1
|
Zhou D, Luo Y, Ma Q, Xu Y, Yao X. The characteristics of TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. Virulence 2024:2421987. [PMID: 39468707 DOI: 10.1080/21505594.2024.2421987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
The COVID-19 pandemic and large-scale administration of multiple SARS-CoV-2 vaccines have attracted global attention to the short-term and long-term effects on the human immune system. An analysis of the "traces" left by the body's T-cell immune response is needed, especially for the prevention and treatment of breakthrough infections and long COVID-19 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant infections. T-cell receptor complementarity determining region 3 (TCR CDR3) repertoire serves as a target molecule for monitoring the effects, mechanisms, and memory of the T-cell response. Furthermore, it has been extensively applied in the elucidation of the infectious mechanism and vaccine refinement of hepatitis B virus (HBV), influenza virus, human immunodeficiency virus (HIV), and SARS-CoV. Laboratories worldwide have utilized high-throughput sequencing (HTS) and scTCR-seq to characterize, share, and apply the TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. This article focuses on the comparative analysis of the diversity, clonality, V&J gene usage and pairing, CDR3 length, shared CDR3 sequences or motifs, and other characteristics of TCR CDR3 repertoire. These findings provide molecular targets for evaluating T-cell response effects and short-term and long-term impacts on the adaptive immune system following SARS-CoV-2 infection or vaccination and establish a comparative archive of T-cell response "traces."
Collapse
Affiliation(s)
- Dewei Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Clinical Laboratory, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Yan Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qingqing Ma
- Department of Central laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Kuijpers Y, Kaczorowska J, Picavet HSJ, de Zeeuw-Brouwer ML, Kuijer M, Slits I, Gijsbers E, Rutkens R, de Rond L, Verschuren WMM, Buisman AM. Health characteristics associated with persistence of SARS-CoV-2 antibody responses after repeated vaccinations in older persons over time: the Doetinchem cohort study. Immun Ageing 2024; 21:68. [PMID: 39407293 PMCID: PMC11476400 DOI: 10.1186/s12979-024-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/20/2024]
Abstract
BACKGROUND Older persons elicit heterogeneous antibody responses to vaccinations that generally are lower than those in younger, healthier individuals. As older age and certain comorbidities can influence these responses we aimed to identify health-related variables associated with antibody responses after repeated SARS-CoV-2 vaccinations and their persistence thereafter in SARS-CoV-2 infection-naïve and previously infected older persons. METHOD In a large longitudinal study of older persons of the general population 50 years and over, a sub-cohort of the longitudinal Doetinchem cohort study (n = 1374), we measured IgG antibody concentrations in serum to SARS-CoV-2 Spike protein (S1) and Nucleoprotein (N). Samples were taken following primary vaccination with BNT162b2 or AZD1222, pre- and post-vaccination with a third and fourth BNT162b2 or mRNA-1273 (Wuhan), and up to a year after a fifth BNT162b2 bivalent (Wuhan/Omicron BA.1) vaccine. Associations between persistence of antibody concentrations over time and age, sex, health characteristics including cardiometabolic and inflammatory diseases as well as a frailty index were tested using univariable and multivariable models. RESULTS The booster doses substantially increased anti-SARS-CoV-2 Spike S1 (S1) antibody concentrations in older persons against both the Wuhan and Omicron strains. Older age was associated with decreased antibody persistence both after the primary vaccination series and up to 1 year after the fifth vaccine dose. In infection-naïve persons the presence of inflammatory diseases was associated with an increased antibody response to the third vaccine dose (Beta = 1.53) but was also associated with reduced persistence over the 12 months following the fifth (bivalent) vaccine dose (Beta = -1.7). The presence of cardiometabolic disease was associated with reduced antibody persistence following the primary vaccination series (Beta = -1.11), but this was no longer observed after bivalent vaccination. CONCLUSION Although older persons with comorbidities such as inflammatory and cardiometabolic diseases responded well to SARS-CoV-2 booster vaccinations, they showed a reduced persistence of these responses. This might indicate that especially these more vulnerable older persons could benefit from repeated booster vaccinations.
Collapse
Affiliation(s)
- Yunus Kuijpers
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands.
| | - Joanna Kaczorowska
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - H Susan J Picavet
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Marjan Kuijer
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Irene Slits
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Esther Gijsbers
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Ryanne Rutkens
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Lia de Rond
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - W M Monique Verschuren
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, 3508 TC, The Netherlands
| | - Anne-Marie Buisman
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| |
Collapse
|
3
|
Zhou F, Vahokoski J, Langeland N, Cox RJ. Impact of ageing on homologous and human-coronavirus-reactive antibodies after SARS-CoV-2 vaccination or infection. NPJ Vaccines 2024; 9:37. [PMID: 38378953 PMCID: PMC10879087 DOI: 10.1038/s41541-024-00817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The endemic human coronaviruses (HCoVs) circulate worldwide yet remain understudied and unmitigated. The observation of elevated levels of HCoV reactive antibodies in COVID-19 patients highlights the urgent necessity of better understanding of HCoV specific immunity. Here, we characterized in-depth the de novo SARS-CoV-2 specific antibody responses and the boosting of HCoV-reactive antibodies after SARS-CoV-2 vaccination or infection in individuals up to 98 years old. All the vaccinees were home-dwelling with no documented SARS-CoV-2 infection before receiving the COVID-19 mRNA vaccine (BNT162b2). The first two vaccine doses elicited potent SARS-CoV-2 spike binding antibodies in individuals up to 80 years. The third dose largely boosted the previously low S2 domain binding and neutralizing antibodies in elderly 80-90 years old, but less so in those above 90 years. The endemic betacoronavirus (HKU1 and OC43) reactive antibodies were boosted in all vaccinees, although to a lesser extent in those above 80 years old. COVID-19 patients had potent elevation of alpha- and betacoronavirus (229E, NL63, HKU1 and OC43) reactive antibodies. In both patients and vaccinees, S2 domain specific antibody increases correlated with SARS-CoV-2 neutralizing and HCoV-reactive antibody responses in all ages, indicating S2 domain as a candidate for future universal coronavirus vaccine design.
Collapse
Affiliation(s)
- Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Juha Vahokoski
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospitalen, Bergen, Norway
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Platen L, Liao BH, Tellenbach M, Cheng CC, Holzmann-Littig C, Christa C, Dächert C, Kappler V, Bester R, Werz ML, Schönhals E, Platen E, Eggerer P, Tréguer L, Küchle C, Schmaderer C, Heemann U, Keppler OT, Renders L, Braunisch MC, Protzer U. Longitudinal SARS-CoV-2 neutralization of Omicron BA.1, BA.5 and BQ.1.1 after four vaccinations and the impact of breakthrough infections in haemodialysis patients. Clin Kidney J 2023; 16:2447-2460. [PMID: 38046025 PMCID: PMC10689143 DOI: 10.1093/ckj/sfad147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 12/05/2023] Open
Abstract
Background Individuals on haemodialysis (HD) are more vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than the general population due to end-stage kidney disease-induced immunosuppression. Methods A total of 26 HD patients experiencing SARS-CoV-2 infection after a third vaccination were matched 1:1 with 26 of 92 SARS-CoV-2-naïve patients by age, sex, dialysis vintage and immunosuppressive drugs receiving a fourth vaccination with a messenger RNA-based vaccine. A competitive surrogate neutralization assay was used to monitor vaccination success. To determine infection neutralization titres, Vero-E6 cells were infected with SARS-CoV-2 variants of concern (VoCs), Omicron sublineage BA.1, BA.5 and BQ.1.1. The 50% inhibitory concentration (IC50, serum dilution factor 1:x) was determined before, 4 weeks after and 6 months after the fourth vaccination. Results A total of 52 HD patients received four coronavirus disease 2019 (COVID-19) vaccinations and were followed up for a median of 6.3 months. Patient characteristics did not differ between the matched cohorts. Patients without a SARS-CoV-2 infection had a significant reduction of real virus neutralization capacity for all Omicron sublineages after 6 months (P < .001 each). Those patients with a virus infection did not experience a reduction in real virus neutralization capacity after 6 months. Compared with the other Omicron VoC, the BQ.1.1 sublineage had the lowest virus neutralization capacity. Conclusions SARS-CoV-2-naïve HD patients had significantly decreased virus neutralization capacity 6 months after the fourth vaccination, whereas patients with a SARS-CoV-2 infection had no change in neutralization capacity. This was independent of age, sex, dialysis vintage and immunosuppression. Therefore, in infection-naïve HD patients a fifth COVID-19 vaccination might be reasonable 6 months after the fourth vaccination.
Collapse
Affiliation(s)
- Louise Platen
- Department of Nephrology, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Bo-Hung Liao
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Myriam Tellenbach
- Department of Nephrology, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Cho-Chin Cheng
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christopher Holzmann-Littig
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
- TUM Medical Education Center, Technical University of Munich, School of Medicine, Munich, Germany
| | - Catharina Christa
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christopher Dächert
- Max von Pettenkofer Institute & Gene Center, Virology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Verena Kappler
- Department of Nephrology, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Maia Lucia Werz
- Department of Nephrology, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Emely Schönhals
- Department of Nephrology, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Eva Platen
- Kidney Center Eifel Dialyse, Mechernich, Germany
| | - Peter Eggerer
- KfH Kidney Center Harlaching, Munich-Harlaching, Germany
| | - Laëtitia Tréguer
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Claudius Küchle
- Department of Nephrology, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Uwe Heemann
- Department of Nephrology, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute & Gene Center, Virology, Ludwig Maximilian University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Lutz Renders
- Department of Nephrology, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- KfH Kidney Center, Traunstein, Germany
| | - Matthias Christoph Braunisch
- Department of Nephrology, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
- Institute of Virology, Helmholtz Munich, Munich, Germany
| |
Collapse
|
5
|
Bansal A. From rejection to the Nobel Prize: Karikó and Weissman's pioneering work on mRNA vaccines, and the need for diversity and inclusion in translational immunology. Front Immunol 2023; 14:1306025. [PMID: 38022662 PMCID: PMC10663363 DOI: 10.3389/fimmu.2023.1306025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Katalin Karikó and Drew Weissman were given the 2023 Nobel Prize in Physiology or Medicine for their findings of nucleoside base modifications that lead to the development of effective mRNA vaccines against COVID-19. This was a remarkable achievement, given that their initial manuscript was rejected by Nature and Science in 2005. The development of mRNA vaccines lagged for more than a decade for several reasons, including the lack of funding, the perceived risks of the technology, and the scepticism of many scientists. Furthermore, Karikó and Weissman's study appeared to be technical and difficult to understand. The COVID-19 pandemic, on the other hand, has shown the importance of mRNA vaccine technology. COVID-19 mRNA vaccines have been highly effective in preventing serious illness, hospitalization, and death. The Nobel Prize for Karikó and Weissman highlights the importance of perseverance, diversity, and inclusion in translational immunology. We need to build a more inclusive scientific community, where scientists from all backgrounds are supported and their work is valued. This will result in more scientific breakthroughs and better healthcare for everyone.
Collapse
Affiliation(s)
- Amit Bansal
- Bergen COVID-19 Research Group and Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Dalla Gasperina D, Veronesi G, Castelletti CM, Varchetta S, Ottolini S, Mele D, Ferrari G, Shaik AKB, Celesti F, Dentali F, Accolla RS, Forlani G. Humoral and Cellular Immune Response Elicited by the BNT162b2 COVID-19 Vaccine Booster in Elderly. Int J Mol Sci 2023; 24:13728. [PMID: 37762029 PMCID: PMC10530943 DOI: 10.3390/ijms241813728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Although the safety and efficacy of COVID-19 vaccines in older people are critical to their success, little is known about their immunogenicity among elderly residents of long-term care facilities (LTCFs). A single-center prospective cohort study was conducted: a total IgG antibody titer, neutralizing antibodies against Wild-type, Delta Plus, and Omicron BA.2 variants and T cell response, were measured eight months after the second dose of BNT162b2 vaccine (T0) and at least 15 days after the booster (T1). Forty-nine LTCF residents, with a median age of 84.8 ± 10.6 years, were enrolled. Previous COVID-19 infection was documented in 42.9% of the subjects one year before T0. At T1, the IgG titers increased up to 10-fold. This ratio was lower in the subjects with previous COVID-19 infection. At T1, IgG levels were similar in both groups. The neutralizing activity against Omicron BA.2 was significantly lower (65%) than that measured against Wild-type and Delta Plus (90%). A significant increase of T cell-specific immune response was observed after the booster. Frailty, older age, sex, cognitive impairment, and comorbidities did not affect antibody titers or T cell response. In the elderly sample analyzed, the BNT162b2 mRNA COVID-19 vaccine produced immunogenicity regardless of frailty.
Collapse
Affiliation(s)
- Daniela Dalla Gasperina
- Department of Medicine and Technological Innovation, University of Insubria, ASST Sette Laghi, 21100 Varese, Italy;
| | - Giovanni Veronesi
- Research Centre in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | | | - Stefania Varchetta
- Clinical Immunology-Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Sabrina Ottolini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Dalila Mele
- Microbiology and Molecular Virology Unit, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | | | - Amruth K. B. Shaik
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (A.K.B.S.); (R.S.A.)
| | - Fabrizio Celesti
- Center for Immuno-Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy;
| | - Francesco Dentali
- Department of Medicine and Surgery, University of Insubria, ASST Sette Laghi, 21100 Varese, Italy;
| | - Roberto S. Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (A.K.B.S.); (R.S.A.)
| | - Greta Forlani
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (A.K.B.S.); (R.S.A.)
| |
Collapse
|
7
|
Wolff ASB, Hansen L, Grytaas MA, Oftedal BE, Breivik L, Zhou F, Hufthammer KO, Sjøgren T, Olofsson JS, Trieu MC, Meager A, Jørgensen AP, Lima K, Greve-Isdahl Mohn K, Langeland N, Cox RJ, Husebye ES. Vaccination prevents severe COVID-19 outcome in patients with neutralizing type 1 interferon autoantibodies. iScience 2023; 26:107084. [PMID: 37346050 PMCID: PMC10251722 DOI: 10.1016/j.isci.2023.107084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
A hallmark of patients with autoimmune polyendocrine syndrome type 1 (APS-1) is serological neutralizing autoantibodies against type 1 interferons (IFN-I). The presence of these antibodies has been associated with severe course of COVID-19. The aims of this study were to investigate SARS-CoV-2 vaccine tolerability and immune responses in a large cohort of patients with APS-1 (N = 33) and how these vaccinated patients coped with subsequent infections. We report that adult patients with APS-1 were able to mount adequate SARS-CoV-2 spike-specific antibody responses after vaccination and observed no signs of decreased tolerability. Compared with age- and gender-matched healthy controls, patients with APS-1 had considerably lower peak antibody responses resembling elderly persons, but antibody decline was more rapid in the elderly. We demonstrate that vaccination protected patients with APS-1 from severe illness when infected with SARS-CoV-2 virus, overriding the systemic danger of IFN-I autoantibodies observed in previous studies.
Collapse
Affiliation(s)
- Anette S B Wolff
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Lena Hansen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | | | - Bergithe E Oftedal
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Lars Breivik
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Fan Zhou
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Karl Ove Hufthammer
- Centre for Clinical Research, Haukeland University Hospital, 5021 Bergen, Norway
| | - Thea Sjøgren
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Jan Stefan Olofsson
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Mai Chi Trieu
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Anthony Meager
- Biotherapeutics Group, The National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK
| | - Anders P Jørgensen
- Department of Endocrinology, Oslo University Hospital, 0372 Oslo, Norway
| | - Kari Lima
- Department of Paediatric Medicine, Oslo University Hospital, 0372 Oslo, Norway
- Department of Endocrinology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kristin Greve-Isdahl Mohn
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Nina Langeland
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Rebecca Jane Cox
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Eystein S Husebye
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
8
|
Bansal A, Trieu MC, Mohn KGI, Madsen A, Olofsson JS, Sandnes HH, Sævik M, Søyland H, Hansen L, Onyango TB, Tøndel C, Brokstad KA, Syre H, Riis ÅG, Langeland N, Cox RJ. Risk assessment and antibody responses to SARS-CoV-2 in healthcare workers. Front Public Health 2023; 11:1164326. [PMID: 37546332 PMCID: PMC10402899 DOI: 10.3389/fpubh.2023.1164326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023] Open
Abstract
Background Preventing infection in healthcare workers (HCWs) is crucial for protecting healthcare systems during the COVID-19 pandemic. Here, we investigated the seroepidemiology of SARS-CoV-2 in HCWs in Norway with low-transmission settings. Methods From March 2020, we recruited HCWs at four medical centres. We determined infection by SARS-CoV-2 RT-PCR and serological testing and evaluated the association between infection and exposure variables, comparing our findings with global data in a meta-analysis. Anti-spike IgG antibodies were measured after infection and/or vaccination in a longitudinal cohort until June 2021. Results We identified a prevalence of 10.5% (95% confidence interval, CI: 8.8-12.3) in 2020 and an incidence rate of 15.0 cases per 100 person-years (95% CI: 12.5-17.8) among 1,214 HCWs with 848 person-years of follow-up time. Following infection, HCWs (n = 63) mounted durable anti-spike IgG antibodies with a half-life of 4.3 months since their seropositivity. HCWs infected with SARS-CoV-2 in 2020 (n = 46) had higher anti-spike IgG titres than naive HCWs (n = 186) throughout the 5 months after vaccination with BNT162b2 and/or ChAdOx1-S COVID-19 vaccines in 2021. In a meta-analysis including 20 studies, the odds ratio (OR) for SARS-CoV-2 seropositivity was significantly higher with household contact (OR 12.6; 95% CI: 4.5-35.1) and occupational exposure (OR 2.2; 95% CI: 1.4-3.2). Conclusion We found high and modest risks of SARS-CoV-2 infection with household and occupational exposure, respectively, in HCWs, suggesting the need to strengthen infection prevention strategies within households and medical centres. Infection generated long-lasting antibodies in most HCWs; therefore, we support delaying COVID-19 vaccination in primed HCWs, prioritising the non-infected high-risk HCWs amid vaccine shortage.
Collapse
Affiliation(s)
- Amit Bansal
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | - Mai-Chi Trieu
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | - Kristin G. I. Mohn
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anders Madsen
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | - Jan Stefan Olofsson
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | | | - Marianne Sævik
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hanne Søyland
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lena Hansen
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | | | - Camilla Tøndel
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
| | - Karl Albert Brokstad
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | | | - Heidi Syre
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Åse Garløv Riis
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Nina Langeland
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rebecca Jane Cox
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
9
|
Verheul MK, Nijhof KH, de Zeeuw-Brouwer ML, Duijm G, Ten Hulscher H, de Rond L, Beckers L, Eggink D, van Tol S, Reimerink J, Boer M, van Beek J, Rots N, van Binnendijk R, Buisman AM. Booster Immunization Improves Memory B Cell Responses in Older Adults Unresponsive to Primary SARS-CoV-2 Immunization. Vaccines (Basel) 2023; 11:1196. [PMID: 37515012 PMCID: PMC10384172 DOI: 10.3390/vaccines11071196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The generation of a specific long-term immune response to SARS-CoV-2 is considered important for protection against COVID-19 infection and disease. Memory B cells, responsible for the generation of antibody-producing plasmablasts upon a new antigen encounter, play an important role in this process. Therefore, the induction of memory B cell responses after primary and booster SARS-CoV-2 immunizations was investigated in the general population with an emphasis on older adults. Participants, 20-99 years of age, due to receive the mRNA-1273 or BNT162b2 SARS-CoV-2 vaccine were included in the current study. Specific memory B cells were determined by ex vivo ELISpot assays. In a subset of participants, antibody levels, avidity, and virus neutralization capacity were compared to memory B cell responses. Memory B cells specific for both Spike S1 and receptor-binding domain (RBD) were detected in the majority of participants following the primary immunization series. However, a proportion of predominantly older adults showed low frequencies of specific memory B cells. Booster vaccination resulted in a large increase in the frequencies of S1- and RBD-specific memory B cells also for those in which low memory B cell frequencies were detected after the primary series. These data show that booster immunization is important for the generation of a memory B cell response, as a subset of older adults shows a suboptimal response to the primary SARS-CoV-2 immunization series. It is anticipated that these memory B cells will play a significant role in the immune response following viral re-exposure.
Collapse
Affiliation(s)
- Marije K Verheul
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Kim H Nijhof
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Geraly Duijm
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Hinke Ten Hulscher
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Lia de Rond
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Lisa Beckers
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Dirk Eggink
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Sophie van Tol
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Johan Reimerink
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Mardi Boer
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Josine van Beek
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Nynke Rots
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Rob van Binnendijk
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|