spain
| | - Luis Paz-Ares
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO (Centro Nacional de Investigaciones Oncológicas) and Instituto de Investigación i+12, Madrid, Spain
| |
Collapse
|
12
|
Karachaliou A, Kotteas E, Fiste O, Syrigos K. Emerging Therapies in Kirsten Rat Sarcoma Virus (+) Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:1447. [PMID: 38672529 PMCID: PMC11048139 DOI: 10.3390/cancers16081447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Kirsten rat sarcoma virus (KRAS) is the most frequently found oncogene in human cancers, including non-small-cell lung cancer (NSCLC). For many years, KRAS was considered "undruggable" due to its structure and difficult targeting. However, the discovery of the switch II region in the KRAS-G12C-mutated protein has changed the therapeutic landscape with the design and development of novel direct KRAS-G12C inhibitors. Sotorasib and adagrasib are FDA-approved targeted agents for pre-treated patients with KRAS-G12C-mutated NSCLC. Despite promising results, the efficacy of these novel inhibitors is limited by mechanisms of resistance. Ongoing studies are evaluating combination strategies for overcoming resistance. In this review, we summarize the biology of the KRAS protein and the characteristics of KRAS mutations. We then present current and emerging therapeutic approaches for targeting KRAS mutation subtypes intending to provide individualized treatment for lung cancer harboring this challenging driver mutation.
Collapse
Affiliation(s)
- Anastasia Karachaliou
- Oncology Unit, Third Department of Internal Medicine and Laboratory, Medical School, National and Kapodistrian University of Athens, “Sotiria” General Hospital, 11527 Athens, Greece; (E.K.); (O.F.); (K.S.)
| | | | | | | |
Collapse
|
13
|
Chung C, Umoru G. Prognostic and predictive biomarkers with therapeutic targets in nonsmall-cell lung cancer: A 2023 update on current development, evidence, and recommendation. J Oncol Pharm Pract 2024:10781552241242684. [PMID: 38576390 DOI: 10.1177/10781552241242684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND Since the publication of the original work in 2014, significant progress has been made in the characterization of genomic alterations that drive oncogenic addiction of nonsmall cell lung cancer (NSCLC) and how the immune system can leverage non-oncogenic pathways to modulate therapeutic outcomes. This update evaluates and validates the recent and emerging data for prognostic and predictive biomarkers with therapeutic targets in NSCLC. DATA SOURCES We performed a literature search from January 2015 to October 2023 using the keywords non-small cell lung cancer, clinical practice guidelines, gene mutations, genomic assay, immune cancer therapy, circulating tumor DNA, predictive and prognostic biomarkers, and targeted therapies. STUDY SELECTION AND DATA EXTRACTION We identified, reviewed, and evaluated relevant clinical trials, meta-analyses, seminal articles, and published clinical practice guidelines in the English language. DATA SYNTHESIS Regulatory-approved targeted therapies include those somatic gene alterations of EGFR ("classic" mutations, exon 20 insertion, and rare EGFR mutations), ALK, ROS1, BRAF V600, RET, MET, NTRK, HER2, and KRAS G12C. Data for immunotherapy and circulating tumor DNA in next-generation sequencing are considered emerging, whereas the predictive role for PIK3CA gene mutation is insufficient. CONCLUSIONS Advances in sequencing and other genomic technologies have led to identifying novel oncogenic drivers, novel resistance mechanisms, and co-occurring mutations that characterize NSCLC, creating further therapeutic opportunities. The benefits associated with immunotherapy in the perioperative setting hold initial promise, with their long-term results awaiting.
Collapse
Affiliation(s)
- Clement Chung
- Department of Pharmacy, Houston Methodist West Hospital, Houston, TX, USA
| | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
14
|
Singhal A, Li BT, O'Reilly EM. Targeting KRAS in cancer. Nat Med 2024; 30:969-983. [PMID: 38637634 DOI: 10.1038/s41591-024-02903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
RAS family variants-most of which involve KRAS-are the most commonly occurring hotspot mutations in human cancers and are associated with a poor prognosis. For almost four decades, KRAS has been considered undruggable, in part due to its structure, which lacks small-molecule binding sites. But recent developments in bioengineering, organic chemistry and related fields have provided the infrastructure to make direct KRAS targeting possible. The first successes occurred with allele-specific targeting of KRAS p.Gly12Cys (G12C) in non-small cell lung cancer, resulting in regulatory approval of two agents-sotorasib and adagrasib. Inhibitors targeting other variants beyond G12C have shown preliminary antitumor activity in highly refractory malignancies such as pancreatic cancer. Herein, we outline RAS pathobiology with a focus on KRAS, illustrate therapeutic approaches across a variety of malignancies, including emphasis on the 'on' and 'off' switch allele-specific and 'pan' RAS inhibitors, and review immunotherapeutic and other key combination RAS targeting strategies. We summarize mechanistic understanding of de novo and acquired resistance, review combination approaches, emerging technologies and drug development paradigms and outline a blueprint for the future of KRAS therapeutics with anticipated profound clinical impact.
Collapse
Affiliation(s)
- Anupriya Singhal
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Starzer AM, Wolff L, Popov P, Kiesewetter B, Preusser M, Berghoff AS. The more the merrier? Evidence and efficacy of immune checkpoint- and tyrosine kinase inhibitor combinations in advanced solid cancers. Cancer Treat Rev 2024; 125:102718. [PMID: 38521009 DOI: 10.1016/j.ctrv.2024.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Immune checkpoint inhibitors (ICI) and tyrosine kinase inhibitors (TKI) have gained therapeutical significance in cancer therapy over the last years. Due to the high efficacy of each substance group, additive or complementary effects are considered, and combinations are the subject of multiple prospective trials in different tumor entities. The majority of available data results from clinical phase I and II trials. Although regarded as well-tolerated therapies ICI-TKI combinations have higher toxicities compared to monotherapies of one of the substance classes and some combinations were shown to be excessively toxic leading to discontinuation of trials. So far, ICI-TKI combinations with nivolumab + cabozantinib, pembrolizumab + axitinib, avelumab + axitinib, pembrolizumab + lenvatinib have been approved in advanced renal cell (RCC), with pembrolizumab + lenvatinib in endometrial carcinoma and with camrelizumab + rivoceranib in hepatocellular carcinoma (HCC). Several ICI-TKI combinations are currently investigated in phase I to III trials in various other cancer entities. Further, the optimal sequence of ICI-TKI combinations is an important subject of investigation, as cross-resistances between the substance classes were observed. This review reports on clinical trials with ICI-TKI combinations in different cancer entities, their efficacy and toxicity.
Collapse
Affiliation(s)
- Angelika M Starzer
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ladislaia Wolff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Petar Popov
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Luo J, Florez N, Donnelly A, Lou Y, Lu K, Ma PC, Spira AI, Ryan D, Husain H. Adagrasib Treatment After Sotorasib-Related Hepatotoxicity in Patients With KRASG12C-Mutated Non-Small Cell Lung Cancer: A Case Series and Literature Review. JCO Precis Oncol 2024; 8:e2300644. [PMID: 38579193 PMCID: PMC11018165 DOI: 10.1200/po.23.00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 04/07/2024] Open
Abstract
PURPOSE KRAS is the most commonly mutated driver oncogene in non-small cell lung cancer (NSCLC). Sotorasib and adagrasib, KRASG12C inhibitors, have been granted accelerated US approval; however, hepatotoxicity is a common side effect with higher rates in patients treated with sotorasib proximal to checkpoint inhibitor (CPI) therapy. The aim of this study was to assess the feasibility and safety of adagrasib after discontinuation of sotorasib because of treatment-related grade 3 hepatotoxicity through real-world and clinical cases. METHODS Medical records from five patients treated in real-world settings were retrospectively reviewed. Patients had locally advanced or metastatic KRASG12C-mutated NSCLC and received adagrasib after sotorasib in the absence of extracranial disease progression. Additional data were collected for 12 patients with KRASG12C-mutated NSCLC enrolled in a phase Ib cohort of the KRYSTAL-1 study and previously treated with sotorasib. The end points associated with both drugs included timing and severity of hepatotoxicity, best overall response, and duration of therapy. RESULTS All patients were treated with CPIs followed by sotorasib (initiated 0-64 days after CPI). All five real-world patients experienced hepatotoxicity with sotorasib that led to treatment discontinuation, whereas none experienced treatment-related hepatotoxicity with subsequent adagrasib treatment. Three patients from KRYSTAL-1 transitioned from sotorasib to adagrasib because of hepatotoxicity; one experienced grade 3 ALT elevation on adagrasib that resolved with therapy interruption and dose reduction. CONCLUSION Adagrasib may have a distinct hepatotoxicity profile from sotorasib and is more easily combined with CPIs either sequentially or concurrently. These differences may be used to inform clinical decisions regarding an initial KRASG12C inhibitor for patients who recently discontinued a CPI or experience hepatotoxicity on sotorasib.
Collapse
Affiliation(s)
- Jia Luo
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Narjust Florez
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Anjali Donnelly
- University of Michigan, Ann Arbor, MI
- Virginia Cancer Specialists, Fairfax, VA
| | | | - Kevin Lu
- Moores Cancer Center at UC San Diego Health, La Jolla, CA
| | | | - Alexander I. Spira
- Virginia Cancer Specialists, Fairfax, VA
- NEXT Oncology, Fairfax, VA
- US Oncology Research, The Woodlands, TX
| | | | - Hatim Husain
- Moores Cancer Center at UC San Diego Health, La Jolla, CA
| |
Collapse
|
17
|
Linehan A, O’Reilly M, McDermott R, O’Kane GM. Targeting KRAS mutations in pancreatic cancer: opportunities for future strategies. Front Med (Lausanne) 2024; 11:1369136. [PMID: 38576709 PMCID: PMC10991798 DOI: 10.3389/fmed.2024.1369136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Targeting the RAS pathway remains the holy grail of precision oncology. In the case of pancreatic ductal adenocarcinomas (PDAC), 90-92% harbor mutations in the oncogene KRAS, triggering canonical MAPK signaling. The smooth structure of the altered KRAS protein without a binding pocket and its affinity for GTP have, in the past, hampered drug development. The emergence of KRASG12C covalent inhibitors has provided renewed enthusiasm for targeting KRAS. The numerous pathways implicated in RAS activation do, however, lead to the development of early resistance. In addition, the dense stromal niche and immunosuppressive microenvironment dictated by oncogenic KRAS can influence treatment responses, highlighting the need for a combination-based approach. Given that mutations in KRAS occur early in PDAC tumorigenesis, an understanding of its pleiotropic effects is key to progress in this disease. Herein, we review current perspectives on targeting KRAS with a focus on PDAC.
Collapse
Affiliation(s)
- Anna Linehan
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Mary O’Reilly
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Ray McDermott
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Grainne M. O’Kane
- Department of Medical Oncology, St James’s Hospital, Dublin, Ireland
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
18
|
Molina-Arcas M, Downward J. Exploiting the therapeutic implications of KRAS inhibition on tumor immunity. Cancer Cell 2024; 42:338-357. [PMID: 38471457 DOI: 10.1016/j.ccell.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Over the past decade, RAS oncogenic proteins have transitioned from being deemed undruggable to having two clinically approved drugs, with several more in advanced stages of development. Despite the initial benefit of KRAS-G12C inhibitors for patients with tumors harboring this mutation, the rapid emergence of drug resistance underscores the urgent need to synergize these inhibitors with other therapeutic approaches to improve outcomes. RAS mutant tumor cells can create an immunosuppressive tumor microenvironment (TME), suggesting an increased susceptibility to immunotherapies following RAS inhibition. This provides a rationale for combining RAS inhibitory drugs with immune checkpoint blockade (ICB). However, achieving this synergy in the clinical setting has proven challenging. Here, we explore how understanding the impact of RAS mutant tumor cells on the TME can guide innovative approaches to combining RAS inhibition with immunotherapies, review progress in both pre-clinical and clinical stages, and discuss challenges and future directions.
Collapse
Affiliation(s)
| | - Julian Downward
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
19
|
Chen QA, Lin WH, Zhou XX, Cao Z, Feng XL, Gao YB, He J. Outcomes following KRAS G12C inhibitor treatment in patients with KRAS G12C-mutated solid tumors: A systematic review and meta-analysis. Pharmacol Res 2024; 200:107060. [PMID: 38185210 DOI: 10.1016/j.phrs.2024.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To assess the efficacy and safety of FDA-approved KRASG12C inhibitors in patients with KRASG12C-mutated solid tumors. METHODS We searched PubMed, EMBASE, Cochrane Library, and major international conferences for clinical trials published in English up to March 6, 2023. Clinical trials investigating sotorasib or adagrasib and reporting the clinical outcomes of the objective response rate (ORR), disease control rate (DCR), or incidence rate of grade ≥ 3 adverse events (AEs) were eligible. The primary endpoint was the ORR. Secondary endpoints included the DCR, incidence rate of grade ≥ 3 AEs, and odds ratio (OR) of the ORR between patients with or without co-mutation. The Random-effects model was applied for the outcomes of interest. RESULTS 18 studies with 1224 patients were included in this meta-analysis. The pooled ORR, DCR, and incidence rate of grade ≥ 3 AEs were 31 % (95 % CI, 25-37 %), 86 % (95 % CI, 82-89 %), and 29 % (95 % CI, 23-36 %), respectively. KRASG12C-mutated NSCLC patients with a co-mutation of KEAP1 exhibited a worse ORR than those with wild-type KEAP1 (OR: 0.35, 95 % CI: 0.16-0.77). CONCLUSIONS This study provided a comprehensive understanding of the efficacy and safety of KRASG12C inhibitors in treating solid tumors and identified KEAP1 mutation as a potential predictive biomarker of inferior response in patients treated with KRASG12C inhibitors. These findings may assist in the design of future clinical trials for identifying populations that may benefit from KRASG12C inhibitor treatment.
Collapse
Affiliation(s)
- Qi-An Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hao Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Xiang Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Li Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Bo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Adamopoulos C, Cave DD, Papavassiliou AG. Inhibition of the RAF/MEK/ERK Signaling Cascade in Pancreatic Cancer: Recent Advances and Future Perspectives. Int J Mol Sci 2024; 25:1631. [PMID: 38338909 PMCID: PMC10855714 DOI: 10.3390/ijms25031631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatic cancer represents a formidable challenge in oncology, primarily due to its aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a 5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus (KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases, have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities. Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants has brought excitement for successful innovations in the battle against pancreatic cancer. Herein, we review the recent advances in targeted therapy and combinatorial strategies with focus on the current preclinical and clinical approaches, providing critical insight, underscoring the potential of these efforts and supporting their promise to improve the lives of patients with PDAC.
Collapse
Affiliation(s)
- Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donatella Delle Cave
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’, CNR, 80131 Naples, Italy
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
21
|
McMahon DJ, McLaughlin R, Naidoo J. Is Immunotherapy Beneficial in Patients with Oncogene-Addicted Non-Small Cell Lung Cancers? A Narrative Review. Cancers (Basel) 2024; 16:527. [PMID: 38339280 PMCID: PMC10854575 DOI: 10.3390/cancers16030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 20 years, there has been a paradigm shift in the care of patients with non-small cell lung cancer (NSCLC), who now have a range of systemic treatment options including targeted therapy, chemotherapy, immunotherapy (ICI), and antibody-drug conjugates (ADCs). A proportion of these cancers have single identifiable alterations in oncogenes that drive their proliferation and cancer progression, known as "oncogene-addiction". These "driver alterations" are identified in approximately two thirds of patients with lung adenocarcinomas, via next generation sequencing or other orthogonal tests. It was noted in the early clinical development of ICIs that patients with oncogene-addicted NSCLC may have differential responses to ICI. The toxicity signal for patients with oncogene-addicted NSCLC when treated with ICIs also seemed to differ depending on the alteration present and the specific targeted agent used. Developing a greater understanding of the underlying reasons for these clinical observations has become an important area of research in NSCLC. In this review, we analyze the efficacy and safety of ICI according to specific mutations, and consider possible future directions to mitigate safety concerns and improve the outcomes for patients with oncogene-addicted NSCLC.
Collapse
Affiliation(s)
- David John McMahon
- Trinity St James’s Cancer Institute, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
| | | | - Jarushka Naidoo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Beaumont RCSI Cancer Centre, D09 V2NO Dublin, Ireland
- RCSI University of Health Sciences, D02 YN77 Dublin, Ireland
- Beaumont Hospital, D09 Y177 Dublin, Ireland
| |
Collapse
|
22
|
Caughey BA, Strickler JH. Targeting KRAS-Mutated Gastrointestinal Malignancies with Small-Molecule Inhibitors: A New Generation of Breakthrough Therapies. Drugs 2024; 84:27-44. [PMID: 38109010 DOI: 10.1007/s40265-023-01980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Kirsten rat sarcoma virus (KRAS) is one of the most important and frequently mutated oncogenes in cancer and the mutational prevalence is especially high in many gastrointestinal malignancies, including colorectal cancer and pancreatic ductal adenocarcinoma. The KRAS protein is a small GTPase that functions as an "on/off" switch to activate downstream signaling, mainly through the mitogen-activated protein kinase pathway. KRAS was previously considered undruggable because of biochemical constraints; however, recent breakthroughs have enabled the development of small-molecule inhibitors of KRAS G12C. These drugs were initially approved in lung cancer and have now shown substantial clinical activity in KRAS G12C-mutated pancreatic ductal adenocarcinoma as well as colorectal cancer when combined with anti-EGFR monoclonal antibodies. Early data are encouraging for other gastrointestinal cancers as well and many other combination strategies are being investigated. Several new KRAS G12C inhibitors and novel inhibitors of other KRAS alterations have recently entered the clinic. These molecules employ a variety of innovative mechanisms and have generated intense interest. These novel drugs are especially important as KRAS G12C is rare in gastrointestinal malignancies compared with other KRAS alterations, representing potentially groundbreaking advances. Soon, the rapidly evolving landscape of novel KRAS inhibitors may substantially shift the therapeutic landscape for gastrointestinal cancers and offer meaningful survival improvements.
Collapse
Affiliation(s)
- Bennett A Caughey
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02114, USA.
| | - John H Strickler
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
23
|
Boumelha J, Molina-Arcas M, Downward J. Facts and Hopes on RAS Inhibitors and Cancer Immunotherapy. Clin Cancer Res 2023; 29:5012-5020. [PMID: 37581538 PMCID: PMC10722141 DOI: 10.1158/1078-0432.ccr-22-3655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Although the past decade has seen great strides in the development of immunotherapies that reactivate the immune system against tumors, there have also been major advances in the discovery of drugs blocking oncogenic drivers of cancer growth. However, there has been very little progress in combining immunotherapies with drugs that target oncogenic driver pathways. Some of the most important oncogenes in human cancer encode RAS family proteins, although these have proven challenging to target. Recently drugs have been approved that inhibit a specific mutant form of KRAS: G12C. These have improved the treatment of patients with lung cancer harboring this mutation, but development of acquired drug resistance after initial responses has limited the impact on overall survival. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, targeted KRAS G12C inhibition can indirectly affect antitumor immunity, and does so without compromising the critical role of normal RAS proteins in immune cells. This serves as a rationale for combination with immune checkpoint blockade, which can provide additional combinatorial therapeutic benefit in some preclinical cancer models. However, in clinical trials, combination of KRAS G12C inhibitors with PD-(L)1 blockade has yet to show improved outcome, in part due to treatment toxicities. A greater understanding of how oncogenic KRAS drives immune evasion and how mutant-specific KRAS inhibition impacts the tumor microenvironment can lead to novel approaches to combining RAS inhibition with immunotherapies.
Collapse
|
24
|
Batrash F, Kutmah M, Zhang J. The current landscape of using direct inhibitors to target KRAS G12C-mutated NSCLC. Exp Hematol Oncol 2023; 12:93. [PMID: 37925476 PMCID: PMC10625227 DOI: 10.1186/s40164-023-00453-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
Mutation in KRAS protooncogene represents one of the most common genetic alterations in NSCLC and has posed a great therapeutic challenge over the past ~ 40 years since its discovery. However, the pioneer work from Shokat's lab in 2013 has led to a recent wave of direct KRASG12C inhibitors that utilize the switch II pocket identified. Notably, two of the inhibitors have recently received US FDA approval for their use in the treatment of KRASG12C mutant NSCLC. Despite this success, there remains the challenge of combating the resistance that cell lines, xenografts, and patients have exhibited while treated with KRASG12C inhibitors. This review discusses the varying mechanisms of resistance that limit long-lasting effective treatment of those direct inhibitors and highlights several novel therapeutic approaches including a new class of KRASG12C (ON) inhibitors, combinational therapies across the same and different pathways, and combination with immunotherapy/chemotherapy as possible solutions to the pressing question of adaptive resistance.
Collapse
Affiliation(s)
- Firas Batrash
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, 64108, USA
| | - Mahmoud Kutmah
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, 64108, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
25
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
26
|
Chour A, Denis J, Mascaux C, Zysman M, Bigay-Game L, Swalduz A, Gounant V, Cortot A, Darrason M, Fallet V, Auclin E, Basse C, Tissot C, Decroisette C, Bombaron P, Giroux-Leprieur E, Odier L, Brosseau S, Creusot Q, Gueçamburu M, Meersseman C, Rochand A, Costantini A, Gaillard CM, Wasielewski E, Girard N, Cadranel J, Lafitte C, Lebossé F, Duruisseaux M. Brief Report: Severe Sotorasib-Related Hepatotoxicity and Non-Liver Adverse Events Associated With Sequential Anti-Programmed Cell Death (Ligand)1 and Sotorasib Therapy in KRAS G12C-Mutant Lung Cancer. J Thorac Oncol 2023; 18:1408-1415. [PMID: 37217096 DOI: 10.1016/j.jtho.2023.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Sequential anti-programmed cell death protein 1 (PD-1) or anti-programmed death-ligand 1 (PD-L1) followed by small targeted therapy use is associated with increased prevalence of adverse events (AEs) in NSCLC. KRASG12C inhibitor sotorasib may trigger severe immune-mediated hepatotoxicity when used in sequence or in combination with anti-PD-(L)1. This study was designed to address whether sequential anti-PD-(L)1 and sotorasib therapy increases the risk of hepatotoxicity and other AEs. METHODS This is a multicenter, retrospective study of consecutive advanced KRASG12C-mutant NSCLC treated with sotorasib outside clinical trials in 16 French medical centers. Patient records were reviewed to identify sotorasib-related AEs (National Cancer Institute Common Classification Criteria for Adverse Events-Version 5.0). Grade 3 and higher AE was considered as severe. Sequence group was defined as patients who received an anti-PD-(L)1 as last line of treatment before sotorasib initiation and control group as patients who did not receive an anti-PD-(L)1 as last line of treatment before sotorasib initiation. RESULTS We identified 102 patients who received sotorasib, including 48 (47%) in the sequence group and 54 (53%) in the control group. Patients in the control group received an anti-PD-(L)1 followed by at least one treatment regimen before sotorasib in 87% of the cases or did not receive an anti-PD-(L)1 at any time before sotorasib in 13% of the cases. Severe sotorasib-related AEs were significantly more frequent in the sequence group compared with those in the control group (50% versus 13%, p < 0.001). Severe sotorasib-related AEs occurred in 24 patients (24 of 48, 50%) in the sequence group, and among them 16 (67%) experienced a severe sotorasib-related hepatotoxicity. Severe sotorasib-related hepatotoxicity was threefold more frequent in the sequence group compared with that in the control group (33% versus 11%, p = 0.006). No fatal sotorasib-related hepatotoxicity was reported. Non-liver severe sotorasib-related AEs were significantly more frequent in the sequence group (27% versus 4%, p < 0.001). Severe sotorasib-related AEs typically occurred in patients who received last anti-PD-(L)1 infusion within 30 days before sotorasib initiation. CONCLUSIONS Sequential anti-PD-(L)1 and sotorasib therapy are associated with a significantly increased risk of severe sotorasib-related hepatotoxicity and severe non-liver AEs. We suggest avoiding starting sotorasib within 30 days from the last anti-PD-(L)1 infusion.
Collapse
Affiliation(s)
- Ali Chour
- Respiratory Department and Early Phase, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France; Oncopharmacology Laboratory, Cancer Research Center of Lyon, Unité mixte de recherche (UMR) Institut national de la santé et de la recherche médicale (INSERM) 1052 Centre national de la recherche scientifique (CNRS) 5286, Lyon, France; Université Claude Bernard, Université de Lyon, Lyon, France
| | - Julie Denis
- Respiratory Department and Early Phase, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France; Université Claude Bernard, Université de Lyon, Lyon, France
| | - Céline Mascaux
- Pulmonology Department, University Hospital of Strasbourg, Strasbourg, France; Université de Strasbourg, Institut national de la santé et de la recherche médicale (INSERM) Unité mixte de recherche (UMR)_S 1113, IRFAC, Laboratory Streinth (Stress REsponse and INnovative THerapy against cancer), ITI InnoVec, Strasbourg, France
| | - Maeva Zysman
- Service des Maladies Respiratoires et des épreuves fonctionnelles respiratoires CHU Bordeaux, Pessac, France; Univ-Bordeaux, Centre de Recherche cardio-thoracique de Bordeaux, U1045, CIC 1401.-F, Pessac, France
| | | | | | - Valérie Gounant
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Institut national de la santé et de la recherche médicale (INSERM), Institut du cancer Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Hôpital Bichat-Claude Bernard, Paris, France; Université Paris Cité, Paris, France
| | - Alexis Cortot
- Thoracic Oncology Department, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Marie Darrason
- Service de Pneumologie, Lyon Sud Hospital Center, Pierre-Benite, France
| | - Vincent Fallet
- Hopital Tenon Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; GRC 4, Theranoscan, Sorbonne Université, Paris, France
| | - Edouard Auclin
- Oncology Department, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP) centre, Université Paris Cité, Paris, France
| | - Clémence Basse
- Thorax Institute Curie Montsouris, Institut Curie, Paris, France; UVSQ, Paris Saclay University, Versailles, France
| | - Claire Tissot
- Institut de Cancérologie de la Loire, Saint-Priest-en-Jarez, France
| | | | | | - Etienne Giroux-Leprieur
- Respiratory Diseases and Thoracic Oncology Department, Hôpital Ambroise Pare Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France
| | - Luc Odier
- Department of Pneumology, Hopital Nord-Ouest Villefranche, Villefranche Sur Saone, France
| | - Solenn Brosseau
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Institut national de la santé et de la recherche médicale (INSERM), Institut du cancer Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Hôpital Bichat-Claude Bernard, Paris, France; Université Paris Cité, Paris, France
| | - Quentin Creusot
- Pulmonology Department, University Hospital of Strasbourg, Strasbourg, France; Université de Strasbourg, Institut national de la santé et de la recherche médicale (INSERM) Unité mixte de recherche (UMR)_S 1113, IRFAC, Laboratory Streinth (Stress REsponse and INnovative THerapy against cancer), ITI InnoVec, Strasbourg, France
| | - Marina Gueçamburu
- Service des Maladies Respiratoires et des épreuves fonctionnelles respiratoires CHU Bordeaux, Pessac, France; Univ-Bordeaux, Centre de Recherche cardio-thoracique de Bordeaux, U1045, CIC 1401.-F, Pessac, France
| | | | - Adrien Rochand
- Oncology Department, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP) centre, Université Paris Cité, Paris, France
| | - Adrien Costantini
- Respiratory Diseases and Thoracic Oncology Department, Hôpital Ambroise Pare Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France
| | - Claire Marine Gaillard
- Department of Pneumology, Hopital Nord-Ouest Villefranche, Villefranche Sur Saone, France
| | - Eric Wasielewski
- Thoracic Oncology Department, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Nicolas Girard
- Thorax Institute Curie Montsouris, Institut Curie, Paris, France; UVSQ, Paris Saclay University, Versailles, France
| | - Jacques Cadranel
- Hopital Tenon Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claire Lafitte
- Respiratory Department and Early Phase, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
| | - Fanny Lebossé
- Hepatology unit, Croix Rousse hospital, Lyon Liver Institute, Hospices Civils of Lyon, Lyon, France; Cancer Research Center of Lyon, Unité mixte de recherche (UMR) Institut national de la santé et de la recherche médicale (INSERM) 1052 Centre national de la recherche scientifique (CNRS) 5286, Lyon, France
| | - Michaël Duruisseaux
- Respiratory Department and Early Phase, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France; Oncopharmacology Laboratory, Cancer Research Center of Lyon, Unité mixte de recherche (UMR) Institut national de la santé et de la recherche médicale (INSERM) 1052 Centre national de la recherche scientifique (CNRS) 5286, Lyon, France; Université Claude Bernard, Université de Lyon, Lyon, France.
| |
Collapse
|
27
|
Desai A, Dimou A. Toxicity From Sotorasib After Immune Checkpoint Inhibitors: A Note of Caution and Reflections of Future Advancements in the Field. J Thorac Oncol 2023; 18:1265-1267. [PMID: 37758343 DOI: 10.1016/j.jtho.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Aakash Desai
- Division of Medical Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anastasios Dimou
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
28
|
Chour A, Duruisseaux M. Response to Commentary on "Brief Report: Severe Sotorasib-Related Hepatotoxicity and Non-Liver Adverse Events Associated With Sequential Anti-PD(L)1 and Sotorasib Therapy in KRASG12C-Mutant Lung Cancer". J Thorac Oncol 2023; 18:e114-e115. [PMID: 37758349 DOI: 10.1016/j.jtho.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Ali Chour
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France; Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR Institut National de la Santé et de la Recherche Médicale (INSERM) 1052 Centre National de la Recherche Scientifique (CNRS) 5286, Lyon, France; Université Claude Bernard, Université de Lyon, Lyon, France
| | - Michaël Duruisseaux
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France; Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR Institut National de la Santé et de la Recherche Médicale (INSERM) 1052 Centre National de la Recherche Scientifique (CNRS) 5286, Lyon, France; Université Claude Bernard, Université de Lyon, Lyon, France.
| |
Collapse
|
29
|
Di Federico A, Ricciotti I, Favorito V, Michelina SV, Scaparone P, Metro G, De Giglio A, Pecci F, Lamberti G, Ambrogio C, Ricciuti B. Resistance to KRAS G12C Inhibition in Non-small Cell Lung Cancer. Curr Oncol Rep 2023; 25:1017-1029. [PMID: 37378881 DOI: 10.1007/s11912-023-01436-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE OF REVIEW Although the recent development of direct KRASG12C inhibitors (G12Ci) has improved outcomes in KRAS mutant cancers, responses occur only in a fraction of patients, and among responders acquired resistance invariably develops over time. Therefore, the characterization of the determinants of acquired resistance is crucial to inform treatment strategies and to identify novel therapeutic vulnerabilities that can be exploited for drug development. RECENT FINDINGS Mechanisms of acquired resistance to G12Ci are heterogenous including both on-target and off-target resistance. On-target acquired resistance includes secondary codon 12 KRAS mutations, but also acquired codon 13 and codon 61 alterations, and mutations at drug binding sites. Off-target acquired resistance can derive from activating mutations in KRAS downstream pathway (e.g., MEK1), acquired oncogenic fusions (EML4-ALK, CCDC176-RET), gene level copy gain (e.g., MET amplification), or oncogenic alterations in other pro-proliferative and antiapoptotic pathways (e.g., FGFR3, PTEN, NRAS). In a fraction of patients, histologic transformation can also contribute to the development of acquire resistance. We provided a comprehensive overview of the mechanisms that limit the efficacy of this G12i and reviewed potential strategies to overcome and possibly delay the development of resistance in patients receiving KRAS directed targeted therapies.
Collapse
Affiliation(s)
- Alessandro Di Federico
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Valentina Favorito
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology, Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology, Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giulio Metro
- Medical Oncology, Santa Maria Della Misericordia Hospital, Azienda Ospedaliera di Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Andrea De Giglio
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Federica Pecci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Giuseppe Lamberti
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology, Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
30
|
Chmielewska I, Krawczyk P, Grenda A, Wójcik-Superczyńska M, Krzyżanowska N, Gil M, Milanowski J. Breaking the 'Undruggable' Barrier: Anti-PD-1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer Patients with KRAS Mutations-A Comprehensive Review and Description of Single Site Experience. Cancers (Basel) 2023; 15:3732. [PMID: 37509393 PMCID: PMC10378665 DOI: 10.3390/cancers15143732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homologue (KRAS) gene mutations are among the most commonly found oncogenic alterations in non-small cell lung cancer (NSCLC) patients. Unfortunately, KRAS mutations have been considered "undruggable" for many years, making treatment options very limited. Immunotherapy targeting programmed death-ligand 1 (PD-L1), programmed death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) has emerged as a promising therapeutic option for NSCLC patients. However, some studies have suggested a lower response rate to immunotherapy in KRAS-mutated NSCLC patients with the coexistence of mutations in the STK11 (Serine/Threonine Kinase 11) gene. However, recent clinical trials have shown promising results with the combination of immunotherapy and chemotherapy or immunotherapy and KRAS inhibitors (sotorasib, adagrasib) in such patients. In other studies, the high efficacy of immunotherapy has been demonstrated in NSCLC patients with mutations in the KRAS gene that do not coexist with other mutations or coexist with the TP53 gene mutations. In this paper, we review the available literature on the efficacy of immunotherapy in KRAS-mutated NSCLC patients. In addition, we presented single-site experience on the efficacy of immunotherapy in NSCLC patients with KRAS mutations. The effectiveness of chemoimmunotherapy or immunotherapy as well as KRAS inhibitors extends the overall survival of advanced NSCLC patients with the G12C mutation in the KRAS gene to 2-3 years. This type of management has become the new standard in the treatment of NSCLC patients. Further studies are needed to clarify the potential benefits of immunotherapy in KRAS-mutated NSCLC patients and to identify potential biomarkers that may help predict response to therapy.
Collapse
Affiliation(s)
- Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | - Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Michał Gil
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
31
|
Cheema PK, Banerji SO, Blais N, Chu QSC, Juergens RA, Leighl NB, Sacher A, Sheffield BS, Snow S, Vincent M, Wheatley-Price PF, Yip S, Melosky BL. Canadian Consensus Recommendations on the Management of KRAS G12C-Mutated NSCLC. Curr Oncol 2023; 30:6473-6496. [PMID: 37504336 PMCID: PMC10377814 DOI: 10.3390/curroncol30070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS), in particular, a point mutation leading to a glycine-to-cysteine substitution at codon 12 (G12C), are among the most frequent genomic alterations in non-small cell lung cancer (NSCLC). Several agents targeting KRAS G12C have recently entered clinical development. Sotorasib, a first-in-class specific small molecule that irreversibly inhibits KRAS G12C, has since obtained Health Canada approval. The emergence of novel KRAS-targeted therapies warrants the development of evidence-based consensus recommendations to help clinicians better understand and contextualize the available data. A Canadian expert panel was convened to define the key clinical questions, review recent evidence, and discuss and agree on recommendations for the treatment of advanced KRAS G12C-mutated NSCLC. The panel agreed that testing for KRAS G12C should be performed as part of a comprehensive panel that includes current standard-of-care biomarkers. Sotorasib, the only approved KRAS G12C inhibitor in Canada, is recommended for patients with advanced KRAS G12C-mutated NSCLC who progressed on guideline-recommended first-line standard of care for advanced NSCLC without driver alterations (immune-checkpoint inhibitor(s) [ICIs] +/- chemotherapy). Sotorasib could also be offered as second-line therapy to patients who progressed on ICI monotherapy that are not candidates for a platinum doublet and those that received first-line chemotherapy with a contraindication to ICIs. Preliminary data indicate the activity of KRAS G12C inhibitors in brain metastases; however, the evidence is insufficient to make specific recommendations. Regular liver function monitoring is recommended when patients are prescribed KRAS G12C inhibitors due to risk of hepatotoxicity.
Collapse
Affiliation(s)
- Parneet K. Cheema
- Division of Medical Oncology, William Osler Health System, University of Toronto, Brampton, ON L6R 3J7, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shantanu O. Banerji
- CancerCare Manitoba Research Institute, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Normand Blais
- Department of Medicine, Centre Hospitalier de l’Université de Montréal, University of Montreal, Montreal, QC H2X 3E4, Canada;
| | - Quincy S.-C. Chu
- Division of Medical Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Rosalyn A. Juergens
- Department of Medical Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, ON L8V 5C2, Canada;
| | - Natasha B. Leighl
- Department of Medicine, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.B.L.); (A.S.)
| | - Adrian Sacher
- Department of Medicine, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.B.L.); (A.S.)
| | - Brandon S. Sheffield
- Department of Laboratory Medicine, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Stephanie Snow
- Division of Medical Oncology, Department of Medicine, QEII Health Sciences Centre, Dalhousie University, Halifax, NS B3H 2Y9, Canada;
| | - Mark Vincent
- Department of Medical Oncology, London Regional Cancer Program, London, ON N6A 5W9, Canada;
| | - Paul F. Wheatley-Price
- Department of Medicine, The Ottawa Hospital Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Stephen Yip
- BC Cancer, Vancouver, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Barbara L. Melosky
- Department of Medical Oncology, BC Cancer-Vancouver Centre, Vancouver, BC V5Z 4E6, Canada;
| |
Collapse
|
32
|
Piper M, Kluger H, Ruppin E, Hu-Lieskovan S. Immune Resistance Mechanisms and the Road to Personalized Immunotherapy. Am Soc Clin Oncol Educ Book 2023; 43:e390290. [PMID: 37459578 DOI: 10.1200/edbk_390290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
What does the future of cancer immunotherapy look like and how do we get there? Find out where we've been and where we're headed in A Report on Resistance: The Road to personalized immunotherapy.
Collapse
Affiliation(s)
- Miles Piper
- School of Medicine, University of Utah, Salt Lake City, UT
| | | | - Eytan Ruppin
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Siwen Hu-Lieskovan
- School of Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
33
|
Guo MZ, Marrone KA, Spira A, Rosner S. Adagrasib: a novel inhibitor for KRASG12C-mutated non-small-cell lung cancer. Future Oncol 2023. [PMID: 37133216 DOI: 10.2217/fon-2022-1106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Adagrasib is a recently US FDA-approved novel KRASG12C targeted therapy with clinical efficacy in patients with advanced, pretreated KRASG12C-mutated non-small-cell lung cancer. KRYSTAL-I reported an objective response rate of 42.9% with median duration of response of 8.5 months. Treatment-related adverse events were primarily gastrointestinal and occurred in 97.4% of patients, with grade 3+ treatment-related adverse events occurring in 44.8% of patients. This review details the preclinical and clinical data for adagrasib in the treatment of non-small-cell lung cancer. We also outline practical clinical administration guidelines for this novel therapy, including management of toxicities. Finally, we discuss the implications of resistance mechanisms, summarize other KRASG12C inhibitors currently in development and outline future directions for adagrasib-based combination therapies.
Collapse
Affiliation(s)
- Matthew Z Guo
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kristen A Marrone
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Alexander Spira
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Virginia Cancer Specialists Research Institute, Fairfax, VA, USA
- US Oncology Research, The Woodlands, TX, USA
- NEXT Oncology, San Antonio, TX, USA
| | - Samuel Rosner
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
34
|
Vokes NI, Pan K, Le X. Efficacy of immunotherapy in oncogene-driven non-small-cell lung cancer. Ther Adv Med Oncol 2023; 15:17588359231161409. [PMID: 36950275 PMCID: PMC10026098 DOI: 10.1177/17588359231161409] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/13/2023] [Indexed: 03/20/2023] Open
Abstract
For advanced metastatic non-small-lung cancer, the landscape of actionable driver alterations is rapidly growing, with nine targetable oncogenes and seven approvals within the last 5 years. This accelerated drug development has expanded the reach of targeted therapies, and it may soon be that a majority of patients with lung adenocarcinoma will be eligible for a targeted therapy during their treatment course. With these emerging therapeutic options, it is important to understand the existing data on immune checkpoint inhibitors (ICIs), along with their efficacy and safety for each oncogene-driven lung cancer, to best guide the selection and sequencing of various therapeutic options. This article reviews the clinical data on ICIs for each of the driver oncogene defined lung cancer subtypes, including efficacy, both for ICI as monotherapy or in combination with chemotherapy or radiation; toxicities from ICI/targeted therapy in combination or in sequence; and potential strategies to enhance ICI efficacy in oncogene-driven non-small-cell lung cancers.
Collapse
Affiliation(s)
- Natalie I. Vokes
- Department of Thoracic Head and Neck Medical
Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson
Cancer Center, Houston, TX, USA
| | - Kelsey Pan
- Department of Cancer Medicine, MD Anderson
Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical
Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030,
USA
| |
Collapse
|
35
|
Goldberg SB, Herbst RS. The end of the beginning: progress and next steps in KRAS-mutant non-small-cell lung cancer. Lancet 2023; 401:706-707. [PMID: 36774937 DOI: 10.1016/s0140-6736(23)00288-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Affiliation(s)
- Sarah B Goldberg
- Division of Thoracic Oncology, Center for Thoracic Cancers, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06520-8028, USA.
| | - Roy S Herbst
- Division of Thoracic Oncology, Center for Thoracic Cancers, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06520-8028, USA
| |
Collapse
|
36
|
de Langen AJ, Johnson ML, Mazieres J, Dingemans AMC, Mountzios G, Pless M, Wolf J, Schuler M, Lena H, Skoulidis F, Yoneshima Y, Kim SW, Linardou H, Novello S, van der Wekken AJ, Chen Y, Peters S, Felip E, Solomon BJ, Ramalingam SS, Dooms C, Lindsay CR, Ferreira CG, Blais N, Obiozor CC, Wang Y, Mehta B, Varrieur T, Ngarmchamnanrith G, Stollenwerk B, Waterhouse D, Paz-Ares L. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRAS G12C mutation: a randomised, open-label, phase 3 trial. Lancet 2023; 401:733-746. [PMID: 36764316 DOI: 10.1016/s0140-6736(23)00221-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Sotorasib is a specific, irreversible inhibitor of the GTPase protein, KRASG12C. We compared the efficacy and safety of sotorasib with a standard-of-care treatment in patients with non-small-cell lung cancer (NSCLC) with the KRASG12C mutation who had been previously treated with other anticancer drugs. METHODS We conducted a randomised, open-label phase 3 trial at 148 centres in 22 countries. We recruited patients aged at least 18 years with KRASG12C-mutated advanced NSCLC, who progressed after previous platinum-based chemotherapy and a PD-1 or PD-L1 inhibitor. Key exclusion criteria included new or progressing untreated brain lesions or symptomatic brain lesions, previously identified oncogenic driver mutation other than KRASG12C for which an approved therapy is available (eg EGFR or ALK), previous treatment with docetaxel (neoadjuvant or adjuvant docetaxel was allowed if the tumour did not progress within 6 months after the therapy was terminated), previous treatment with a direct KRASG12C inhibitor, systemic anticancer therapy within 28 days of study day 1, and therapeutic or palliative radiation therapy within 2 weeks of treatment initiation. We randomly assigned (1:1) patients to oral sotorasib (960 mg once daily) or intravenous docetaxel (75 mg/m2 once every 3 weeks) in an open-label manner using interactive response technology. Randomisation was stratified by number of previous lines of therapy in advanced disease (1 vs 2 vs >2), ethnicity (Asian vs non-Asian), and history of CNS metastases (present or absent). Treatment continued until an independent central confirmation of disease progression, intolerance, initiation of another anticancer therapy, withdrawal of consent, or death, whichever occurred first. The primary endpoint was progression-free survival, which was assessed by a blinded, independent central review in the intention-to-treat population. Safety was assessed in all treated patients. This trial is registered at ClinicalTrials.gov, NCT04303780, and is active but no longer recruiting. FINDINGS Between June 4, 2020, and April 26, 2021, 345 patients were randomly assigned to receive sotorasib (n=171 [50%]) or docetaxel (n=174 [50%]). 169 (99%) patients in the sotorasib group and 151 (87%) in the docetaxel group received at least one dose. After a median follow-up of 17·7 months (IQR 16·4-20·1), the study met its primary endpoint of a statistically significant increase in the progression-free survival for sotorasib, compared with docetaxel (median progression-free survival 5·6 months [95% CI 4·3-7·8] vs 4·5 months [3·0-5·7]; hazard ratio 0·66 [0·51-0·86]; p=0·0017). Sotorasib was well tolerated, with fewer grade 3 or worse (n=56 [33%] vs n=61 [40%]) and serious treatment-related adverse events compared with docetaxel (n=18 [11%] vs n=34 [23%]). For sotorasib, the most common treatment-related adverse events of grade 3 or worse were diarrhoea (n= 20 [12%]), alanine aminotransferase increase (n=13 [8%]), and aspartate aminotransferase increase (n=9 [5%]). For docetaxel, the most common treatment-related adverse events of grade 3 or worse were neutropenia (n=13 [9%]), fatigue (n=9 [6%]), and febrile neutropenia (n=8 [5%]). INTERPRETATION Sotorasib significantly increased progression-free survival and had a more favourable safety profile, compared with docetaxel, in patients with advanced NSCLC with the KRASG12C mutation and who had been previously treated with other anticancer drugs. FUNDING Amgen.
Collapse
Affiliation(s)
| | - Melissa L Johnson
- Sarah Cannon Research Institute at Tennessee Oncology, Nashville, TN, USA
| | - Julien Mazieres
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | | | | | - Miklos Pless
- Department of Medical Oncology, Cancer Center Kantonsspital Winterthur, Winterthur, Switzerland
| | - Jürgen Wolf
- Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Martin Schuler
- West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Hervé Lena
- Centre Hospitalier Universitaire de Rennes-Hopital Pontchaillou, Rennes, France
| | | | | | | | | | - Silvia Novello
- Department of Oncology, Università Degli Studi Di Torino-San Luigi Hospital Orbassano, Italy
| | - Anthonie J van der Wekken
- Department of Pulmonology and Tuberculosis, University of Groningen, Medical Centre Groningen, Groningen, Netherlands
| | - Yuanbin Chen
- Cancer & Hematology Centers of Western Michigan, Grand Rapids, MI, USA
| | - Solange Peters
- Oncology Department-CHUV, Lausanne University, Lausanne, Switzerland
| | - Enriqueta Felip
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Suresh S Ramalingam
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Christophe Dooms
- Department of Respiratory Diseases, University Hospitals KU Leuven, Leuven, Belgium
| | - Colin R Lindsay
- Division of Cancer Sciences, University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| | | | - Normand Blais
- Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | | | | | | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Complutense University and Ciberonc, Madrid, Spain.
| |
Collapse
|
37
|
At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol 2023; 20:143-159. [PMID: 36639452 DOI: 10.1038/s41571-022-00718-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/15/2023]
Abstract
Non-small-cell lung cancer (NSCLC) has become a paradigm of precision medicine, with the discovery of numerous disease subtypes defined by specific oncogenic driver mutations leading to the development of a range of molecularly targeted therapies. Over the past decade, rapid progress has also been made in the development of immune-checkpoint inhibitors (ICIs), especially antagonistic antibodies targeting the PD-L1-PD-1 axis, for the treatment of NSCLC. Although many of the major oncogenic drivers of NSCLC are associated with intrinsic resistance to ICIs, patients with certain oncogene-driven subtypes of the disease that are highly responsive to specific targeted therapies might also derive benefit from immunotherapy. However, the development of effective immunotherapy approaches for oncogene-addicted NSCLC has been challenged by a lack of predictive biomarkers for patient selection and limited knowledge of how ICIs and oncogene-directed targeted therapies should be combined. Therefore, whether ICIs alone or with chemotherapy or even in combination with molecularly targeted agents would offer comparable benefit in the context of selected oncogenic driver alterations to that observed in the general unselected NSCLC population remains an open question. In this Review, we discuss the effects of oncogenic driver mutations on the efficacy of ICIs and the immune tumour microenvironment as well as the potential vulnerabilities that could be exploited to overcome the challenges of immunotherapy for oncogene-addicted NSCLC.
Collapse
|
38
|
Hofmarcher T, Malmberg C, Lindgren P. A global analysis of the value of precision medicine in oncology - The case of non-small cell lung cancer. Front Med (Lausanne) 2023; 10:1119506. [PMID: 36891190 PMCID: PMC9986274 DOI: 10.3389/fmed.2023.1119506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Objectives Biomarker testing is indispensable for the implementation of precision medicine (PM) in oncology. The aim of this study was to assess the value of biomarker testing from a holistic perspective based on the example of advanced non-small cell lung cancer (aNSCLC). Materials and methods A partitioned survival model was populated with data from pivotal clinical trials of first-line treatments in aNSCLC. Three testing scenarios were considered; "no biomarker testing" encompassing chemotherapy treatment, "sequential testing" for EGFR and ALK encompassing treatment with targeted- or chemotherapy, and "multigene testing" covering EGFR, ALK, ROS1, BRAF, NTRK, MET, RET and encompassing treatment with targeted- or immuno(chemo)therapy. Analyses of health outcomes and costs were run for nine countries (Australia, Brazil, China, Germany, Japan, Poland, South Africa, Turkey, United States). A 1-year and 5-year time horizon was applied. Information on test accuracy was combined with country-specific information on epidemiology and unit costs. Results Compared to the no-testing scenario, survival improved and treatment-related adverse events decreased with increased testing. Five-year survival increased from 2% to 5-7% and to 13-19% with sequential testing and multigene testing, respectively. The highest survival gains were observed in East Asia due to a higher local prevalence of targetable mutations. Overall costs increased with increased testing in all countries. Although costs for testing and medicines increased, costs for treatment of adverse events and end-of-life care decreased throughout all years. Non-health care costs (sick leave and disability pension payments) decreased during the first year but increased over a 5-year horizon. Conclusion The broad use of biomarker testing and PM in aNSCLC leads to more efficient treatment assignment and improves health outcomes for patients globally, in particular prolonged progression-free disease phase and overall survival. These health gains require investment in biomarker testing and medicines. While costs for testing and medicines would initially increase, cost decreases for other medical services and non-health care costs may partly offset the cost increases.
Collapse
Affiliation(s)
| | - Chiara Malmberg
- IHE–The Swedish Institute for Health Economics, Lund, Sweden
| | - Peter Lindgren
- IHE–The Swedish Institute for Health Economics, Lund, Sweden
- Karolinska Institutet, Solna, Sweden
| |
Collapse
|
39
|
Nusrat M, Yaeger R. KRAS inhibition in metastatic colorectal cancer: An update. Curr Opin Pharmacol 2023; 68:102343. [PMID: 36638742 PMCID: PMC9908842 DOI: 10.1016/j.coph.2022.102343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 01/13/2023]
Abstract
About half of colorectal cancers harbor mutations in the KRAS gene. The presence of these mutations is associated with worse prognosis and, until now, the absence of matched targeted therapy options. In this review, we discuss clinical efforts to target KRAS in colorectal cancer from studies of downstream inhibitors to recent direct inhibitors of KRASG12C and other KRAS mutants. Early clinical trial data, however, suggest more limited activity for these novel inhibitors in colorectal cancer compared to other cancer types, and we discuss the role of receptor tyrosine kinase signaling and parallel signaling pathways in modulating response to these inhibitors. We also review the effect of KRAS mutations on the tumor-immune microenvironment and efforts to induce an immune response against these tumors.
Collapse
Affiliation(s)
- Maliha Nusrat
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Rona Yaeger
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
40
|
Rosen JC, Sacher A, Tsao MS. Direct GDP-KRAS G12C inhibitors and mechanisms of resistance: the tip of the iceberg. Ther Adv Med Oncol 2023; 15:17588359231160141. [PMID: 36950276 PMCID: PMC10026147 DOI: 10.1177/17588359231160141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog mutations are observed in 25% of lung adenocarcinoma and 40% of these are G12C mutations. Historically, no approved targeted agents were available for patients with any KRAS mutation, and response rates to standard-of-care therapies were suboptimal. Newly developed inhibitors directed toward KRASG12C have been successful in clinical trials with overall response rates ranging between 32% and 46%, and two FDA approvals were granted in May 2021 and December 2022 as second-line or later monotherapies. However, rapid tumor resistance complicates their use as a monotherapy. With the rapid development of this novel class of inhibitors, it is important to discern the different types of tumor resistance that may arise and how each can differently contribute to tumor growth and survival. G12C inhibitor resistance is under investigation and combinations of therapies with G12C inhibitors have been proposed. Much of this insight is gleaned from preclinical investigations, as our knowledge of clinical resistance is in its infancy. In this review, we summarize the preclinical development of KRASG12C inhibitors, their clinical evaluations, different types of resistance mechanisms to these compounds, and ways of overcoming them. Finally, we underscore the importance of basic and translational investigations of these molecules in a landscape where their clinical evaluations garner the most attention, and we set the stage for what is to come.
Collapse
Affiliation(s)
- Joshua C. Rosen
- Princess Margaret Hospital Cancer Centre,
University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and
Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto,
ON, Canada
| | - Adrian Sacher
- Princess Margaret Hospital Cancer Centre,
University Health Network, Toronto, ON, Canada
- Division of Medical Oncology, Department of
Medicine, Princess Margaret Cancer Centre, Temerty Faculty of Medicine,
University of Toronto, Toronto, ON, Canada
- Department of Immunology, Temerty Faculty of
Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
41
|
Brazel D, Kim J, Ou SHI. CodeBreaK 200: Sotorasib (AMG510) Has Broken the KRAS G12C+ NSCLC Enigma Code. LUNG CANCER (AUCKLAND, N.Z.) 2023; 14:31-39. [PMID: 37101896 PMCID: PMC10124743 DOI: 10.2147/lctt.s403614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Per the US FDA sotorasib approval summary, KRAS G12C mutation is found in approximately 14% of adenocarcinoma of the lung, primarily in patients with a history of smoking. Until recently, targeted therapies against KRAS G12C have been largely unsuccessful due to the small protein size of KRAS and thus lack of binding pockets in KRAS and rapid hydrolysis of GTP to GDP by KRAS enzymes from abundance of GTP in the cytoplasm. Sotorasib, a first-in-class covalent KRAS G12C inhibitor that binds to the switch pocket II in the KRAS G12C-GDP "off" state, received US FDA accelerated approval on May 21, 2021 in the US, based on a Phase II dose expansion cohort of CodeBreaK 100 trial. Sotorasib at 960 mg once daily achieved an ORR of 36% (95% CI: 28%, 45%), with a median response duration of 10 months (range 1.3+, 11.1) in 124 KRAS G12C+ NSCLC. At the European Society of Medical Oncology (ESMO) 2022 annual meeting, sotorasib achieved a statistically significant improved PFS over docetaxel (HR = 0.66; 95% CI: 0. 51-0.86; P = 0.002). The modest magnitude of PFS improvement of 1.1 months (from 4.5 months to 5.6 months) and the ORR of 28% led to a vigorous debate on whether sotorasib was indeed a true breakthrough. In this pros and cons debate, we argue thatsotorasib has achieved a true breakthrough.
Collapse
Affiliation(s)
- Danielle Brazel
- University of California Irvine School of Medicine, Department of Internal Medicine, Division of Hematology-Oncology, Orange, CA, USA
| | - Jennifer Kim
- University of California Irvine School of Medicine, Department of Internal Medicine, Division of Hematology-Oncology, Orange, CA, USA
| | - Sai-Hong Ignatius Ou
- University of California Irvine School of Medicine, Department of Internal Medicine, Division of Hematology-Oncology, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
- Correspondence: Sai-Hong Ignatius Ou, Chao Family Comprehensive Cancer Center, Division of Hematology-Medical Oncology, Department of Medicine, University of California Irvine School of Medicine, 200 South Manchester Avenue, Suite 400, Orange, CA, 92868-3298, USA, Tel +1 714-456-5153, Fax +1 714-456-2242, Email
| |
Collapse
|
42
|
Wang Z, Xing Y, Li B, Li X, Liu B, Wang Y. Molecular pathways, resistance mechanisms and targeted interventions in non-small-cell lung cancer. MOLECULAR BIOMEDICINE 2022; 3:42. [PMID: 36508072 PMCID: PMC9743956 DOI: 10.1186/s43556-022-00107-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The discovery of tyrosine kinase inhibitors effectively targeting EGFR mutations in lung cancer patients in 2004 represented the beginning of the precision medicine era for this refractory disease. This great progress benefits from the identification of driver gene mutations, and after that, conventional and new technologies such as NGS further illustrated part of the complex molecular pathways of NSCLC. More targetable driver gene mutation identification in NSCLC patients greatly promoted the development of targeted therapy and provided great help for patient outcomes including significantly improved survival time and quality of life. Herein, we review the literature and ongoing clinical trials of NSCLC targeted therapy to address the molecular pathways and targeted intervention progress in NSCLC. In addition, the mutations in EGFR gene, ALK rearrangements, and KRAS mutations in the main sections, and the less common molecular alterations in MET, HER2, BRAF, ROS1, RET, and NTRK are discussed. The main resistance mechanisms of each targeted oncogene are highlighted to demonstrate the current dilemma of targeted therapy in NSCLC. Moreover, we discuss potential therapies to overcome the challenges of drug resistance. In this review, we manage to display the current landscape of targetable therapeutic patterns in NSCLC in this era of precision medicine.
Collapse
Affiliation(s)
- Zixi Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yurou Xing
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bingjie Li
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaoyu Li
- grid.412901.f0000 0004 1770 1022Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bin Liu
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Yongsheng Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
43
|
Targeting KRASp.G12C Mutation in Advanced Non-Small Cell Lung Cancer: a New Era Has Begun. Curr Treat Options Oncol 2022; 23:1699-1720. [PMID: 36394791 DOI: 10.1007/s11864-022-01033-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
OPINION STATEMENT KRASp.G12C mutation occurs in 12% of newly diagnosed advanced NSCLC and has recently emerged as a positive predictive biomarker for the selection of advanced NSCLC patients who may respond to novel KRASp.G12C inhibitors. The recent discovery of a new binding pocket under the effector region of KRAS G12C oncoprotein has made direct pharmacological inhibition of the KRASp.G12 mutation possible, leading to the clinical development of a new series of direct selective inhibitors, with a potential major impact on patients' survival and quality of life. Promising efficacy and tolerability data emerging from the early phase CodeBreak trial have already supported the regulatory approval of sotorasib as first in class targeted treatment for the second-line treatment of KRASp.G12C-positive NSCLC population, following immunotherapy-based first-line therapies, while the randomized phase III CodeBreak 200 clinical study has recently confirmed a significant superiority of sotorasib over docetaxel in terms of progression-free survival and quality of life. However, KRAS mutant NSCLC is a high heterogeneous disease characterized by a high rate of co-mutations, most frequently involving P53, STK11, and KEAP1 genes, which significantly modulate the composition of the tumor microenvironment and consequently affect clinical responses to both immunotherapy and targeted inhibitors now available in clinical practice. Both pre-clinical and clinical translational series have recently revealed a wide spectrum of resistance mechanisms occurring under selective KRASG12C inhibitors, including both on-target and off-target molecular alterations as well as morphological switching, negatively affecting the antitumor activity of these drugs when used as single agent therapies. The understanding of such biological background along with the emergence of pre-clinical data provided a strong rational to investigate different combination strategies, including the inhibition of SHP2, SOS1, and KRAS G12C downstream effectors, as well as the addition of immunotherapy and/or chemotherapy to targeted therapy. The preliminary results of these trials have recently suggested a promising activity of SHP2 inhibitors in the front-line setting, while toxicity issues limited the concurrent administration of immune-checkpoint inhibitors and sotorasib. The identification of predictive genomic/immunological biomarkers will be crucial to understand how to optimally sequencing/combining different drugs and ultimately personalize treatment strategies under clinical investigation, to definitively increase the survival outcomes of KRASp.G12C mutant advanced NSCLC patients.
Collapse
|
44
|
Cascetta P, Marinello A, Lazzari C, Gregorc V, Planchard D, Bianco R, Normanno N, Morabito A. KRAS in NSCLC: State of the Art and Future Perspectives. Cancers (Basel) 2022; 14:5430. [PMID: 36358848 PMCID: PMC9656434 DOI: 10.3390/cancers14215430] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
In NSCLC, KRAS mutations occur in up to 30% of all cases, most frequently at codon 12 and 13. KRAS mutations have been linked to adenocarcinoma histology, positive smoking history, and Caucasian ethnicity, although differences have been described across KRAS mutational variants subtypes. KRAS mutations often concur with other molecular alterations, notably TP53, STK11, and KEAP1, which could play an important role in treatment efficacy and patient outcomes. For many years, KRAS mutations have been considered undruggable mainly due to a high toxicity profile and low specificity of compounds. Sotorasib and adagrasib are novel KRAS inhibitors that recently gained FDA approval for pre-treated KRAS mutant NSCLC patients, and other molecules such as GDC-6036 are currently being investigated with promising results. Despite their approval, the efficacy of these drugs is lower than expected and progression among responders has been reported. Mechanisms of acquired resistance to anti-KRAS molecules typically involves either on target secondary mutations (e.g., G12, G13, Q61H, R68S, H95, Y96C, V8L) or off-target alterations. Ongoing trials are currently evaluating strategies for implementing efficacy and overcoming acquired resistance to these compounds. Finally, the efficacy of immune-checkpoint inhibitors still needs to be completely assessed and responses to anti-PD-1/PD-L1 agents may strongly depend on concomitant mutations.
Collapse
Affiliation(s)
- Priscilla Cascetta
- Department of Medical Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94850 Villejuif, France
| | - Arianna Marinello
- Department of Medical Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94850 Villejuif, France
- Department of Medical Oncology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Chiara Lazzari
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - David Planchard
- Department of Medical Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94850 Villejuif, France
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, Oncology Division, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Nicola Normanno
- Cellular Biology and Biotherapy, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Via Mariano Semmola 53, 80131 Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Via Mariano Semmola 53, 80131 Naples, Italy
| |
Collapse
|
45
|
Drugging KRAS: current perspectives and state-of-art review. J Hematol Oncol 2022; 15:152. [PMID: 36284306 PMCID: PMC9597994 DOI: 10.1186/s13045-022-01375-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
After decades of efforts, we have recently made progress into targeting KRAS mutations in several malignancies. Known as the ‘holy grail’ of targeted cancer therapies, KRAS is the most frequently mutated oncogene in human malignancies. Under normal conditions, KRAS shuttles between the GDP-bound ‘off’ state and the GTP-bound ‘on’ state. Mutant KRAS is constitutively activated and leads to persistent downstream signaling and oncogenesis. In 2013, improved understanding of KRAS biology and newer drug designing technologies led to the crucial discovery of a cysteine drug-binding pocket in GDP-bound mutant KRAS G12C protein. Covalent inhibitors that block mutant KRAS G12C were successfully developed and sotorasib was the first KRAS G12C inhibitor to be approved, with several more in the pipeline. Simultaneously, effects of KRAS mutations on tumour microenvironment were also discovered, partly owing to the universal use of immune checkpoint inhibitors. In this review, we discuss the discovery, biology, and function of KRAS in human malignancies. We also discuss the relationship between KRAS mutations and the tumour microenvironment, and therapeutic strategies to target KRAS. Finally, we review the current clinical evidence and ongoing clinical trials of novel agents targeting KRAS and shine light on resistance pathways known so far.
Collapse
|