1
|
Wang G, Zhu Y, Liu Y, Yang M, Zeng L. Mesenchymal Stem Cells-Derived Exosomal miR-223-3p Alleviates Ocular Surface Damage and Inflammation by Downregulating Fbxw7 in Dry Eye Models. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39352716 PMCID: PMC11451833 DOI: 10.1167/iovs.65.12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose Our previous study indicated that exosomes derived from mouse adipose-derived mesenchymal stem cells (mADSC-Exos) alleviated the benzalkonium chloride (BAC)-induced mouse dry eye model. However, the specific active molecules in mADSC-Exos that contribute to anti-dry eye therapy remain unidentified. In this study, we aimed to investigate the efficacy and mechanisms of miR-223-3p derived from mADSC-Exos in dry eye models. Methods Enzyme-linked immunosorbent assay (ELISA) experiments were conducted to determine miR-223-3p derived from mADSC-Exos that exerted anti-inflammatory effects on hyperosmolarity-induced mouse corneal epithelial cells (MCECs). The therapeutic efficacy of miR-223-3p was evaluated in mice with dry eye induced by either BAC or scopolamine (Scop). Mice were randomly assigned to 5 groups: sham, model, miR-223-3p overexpression, miR-223-3p knockdown, and 0.1% pranoprofen (positive group). Post-treatment, the severity of dry eye symptoms, and the pro-inflammatory cytokine levels were assessed. The effect of miR-223-3p on silencing the target gene was verified using ELISA and dual luciferase reporter assays. Results The mADSC-Exos that knocked out miR-223-3p did not reduce interleukin (IL)-6 content. Supplementing with miR-223-3p could restore the reduction of IL-6. The miR-223-3p effectively ameliorated ocular surface damage and decreased pro-inflammatory cytokines or chemokines in both BAC- and Scop-induced mouse dry eye models. Furthermore, miR-223-3p inhibited cell apoptosis. F-box and WD repeat domain-containing 7 (Fbxw7) was the potential direct target of miR-223-3p. The miR-223-3p suppressed the 3'-untranslated region of Fbxw7. The Fbxw7 knockdown suppressed hyperosmolarity-induced inflammation in MCECs. Conclusions The mADSC-derived exosomal miR-223-3p mitigates ocular surface damage and inflammation, indicating its potential as a promising treatment option for dry eye.
Collapse
Affiliation(s)
- Guifang Wang
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Yujie Zhu
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Yuzhen Liu
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Mulin Yang
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Li Zeng
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| |
Collapse
|
2
|
Lv X, Li H, Su S, Fan S. Advances in the ocular complications after hematopoietic stem cell transplantation. Ann Hematol 2024; 103:3867-3880. [PMID: 38403713 DOI: 10.1007/s00277-024-05678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) has benefited an increasing number of patients with hematological disease in the clinic. It is a curative therapy for malignant and nonmalignant hematological diseases. With the advancement and further clinical application of HSCT in recent years, the life expectancy of patients has increased, but complications have become more common. The occurrence of ocular complications is receiving increasing attention because they can seriously affect the quality of life of patients. Ocular complications require increased attention from clinicians because of their negative impact on patients and increasing incidence. Most of recent reports on posttransplant ocular complications involve ocular manifestations of graft-versus-host disease (GVHD), and a few ocular complications that do not originate from GVHD have also been reported. This review summarizes the diagnosis, scoring criteria, pathophysiology, and clinical manifestations of and common therapies for ocular graft-versus-host disease(oGVHD) after HSCT, and includes a description of some rare cases and novel therapies.
Collapse
Affiliation(s)
- Xiaoli Lv
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Huibo Li
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Sheng Su
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| | - Shengjin Fan
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
- NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
3
|
Song Y, Wu Y, Ding F, Li S, Shen Y, Yang B, Tang X, Ren L, Deng L, Jin X, Yan Y. The Preventive and Therapeutic Effects of Acute and Severe Inflammatory Disorders with Heparin and Heparinoid. Biomolecules 2024; 14:1078. [PMID: 39334845 PMCID: PMC11430252 DOI: 10.3390/biom14091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Systematic inflammatory response syndrome (SIRS) and the accompanying sepsis pose a huge threat to human health worldwide. Heparin is a part of the standard supportive care for the disease. However, the molecular mechanism is not fully understood yet, and the potential signaling pathways that play key roles have not yet been elucidated. In this paper, the main findings regarding the molecular mechanisms associated with the beneficial effects of heparin, including inhibiting HMGB-1-driven inflammation reactions, histone-induced toxicity, thrombo-inflammatory response control and the new emerging mechanisms are concluded. To set up the link between the preclinical research and the clinical effects, the outcomes of the clinical trials are summarized. Then, the structure and function relationship of heparin is discussed. By providing an updated analysis of the above results, the paper highlights the feasibility of heparin as a possible alternative for sepsis prophylaxis and therapy.
Collapse
Affiliation(s)
- Ying Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Fangfang Ding
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Li
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518118, China
| | - Yaojia Shen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Bingyan Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinran Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lige Ren
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Lirong Deng
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Xuewen Jin
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Yishu Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Singh RB, Cho W, Liu C, Naderi A, Surico PL, Kahale F, Dohlman TH, Chauhan SK, Dana R. Immunopathological mechanisms and clinical manifestations of ocular graft-versus-host disease following hematopoietic stem cell transplantation. Bone Marrow Transplant 2024; 59:1049-1056. [PMID: 38822141 DOI: 10.1038/s41409-024-02321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Graft-versus-host disease is among the most common clinical complications following allogeneic hematopoietic stem cell transplantation. It causes inflammation-mediated destruction and dysfunction of various organ systems including ocular tissues in 60-90% of the patients and is termed ocular GVHD (oGVHD). In oGVHD, donor-derived T-cells recognize host antigens as foreign, resulting in immune dysregulation, inflammation and fibrosis of lacrimal glands, meibomian glands, cornea, and conjunctiva. The clinical presentation in oGVHD patients range from mild dry eye symptoms to catastrophic inflammation mediated pathological changes which can cause corneal perforation and blindness. In this review article, we provide detailed insights into the impact of mucosal barrier disruption, the afferent and efferent phases of immunological response involving activation of antigen presenting cells and T cells, respectively. We evaluate the evidence outlining the effector phase of the disease leading to cellular destruction and eventually fibrosis in patients with oGVHD. Finally, we discuss the well-established criteria for the diagnosis of oGVHD.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Wonkyung Cho
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Catherine Liu
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Amirreza Naderi
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pier Luigi Surico
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Francesca Kahale
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Wong CW, Le HL, Gombos DS, Yee RW. Effects and Safety of 5% Lifitegrast Ophthalmic Solution in Patients With Dry Eye Disease Associated With Ocular Graft-Versus-Host Disease. Cureus 2024; 16:e66437. [PMID: 39246931 PMCID: PMC11380456 DOI: 10.7759/cureus.66437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Graft-versus-host disease (GVHD) is a common sequela of hematopoietic stem cell transplant (HSCT). While HSCT is often curative for certain hematologic malignancies, acute and chronic GVHD remains an important cause of morbidity and mortality in post-transplant patients. Ocular involvement is one manifestation of chronic GVHD that can present similarly to chronic dry eye with tear film abnormalities, aqueous deficiency, and corneal epithelial defects through melting and perforation. Current management includes frequent use of artificial tears and oral or topical glucocorticoids as tolerated. There is a need for long-term, steroid-sparing therapeutics in the management of ocular GVHD (oGVHD). Lifitegrast is approved for the treatment of chronic dry eye and may have therapeutic potential in the treatment of oGVHD. The aim of this study was to investigate the efficacy and safety of topical lifitegrast in the management of oGVHD. Methodology A prospective randomized clinical trial (NCT04792580) was performed on 32 enrolled patients with diagnosed oGVHD. Subjects underwent a two-week washout period consisting of preservative-free artificial tears dosed twice a day, after which they were randomized to the treatment arm (5% lifitegrast ophthalmic solution) or placebo arm (vehicle solution) for four weeks. Endpoints included Symptom Assessment iN Dry Eye (SANDE) score, unanesthetized Schirmer score, Ocular Surface Disease Index questionnaire score, fluorescein staining, tear film breakup time, meibum quantity, and turbidity. Safety endpoints included intraocular pressure, visual acuity, and rate of treatment-related adverse effects. Statistical analysis was done with a t-test or Wilcoxon rank-sum test. Results The primary and secondary efficacy endpoints were met, with statistically significant reductions in mean SANDE and unanesthetized Schirmer score observed at four weeks post-randomization. No serious adverse events related to the use of either lifitegrast or vehicle were observed, and no worsening of visual acuity or intraocular pressure occurred in the intention-to-treat analysis. However, further inference was limited due to insufficient statistical power owing to significant washout and a 50% dropout rate from the all-enrolled analysis set. The most common causes of study dropout were worsening of unrelated medical conditions (not GVHD) and improvement of SANDE score or Schirmer score outside of the inclusion criteria range during the washout period. Conclusions Lifitegrast may be a useful steroid-sparing agent in the long-term management of oGVHD. This study provides further support for the clinical evidence of lifitegrast in the management of dry eye signs and symptoms, although further sufficiently powered clinical trials are warranted to better understand its efficacy in the oGVHD population. Personalized treatment options targeting distinct manifestations of oGVHD in the cornea, tear film, lid margin, and conjunctiva are needed in the effective management of this multifaceted and complex disease.
Collapse
Affiliation(s)
- Calvin W Wong
- Ophthalmology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Harrison L Le
- Ophthalmology, Richard W. Yee, MD PLLC, Houston, USA
| | - Dan S Gombos
- Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Richard W Yee
- Ophthalmology, Richard W. Yee, MD PLLC, Houston, USA
- Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
6
|
Asai K, Lee HK, Sato S, Shimizu E, Jung J, Okazaki T, Ogawa M, Shimmura S, Tsubota K, Ogawa Y, Negishi K, Hirayama M. The Necroptosis Pathway Is Upregulated in the Cornea in Mice With Ocular Graft-Versus-Host Disease. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 39189995 PMCID: PMC11361379 DOI: 10.1167/iovs.65.10.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose To identify molecular signatures specific for ocular graft-versus-host disease (GVHD) by proteomic analysis of corneas from mice with GVHD. Methods We identified differentially expressed proteins (DEPs) in corneal samples from GVHD model mice and syngeneic control mice 4 weeks after bone marrow transplantation. Data-independent acquisition analysis was performed on individual samples, and the roles of DEPs in biological pathways related to GVHD were evaluated via bioinformatics and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results Three important signaling pathways were upregulated in the cornea in mice with GVHD: (1) the necroptosis pathway, (2) the mitogen-activated protein kinase (MAPK) pathway, and (3) as previously reported, the neutrophil extracellular trap (NET) pathway. In those signaling pathways, we identified new upregulated molecules, including (1) receptor-interacting protein kinase 1 (RIPK1), RIPK3, interferon regulatory factor 9, the interferon-induced double-stranded RNA-activated protein kinase lipoxygenase, and high mobility group box1 (HMGB1) which are damage-associated molecular patterns (DAMPs) in the necroptosis pathway; (2) the sequentially upregulated interleukin 1 (IL-1) receptor-associated kinase (IRAK), an evolutionarily conserved signaling intermediate in the Toll pathway (ECSIT), and p38, which is downstream of the IL-1 receptor and increased CDC42/Rac (Rac2), a Rho family GTPase in the MAPK pathway; and (3) the integrin components CR3 and macrophage-1 antigen (MAC-1), which are DAMPs, and the pyroptosis-related protein gasdermin D (GSDMD) in the NET pathway. Conclusions These novel molecules may help researchers elucidate the pathogenesis of GVHD and identify new therapeutic targets for corneal changes in patients with ocular GVHD.
Collapse
Affiliation(s)
- Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hyung Keun Lee
- Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Jaehun Jung
- Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Takahiro Okazaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Clinical Regenerative Medicine, Fujita Health University, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Patil CD, Borase H, Gagan S, Sharma P, Kapoor D, Yadavalli T, Jain S, Joseph J, Bagga B, Shukla D. Rapid NETosis Is an Effector Mechanism to Combat Ocular Herpes Infection. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 38916883 PMCID: PMC11210628 DOI: 10.1167/iovs.65.6.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose Neutrophils are known mediators of innate immunity, yet their effector function in herpesvirus infections remains poorly understood. Here, we elucidate the mechanistic action and pivotal role of neutrophil extracellular traps (NETs) during herpes simplex virus type 1 (HSV-1) ocular infection. Methods Neutrophils were collected from mice for HSV-1 infection, fluorescence imaging, and immunoblotting assay. Tear samples from healthy subjects and patients with HSV-1 and mice were collected at L. V. Prasad Eye Institute, India, and at the University of Illinois, USA, respectively. For the in vivo study, C57BL/6 mice as well as diversity outbred mice were infected with HSV-1 (McKrae strain) followed by tear fluid collection at various time points (0-10 days). Samples were used for Flow cytometry, ELISA, and immunofluorescence assay. Human transcriptomic profile of keratitis dataset was used evaluate NETosis signaling pathways. We also performed neutrophil depletion studies. Results Our data revealed a discernible temporal NET formation (NETosis) predominantly in the infected eye, across normal and diversity outbred murine models and human cases of HSV-1 infection. HSV-1 instigates swift NETosis governed by caspase-1 activation and myeloperoxidase secretion. Distinct accumulations of neutrophils, remaining unengaged in NET release in the contralateral eye post-infection, hinting at a proactive defensive posture in the uninfected eye. Moreover, neutrophil depletion accentuated ocular pathology, augmented viral load, and escalated disease scores, substantiating the protective effects of NETs in curtailing viral replication. Conclusions Our report uncovers a previously unexplored mechanism of NETosis through pro-inflammatory cell death in response to ocular HSV-1 infection, and HPSE up-regulation, identifying new avenues for future studies.
Collapse
Affiliation(s)
- Chandrashekhar D. Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | | | - Pankaj Sharma
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Divya Kapoor
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Bhupesh Bagga
- Shantilal Shanghvi Cornea Institute, The Ramoji Foundation Centre for Ocular Infections, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
8
|
Liao Y, Zhao W, Yang J, Li J, Chen J, Chen Z, Jin L, Li L, Huang F, Liang L. Delayed diagnosis of ocular graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Ocul Surf 2024; 34:1-8. [PMID: 38821405 DOI: 10.1016/j.jtos.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
PURPOSE To investigate the delayed diagnosis of chronic ocular graft-versus-host disease (coGVHD) after allogeneic hematopoietic stem cell transplantation (alloHCT), and further analyze potential confounding factors. METHODS This cross-sectional study included 118 patients newly diagnosed as coGVHD after alloHCT at Zhongshan Ophthalmic Center, Sun Yat-sen University. All participants finished the flow path of medical history taking, detailed ophthalmological examination and questionnaire-based survey. coGVHD was diagnosed and graded by International Chronic Ocular GVHD Consensus Group (ICOGCG) criteria. Lag time of diagnosis was defined as interval between noting of ocular symptoms and confirmed diagnosis of coGVHD (TN-D). We further compared the clinical parameters between groups categorized by the median TN-D as medium and long delay groups. RESULTS The median TN-D was 6.3 [IQR 2.8-14.5] months. Most coGVHD patients underwent delayed diagnosis of coGVHD longer than 3 months (70 %, 83 of 118), with 90 of 118 diagnosed as severe coGVHD (76 %). The long delay group exhibited higher ICOGCG scores (10 [IQR 9-10.5] vs. 9 [IQR 8-10], P = 0.039) and more pronounced ocular signs, including conjunctival injection, meibomian gland loss, fibrotic tarsal conjunctiva, symblepharon, and corneal complications (all P < 0.05). Delayed diagnosis was strikingly correlated with seeking ophthalmic medical care twice or more prior to diagnosis (adjusted OR = 5.42, 95%CI: 1.40-21.06, P = 0.015) and accurate knowledge of ocular discomfort symptoms in coGVHD (adjusted OR = 0.29, 95%CI: 0.08-1.00, P = 0.050). CONCLUSIONS Delayed diagnosis of coGVHD, associated with disease severity, was common among alloHCT recipients in southern China. Improving patient education and the awareness of ophthalmologists may facilitate early diagnosis of coGVHD.
Collapse
Affiliation(s)
- Yinglin Liao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China
| | - Wenxin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China
| | - Jing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China
| | - Juejing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China
| | - Ziyan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China
| | - Ling Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China
| | - Longyue Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lingyi Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China.
| |
Collapse
|
9
|
Mun CS, Surenkhuu B, Chen YF, Atassi N, Mun J, Kim C, Sheth T, Sarwar MA, Pradeep A, Jain S. Recombinant Deoxyribonuclease I Eye Drops for Ocular Graft Versus Host Disease: Results of a Randomized Clinical Trial. Eye Contact Lens 2024; 50:233-240. [PMID: 38407974 DOI: 10.1097/icl.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 02/28/2024]
Abstract
OBJECTIVE We have previously shown that neutrophil extracellular traps (NETs) are present on the ocular surface of patients with ocular graft versus host disease (oGVHD), contributing to inflammation and surface disease. Therefore, we performed a clinical trial using deoxyribonuclease I (DNAase) eye drops to test the hypothesis that reducing the abundance of NETs from the ocular surface will reduce signs and symptoms of oGVHD. METHODS A prospective, phase I or II, randomized, placebo-controlled, double-masked clinical trial was performed to determine the safety and preliminary efficacy of DNAase (0.1%) eye drops four times daily for 8 weeks in patients with oGVHD (n=58). Intent-to-treat analysis was performed to determine the change in safety outcome measures (drug tolerability and proportion of adverse events) and efficacy outcome measures (ocular surface disease index [OSDI] score and corneal staining) between baseline and week 8. RESULTS Tolerability and adverse events were similar in the vehicle and DNAase groups. Within the DNAase group (but not the vehicle group), corneal staining showed a statistically significant and clinically meaningful reduction at week 8 (3.50 [2.75; 5.00]) compared with baseline (5.00 [3.00; 7.00]). The OSDI score also showed a statistically significant clinically meaningful reduction of 18.4 (9.16; 33.1) ( P <0.001) at week 8 compared with baseline (45.5 [31.8; 50.0]) within the DNAase group. The proportion of eyes that had improvement in subjective global assessment (SGA) and mucous discharge was significantly greater in the DNAase group (55.6% and 57.7% at weeks 4 and 8, respectively; P <0.0001 at both time points) as compared with the vehicle group (35.7% and 34.0% at weeks 4 and 8, respectively). CONCLUSIONS Treatment of patients with oGVHD using DNAase eye drops is safe and demonstrates preliminary efficacy. Deoxyribonuclease I eye drops can potentially reduce the severity of signs and symptoms of ocular surface disease in patients with oGVHD.
Collapse
Affiliation(s)
- Christine S Mun
- Corneal Translational Biology Laboratory (C.S.M., B.S., N.A., J.M., C.K., T.S., A.P., S.J.), Department of Ophthalmology and Visual Sciences; Center for Clinical and Translational Science (Y.-F.C.); and Department of Pharmacy Practice (M.A.S.), University of Illinois at Chicago, Chicago, IL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Surenkhuu B, Mun CS, Kim C, Atassi NY, Mun J, Dhall N, Abdel-Hadi S, Sheth T, Dondeti P, Bernal A, Pradeep A, Rondelli D, Jain S. "Window of Opportunity" in Ocular Graft-Versus-Host Disease Treatment: Results of a Longitudinal Study and Case Reports. Eye Contact Lens 2024; 50:222-232. [PMID: 38477832 PMCID: PMC11037456 DOI: 10.1097/icl.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2023] [Indexed: 03/14/2024]
Abstract
OBJECTIVE To perform a longitudinal study for determining the development of ocular graft-versus-host disease (oGVHD) after allogeneic hematopoietic stem cell transplant (HSCT) and report cases that illustrate the "window of opportunity" concept in oGVHD treatment. METHODS Patients (n=61) were examined at prescheduled clinic visits before HSCT and three-month intervals after HSCT for 2 years. The presence or absence of oGVHD was determined using the international chronic oGVHD consensus group diagnostic criteria. Ocular surface washings (OSW) were obtained at each visit and analyzed for cytokine levels. RESULTS In the longitudinal study, 26.2% (n=16; progressed group) developed either probable (11.5%, n=7) or definite oGVHD (14.8%, n=9). In the progressed group, clinically significant changes in signs (corneal staining and Schirmer I test) and symptoms at the post-HSCT visit as compared with the pre-HSCT visit occurred at 9 months. Significant differences in clinical signs and symptoms (whether average post-HSCT values or changes in values over pre-HSCT levels) between the progressed and nonprogressed groups occurred at a 9-month visit or later. In the progressed group, 55.6% of eyes that had negative matrix metalloproteinase 9 (MMP-9) test at pre-HSCT turned MMP-9 positive at 3 to 6 months post-HSCT. In the progressed group, interleukin 8 levels in OSW were significantly increased at 6 months post-HSCT. In the case reports, the "window of opportunity" was detected by MMP-9 turning positive, early corneal staining, interleukin 8 increase in OSW, and peripheral corneal epithelial thinning, which resolved with treatment initiation. CONCLUSIONS A "window of opportunity" exists before patients developing symptomatic tear-deficient dry eye after HSCT for initiating treatment that may preempt oGVHD development; however, larger-scale longitudinal studies are needed for definitive recommendations.
Collapse
Affiliation(s)
- Bayasgalan Surenkhuu
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Christine S. Mun
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Christian Kim
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Nour Yanna Atassi
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Jessica Mun
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Nikhil Dhall
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Sarah Abdel-Hadi
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Tanya Sheth
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Priyanka Dondeti
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Alexandria Bernal
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Anubhav Pradeep
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Damiano Rondelli
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Sandeep Jain
- Corneal Translational Biology Laboratory (B.S., C.S.M., C.K., N.Y.A., J.M., N.D., S.A.-H., T.S., P.D., A.B., A.P., S.J.), Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL; and Department of Medicine (D.R.), Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
11
|
Quiroga-Garza ME, Ruiz-Lozano RE, Rodriguez-Gutierrez LA, Khodor A, Ma S, Komai S, Mohamed-Noriega K, Perez VL. Lessons Learned From Ocular Graft versus Host Disease: An Ocular Surface Inflammatory Disease of Known Time of Onset. Eye Contact Lens 2024; 50:212-221. [PMID: 38518064 DOI: 10.1097/icl.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/24/2024]
Abstract
ABSTRACT The ocular surface inflammatory disorders (OSIDs) comprise a group of conditions characterized by persistent inflammation of the ocular surface and adnexal tissues. Systemic autoimmune diseases and hypersensitivity reactions cause them, and, if left untreated, can result in severe inflammatory dry eye, corneal damage, and vision loss. Ocular graft-versus-host disease (oGVHD) forms part of the ocular surface inflammatory disease umbrella. It is a condition occurring after allogeneic hematopoietic stem cell or bone marrow transplantation, usually in chronic graft-versus-host disease. oGVHD can virtually affect any ocular adnexal tissue, especially the meibomian glands, and cause persistent inflammation, tissue fibrosis, and subsequent chronic, severe dry eye disease. Among the OSIDs, oGVHD has the particularity that it has a "time zero," meaning we know when the disease started. As such, preclinical models have leveraged this to investigate the molecular mechanisms involved in the damage oGVHD causes to the ocular surface. In oGVHD, establishing a "time zero" allows for predicting the clinical course and establishing adequate treatment. This is also possible because the inflammatory infiltration occurs in ocular surface tissues, which are readily accessible. Using oGVHD, we might be able to understand the immune response mechanisms in other OSIDs better (i.e., Sjögren syndrome, Stevens-Johnson syndrome, among others). This review presents an up-to-date overview of the pathogenesis, clinical presentation, and treatment of oGVHD. In addition, we will discuss the value of the "time zero" concept in the study of oGVHD.
Collapse
Affiliation(s)
- Manuel E Quiroga-Garza
- Department of Ophthalmology (M.E.Q.-G., R.E.R.-L., S.M., S.K., V.L.P.), Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, NC; Bascom Palmer Eye Institute (M.E.Q.-G., R.E.R.-L., L.A.R.-G., A.K., S.M., S.K., V.L.P.), University of Miami, Miami, FL; and Department of Ophthalmology (K.M.-N.), University Hospital and Faculty of Medicine, Autonomous University of Nuevo León (UANL), Monterrey, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Beatty CJ, Ruiz-Lozano RE, Quiroga-Garza ME, Perez VL, Jester JV, Saban DR. The Yin and Yang of non-immune and immune responses in meibomian gland dysfunction. Ocul Surf 2024; 32:81-90. [PMID: 38224775 DOI: 10.1016/j.jtos.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Meibomian gland dysfunction (MGD) is a leading cause of dry eye disease and one of the most common ophthalmic conditions encountered in eye clinics worldwide. These holocrine glands are situated in the eyelid, where they produce specialized lipids, or meibum, needed to lubricate the eye surface and slow tear film evaporation - functions which are critical to preserving high-resolution vision. MGD results in tear instability, rapid tear evaporation, changes in local microflora, and dry eye disease, amongst other pathological entities. While studies identifying the mechanisms of MGD have generally focused on gland obstruction, we now know that age is a major risk factor for MGD that is associated with abnormal cell differentiation and renewal. It is also now appreciated that immune-inflammatory disorders, such as certain autoimmune diseases and atopy, may trigger MGD, as demonstrated through a T cell-driven neutrophil response. Here, we independently discuss the underlying roles of gland and immune related factors in MGD, as well as the integration of these two distinct mechanisms into a unified perspective that may aid future studies. From this unique standpoint, we propose a revised model in which glandular dysfunction and immunopathogenic pathways are not primary versus secondary contributors in MGD, but are fluid, interactive, and dynamic, which we likened to the Yin and Yang of MGD.
Collapse
Affiliation(s)
- Cole J Beatty
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA
| | - Raul E Ruiz-Lozano
- Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA
| | - Manuel E Quiroga-Garza
- Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA
| | - Victor L Perez
- Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA.
| | - James V Jester
- Department of Ophthalmology and Biomedical Engineering, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA.
| | - Daniel R Saban
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA.
| |
Collapse
|
13
|
Stern ME, Theofilopoulos AN, Steven P, Niederkorn JY, Fox R, Calonge M, Scheid C, Pflugfelder SC. Immunologic basis for development of keratoconjunctivitis sicca in systemic autoimmune diseases: Role of innate immune sensors. Ocul Surf 2024; 32:130-138. [PMID: 38395195 DOI: 10.1016/j.jtos.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The literature is filled with citations reporting an increased incidence of chronic dry eye disease, also known as keratoconjunctivitis sicca, in patients with systemic autoimmune diseases such as rheumatoid arthritis, Sjögren's Syndrome, systemic sclerosis and lupus. As the most environmentally exposed mucosal surface of the body, the conjunctiva constantly responds to environmental challenges which are typically self limited, but when persistent and unresolved may provoke pathogenic innate and adaptive immune reactions. Our understanding of the pathophysiological mechanisms by which systemic autoimmune diseases cause dry eye inducing ocular surface inflammation continues to evolve. Conjunctival immune tone responds to self or foreign danger signals (including desiccating stress) on the ocular surface with an initial non-specific innate inflammatory response. If unchecked, this can lead to activation of dendritic cells that present antigen and prime T and B cells resulting in an adaptive immune reaction. These reactions generally resolve, but dysfunctional, hyper-responsive immune cells found in systemic autoimmune diseases that are recruited to the ocular surface can amplify inflammatory stress responses in the ocular surface and glandular tissues and result in autoimmune reactions that disrupt tear stability and lead to chronic dry eye disease. We here propose that unique features of the ocular surface immune system and the impact of systemic immune dysregulation in autoimmune diseases, can predispose to development of dry eye disease, and exacerbate severity of existing dry eye.
Collapse
Affiliation(s)
- Michael E Stern
- University of Cologne, Department of Ophthalmology, Cologne, Germany; IOBA, Department of Ophthalmology, University of Valladolid, Valladolid, Spain.
| | | | - Philipp Steven
- University of Cologne, Department of Ophthalmology, Cologne, Germany; University of Cologne, Department of Internal Medicine - 1, Cologne, Germany
| | - Jerry Y Niederkorn
- Southwestern School of Medicine, Department of Ophthalmology, Dallas, TX, USA
| | - Robert Fox
- Scripps Hospital, Department of Rheumatology, La Jolla, CA, USA
| | - Margarita Calonge
- IOBA, Department of Ophthalmology, University of Valladolid, Valladolid, Spain
| | - Christof Scheid
- University of Cologne, Department of Internal Medicine - 1, Cologne, Germany
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Roca D, Jain S, Mun C, Akbar Sarwar M, Shorter E, Ortiz-Morales G, Tarib I, De La Cruz J. Novel Management of Ocular Surface Inflammation in Patients With Ocular Graft-Versus-Host Disease in the Setting of Cataract Surgery. Eye Contact Lens 2024; 50:189-193. [PMID: 38350098 DOI: 10.1097/icl.0000000000001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2023] [Indexed: 02/15/2024]
Abstract
PURPOSE To report the outcomes of cataract surgery in patients with ocular graft-versus-host disease (oGVHD) using a novel preoperative immunomodulatory regimen in a collaborative subspecialty care setting. METHODS Retrospective case series of patients with oGVHD who underwent cataract surgery using a novel preoperative immunomodulatory regimen in a collaborative care setting. A preoperative regimen consisting of pooled human immune globulin 1%, autologous serum 50%, and methylprednisolone 1% eye drops was prescribed. Outcome measures included visual acuity (VA), ocular surface disease index (OSDI) score, lissamine green staining, and complications with a minimum of 2 years of follow-up. RESULTS Thirty-five eyes from 20 patients with oGVHD were studied. The mean age was 59 years (range 30-70 years). A healthy comparison group included 35 eyes from 24 patients with a mean age of 63 years (range 44-74 years). At the 2-year follow-up, the mean corneal staining score was 2.3/15, the mean OSDI score was 37.5, and the mean VA was 20/30 (logarithm of the minimal angle of resolution 0.17). The global complication rate was 2.8% at the last follow-up with no difference versus a healthy comparison group. CONCLUSIONS A collaborative care model improving ocular surface health before cataract surgery with dry eye and cataract subspecialists can optimize outcomes in patients with oGVHD.
Collapse
Affiliation(s)
- Daniela Roca
- Department of Ophthalmology and Visual Sciences (D.R., S.J., C.M., M.A.S., E.S., I.T., J.D.L.C.), University of Illinois Chicago, Chicago, IL; and Tecnologico de Monterrey (G.O.-M.), School of Medicine and Health Sciences, Monterrey, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rossi C, Buizza A, Alessio G, Borselli M, Taloni A, Carnevali A, Carnovale Scalzo G, Lucisano A, Scorcia V, Giannaccare G. Ophthalmic Manifestations in Patients with Blood Malignancies. Hematol Rep 2024; 16:193-203. [PMID: 38651449 PMCID: PMC11036248 DOI: 10.3390/hematolrep16020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Ocular complications can occur in up to 90% of patients with blood malignancies. Such complications range from direct infiltration to local hemostatic imbalance and treatment-related toxicity. This narrative review is based on a systematic computerized search of the literature conducted until January 2024 and examines the common ocular complications associated with blood cancers. Ocular complications from primary disease include mass effects from ocular adnexal lymphomas and intraocular lymphomas, with B-cell lymphomas accounting for 95% of primary ocular presentations. Secondary disease involvement from systemic hematological malignancies can lead to a wide range of ocular manifestations, such as leukemic retinopathy. Furthermore, toxicity from antineoplastic therapies and ocular graft versus host disease (oGVHD) after hematopoietic stem cell transplantation present additional risks to ocular health. In conclusion, ocular complications in blood cancer patients are an integral part of patient management, requiring regular ophthalmic evaluations and close collaboration between oncologists and ophthalmologists. Advances in therapy and an increased focus on early symptom recognition are essential for preserving vision and enhancing patient quality of life.
Collapse
Affiliation(s)
- Costanza Rossi
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.R.); (G.A.); (M.B.); (A.T.); (A.C.); (G.C.S.); (A.L.); (V.S.)
| | - Alessandro Buizza
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Milan, Italy
| | - Giuseppe Alessio
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.R.); (G.A.); (M.B.); (A.T.); (A.C.); (G.C.S.); (A.L.); (V.S.)
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.R.); (G.A.); (M.B.); (A.T.); (A.C.); (G.C.S.); (A.L.); (V.S.)
| | - Andrea Taloni
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.R.); (G.A.); (M.B.); (A.T.); (A.C.); (G.C.S.); (A.L.); (V.S.)
| | - Adriano Carnevali
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.R.); (G.A.); (M.B.); (A.T.); (A.C.); (G.C.S.); (A.L.); (V.S.)
| | - Giovanna Carnovale Scalzo
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.R.); (G.A.); (M.B.); (A.T.); (A.C.); (G.C.S.); (A.L.); (V.S.)
| | - Andrea Lucisano
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.R.); (G.A.); (M.B.); (A.T.); (A.C.); (G.C.S.); (A.L.); (V.S.)
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.R.); (G.A.); (M.B.); (A.T.); (A.C.); (G.C.S.); (A.L.); (V.S.)
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09123 Cagliari, Italy
| |
Collapse
|
16
|
Adeeb S, Arabi TZ, Shah H, Alsalameh S, Abu-Shaar M, El-Sibai AM, Alkattan K, Yaqinuddin A. Unveiling the Web: Exploring the Multifaceted Role of Neutrophil Extracellular Traps in Ocular Health and Disease. J Clin Med 2024; 13:512. [PMID: 38256646 PMCID: PMC10816449 DOI: 10.3390/jcm13020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Neutrophil extracellular traps (NETs) play an essential role in antimicrobial defense. However, NETs have also been shown to promote and mediate a wide spectrum of diseases, including cancer, diabetes mellitus, cardiovascular diseases, and ocular diseases. Data regarding NETs in ocular diseases remain limited. In physiological conditions, NETs protect the eye from debris and cleave proinflammatory cytokines, including several interleukins. On the other hand, NETs play a role in corneal diseases, such as dry eye disease and ocular graft-versus-host disease, where they promote acinar atrophy and delayed wound healing. Additionally, NET levels positively correlate with increased severity of uveitis. NETs have also been described in the context of diabetic retinopathy. Although increased NET biomarkers are associated with an increased risk of the disease, NETs also assist in the elimination of pathological blood vessels and the regeneration of normal vessels. Targeting NET pathways for the treatment of ocular diseases has shown promising outcomes; however, more studies are still needed in this regard. In this article, we summarize the literature on the protective roles of NETs in the eye. Then, we describe their pathogenetic effects in ocular diseases, including those of the cornea, uvea, and retinal blood vessels. Finally, we describe the therapeutic implications of targeting NETs in such conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.Z.A.); (H.S.); (S.A.); (M.A.-S.); (A.M.E.-S.); (K.A.)
| |
Collapse
|
17
|
Bohlen J, Gomez C, Zhou J, Martinez Guasch F, Wandvik C, Sunshine SB. Molecular Biomarkers in Ocular Graft-versus-Host Disease: A Systematic Review. Biomolecules 2024; 14:102. [PMID: 38254702 PMCID: PMC10813443 DOI: 10.3390/biom14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/03/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Ocular graft-versus-host disease (oGVHD) affects ~50% of post-stem cell transplant patients and is the only form of GVHD diagnosed without a biopsy. As it must be distinguished from other dry eye diseases, there is a need to identify oGVHD biomarkers to improve diagnosis and treatment. We conducted a systematic review of 19 scholarly articles published from 2018 to 2023 including articles focused on adult patients diagnosed with oGVHD following allogeneic hematopoietic stem cell transplant and used biomarkers as the outcome measure. Articles that were not original investigations or were not published in English were excluded. These clinical investigations explored different molecular oGVHD biomarkers and were identified on 3 October 2023 from the Scopus, PubMed, and Embase databases by using search terms including ocular graft-versus-host disease, biomarkers, cytokines, proteomics, genomics, immune response, imaging techniques, and dry-eye-related key terms. The Newcastle-Ottawa scale for case-control studies was used to assess bias. From the 19 articles included, cytokine, proteomic, lipid, and leukocyte profiles were studied in tear film, as well as ocular surface microbiota and fluorescein staining. Our findings suggest that cytokine profiling is the most studied oGVHD biomarker. Additionally, variations correlating these biomarkers with disease state may lead to a more targeted diagnosis and therapeutic approach. Limitations include language bias, publication bias, and sampling bias, as well as a lack of appropriate controls for included studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarah Brem Sunshine
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.B.); (C.G.); (J.Z.); (F.M.G.); (C.W.)
| |
Collapse
|
18
|
Nair S, Vanathi M. Ocular graft versus host disease. Indian J Ophthalmol 2024; 72:149-150. [PMID: 38131598 PMCID: PMC10841777 DOI: 10.4103/ijo.ijo_2884_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Sridevi Nair
- Cornea, Cataract and Refractive Surgery Services, Dr R P Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Murugesan Vanathi
- Cornea, Cataract and Refractive Surgery Services, Dr R P Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Song D, Yang Q, Li X, Chen K, Tong J, Shen Y. The role of the JAK/STAT3 signaling pathway in acquired corneal diseases. Exp Eye Res 2024; 238:109748. [PMID: 38081573 DOI: 10.1016/j.exer.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Acquired corneal diseases such as dry eye disease (DED), keratitis and corneal alkali burns are significant contributors to vision impairment worldwide, and more effective and innovative therapies are urgently needed. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway plays an indispensable role in cell metabolism, inflammation and the immune response. Studies have shown that regulators of this pathway are extensively expressed in the cornea, inducing significant activation of JAK/STAT3 signaling in specific acquired corneal diseases. The activation of JAK/STAT3 signaling contributes to various pathophysiological processes in the cornea, including inflammation, neovascularization, fibrosis, and wound healing. In the context of DED, the hypertonic environment activates JAK/STAT3 signaling to stimulate corneal inflammation. Inflammation and injury progression in infectious keratitis can also be modulated by JAK/STAT3 signaling. Furthermore, JAK/STAT3 signaling is involved in every stage of corneal repair after alkali burns, including acute inflammation, angiogenesis and fibrosis. Treatments modulating JAK/STAT3 signaling have shown promising results in attenuating corneal damage, indicating its potential as a novel therapeutic target. Thus, this review emphasizes the multiple roles of the JAK/STAT3 signaling pathway in common acquired corneal disorders and summarizes the current achievements of JAK/STAT3-targeting therapy to provide new insights into future applications.
Collapse
Affiliation(s)
- Dongjie Song
- Department of Ophthalmology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Lai KKH, Liao X, Aljufairi FMAA, Wong YM, Chiu JT, Mak HT, Cheng ACO, Chin JKY, Chu BCY, Kwong CH, Li KKW, Chan WH, Yip WWK, Young AL, Chan E, Ko CKL, Ko STC, Chan CKM, Yuen HKL, Chen LJ, Tham CC, Pang CP, Chong KKL. Ocular Surface Evaluation in Immunoglobulin G4-Related Ophthalmic Disease. Am J Ophthalmol 2023; 256:90-96. [PMID: 37544494 DOI: 10.1016/j.ajo.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE To evaluate the functional and structural changes of the meibomian glands and ocular surface in immunoglobulin G4-related ophthalmic disease (IgG4-ROD) patients. DESIGN Cross-sectional, matched case-control comparison study. METHODS This study included 64 patients with biopsy-proven IgG4-ROD (aged 63.4 ± 12.2 years, 39 male) and 64 sex- and age-matched healthy controls. Patients were managed by hospitals covering the publicly funded ophthalmology service in Hong Kong. Outcome measures included anterior segment examination and keratographic and meibographic imagings. RESULTS A total of 64 worst-affected eyes of the 64 IgG4-ROD patients were analyzed. Corneal fluorescein staining (P = .0187), lid margin telangiectasia (P = .0360), lid-parallel conjunctival folds (P = .0112), papillae (P = .0393), meibomian gland plugging (P = .0001), meibomian gland expressibility (P = .0001), and meibum quality (P = .0001) were more significant in IgG4-ROD patients compared with healthy controls. Both upper and lower meibomian gland dropouts (P = .001 and .0003), and tear meniscus height (P = .0001) were higher in IgG4-ROD patients. Non-invasive tear break-up time (NITBUT) (P = .0166) and Schirmer test results (P = .0243) were lower in IgG4-ROD patients. Upper (r = 0.336, P = .0140) meibomian gland dropouts and NITBUT (r = -0.293, P = .0497) were positively and negatively correlated with the IgG4-ROD onset age, respectively. The number of extraocular organ involvement was negatively correlated with the Schirmer test(r = -0.341, P = .0167). Lower NITBUT was found in IgG4-ROD eyes with lacrimal gland enlargement than in IgG4-ROD eyes without lacrimal gland enlargement radiologically (P < .0001). CONCLUSIONS IgG4-ROD patients showed features of both aqueous tear deficiency and evaporative dry eye disease. We recommend ocular surface evaluation to all patients newly diagnosed with IgG4-ROD. Further studies are warranted to clarify the mechanism of IgG4-related dry eye disease.
Collapse
Affiliation(s)
- Kenneth K H Lai
- From the Department of Ophthalmology (K.K.H.L., E.C., C.K.L.K., S.T.C.K.), Tung Wah Eastern Hospital, Hong Kong Special Administrative Region, China; Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xulin Liao
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Fatema Mohamed Ali Abdulla Aljufairi
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Ophthalmology (F.M.A.A.A.), Salmaniya Medical Complex, Government Hospitals, Bahrain
| | - Yiu Man Wong
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jamie T Chiu
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - H T Mak
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Andy C O Cheng
- Department of Ophthalmology (A.C.O.C.), Hong Kong Sanatorium & Hospital, Hong Kong Special Administrative Region, China
| | - Joyce K Y Chin
- Department of Ophthalmology and Visual Sciences (J.K.Y.C., W.W.K.Y., A.L.Y., L.J.C., C.C.T., K.K.L.C.), Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Benjamin C Y Chu
- Department of Ophthalmology (B.C.Y.C.), Grantham Hospital, Hong Kong Special Administrative Region, China
| | - Chi Ho Kwong
- Department of Ophthalmology (C.H.K.), Caritas Medical Center, Hong Kong Special Administrative Region, China
| | - Kenneth K W Li
- Department of Ophthalmology (K.K.W.L.), United Christian Hospital, Hong Kong Special Administrative Region, China
| | - W H Chan
- Department of Ophthalmology (W.H.C.), Tuen Mun Hospital, Hong Kong Special Administrative Region, China
| | - Wilson W K Yip
- Department of Ophthalmology and Visual Sciences (J.K.Y.C., W.W.K.Y., A.L.Y., L.J.C., C.C.T., K.K.L.C.), Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences (J.K.Y.C., W.W.K.Y., A.L.Y., L.J.C., C.C.T., K.K.L.C.), Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Edwin Chan
- From the Department of Ophthalmology (K.K.H.L., E.C., C.K.L.K., S.T.C.K.), Tung Wah Eastern Hospital, Hong Kong Special Administrative Region, China
| | - Callie K L Ko
- From the Department of Ophthalmology (K.K.H.L., E.C., C.K.L.K., S.T.C.K.), Tung Wah Eastern Hospital, Hong Kong Special Administrative Region, China
| | - Simon T C Ko
- From the Department of Ophthalmology (K.K.H.L., E.C., C.K.L.K., S.T.C.K.), Tung Wah Eastern Hospital, Hong Kong Special Administrative Region, China
| | - Carmen K M Chan
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Hong Kong Eye Hospital (C.K.M.C., H.K.L.Y., C.C.T., K.K.L.C.), Hong Kong Special Administrative Region, China
| | - Hunter K L Yuen
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Hong Kong Eye Hospital (C.K.M.C., H.K.L.Y., C.C.T., K.K.L.C.), Hong Kong Special Administrative Region, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Ophthalmology and Visual Sciences (J.K.Y.C., W.W.K.Y., A.L.Y., L.J.C., C.C.T., K.K.L.C.), Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Ophthalmology and Visual Sciences (J.K.Y.C., W.W.K.Y., A.L.Y., L.J.C., C.C.T., K.K.L.C.), Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Eye Hospital (C.K.M.C., H.K.L.Y., C.C.T., K.K.L.C.), Hong Kong Special Administrative Region, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelvin K L Chong
- Department of Ophthalmology and Visual Sciences (K.K.,H.L., X.L., F.M.A.A.A., Y.M.W., J.T.C., H.T.M., C.K.M.C., H.K.L.Yl, L.J.C., C.C.T., C.P.P., K.K.L.C.), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Ophthalmology and Visual Sciences (J.K.Y.C., W.W.K.Y., A.L.Y., L.J.C., C.C.T., K.K.L.C.), Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Eye Hospital (C.K.M.C., H.K.L.Y., C.C.T., K.K.L.C.), Hong Kong Special Administrative Region, China.
| |
Collapse
|
21
|
Goldberg I, Granot G, Telerman A, Partouche S, Shochat T, Halperin E, Gafter-Gvili A, Shargian L, Yeshurun M, Raanani P, Wolach O, Yahalom V. Extracorporeal photopheresis induces NETosis in neutrophils derived from patients with chronic graft-vs-host disease. J Clin Apher 2023; 38:615-621. [PMID: 37439388 DOI: 10.1002/jca.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Extracorporeal photopheresis (ECP) is considered an effective treatment for patients with chronic graft vs host disease (cGVHD) and demonstrates efficacy in ameliorating GVHD. The mechanism by which ECP acts against cGVHD is not fully understood. Preliminary observations have hinted at the potential involvement of neutrophil extracellular traps (NETs) formation in the pathogenesis of cGVHD. We aimed to assess the influence of ECP on the formation of NETs in patients with cGVHD as a potential mechanism in this setting. METHODS Patients treated with ECP for cGVHD at the Rabin Medical Center were included in this study. Blood samples were obtained at three different time points: before starting an ECP cycle, at the end of the first day of treatment, and 24 h following the initiation of the ECP treatment cycle. Neutrophils were harvested from all blood samples. NET formation was assessed by measurement of NET-bound specific neutrophil elastase activity and by immunofluorescence staining. RESULTS Six patients (two females and four males) with cGVHD were included in the study. We observed a significant increase in NET formation among all six patients following ECP. Net-bound specific neutrophil elastase activity was elevated from a median value of 2.23 mU/mL (interquartile range [IQR] 2.06-2.47 mU/mL) at baseline to a median value of 13.06 mU/mL (IQR 10.27-15.97 mU/mL) immediately after the treatment and to a peak median value of 14.73 mU/mL (IQR 9.6-22.38 mU/mL) 24 h following the initiation of the ECP cycle. A qualitative assessment of NET formation using immunofluorescence staining has demonstrated markedly increased expression of citrullinated histone H3, a marker of NET formation, following ECP treatment. CONCLUSIONS Our preliminary data indicate that ECP induces NET formation among patients with cGVHD. The contribution of increased NET formation to the therapeutic effect of cGVHD should be further investigated.
Collapse
Affiliation(s)
- Idan Goldberg
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine F - Recanati, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Galit Granot
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Alona Telerman
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Shirly Partouche
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Tzippy Shochat
- Statistical Consulting Unit, Beilinson Hospital, Rabin Medical Centre, Petah Tikva, Israel
| | - Erez Halperin
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Anat Gafter-Gvili
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine A, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Liat Shargian
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Yeshurun
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pia Raanani
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Wolach
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vered Yahalom
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
- Blood Services & Apheresis Institute, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
22
|
Li X, Xiao S, Filipczak N, Yalamarty SSK, Shang H, Zhang J, Zheng Q. Role and Therapeutic Targeting Strategies of Neutrophil Extracellular Traps in Inflammation. Int J Nanomedicine 2023; 18:5265-5287. [PMID: 37746050 PMCID: PMC10516212 DOI: 10.2147/ijn.s418259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
23
|
Nouralishahi A, Fazlinejad N, Pecho RDC, Zaidan HK, Kheradjoo H, Amin AH, Mohammadzadehsaliani S. Pathological role of inflammation in ocular disease progress and its targeting by mesenchymal stem cells (MSCs) and their exosome; current status and prospect. Pathol Res Pract 2023; 248:154619. [PMID: 37406377 DOI: 10.1016/j.prp.2023.154619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Because of their unique capacity for differentiation to a diversity of cell lineages and immunosuppressive properties, mesenchymal stem cells (MSC) are being looked at as a potential new treatment option in ophthalmology. The MSCs derived from all tissue sources possess immunomodulatory attributes through cell-to-cell contact and releasing a myriad of immunomodulatory factors (IL-10, TGF-β, growth-related oncogene (GRO), indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), interleukin 1 receptor antagonist (IL-1Ra), prostaglandin E2 (PGE2)). Such mediators, in turn, alter both the phenotype and action of all immune cells that serve a pathogenic role in the progression of inflammation in eye diseases. Exosomes from MSCs, as natural nano-particles, contain the majority of the bioactive components of parental MSCs and can easily by-pass all biological barriers to reach the target epithelial and immune cells in the eye without interfering with nearby parenchymal cells, thus having no serious side effects. We outlined the most recent research on the molecular mechanisms underlying the therapeutic benefits of MSC and MSC-exosome in the treatment of inflammatory eye diseases in the current article.
Collapse
Affiliation(s)
- Alireza Nouralishahi
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; KIMS Hospital, Oman
| | | | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
24
|
Soleimani M, Mahdavi Sharif P, Cheraqpour K, Koganti R, Masoumi A, Baharnoori SM, Salabati M, Djalilian AR. Ocular graft-versus-host disease (oGVHD): From A to Z. Surv Ophthalmol 2023; 68:697-712. [PMID: 36870423 PMCID: PMC10293080 DOI: 10.1016/j.survophthal.2023.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is a definitive therapy for a variety of disorders. One of the complications is acute graft-versus-host disease (aGVHD), which has a high mortality rate. Patients can also develop chronic graft-versus-host disease (cGVHD), a more indolent yet afflicting condition that affects up to 70% of patients. Ocular involvement (oGVHD) is one of the most prevalent presentations of cGVHD and can manifest as dry eye disease, meibomian gland dysfunction, keratitis, and conjunctivitis. Early recognition of ocular involvement using regular clinical assessments as well as robust biomarkers can aid in better management and prevention. Currently, the therapeutic strategies for the management of cGVHD, and oGVHD in particular, have mainly focused on the control of symptoms. There is an unmet need for translating the preclinical and molecular understandings of oGVHD into clinical practice. Herein, we have comprehensively reviewed the pathophysiology, pathologic features, and clinical characteristics of oGVHD and summarized the therapeutic landscape available to combat it. We also discuss the direction of future research regarding a more directed delineation of pathophysiologic underpinnings of oGVHD and the development of preventive interventions.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Pouya Mahdavi Sharif
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ahmad Masoumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mirataollah Salabati
- Department of Ophthalmology, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Chiang TL, Sun YC, Wu JH, Hsieh YT, Huang WL, Chen WL. The ocular graft-versus-host disease: the path from current knowledge to future managements. Eye (Lond) 2023; 37:1982-1992. [PMID: 36333534 PMCID: PMC10333261 DOI: 10.1038/s41433-022-02288-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Graft-versus-host disease (GVHD) is one of the major complications of allogenic haematopoietic stem cell transplantation (HSCT). The manifestation of ocular GVHD (oGVHD) is variable and may involve cornea, lacrimal gland, conjunctiva, eyelid, and/or nasolacrimal duct. We reviewed and summarized the current managements of oGVHD with specific focus on the emerging therapeutic advances. METHODS PubMed, Web of Science, and Google Scholar were searched for relevant literatures published within 20 years. Keywords used included "Graft-Versus-Host Disease", "GVHD", "ocular", "ocular surface", "ocular GVHD", "oGVHD", "dry eye", "keratitis", etc. RESULTS: Current managements of oGVHD can be classified into topical immunosuppressants, local tear-preservatory treatments, local non-pharmacological/surgical interventions, and systemic treatments. Additionally, some innovative therapies with promising treatment effects have been proposed, including topical target therapies, epitheliotrophic and neurotrophic treatments, recombinant DNase eye drops, mesenchymal stromal cell injection, and more. CONCLUSIONS Clinical managements of oGVHD are administered in a symptom-based, stepwise manner. The advances in innovative therapies may help improve clinical outcomes, and it is essential that physicians stay updated with these novel treatment options.
Collapse
Affiliation(s)
- Tung-Lin Chiang
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Sun
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jo-Hsuan Wu
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Ying-Tung Hsieh
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Lun Huang
- Department of Ophthalmology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
- Advanced Ocular Surface and Corneal Nerve Regeneration Centre, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
26
|
Wang L, Li S, Cai K, Xiao Y, Ye L. TLR7 Agonists Modulate the Activation of Human Conjunctival Epithelial Cells Induced by IL-1β via the ERK1/2 Signaling Pathway. Inflammation 2023:10.1007/s10753-023-01818-1. [PMID: 37154978 DOI: 10.1007/s10753-023-01818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
Conjunctival epithelia cells play an important role in the development of allergic reactions. TLR7 agonists have been shown in studies to increase the body's immunological tolerance by controlling the proportion of Th1/Th2 cells, although it is still unknown what impact this has on conjunctival epithelial cells. In this study, we examined the effect of TLR7 agonists on the inflammatory-activation of conjunctival epithelial cells induced by IL-1β. Quantitative PCR and ELISA analysis confirmed that TLR7 agonists could impair the proinflammatory cytokines released by the epithelia cells, whereas pro-inflammatory cytokines led to subsequent reactive oxygen species and neutrophil chemotaxis. Phosphorylation analysis and nucleocytoplasmic separation further confirmed that TLR7 agonists inhibit IL-1β-induced epithelia cells activation and ATP depletion via modulating the cytoplasmic residence of ERK1/2. Our finding indicated that TLR7 of conjunctival epithelia cells could be as a potent anti-inflammatory target for the ocular surface. And TLR7 agonists may become potential new drug for the treatment of allergic conjunctivitis.
Collapse
Affiliation(s)
- Ling Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Shixu Li
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Kaihong Cai
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Yu Xiao
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lin Ye
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China.
| |
Collapse
|
27
|
Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, Naschberger E, Schapher M, Schauer C, Schoen J, Stürzl M, Vitkov L, Wang H, Zlatar L, Schett GA, Pisetsky DS, Liu ML, Herrmann M, Knopf J. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ 2023; 30:861-875. [PMID: 36755071 PMCID: PMC9907214 DOI: 10.1038/s41418-023-01124-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/10/2023] Open
Abstract
Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Dölling
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Annika Heuer
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Mildred-Scheel Cancer Career Center Hamburg HaTriCS4, University Cancer Center Hamburg, Hamburg, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Gastroenterology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, Nürnberg, Germany
| | - Christine Schauer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, 5020, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg A Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David S Pisetsky
- Department of Medicine and Immunology and Medical Research Service, Duke University Medical Center and Veterans Administration Medical Center, Durham, NC, USA
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
28
|
Yagi H, Shimizu E, Yagi R, Uchino M, Kamoi M, Asai K, Tsubota K, Negishi K, Ogawa Y. Pediatric chronic graft-versus-host disease-related dry eye disease and the diagnostic association of potential clinical findings. Sci Rep 2023; 13:3575. [PMID: 36864106 PMCID: PMC9981701 DOI: 10.1038/s41598-023-30288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Pediatric graft-versus-host-disease (GVHD)-related dry eye disease (DED) is often overlooked due to a lack of subjective symptoms and reliable testing, leading to irreversible corneal damage. To study the clinical findings contributing to the accurate detection of pediatric GVHD-related DED, a retrospective study of pediatric patients treated with hematopoietic stem cell transplantation (HSCT) at Keio University Hospital between 2004 and 2017 was conducted. Association and diagnostic values of ophthalmological findings for DED were analyzed. Twenty-six patients who had no ocular complications before HSCT were included in the study. Eleven (42.3%) patients developed new-onset DED. The cotton thread test showed excellent diagnostic accuracy in detecting DED (area under the receiver operating curve, 0.96; sensitivity, 0.95; specificity, 0.85) with a cut-off of 17 mm, which was higher than the conventional threshold of 10 mm. Additionally, the presence of filamentary keratitis (FK) and pseudomembranous conjunctivitis (PC) were significantly associated with the diagnosis of DED (p value, 0.003 and 0.001 for FK and PC, respectively) and displayed good diagnostic performance (sensitivity, 0.46 and 0.54; specificity, 0.97 and 0.97 for FK and PC, respectively). In conclusion, the cotton thread test with a new threshold, the presence of PC and FK, could be helpful for promptly detecting pediatric GVHD-related DED.
Collapse
Affiliation(s)
- Hitomi Yagi
- Department of Ophthalmology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryuichiro Yagi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Miki Uchino
- Department of Ophthalmology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Mizuka Kamoi
- Department of Ophthalmology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Tsubota Laboratory, Inc, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
29
|
Ma J, Shen Z, Peng R, Li C, Zhao Y, Hu B, Hong J. Tear Cytokines Associated With Therapeutic Effects in Chronic Ocular Graft-Versus-Host Disease. Cornea 2023; 42:211-216. [PMID: 36582034 DOI: 10.1097/ico.0000000000003081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE The local application of antiinflammatory and immunosuppressive agents is an effective method for the treatment of ocular graft-versus-host disease (oGVHD); however, we noticed that some patients with oGVHD did not respond to topical therapy as well as many others. This study aimed to determine whether tear cytokines were associated with therapeutic effects in oGVHD. METHODS Forty patients with chronic oGVHD were enrolled and grouped as responders (n = 24) and nonresponders (n = 16) based on the clinical response to 1 month of topical treatment. Tear samples were collected from each participant before and after treatment, and the tear concentrations of 7 cytokines (IL-2, IL-6, IL-8, IL-10, IL-17A, TNF-α, and ICAM-1) were measured using microsphere-based immunoassay analysis. Differences between pretreatment and posttreatment tear samples were analyzed using the Wilcoxon test. RESULTS No significant differences in ophthalmic symptoms or cytokine levels were observed between responders and nonresponders at baseline. After 1 month of topical treatment, ocular surface parameters (including Ocular Surface Disease Index, National Institutes of Health eye score, best-corrected visual acuity, corneal fluorescein staining score, and fluorescein tear film break-up time) were significantly ameliorated in responders, but not in nonresponders. Moreover, none of the cytokines exhibited significant alteration in nonresponders, whereas the tear levels of IL-6 (P = 0.031) and IL-8 (P = 0.037) exhibited significant decreases in responding patients. CONCLUSIONS Our results revealed that tear IL-6 and IL-8 levels were significantly altered in response to topical oGVHD treatment.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China ; and
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Zhan Shen
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China ; and
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Rongmei Peng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China ; and
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chendi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China ; and
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yinghan Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China ; and
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bohao Hu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China ; and
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China ; and
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Cheng X, Huang R, Huang S, Fan W, Yuan R, Wang X, Zhang X. Recent advances in ocular graft-versus-host disease. Front Immunol 2023; 14:1092108. [PMID: 36761771 PMCID: PMC9905686 DOI: 10.3389/fimmu.2023.1092108] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Ocular graft-versus-host-disease (GVHD) remains a significant clinical complication after allogeneic hematopoietic stem cell transplantation. Impaired visual function, pain, and other symptoms severely affect affected individuals' quality of life. However, the diagnosis of and therapy for ocular GVHD involve a multidisciplinary approach and remain challenging for both hematologists and ophthalmologists, as there are no unified international criteria. Through an exploration of the complex pathogenesis of ocular GVHD, this review comprehensively summarizes the pathogenic mechanism, related tear biomarkers, and clinical characteristics of this disease. Novel therapies based on the mechanisms are also discussed to provide insights into the ocular GVHD treatment.
Collapse
Affiliation(s)
- Xianjing Cheng
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.,School of Medicine, Chongqing University, Chongqing, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Shiqin Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.,School of Medicine, Chongqing University, Chongqing, China.,Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
31
|
Hatano R, Itoh T, Otsuka H, Saeki H, Yamamoto A, Song D, Shirakawa Y, Iyama S, Sato T, Iwao N, Harada N, Aune TM, Dang NH, Kaneko Y, Yamada T, Morimoto C, Ohnuma K. Humanized anti-IL-26 monoclonal antibody as a novel targeted therapy for chronic graft-versus-host disease. Am J Transplant 2022; 22:2804-2820. [PMID: 35997569 DOI: 10.1111/ajt.17178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023]
Abstract
IL-26 is a Th17 cytokine, with its gene being absent in rodents. To characterize the in vivo immunological effects of IL-26 in chronic systemic inflammation, we used human IL26 transgenic (hIL-26Tg) mice and human umbilical cord blood mononuclear cells (hCBMC) in mouse allogeneic-graft-versus-host disease (GVHD) and chronic xenogeneic-GVHD model, respectively. Transfer of bone marrow and spleen T cells from hIL-26Tg mice into B10.BR mice resulted in GVHD progression, with clinical signs of tissue damage in multiple organs. IL-26 markedly increased neutrophil levels both in the GVHD-target tissues and peripheral blood. Expression levels of Th17 cytokines in hIL-26Tg mice-derived donor CD4 T cells were significantly increased, whereas IL-26 did not affect cytotoxic function of donor CD8 T cells. In addition, granulocyte-colony stimulating factor, IL-1β, and IL-6 levels were particularly enhanced in hIL-26Tg mice. We also developed a humanized neutralizing anti-IL-26 monoclonal antibody (mAb) for therapeutic use, and its administration after onset of chronic xenogeneic-GVHD mitigated weight loss and prolonged survival, with preservation of graft-versus-leukemia effect. Taken together, our data elucidate the in vivo immunological effects of IL-26 in chronic GVHD models and suggest that a humanized anti-IL-26 mAb may be a potential therapeutic agent for the treatment of chronic GVHD.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takumi Itoh
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Haruna Otsuka
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Harumi Saeki
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ayako Yamamoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Dan Song
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuki Shirakawa
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Satoshi Iyama
- Department of Hematology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Tsutomu Sato
- Department of Hematology, Toyama University Hospital, Toyama, Japan
| | - Noriaki Iwao
- Department of Hematology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nam H Dang
- Division of Hematology/Oncology, University of Florida, Gainesville, Florida, USA
| | | | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Saitama, Japan.,Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
32
|
Qiu Y, Hu B, Peng RM, Huang JF, Hong J. Tear Cytokines as Biomarkers for Acute Ocular Graft-Versus-Host Disease. Cornea 2022; 41:1405-1411. [PMID: 35184125 DOI: 10.1097/ico.0000000000002959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to analyze tear cytokine and complement levels in patients diagnosed with acute ocular graft-versus-host disease (oGVHD) and examine the consistency of these levels with the severity of clinical manifestations. METHODS Ten patients with acute oGVHD (20 eyes) were enrolled for the assessment of tear cytokine levels and ocular surface parameters, and 18 healthy people (36 eyes) were selected as the control group. The tear cytokine and complement levels were measured using microsphere-based immunoassay analysis. RESULTS The main clinical manifestations of acute oGVHD include eye redness, a large amount of purulent exudate, eye pain, and even false membranes. The levels of intercellular cell adhesion molecule-1, interleukin 6 (IL-6), interleukin 1 beta (IL-1β), interleukin 8, epidermal growth factor (EGF), interleukin 7 (IL-7), B-cell activating factor, granulocyte-macrophage colony-stimulating factor (GM-CSF), and complement in patients with acute oGVHD showed significant differences compared with those in normal people. Furthermore, the levels of IL-6, IL-1β, EGF, GM-CSF, IL-7, and C3a showed a stronger correlation with ocular surface parameters. CONCLUSIONS Our study was the first to enroll patients with acute oGVHD to assess tear cytokine levels as a method contributing to the diagnosis of acute oGVHD. In addition, it has been demonstrated that certain tear cytokines, including intercellular cell adhesion molecule-1, IL-6, IL-1β, interleukin 8, B-cell activating factor, GM-CSF, IL-7, EGF, and complement, may be new diagnostic biomarkers for acute oGVHD.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of Ophthalmology, Peking University Third Hospital, China; and
| | - Bohao Hu
- Department of Ophthalmology, Peking University Third Hospital, China; and
| | - Rong-Mei Peng
- Department of Ophthalmology, Peking University Third Hospital, China; and
| | | | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, China; and
| |
Collapse
|
33
|
The Inflammation Level and a Microbiological Analysis of the Anophthalmic Cavities of Unilateral Ocular Prosthesis Users: A Blind, Randomized Observational Study. Antibiotics (Basel) 2022; 11:antibiotics11111486. [PMID: 36358141 PMCID: PMC9686759 DOI: 10.3390/antibiotics11111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Irritation and biofilm adhesion are complaints associated with ocular prosthesis use. This study aimed to evaluate the effects of prosthesis repolishing on several conditions of anophthalmic volunteers. Participants were divided into two groups: intervention (IG, n = 10) and nonintervention (NIG, n = 6) groups. The anophthalmic cavity, contralateral eye, and prosthesis surface were evaluated at initial, day 15, and day 30 after repolishing. Microbiological analysis (colony-forming units), exfoliative cytology (conjunctiva inflammatory cells), sensory analysis (quantitative mechanical sensory test), tear production (Schirmer’s test), and conjunctival inflammation (clinical evaluation) were performed. Nonparametric tests were used to compare groups in the initial period and to analyze periods for the IG (p < 0.05). More microorganisms were formed in the anophthalmic socket and prosthesis than in the contralateral eye in the initial period. For IG, the anophthalmic cavity exhibited more microorganisms and inflammatory clinical signs in the initial period than at 15 and 30 after repolishing. The prosthesis showed greater accumulations of total bacteria and Candida albicans in the initial period than at 15 and 30 days after repolishing. The anophthalmic cavity had more palpebral inflammation than the contralateral eye. In conclusion, repolishing reduced the number of microorganisms and inflammatory signs over time.
Collapse
|
34
|
Ogawa Y, Dana R, Kim S, Jain S, Rosenblatt MI, Perez VL, Clayton JA, Alves M, Rocha EM, Amparo F, Seo KY, Wang Y, Shen J, Oh JY, Vanathi M, Nair S, Na KS, Riemens A, Sippel K, Soifer M, Wang S, Trindade M, Kim MK, Yoon CH, Yagi R, Hiratsuka R, Ogawa M, Shimizu E, Sato Y, Pflugfelder S, Tsubota K. Multicenter prospective validation study for international chronic ocular graft-versus-host disease consensus diagnostic criteria. Ocul Surf 2022; 26:200-208. [PMID: 36130695 DOI: 10.1016/j.jtos.2022.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE To validate the international chronic ocular graft-versus-host disease (GVHD) diagnostic criteria (ICCGVHD) compared to the National Institute of Health diagnostic criteria 2014 (NIH2014) for chronic ocular GVHD. METHODS Between 2013 and 2019, the study enrolled 233 patients with or without chronic ocular GVHD combined with the presence or absence of systemic chronic GVHD in an internationally prospective multicenter and observational cohort from 9 institutions. All patients were evaluated for four clinical parameters of ICCGVHD. RESULTS The relation between the ICCGVHD score (0-11) and NIH2014 eye score (0-4) was relatively high (r = 0.708, 95% CI: 0.637-0.767, p < 0.001). The sensitivity and specificity of ICCGVHD for NIH 2014 for 233 patients were 94.3% (95% CI: 89.6%-98.1%) and 71.7% (95% CI: 63.0-79.5%), respectively (cutoff value of the ICCGVHD score = 6). The positive predictive value was 77.1% (95% CI: 71.1%-82.1%), and the negative predictive value was 87.0% (95% CI:81.6-92.5%). For the patients with systemic GVHD (n = 171), the sensitivity and specificity were 94.2% and 67.2%, respectively (ICCGVHD-score cutoff value = 6). By receiver operating characteristic (ROC) curve analysis, the area under the curve (AUC) was 0.903 (95% CI: 0.859-0.948). For patients without systemic GVHD (n = 62), the sensitivity and specificity were 100% and 76.7%, respectively (ICCGVHD-score cutoff value = 6). The AUC was 0.891 (95% CI 0.673-1.000). CONCLUSIONS Good sensitivity, specificity, predictive value and correlation were found between ICCGVHD and NIH2014. ICCGVHD scores ≥6 can be useful to diagnose ocular GVHD with or without systemic GVHD for clinical research.
Collapse
Affiliation(s)
- Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Reza Dana
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Massachusetts, USA
| | - Stella Kim
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center, Texas, USA; MD Anderson Cancer Center, Texas, USA
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, Illinois University Chicago, Illinois, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois University Chicago, Illinois, USA
| | - Victor L Perez
- Department of Ophthalmology, Bascom Parmer Institute, Miami, USA; Department of Ophthalmology, Duke University, North Carolina, USA
| | - Janine A Clayton
- Department of Ophthalmology, National Institute of Health, Maryland, USA
| | - Monica Alves
- Department of Ophthalmology, School of Medical Sciences University of Campinas, Campinas, Brazil
| | | | - Francisco Amparo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Massachusetts, USA
| | - Kyoung Yul Seo
- Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yan Wang
- Department of Ophthalmology, Fudan University, Eye and ENT Hospital, Shanghai, China
| | - Joanne Shen
- Department of Ophthalmology, Mayo Clinic, Arizona, USA
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| | - Murugesan Vanathi
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sridevi Nair
- Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kyung-Sun Na
- Department of Ophthalmology & Visual Science, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Anjo Riemens
- Department of Ophthalmology, University of Utrecht, Utrecht, the Netherlands
| | - Kimberly Sippel
- Department of Ophthalmology, Weill Cornell Medical School, New York, New York, USA
| | - Matias Soifer
- Department of Ophthalmology, Duke University, North Carolina, USA
| | - Shudan Wang
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Massachusetts, USA
| | - Marilia Trindade
- Department of Ophthalmology, School of Medical Sciences University of Campinas, Campinas, Brazil
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ryuichiro Yagi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ryo Hiratsuka
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Stephen Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Tsubota Laboratory, Inc., Tokyo, Japan
| |
Collapse
|
35
|
Ouyang W, Wang S, Hu J, Liu Z. Can the cGAS-STING Pathway Play a Role in the Dry Eye? Front Immunol 2022; 13:929230. [PMID: 35812407 PMCID: PMC9263829 DOI: 10.3389/fimmu.2022.929230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye is one of the most common ocular surface diseases in the world and seriously affects the quality of life of patients. As an immune-related disease, the mechanism of dry eye has still not been fully elucidated. The cGAS-STING pathway is a recently discovered pathway that plays an important role in autoimmune and inflammatory diseases by recognizing dsDNA. As an important signal to initiate inflammation, the release of dsDNA is associated with dry eye. Herein, we focused on the pathophysiology of the immune-inflammatory response in the pathogenesis of dry eye, attempted to gain insight into the involvement of dsDNA in the dry eye immune response, and investigated the mechanism of the cGAS-STING pathway involved in the immune-inflammatory response. We further proposed that the cGAS-STING pathway may participate in dry eye as a new mechanism linking dry eye and the immune-inflammatory response, thus providing a new direction for the mechanistic exploration of dry eye.
Collapse
Affiliation(s)
- Weijie Ouyang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Shoubi Wang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Xiamen University, Xiamen, China
- Xiamen Clinical Medical Center for Endocrine and Metabolic Diseases, Xiamen University, Xiamen, China
- Xiamen Diabetes Prevention and Treatment Center, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Diabetes Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiaoyue Hu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| |
Collapse
|
36
|
Li Y, Xie L, Song W, Huang M, Cheng Y, Chen S, Gao Y, Yan X. The Role of Neutrophil Extracellular Traps in the Ocular System. Curr Eye Res 2022; 47:1227-1238. [PMID: 35634655 DOI: 10.1080/02713683.2022.2079141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose: Neutrophils remain at the top of congenital and adaptive immune systems. The past 20 years witnessed a steep rise in the interest in neutrophil extracellular traps (NETs), which are a novel type of anti-pathogen mechanism coordinated with neutrophils. However, accumulating data revealed that excessive NETs in the host were associated with exacerbated inflammation, thrombosis, and autoimmunity. Increasing evidence found the participation of NETs in the pathophysiological process of many infectious and sterile diseases in the ocular system. Therefore, we discussed the role of neutrophil extracellular traps in the ocular system in this review.Methods: Articles were searched on PubMed, Embase and Web of science up to December 2021.Results: In this review, we exhibited the protective role of neutrophils patrolling the ocular surface from invading pathogens and their contribution to exacerbated inflammation and thrombogenesis in some ocular diseases. We also discussed the physiological and pathological processes of NET generation to identify novel biomarkers and therapeutic targets to interrupt immoderate NET formation and alleviate NET-induced harmful effects.Conclusions: Neutrophils and NETs are quite important for immune responses in the ocular system, while their negative effects on ocular tissue should also be emphasized, which could serve as novel biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Yingsi Li
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Luoying Xie
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Wenjing Song
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Meiting Huang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Shudi Chen
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yuan Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| |
Collapse
|
37
|
Li J, Liang Q, Huang F, Liao Y, Zhao W, Yang J, Wen X, Li X, Chen T, Guo S, Liang J, Wei L, Liang L. Metagenomic Profiling of the Ocular Surface Microbiome in Patients after Allogeneic Hematopoietic Stem Cell Transplantation: Ocular surface microbial dysbiosis and oGVHD. Am J Ophthalmol 2022; 242:144-155. [PMID: 35551905 DOI: 10.1016/j.ajo.2022.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the characteristics of the ocular surface microbiome in patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and the associations between the microbial dysbiosis and chronic ocular graft-versus-host disease (oGVHD). DESIGN Prospective cohort study. METHODS Ocular surface samples from 48 healthy subjects and 76 patients after allo-HSCT, including 50 patients with chronic oGVHD and 26 patients without oGVHD were collected. Species-level composition of the ocular surface microbiome was surveyed via metagenomic shotgun sequencing. OGVHD was diagnosed and graded according to the International Chronic Ocular GVHD (ICO) Consensus Group criteria. RESULTS The α-diversity of the microbiota was significantly decreased in patients after allo-HSCT. Nevertheless, we detected more types of viral species in the allo-HSCT group than the healthy group, especially anelloviruses. The mismatch of donor-recipient sex was only negatively associated with the α-diversity in male but not female recipients. Moreover, the microbiome of oGVHD patients was distinct from non-oGVHD patients. Gordonia bronchialis and Pseudomonas parafulva were enriched in oGVHD patients and positively associated with ICO score. CONCLUSIONS This study suggests that the ocular surface microbiome after allo-HSCT is characterized by a loss of diversity. Furthermore, the microbial dysbiosis at the ocular surface is associated with the status and severity of chronic oGVHD. These results lay the groundwork for future investigations of the potential microbial mechanism for oGVHD.
Collapse
|
38
|
The combination of four main components in Xuebijing injection improved the preventive effects of Cyclosporin A in acute graft-versus-host disease mice by protecting intestinal microenvironment. Pharmacotherapy 2022; 148:112675. [DOI: 10.1016/j.biopha.2022.112675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022]
|
39
|
Single-cell transcriptional profiling of murine conjunctival immune cells reveals distinct populations expressing homeostatic and regulatory genes. Mucosal Immunol 2022; 15:620-628. [PMID: 35361907 PMCID: PMC9262780 DOI: 10.1038/s41385-022-00507-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023]
Abstract
Immune cells in the exposed conjunctiva mucosa defend against environmental and microbial stresses. Expression profiling by single-cell RNA sequencing was performed to identify conjunctival immune cell populations expressing homeostatic and regulatory genes. Fourteen distinct clusters were identified, including myeloid cells (neutrophils, monocytes, macrophages), dendritic cells (DC), and lymphoid cells (B, T, γδT, ILC2, and NK) lineages. Novel neutrophil [lipocalin (Lcn2) high and low), and MHCIIlo macrophage (MP) clusters were identified. More than half of the cells map to myeloid and dendritic cell populations with differential expression profiles that include genes with homeostatic and regulatory functions: Serpinb2 (MHCIIlo macrophage), Apoe (monocyte), Cd209a (macrophage), Cst3 (cDC1), and IL4i1 in migratory DC (mDC). ILC2 expresses the goblet cell trophic factor IL-13. Suppressed inflammatory and activated anti-inflammatory/regulatory pathways were observed in certain myeloid and DC populations. Confocal immunolocalization of identity markers showed mDC (CCR7, FASCIN1) located on or within the conjunctival epithelium. Monocyte, macrophage, cDC1 and IL-13/IL-5+ ILC2 were located below the conjunctival epithelium and goblet cells. This study found distinct immune cell populations in the conjunctiva and identified cells expressing genes with known homeostatic and immunoregulatory functions.
Collapse
|
40
|
Fingerhut L, Yücel L, Strutzberg-Minder K, von Köckritz-Blickwede M, Ohnesorge B, de Buhr N. Ex Vivo and In Vitro Analysis Identify a Detrimental Impact of Neutrophil Extracellular Traps on Eye Structures in Equine Recurrent Uveitis. Front Immunol 2022; 13:830871. [PMID: 35251020 PMCID: PMC8896353 DOI: 10.3389/fimmu.2022.830871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Equine recurrent uveitis (ERU) is a common ocular disease of horses and described as a model for human autoimmune uveitis. This immune-mediated, inflammatory condition progressively destroys the eye, ultimately leading to blindness. Genetic and autoimmune factors, next to infections with Leptospira, are discussed as key factors in the pathogenesis. Furthermore, a release of neutrophil extracellular traps (NETs) by activated neutrophils is involved. NETs are composed of decondensed chromatin and proteins that can immobilize invading pathogens. However, if NETs accumulate, they can contribute to detrimental autoimmune processes. Thus, we aimed to investigate the impact of NETs in ERU patients. Therefore, we quantified several NET-markers (cell-free DNA, nucleosomes, citrullinated histone H3, histone-myeloperoxidase complexes, interleukin-17, equine cathelicidin 1 and DNase I activity) and NET-autoantibodies in sera and vitreous body fluids (VBF) of ERU-diseased horses and correlated the data with the disease status (signalment, ERU scores and Leptospira infection status). NET markers were detected to varying degrees in VBF of diseased horses, and partially correlated to disease severity and the presence of Leptospira spp. Cell-free DNA and nucleosomes as NET markers correlate with ERU severity in total and VBF scores, despite the presence of active DNases. Additionally, a significant correlation between fundus affection in the eye and NET autoantibodies was detectable. Therefore, we further investigated the influence of VBF samples from equine patients and isolated NETs on the blood-retina barrier in a cell culture model. VBF of diseased horses significantly induced cytotoxicity in retinal pigment epithelial cells. Moreover, partially digested NETs also resulted in cytotoxic effects. In the presence of lipopolysaccharide (LPS), the main component of the leptospiral surface, both undigested and completely digested NETs were cytotoxic. Correlations between the ERU-scores and Leptospira were also calculated. Detection of leptospiral DNA, and antibody titers of the serovar Grippotyphosa correlated with disease severity. In addition, a correlation between Leptospira and several NET markers was observed in VBF. Altogether, our findings suggest a positive correlation between NET markers with disease severity and involvement of Leptospira in the VBF of ERU-diseased horses, as well as a cytotoxic effect of NETs in eyes.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leyla Yücel
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bernhard Ohnesorge
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
41
|
Martínez-Alberquilla I, Gasull X, Pérez-Luna P, Seco-Mera R, Ruiz-Alcocer J, Crooke A. Neutrophils and neutrophil extracellular trap components: Emerging biomarkers and therapeutic targets for age-related eye diseases. Ageing Res Rev 2022; 74:101553. [PMID: 34971794 DOI: 10.1016/j.arr.2021.101553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Age-related eye diseases, including dry eye, glaucoma, age-related macular degeneration, and diabetic retinopathy, represent a major global health issue based on their increasing prevalence and disabling action. Unraveling the molecular mechanisms underlying these diseases will provide novel opportunities to reduce the burden of age-related eye diseases and improve eye health, contributing to sustainable development goals achievement. The impairment of neutrophil extracellular traps formation/degradation processes seems to be one of these mechanisms. These traps formed by a meshwork of DNA and neutrophil cytosolic granule proteins may exacerbate the inflammatory response promoting chronic inflammation, a pivotal cause of age-related diseases. In this review, we describe current findings that suggest the role of neutrophils and their traps in the pathogenesis of the above-mentioned age-related eye diseases. Furthermore, we discuss why these cells and their constituents could be biomarkers and therapeutic targets for dry eye, glaucoma, age-related macular degeneration, and diabetic retinopathy. We also examine the therapeutic potential of some neutrophil function modulators and provide several recommendations for future research in age-related eye diseases.
Collapse
Affiliation(s)
- Irene Martínez-Alberquilla
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Pérez-Luna
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Seco-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Ruiz-Alcocer
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
42
|
Ling J, Chan BCL, Tsang MSM, Gao X, Leung PC, Lam CWK, Hu JM, Wong CK. Current Advances in Mechanisms and Treatment of Dry Eye Disease: Toward Anti-inflammatory and Immunomodulatory Therapy and Traditional Chinese Medicine. Front Med (Lausanne) 2022; 8:815075. [PMID: 35111787 PMCID: PMC8801439 DOI: 10.3389/fmed.2021.815075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Dry eye is currently one of the most common ocular surface disease. It can lead to ocular discomfort and even cause visual impairment, which greatly affects the work and quality of life of patients. With the increasing incidence of dry eye disease (DED) in recent years, the disease is receiving more and more attention, and has become one of the hot research fields in ophthalmology research. Recently, with the in-depth research on the etiology, pathogenesis and treatment of DED, it has been shown that defects in immune regulation is one of the main pathological mechanisms of DED. Since the non-specific and specific immune response of the ocular surface are jointly regulated, a variety of immune cells and inflammatory factors are involved in the development of DED. The conventional treatment of DED is the application of artificial tears for lubricating the ocular surface. However, for moderate-to-severe DED, treatment with anti-inflammatory drugs is necessary. In this review, the immunomodulatory mechanisms of DED and the latest research progress of its related treatments including Chinese medicine will be discussed.
Collapse
Affiliation(s)
- Jiawei Ling
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xun Gao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ping Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher Wai-Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Vitkov L, Muñoz LE, Schoen J, Knopf J, Schauer C, Minnich B, Herrmann M, Hannig M. Neutrophils Orchestrate the Periodontal Pocket. Front Immunol 2021; 12:788766. [PMID: 34899756 PMCID: PMC8654349 DOI: 10.3389/fimmu.2021.788766] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
The subgingival biofilm attached to tooth surfaces triggers and maintains periodontitis. Previously, late-onset periodontitis has been considered a consequence of dysbiosis and a resultant polymicrobial disruption of host homeostasis. However, a multitude of studies did not show "healthy" oral microbiota pattern, but a high diversity depending on culture, diets, regional differences, age, social state etc. These findings relativise the aetiological role of the dysbiosis in periodontitis. Furthermore, many late-onset periodontitis traits cannot be explained by dysbiosis; e.g. age-relatedness, attenuation by anti-ageing therapy, neutrophil hyper-responsiveness, and microbiota shifting by dysregulated immunity, yet point to the crucial role of dysregulated immunity and neutrophils in particular. Furthermore, patients with neutropenia and neutrophil defects inevitably develop early-onset periodontitis. Intra-gingivally injecting lipopolysaccharide (LPS) alone causes an exaggerated neutrophil response sufficient to precipitate experimental periodontitis. Vice versa to the surplus of LPS, the increased neutrophil responsiveness characteristic for late-onset periodontitis can effectuate gingiva damage likewise. The exaggerated neutrophil extracellular trap (NET) response in late-onset periodontitis is blameable for damage of gingival barrier, its penetration by bacteria and pathogen-associated molecular patterns (PAMPs) as well as stimulation of Th17 cells, resulting in further neutrophil activation. This identifies the dysregulated immunity as the main contributor to periodontal disease.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, Salzburg, Austria
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernd Minnich
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| |
Collapse
|
44
|
Katz EA, Sunshine S, Mun C, Sarwar M, Surenkhuu B, Pradeep A, Jain S. Combinatorial therapy with immunosuppressive, immunomodulatory and tear substitute eyedrops ("Triple Play") in Recalcitrant Immunological Ocular Surface Diseases. Ocul Surf 2021; 23:1-11. [PMID: 34768002 DOI: 10.1016/j.jtos.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE The current paradigm for therapy of recalcitrant ocular surface diseases (OSD) consists of a sequential, step-up treatment approach. A combinatorial topical therapy (anti-inflammatory/immunosuppressive [steroid] with immunomodulatory [pooled human immune globulin] and tear substitute [serum]) that simultaneously targets several immunological pathways may be more efficacious. This report evaluates if the combinatorial therapy resulted in clinical benefit in patients with recalcitrant OSD. METHODS We performed a retrospective case study of patients receiving topical, preservative-free, compounded formulations of steroids, pooled human immune globulin, and serum tears. Outcome measures included visual acuity, ocular surface disease index (OSDI), ocular discomfort score, subjective global assessment (SGA), corneal staining, conjunctival redness, and slit lamp photographs. RESULTS Patients consisted of one male and 11 females ranging in age from 27 to 87 years old. Pathologies included ocular graft-versus-host disease (n = 4), Sjögren's syndrome (n = 3), ocular cicatricial pemphigoid (n = 1), pemphigus vulgaris (n = 1), peripheral ulcerative keratitis (n = 1), Stevens-Johnson syndrome (n = 1), and giant papillary conjunctivitis (n = 1). All patients were "improved" or "much improved" on SGA after combinatorial therapy. There was a clinically meaningful reduction in OSDI, ocular discomfort, corneal staining, and conjunctival injection. Additionally, three patients had improvement in their visual acuity (one from 20/400 to 20/20). Adverse effects included increased intraocular pressure in two patients, presumably due to topical steroid use. CONCLUSIONS Combinatorial therapy provides clinical benefit by reducing the symptoms and signs in recalcitrant OSD. Our study provides the rationale for performing prospective clinical trials to evaluate the efficacy of combinatorial therapy for treating recalcitrant OSD.
Collapse
Affiliation(s)
- Eitan A Katz
- The University of Illinois at Chicago College of Medicine - Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Sarah Sunshine
- University of Maryland School of Medicine, Department of Ophthalmology and Visual Sciences, Baltimore, MD, USA; The Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christine Mun
- The University of Illinois at Chicago College of Medicine - Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Monazzah Sarwar
- University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Bayasgalan Surenkhuu
- The University of Illinois at Chicago College of Medicine - Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Anubhav Pradeep
- The University of Illinois at Chicago College of Medicine - Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Sandeep Jain
- The University of Illinois at Chicago College of Medicine - Illinois Eye and Ear Infirmary, Chicago, IL, USA.
| |
Collapse
|
45
|
Netting Gut Disease: Neutrophil Extracellular Trap in Intestinal Pathology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5541222. [PMID: 34712384 PMCID: PMC8548149 DOI: 10.1155/2021/5541222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/04/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Many gut disease etiologies are attributed to the presence of robust inflammatory cell recruitment. The recruitment of neutrophils plays a vital role in inflammatory infiltration. Neutrophils have various antimicrobial effector mechanisms, including phagocytosis, oxidative burst, and degranulation. It is suggested that neutrophils could release neutrophil extracellular traps (NETs) to kill pathogens. However, recent evidence indicates that neutrophil infiltration within the gut is associated with disrupted local immunological microenvironment and impaired epithelial barrier. Growing evidence implies that NETs are involved in the progression of many diseases, including cancer, diabetes, thrombosis, and autoimmune disease. Increased NET formation was found in acute or chronic conditions, including infection, sterile inflammation, cancer, and ischemia/reperfusion injury (IRI). Here, we present a comprehensive review of recent advances in the understanding of NETs, focusing on their effects in gut disease. We also discuss NETs as a potential therapeutic target in gut disease.
Collapse
|
46
|
Yang F, Hayashi I, Sato S, Saijo-Ban Y, Yamane M, Fukui M, Shimizu E, He J, Shibata S, Mukai S, Asai K, Ogawa M, Lan Y, Zeng Q, Hirakata A, Tsubota K, Ogawa Y. Eyelid blood vessel and meibomian gland changes in a sclerodermatous chronic GVHD mouse model. Ocul Surf 2021; 26:328-341. [PMID: 34715372 DOI: 10.1016/j.jtos.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate pathological changes in blood vessels and meibomian glands (MGs) in the eyelids of sclerodermatous chronic graft-versus-host disease (cGVHD) model mice. METHODS We used an established major histocompatibility complex compatible, multiple minor histocompatibility antigen-mismatched sclerodermatous cGVHD mouse model. Blood vessels and MGs of eyelids from allogeneic bone marrow transplantation (allo-BMT) recipient mice and syngeneic bone marrow transplantation (syn-BMT) recipient mice were assessed by histopathology, immunohistochemistry and transmission electron microscopy. Peripheral blood samples from the recipients were examined by flow cytometry. RESULTS Allo-BMT samples showed dilating, tortuous and branching vessels and shrunk MGs in the eyelids; showed significantly higher expression of VEGFR2 (p = 0.029), CD133 (p = 0.016), GFP (p = 0.006), and α-SMA (p = 0.029) in the peripheral MG area; showed endothelial damage and activation, fibrotic change, and immune cell infiltration into MGs compared with syn-BMT samples. Fewer Ki-67+ cells were observed in allo- and syn-BMT samples than in wild-type samples (p = 0.030). Ultrastructural changes including endothelial injury and activation, fibroblast activation, granulocyte degranulation, immune cell infiltration into MGs, and necrosis, apoptosis of MG basal cells were found in allo-BMT samples compared with syn-BMT samples. CONCLUSION A series of our studies indicated that cGVHD can cause eyelid vessel and MGs changes, including endothelial injury and activation, neovascularization, early fibrotic changes, immune cell infiltration, MG basal cell necrosis and apoptosis, and resultant MG atrophy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China
| | - Isami Hayashi
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Department of Ophthalmology, Kyorin University, School of Medicine, Tokyo, Japan
| | - Shinri Sato
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Yumiko Saijo-Ban
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Mio Yamane
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Masaki Fukui
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Jingliang He
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Shin Mukai
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Massachusetts, USA
| | - Kazuki Asai
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Mamoru Ogawa
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Yuqing Lan
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingyan Zeng
- Aier Eye Hosoital of Wuhan University, Wuhan, Hubei province, China
| | - Akito Hirakata
- Department of Ophthalmology, Kyorin University, School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Tsubota Laboratory, Inc., Tokyo, Japan.
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan.
| |
Collapse
|
47
|
Mun Y, Hwang JS, Shin YJ. Role of Neutrophils on the Ocular Surface. Int J Mol Sci 2021; 22:10386. [PMID: 34638724 PMCID: PMC8508808 DOI: 10.3390/ijms221910386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
The ocular surface is a gateway that contacts the outside and receives stimulation from the outside. The corneal innate immune system is composed of many types of cells, including epithelial cells, fibroblasts, natural killer cells, macrophages, neutrophils, dendritic cells, mast cells, basophils, eosinophils, mucin, and lysozyme. Neutrophil infiltration and degranulation occur on the ocular surface. Degranulation, neutrophil extracellular traps formation, called NETosis, and autophagy in neutrophils are involved in the pathogenesis of ocular surface diseases. It is necessary to understand the role of neutrophils on the ocular surface. Furthermore, there is a need for research on therapeutic agents targeting neutrophils and neutrophil extracellular trap formation for ocular surface diseases.
Collapse
Affiliation(s)
- Yongseok Mun
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (Y.M.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (Y.M.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (Y.M.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea
| |
Collapse
|
48
|
Delayed administration of ixazomib modifies the immune response and prevents chronic graft-versus-host disease. Bone Marrow Transplant 2021; 56:3049-3058. [PMID: 34556806 PMCID: PMC8636253 DOI: 10.1038/s41409-021-01452-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022]
Abstract
In this study, we aimed to modify the immune response in the long term after allogeneic bone marrow transplantation (allo-BMT) by using the proteasome inhibitor ixazomib (IXZ) at the late stages of the post-transplant period. This approach facilitated the immune reconstitution after transplantation. IXZ significantly prolonged survival and decreased the risk of chronic graft-versus-host disease (cGvHD) in two different murine models without hampering the graft-versus-leukemia (GvL) effect, as confirmed by bioluminescence assays. Remarkably, the use of IXZ was related to an increase of regulatory T cells both in peripheral blood and in the GvHD target organs and a decrease of effector donor T cells. Regarding B cells, IXZ treated mice had faster recovery of B cells in PB and of pre-pro-B cells in the bone marrow. Mice receiving ixazomib had a lower number of neutrophils in the GvHD target organs as compared to the vehicle group. In summary, delayed administration of IXZ ameliorated cGvHD while preserving GvL and promoted a pro-tolerogenic immune response after allo-BMT.
Collapse
|
49
|
National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbid forms report. Transplant Cell Ther 2021; 27:817-835. [PMID: 34217703 DOI: 10.1016/j.jtct.2021.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) can be associated with significant morbidity, in part because of nonreversible fibrosis, which impacts physical functioning (eye, skin, lung manifestations) and mortality (lung, gastrointestinal manifestations). Progress in preventing severe morbidity and mortality associated with chronic GVHD is limited by a complex and incompletely understood disease biology and a lack of prognostic biomarkers. Likewise, treatment advances for highly morbid manifestations remain hindered by the absence of effective organ-specific approaches targeting "irreversible" fibrotic sequelae and difficulties in conducting clinical trials in a heterogeneous disease with small patient numbers. The purpose of this document is to identify current gaps, to outline a roadmap of research goals for highly morbid forms of chronic GVHD including advanced skin sclerosis, fasciitis, lung, ocular and gastrointestinal involvement, and to propose strategies for effective trial design. The working group made the following recommendations: (1) Phenotype chronic GVHD clinically and biologically in future cohorts, to describe the incidence, prognostic factors, mechanisms of organ damage, and clinical evolution of highly morbid conditions including long-term effects in children; (2) Conduct longitudinal multicenter studies with common definitions and research sample collections; (3) Develop new approaches for early identification and treatment of highly morbid forms of chronic GVHD, especially biologically targeted treatments, with a special focus on fibrotic changes; and (4) Establish primary endpoints for clinical trials addressing each highly morbid manifestation in relationship to the time point of intervention (early versus late). Alternative endpoints, such as lack of progression and improvement in physical functioning or quality of life, may be suitable for clinical trials in patients with highly morbid manifestations. Finally, new approaches for objective response assessment and exploration of novel trial designs for small populations are required.
Collapse
|
50
|
Ogawa Y, Kawakami Y, Tsubota K. Cascade of Inflammatory, Fibrotic Processes, and Stress-Induced Senescence in Chronic GVHD-Related Dry Eye Disease. Int J Mol Sci 2021; 22:ijms22116114. [PMID: 34204098 PMCID: PMC8201206 DOI: 10.3390/ijms22116114] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/12/2023] Open
Abstract
Ocular graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation. Ocular GVHD affects recipients' visual function and quality of life. Recent advanced research in this area has gradually attracted attention from a wide range of physicians and ophthalmologists. This review highlights the mechanism of immune processes and the molecular mechanism, including several inflammation cascades, pathogenic fibrosis, and stress-induced senescence related to ocular GVHD, in basic spectrum topics in this area. How the disease develops and what kinds of cells participate in ocular GVHD are discussed. Although the classical immune process is a main pathological pathway in this disease, senescence-associated changes in immune cells and stem cells may also drive this disease. The DNA damage response, p16/p21, and the expression of markers associated with the senescence-associated secretory phenotype (SASP) are seen in ocular tissue in GVHD. Macrophages, T cells, and mesenchymal cells from donors or recipients that increasingly infiltrate the ocular surface serve as the source of increased secretion of IL-6, which is a major SASP driver. Agents capable of reversing the changes, including senolytic reagents or those that can suppress the SASP seen in GVHD, provide new potential targets for the treatment of GVHD. Creating innovative therapies for ocular GVHD is necessary to treat this intractable ocular disease.
Collapse
Affiliation(s)
- Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Correspondence: ; Tel.: +81-3-3353-1211
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|