1
|
Liang D. Endovascular treatment of intracranial aneurysms: Past and present. J Cerebrovasc Endovasc Neurosurg 2024; 26:249-259. [PMID: 38247034 PMCID: PMC11449534 DOI: 10.7461/jcen.2024.e2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Intracranial aneurysm is common in stroke and, once rupturing, will cause disaster to patients. Nowadays, endovascular treatment has become a routine to reduce the risk of intracranial aneurysms rupture. Successive endovascular methods, like balloon-assisted coiling, stent-assisted coiling, and flow diversion, have become new choices for doctors. More and more doctors have been entering this field. Understanding the current general situation is crucial for more medical workers to learn the endovascular treatment of intracranial aneurysms. In the past, many devices and ideas about the treatment of intracranial aneurysms appeared. Although developing unceasingly, endovascular treatment still has some deficiencies to overcome. The advantages and drawbacks of current endovascular methods are discussed.
Collapse
Affiliation(s)
- Dongming Liang
- Department of Neurosurgery, Sun Yet-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
2
|
Kim S, Nowicki KW, Kohyama K, Mittal A, Ye S, Wang K, Fujii T, Rajesh S, Cao C, Mantena R, Barbuto M, Jung Y, Gross BA, Friedlander RM, Wagner WR. Development of an Injectable, ECM-Derivative Embolic for the Treatment of Cerebral Saccular Aneurysms. Biomacromolecules 2024; 25:4879-4890. [PMID: 39001820 PMCID: PMC11323012 DOI: 10.1021/acs.biomac.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Cerebral aneurysms are a source of neurological morbidity and mortality, most often as a result of rupture. The most common approach for treating aneurysms involves endovascular embolization using nonbiodegradable medical devices, such as platinum coils. However, the need for retreatment due to the recanalization of coil-treated aneurysms highlights the importance of exploring alternative solutions. In this study, we propose an injectable extracellular matrix-derived embolic formed in situ by Michael addition of gelatin-thiol (Gel-SH) and hyaluronic acid vinyl sulfone (HA-VS) that may be delivered with a therapeutic agent (here, RADA-SP) to fill and remodel aneurysmal tissue without leaving behind permanent foreign bodies. The injectable embolic material demonstrated rapid gelation under physiological conditions, forming a highly porous structure and allowing for cellular infiltration. The injectable embolic exhibited thrombogenic behavior in vitro that was comparable to that of alginate injectables. Furthermore, in vivo studies in a murine carotid aneurysm model demonstrated the successful embolization of a saccular aneurysm and extensive cellular infiltration both with and without RADA-SP at 3 weeks, with some evidence of increased vascular or fibrosis markers with RADA-SP incorporation. The results indicate that the developed embolic has inherent potential for acutely filling cerebrovascular aneurysms and encouraging the cellular infiltration that would be necessary for stable, chronic remodeling.
Collapse
Affiliation(s)
- Seungil Kim
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kamil W. Nowicki
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Neurosurgery, School of Medicine, Yale, New
Haven, Connecticut 06520, United States
| | - Keishi Kohyama
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Aditya Mittal
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sangho Ye
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kai Wang
- Discovery
Center for Musculoskeletal Recovery, Schoen
Adams Research Institute at Spaulding, Charlestown, Massachusetts 02115, United States
- Department
of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Taro Fujii
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shivbaskar Rajesh
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Catherine Cao
- Division
of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Rohit Mantena
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Marianna Barbuto
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Ri.MED
Foundation, Cardiac Tissue Engineering Laboratory, Ri.MED Foundation, Palermo 90133, Italy
- Department
of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo, Palermo 90133, Italy
| | - Youngmee Jung
- Center
for Biomaterials, Biomedical Research Institute, Korea Institute of
Science and Technology (KIST), Seoul 130-650, Republic
of Korea
- School of
Electrical and Electronic Engineering, YU-KIST
Institute, Yonsei University, Seoul 130-650 Republic of Korea
| | - Bradley A. Gross
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Robert M. Friedlander
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - William R. Wagner
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
3
|
Karadeli HH, Kuram E. Single Component Polymers, Polymer Blends, and Polymer Composites for Interventional Endovascular Embolization of Intracranial Aneurysms. Macromol Biosci 2024; 24:e2300432. [PMID: 37992206 DOI: 10.1002/mabi.202300432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Intracranial aneurysm is the abnormal focal dilation in brain arteries. When untreated, it can enlarge to rupture points and account for subarachnoid hemorrhage cases. Intracranial aneurysms can be treated by blocking the flow of blood to the aneurysm sac with clipping of the aneurysm neck or endovascular embolization with embolics to promote the formation of the thrombus. Coils or an embolic device are inserted endovascularly into the aneurysm via a micro-catheter to fill the aneurysm. Many embolization materials have been developed. An embolization coil made of soft and thin platinum wire called the "Guglielmi detachable coil" (GDC) enables safer treatment for brain aneurysms. However, patients may experience aneurysm recurrence because of incomplete coil filling or compaction over time. Unsatisfactory recanalization rates and incomplete occlusion are the drawbacks of endovascular embolization. So, the fabrication of new medical devices with less invasive surgical techniques is mandatory to enhance the long-term therapeutic performance of existing endovascular procedures. For this aim, the current article reviews polymeric materials including blends and composites employed for embolization of intracranial aneurysms. Polymeric materials used in embolic agents, their advantages and challenges, results of the strategies used to overcome treatment, and results of clinical experiences are summarized and discussed.
Collapse
Affiliation(s)
- Hasan Hüseyin Karadeli
- Department of Neurology, Istanbul Medeniyet University Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, 34722, Turkey
| | - Emel Kuram
- Department of Mechanical Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| |
Collapse
|
4
|
Li M, Jin M, Yang H. Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. Int J Biol Macromol 2024; 264:130764. [PMID: 38462100 DOI: 10.1016/j.ijbiomac.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.
Collapse
Affiliation(s)
- Minhao Li
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
5
|
Motta I, Soccio M, Guidotti G, Lotti N, Pasquinelli G. Hydrogels for Cardio and Vascular Tissue Repair and Regeneration. Gels 2024; 10:196. [PMID: 38534614 DOI: 10.3390/gels10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD), the leading cause of death globally, affects the heart and arteries with a variety of clinical manifestations, the most dramatic of which are myocardial infarction (MI), abdominal aortic aneurysm (AAA), and intracranial aneurysm (IA) rupture. In MI, necrosis of the myocardium, scar formation, and loss of cardiomyocytes result from insufficient blood supply due to coronary artery occlusion. Beyond stenosis, the arteries that are structurally and functionally connected to the cardiac tissue can undergo pathological dilation, i.e., aneurysmal dilation, with high risk of rupture. Aneurysms of the intracranial arteries (IAs) are more commonly seen in young adults, whereas those of the abdominal aorta (AAA) are predominantly seen in the elderly. IAs, unpredictably, can undergo rupture and cause life-threatening hemorrhage, while AAAs can result in rupture, internal bleeding and high mortality rate. In this clinical context, hydrogels, three-dimensional networks of water-seizing polymers, have emerged as promising biomaterials for cardiovascular tissue repair or protection due to their biocompatibility, tunable properties, and ability to encapsulate and release bioactive molecules. This review provides an overview of the current state of research on the use of hydrogels as an innovative platform to promote cardiovascular-specific tissue repair in MI and functional recovery or protection in aneurysmal dilation.
Collapse
Affiliation(s)
- Ilenia Motta
- Alma Mater Institute on Healthy Planet, University of Bologna, Via Massarenti 11, 40138 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
6
|
Jin D, Wang Q, Chan KF, Xia N, Yang H, Wang Q, Yu SCH, Zhang L. Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow. SCIENCE ADVANCES 2023; 9:eadf9278. [PMID: 37172097 PMCID: PMC10181194 DOI: 10.1126/sciadv.adf9278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The recent rise of swarming microrobotics offers great promise in the revolution of minimally invasive embolization procedure for treating aneurysm. However, targeted embolization treatment of aneurysm using microrobots has significant challenges in the delivery capability and filling controllability. Here, we develop an interventional catheterization-integrated swarming microrobotic platform for aneurysm on-demand embolization in physiological blood flow. A pH-responsive self-healing hydrogel doped with magnetic and imaging agents is developed as the embolic microgels, which enables long-term self-adhesion under biological condition in a controllable manner. The embolization strategy is initiated by catheter-assisted deployment of swarming microgels, followed by the application of external magnetic field for targeted aggregation of microrobots into aneurysm sac under the real-time guidance of ultrasound and fluoroscopy imaging. Mild acidic stimulus is applied to trigger the welding of microgels with satisfactory bio-/hemocompatibility and physical stability and realize complete embolization. Our work presents a promising connection between the design and control of microrobotic swarms toward practical applications in dynamic environments.
Collapse
Affiliation(s)
- Dongdong Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518071, Guangdong, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Qinglong Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Haojin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211000, China
| | - Simon Chun Ho Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
- Vascular and Interventional Radiology Foundation Clinical Science Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
- T-Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| |
Collapse
|
7
|
Zehtabi F, Montazerian H, Haghniaz R, Tseng K, Mohaghegh N, Mandal K, Zamanian B, Dokmeci MR, Akbari M, Najafabadi AH, Kim HJ, Khademhosseini A. Sodium Phytate-Incorporated Gelatin-Silicate Nanoplatelet Composites for Enhanced Cohesion and Hemostatic Function of Shear-Thinning Biomaterials. Macromol Biosci 2023; 23:e2200333. [PMID: 36287084 PMCID: PMC9851971 DOI: 10.1002/mabi.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Indexed: 01/22/2023]
Abstract
Shear-thinning biomaterials (STBs) based on gelatin-silicate nanoplatelets (SNs) are emerging as an alternative to conventional coiling and clipping techniques in the treatment of vascular anomalies. Improvements in the cohesion of STB hydrogels pave the way toward their translational application in minimally invasive therapies such as endovascular embolization repair. In the present study, sodium phytate (Phyt) additives are used to tune the electrostatic network of SNs-gelatin STBs, thereby promoting their mechanical integrity and facilitating injectability through standard catheters. We show that an optimized amount of Phyt enhances storage modulus by approximately one order of magnitude and reduces injection force by ≈58% without compromising biocompatibility and hydrogel wet stability. The Phyt additives are found to decrease the immune responses induced by SNs. In vitro embolization experiments suggest a significantly lower rate of failure in Phyt-incorporated STBs than in control groups. Furthermore, the addition of Phyt leads to accelerated blood coagulation (reduces clotting time by ≈45% compared to controls) due to the contributions of negatively charged phosphate groups, which aid in the prolonged durability of STB in coagulopathic patients. Therefore, the proposed approach is an effective method for the design of robust and injectable STBs for minimally invasive treatment of vascular malformations.
Collapse
Affiliation(s)
- Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Hossein Montazerian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Kaylee Tseng
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90007, United States
| | - Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Behnam Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | | | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| |
Collapse
|
8
|
Som A, Rosenboom JG, Chandler A, Sheth RA, Wehrenberg-Klee E. Image-guided intratumoral immunotherapy: Developing a clinically practical technology. Adv Drug Deliv Rev 2022; 189:114505. [PMID: 36007674 PMCID: PMC10456124 DOI: 10.1016/j.addr.2022.114505] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapy has revolutionized the contemporary oncology landscape, with durable responses possible across a range of cancer types. However, the majority of cancer patients do not respond to immunotherapy due to numerous immunosuppressive barriers. Efforts to overcome these barriers and increase systemic immunotherapy efficacy have sparked interest in the local intratumoral delivery of immune stimulants to activate the local immune response and subsequently drive systemic tumor immunity. While clinical evaluation of many therapeutic candidates is ongoing, development is hindered by a lack of imaging confirmation of local delivery, insufficient intratumoral drug distribution, and a need for repeated injections. The use of polymeric drug delivery systems, which have been widely used as platforms for both image guidance and controlled drug release, holds promise for delivery of intratumoral immunoadjuvants and the development of an in situ cancer vaccine for patients with metastatic cancer. In this review, we explore the current state of the field for intratumoral delivery and methods for optimizing controlled drug release, as well as practical considerations for drug delivery design to be optimized for clinical image guided delivery particularly by CT and ultrasound.
Collapse
Affiliation(s)
- Avik Som
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States
| | - Jan-Georg Rosenboom
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States; Department of Gastroenterology, Brigham and Women's Hospital, United States
| | - Alana Chandler
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States; Department of Gastroenterology, Brigham and Women's Hospital, United States
| | - Rahul A Sheth
- Department of Interventional Radiology, M.D. Anderson Cancer Center, United States
| | - Eric Wehrenberg-Klee
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States.
| |
Collapse
|
9
|
Ko G, Choi JW, Lee N, Kim D, Hyeon T, Kim HC. Recent progress in liquid embolic agents. Biomaterials 2022; 287:121634. [PMID: 35716628 DOI: 10.1016/j.biomaterials.2022.121634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022]
Abstract
Vascular embolization is a non-surgical procedure used to treat diseases or morbid conditions related to blood vessels, such as bleeding, arteriovenous malformation, aneurysm, and hypervascular tumors, through the intentional occlusion of blood vessels. Among various types of embolic agents that have been applied, liquid embolic agents are gaining an increasing amount of attention owing to their advantages in distal infiltration into regions where solid embolic agents cannot reach, enabling more extensive embolization. Meanwhile, recent advances in biomaterials and technologies have also contributed to the development of novel liquid embolic agents that can resolve the challenges faced while using the existing embolic materials. In this review, we briefly summarize the clinically used embolic agents and their applications, and then present selected research results that overcome the limitations of the embolic agents in use. Through this review, we suggest the required properties of liquid embolic agents that ensure efficacy, which can replace the existing agents, providing directions for the future development in this field.
Collapse
Affiliation(s)
- Giho Ko
- Center for Nanoparticle Research, Institute for Basic Spegcience (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan 15588, Republic of Korea.
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Spegcience (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hyo-Cheol Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
10
|
Overstreet DJ, Lee EJ, Pal A, Vernon BL. In situ crosslinking temperature-responsive hydrogels with improved delivery, swelling, and elasticity for endovascular embolization. J Biomed Mater Res B Appl Biomater 2022; 110:1911-1921. [PMID: 35262274 DOI: 10.1002/jbm.b.35048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
Endovascular embolization of cerebral aneurysms is a common approach for reducing the risk of often-fatal hemorrhage. However, currently available materials used to occlude these aneurysms provide incomplete filling (coils) or require a complicated, time-consuming delivery procedure (solvent-exchange precipitating polymers). The objective of this work was to develop an easily deliverable in situ forming hydrogel that can occlude the entire volume of an aneurysm. The hydrogel is formed by mixing a solution of a temperature-responsive polymer containing pendent thiol groups (poly(NIPAAm-co-cysteamine) or poly(NIPAAm-co-cysteamine-co-JAAm)) with a solution of poly(ethylene glycol) diacrylate (PEGDA). Incorporation of hydrophilic grafts of polyetheramine acrylamide (JAAm) in the temperature-responsive polymer caused weaker physical crosslinking, facilitated faster and more complete chemical crosslinking, and increased gel swelling. One formulation (30 wt % PNCJ20 + PEGDA) could be delivered for over 220 s after mixing, formed a strong and elastic hydrogel (G' > 6000 Pa) within 30 min and once set, maintained its shape and volume in a model aneurysm under flow. This gel represents a promising candidate water-based material utilizing both physical and chemical crosslinking that warrants further investigation as an embolic agent for saccular aneurysms.
Collapse
Affiliation(s)
- Derek J Overstreet
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| | - Elizabeth J Lee
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| | - Amrita Pal
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| | - Brent L Vernon
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
11
|
Kim S, Nowicki KW, Gross BA, Wagner WR. Injectable hydrogels for vascular embolization and cell delivery: The potential for advances in cerebral aneurysm treatment. Biomaterials 2021; 277:121109. [PMID: 34530233 DOI: 10.1016/j.biomaterials.2021.121109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Cerebral aneurysms are vascular lesions caused by the biomechanical failure of the vessel wall due to hemodynamic stress and inflammation. Aneurysmal rupture results in subarachnoid hemorrhage often leading to death or disability. Current treatment options include open surgery and minimally invasive endovascular options aimed at secluding the aneurysm from the circulation. Cerebral aneurysm embolization with appropriate materials is a therapeutic approach to prevent rupture and the resultant clinical sequelae. Metallic platinum coils are a typical, practical option to embolize cerebral aneurysms. However, the development of an alternative treatment modality is of interest because of poor occlusion permanence, coil migration, and coil compaction. Moreover, minimizing the implanted foreign materials during therapy is of importance not just to patients, but also to clinicians in the event an open surgical approach has to be pursued in the future. Polymeric injectable hydrogels have been investigated for transcatheter embolization and cell therapy with the potential for permanent aneurysm repair. This review focuses on how the combination of injectable embolic biomaterials and cell therapy may achieve minimally invasive remodeling of a degenerated cerebral artery with promise for superior outcomes in treatment of this devastating disease.
Collapse
Affiliation(s)
- Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kamil W Nowicki
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley A Gross
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Lim J, Choi G, Joo KI, Cha HJ, Kim J. Embolization of Vascular Malformations via In Situ Photocrosslinking of Mechanically Reinforced Alginate Microfibers using an Optical-Fiber-Integrated Microfluidic Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006759. [PMID: 33543521 DOI: 10.1002/adma.202006759] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Embolization, which is a minimally invasive endovascular treatment, is a safe and effective procedure for treating vascular malformations (e.g., aneurysms). Hydrogel microfibers obtained via spatiotemporally controllable in situ photocrosslinking exhibit great potential for embolizing aneurysms. However, this process is challenging because of the absence of biocompatible and morphologically stable hydrogels and the difficulty in continuously spinning the microfibers via in situ photocrosslinking in extreme endovascular environments such as those involving a tortuous geometry and high absorbance. A double-crosslinked alginate-based hydrogel with tantalum nanopowder (DAT) that exploits the synergistic effect of covalent crosslinking by visible-light irradiation and ionic crosslinking using Ca2+ , which is present in the blood, is developed in this study. Furthermore, an effective strategy to design and produce an optical-fiber-integrated microfluidic device (OFI-MD) that can continuously spin hydrogel microfibers via in situ photocrosslinking in extreme endovascular environments is proposed. As an embolic material, DAT exhibits promising characteristics such as radiopacity, nondissociation, nonswelling, and constant mechanical strength in blood, in addition to excellent cyto- and hemo-compatibilities. Using OFI-MD to spin DAT microfibers continuously can help fill aneurysms safely, uniformly, and completely within the endovascular simulator without generating microscopic fragments, which demonstrates its potential as an effective embolization strategy.
Collapse
Affiliation(s)
- Jongkyeong Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Geunho Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Kye Il Joo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Joonwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
13
|
Poupart O, Conti R, Schmocker A, Pancaldi L, Moser C, Nuss KM, Sakar MS, Dobrocky T, Grützmacher H, Mosimann PJ, Pioletti DP. Pulsatile Flow-Induced Fatigue-Resistant Photopolymerizable Hydrogels for the Treatment of Intracranial Aneurysms. Front Bioeng Biotechnol 2021; 8:619858. [PMID: 33553124 PMCID: PMC7855579 DOI: 10.3389/fbioe.2020.619858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
An alternative intracranial aneurysm embolic agent is emerging in the form of hydrogels due to their ability to be injected in liquid phase and solidify in situ. Hydrogels have the ability to fill an aneurysm sac more completely compared to solid implants such as those used in coil embolization. Recently, the feasibility to implement photopolymerizable poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogels in vitro has been demonstrated for aneurysm application. Nonetheless, the physical and mechanical properties of such hydrogels require further characterization to evaluate their long-term integrity and stability to avoid implant compaction and aneurysm recurrence over time. To that end, molecular weight and polymer content of the hydrogels were tuned to match the elastic modulus and compliance of aneurysmal tissue while minimizing the swelling volume and pressure. The hydrogel precursor was injected and photopolymerized in an in vitro aneurysm model, designed by casting polydimethylsiloxane (PDMS) around 3D printed water-soluble sacrificial molds. The hydrogels were then exposed to a fatigue test under physiological pulsatile flow, inducing a combination of circumferential and shear stresses. The hydrogels withstood 5.5 million cycles and no significant weight loss of the implant was observed nor did the polymerized hydrogel protrude or migrate into the parent artery. Slight surface erosion defects of 2–10 μm in depth were observed after loading compared to 2 μm maximum for non-loaded hydrogels. These results show that our fine-tuned photopolymerized hydrogel is expected to withstand the physiological conditions of an in vivo implant study.
Collapse
Affiliation(s)
- Oriane Poupart
- Laboratory of Biomechanical Orthopedics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Riccardo Conti
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Andreas Schmocker
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland.,Laboratory of Applied Photonics Devices, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Lucio Pancaldi
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Katja M Nuss
- Musculoskeletal Research Unit, Department of Molecular Mechanisms of Disease, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mahmut S Sakar
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tomas Dobrocky
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Pascal J Mosimann
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of Diagnostic and Interventional Neuroradiology, Alfried Krupp Hospital, Essen, Germany
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopedics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Poupart O, Schmocker A, Conti R, Moser C, Nuss KM, Grützmacher H, Mosimann PJ, Pioletti DP. In vitro Implementation of Photopolymerizable Hydrogels as a Potential Treatment of Intracranial Aneurysms. Front Bioeng Biotechnol 2020; 8:261. [PMID: 32318555 PMCID: PMC7146053 DOI: 10.3389/fbioe.2020.00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Intracranial aneurysms are increasingly being treated with endovascular therapy, namely coil embolization. Despite being minimally invasive, partial occlusion and recurrence are more frequent compared to open surgical clipping. Therefore, an alternative treatment is needed, ideally combining minimal invasiveness and long-term efficiency. Herein, we propose such an alternative treatment based on an injectable, radiopaque and photopolymerizable polyethylene glycol dimethacrylate hydrogel. The rheological measurements demonstrated a viscosity of 4.86 ± 1.70 mPa.s, which was significantly lower than contrast agent currently used in endovascular treatment (p = 0.42), allowing the hydrogel to be injected through 430 μm inner diameter microcatheters. Photorheology revealed fast hydrogel solidification in 8 min due to the use of a new visible photoinitiator. The addition of an iodinated contrast agent in the precursor contributed to the visibility of the precursor injection under fluoroscopy. Using a customized light-conducting microcatheter and illumination module, the hydrogel was implanted in an in vitro silicone aneurysm model. Specifically, in situ fast and controllable injection and photopolymerization of the developed hydrogel is shown to be feasible in this work. Finally, the precursor and the polymerized hydrogel exhibit no toxicity for the endothelial cells. Photopolymerizable hydrogels are expected to be promising candidates for future intracranial aneurysm treatments.
Collapse
Affiliation(s)
- Oriane Poupart
- Laboratory of Biomechanical Orthopedics, EPFL, Lausanne, Switzerland
| | - Andreas Schmocker
- Laboratory of Applied Photonics Devices, EPFL, Lausanne, Switzerland
- Department of Chemistry and Applied Biosciences, ETH, Zurich, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Riccardo Conti
- Department of Chemistry and Applied Biosciences, ETH, Zurich, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, EPFL, Lausanne, Switzerland
| | - Katja M. Nuss
- Musculoskeletal Research Unit, Department of Molecular Mechanisms of Disease, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Pascal J. Mosimann
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | | |
Collapse
|
15
|
Lord J, Britton H, Spain SG, Lewis AL. Advancements in the development on new liquid embolic agents for use in therapeutic embolisation. J Mater Chem B 2020; 8:8207-8218. [DOI: 10.1039/d0tb01576h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review covers the current state-of-the-art in the development of liquid embolics for therapeutic embolisation.
Collapse
Affiliation(s)
- Jasmine Lord
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - Hugh Britton
- Biocompatibles UK Ltd (a BTG International group company)
- Lakeview
- Camberley
- UK
| | | | - Andrew L. Lewis
- Biocompatibles UK Ltd (a BTG International group company)
- Lakeview
- Camberley
- UK
| |
Collapse
|
16
|
Hu J, Albadawi H, Oklu R, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A. Advances in Biomaterials and Technologies for Vascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901071. [PMID: 31168915 PMCID: PMC7014563 DOI: 10.1002/adma.201901071] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Indexed: 05/03/2023]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology used for the deliberate occlusion of blood vessels for the treatment of diseased or injured vasculature. A wide variety of embolic agents including metallic coils, calibrated microspheres, and liquids are available for clinical practice. Additionally, advances in biomaterials, such as shape-memory foams, biodegradable polymers, and in situ gelling solutions have led to the development of novel preclinical embolic agents. The aim here is to provide a comprehensive overview of current and emerging technologies in endovascular embolization with respect to devices, materials, mechanisms, and design guidelines. Limitations and challenges in embolic materials are also discussed to promote advancement in the field.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Brian W Chong
- Departments of Radiology and Neurological Surgery, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Amy R. Deipolyi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiological Sciences, Department of Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics, California Nanosystems Institute, University of California, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
17
|
Sun G, Feng C, Jiang C, Zhang T, Bao Z, Zuo Y, Kong M, Cheng X, Liu Y, Chen X. Thermo-responsive hydroxybutyl chitosan hydrogel as artery intervention embolic agent for hemorrhage control. Int J Biol Macromol 2017; 105:566-574. [DOI: 10.1016/j.ijbiomac.2017.07.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
|
18
|
Poursaid A, Jensen MM, Huo E, Ghandehari H. Polymeric materials for embolic and chemoembolic applications. J Control Release 2016; 240:414-433. [PMID: 26924353 PMCID: PMC5001944 DOI: 10.1016/j.jconrel.2016.02.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 12/18/2022]
Abstract
Percutaneous transcatheter embolization procedures involve the selective occlusion of blood vessels. Occlusive agents, referred to as embolics, vary in material characteristics including chemical composition, mechanical properties, and the ability to concurrently deliver drugs. Commercially available polymeric embolics range from gelatin foam to synthetic polymers such as poly(vinyl alcohol). Current systems under investigation include tunable, bioresorbable microspheres composed of chitosan or poly(ethylene glycol) derivatives, in situ gelling liquid embolics with improved safety profiles, and radiopaque embolics that are trackable in vivo. This article reviews commercially available materials used for embolization as well as polymeric materials that are under investigation.
Collapse
Affiliation(s)
- Azadeh Poursaid
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | - Eugene Huo
- Veterans Affairs Hospital, Salt Lake City, UT 84108, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
19
|
Doorschodt B, Brom H, de Vries A, Meers C, Jacobs M. In Vivo Evaluation of Customized Aortic Repair Using a Novel Survival Model. Eur J Vasc Endovasc Surg 2016; 52:166-72. [DOI: 10.1016/j.ejvs.2016.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/12/2016] [Indexed: 11/17/2022]
|
20
|
Nguyen QV, Lee MS, Lym JS, Kim YI, Jae HJ, Lee DS. pH-Sensitive sulfamethazine-based hydrogels as potential embolic agents for transcatheter vascular embolization. J Mater Chem B 2016; 4:6524-6533. [DOI: 10.1039/c6tb01690a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
After delivery through a catheter, a three-dimensional hydrogel network was formed upon the change of environmental pH, and thus block the targeted blood vessels, as presented in white color under the fluoroscopic angiogram.
Collapse
Affiliation(s)
- Quang Vinh Nguyen
- Theranostic Macromolecules Research Center and School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Myung Su Lee
- Department of Radiology
- Seoul National University Hospital
- Seoul
- Korea
| | - Jae Seung Lym
- Theranostic Macromolecules Research Center and School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Young Il Kim
- Department of Radiology
- Seoul National University Hospital
- Seoul
- Korea
| | - Hwan Jun Jae
- Department of Radiology
- Seoul National University Hospital
- Seoul
- Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| |
Collapse
|
21
|
Agusti G, Jordan O, Andersen G, Doelker É, Chevalier Y. Radiopaque iodinated ethers of poly(vinyl iodobenzyl ether)s: Synthesis and evaluation for endovascular embolization. J Appl Polym Sci 2014. [DOI: 10.1002/app.41791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Géraldine Agusti
- Laboratoire d'Automatique et de Génie des Procédés; Université de Lyon 1; 69622 Villeurbanne France
| | - Olivier Jordan
- School of Pharmaceutical Sciences; University of Geneva, University of Lausanne; 1211 Geneva 4 Switzerland
| | | | - Éric Doelker
- School of Pharmaceutical Sciences; University of Geneva, University of Lausanne; 1211 Geneva 4 Switzerland
| | - Yves Chevalier
- Laboratoire d'Automatique et de Génie des Procédés; Université de Lyon 1; 69622 Villeurbanne France
| |
Collapse
|
22
|
Du LR, Lu XJ, Guan HT, Yang YJ, Gu MJ, Zheng ZZ, Lv TS, Yan ZG, Song L, Zou YH, Fu NQ, Qi XR, Fan TY. Development and evaluation of liquid embolic agents based on liquid crystalline material of glyceryl monooleate. Int J Pharm 2014; 471:285-96. [DOI: 10.1016/j.ijpharm.2014.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 11/16/2022]
|
23
|
Weng L, Rostambeigi N, Zantek ND, Rostamzadeh P, Bravo M, Carey J, Golzarian J. An in situ forming biodegradable hydrogel-based embolic agent for interventional therapies. Acta Biomater 2013; 9:8182-91. [PMID: 23791672 DOI: 10.1016/j.actbio.2013.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/14/2022]
Abstract
We present here the characteristics of an in situ forming hydrogel prepared from carboxymethyl chitosan and oxidized carboxymethyl cellulose for interventional therapies. Gelation, owing to the formation of Schiff bases, occurred both with and without the presence of a radiographic contrast agent. The hydrogel exhibited a highly porous internal structure (pore diameter 17±4 μm), no cytotoxicity to human umbilical vein endothelial cells, hemocompatibility with human blood, and degradability in lysozyme solutions. Drug release from hydrogels loaded with a sclerosant, tetracycline, was measured at pH 7.4, 6 and 2 at 37°C. The results showed that tetracycline was more stable under acidic conditions, with a lower release rate observed at pH 6. An anticancer drug, doxorubicin, was loaded into the hydrogel and a cumulative release of 30% was observed over 78 h in phosphate-buffered saline at 37°C. Injection of the hydrogel precursor through a 5-F catheter into a fusiform aneurysm model was feasible, leading to complete filling of the aneurysmal sac, which was visualized by fluoroscopy. The levels of occlusion by hydrogel precursors (1.8% and 2.1%) and calibrated microspheres (100-300 μm) in a rabbit renal model were compared. Embolization with hydrogel precursors was performed without clogging and the hydrogel achieved effective occlusion in more distal arteries than calibrated microspheres. In conclusion, this hydrogel possesses promising characteristics potentially beneficial for a wide range of vascular intervention procedures that involve embolization and drug delivery.
Collapse
Affiliation(s)
- Lihui Weng
- Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kehoe S, Tremblay ML, Coughlan A, Towler MR, Rainey JK, Abraham RJ, Boyd D. Preliminary investigation of the dissolution behavior, cytocompatibility, effects of fibrinogen conformation and platelet adhesion for radiopaque embolic particles. J Funct Biomater 2013; 4:89-113. [PMID: 24956083 PMCID: PMC4030908 DOI: 10.3390/jfb4030089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/06/2013] [Accepted: 06/08/2013] [Indexed: 12/18/2022] Open
Abstract
Experimental embolic particles based on a novel zinc-silicate glass system have been biologically evaluated for potential consideration in transcatheter arterial embolization procedures. In addition to controlling the cytotoxicity and haemocompatibility for such embolic particles, its glass structure may mediate specific responses via dissolution in the physiological environment. In a 120 h in-vitro dissolution study, ion release levels for silicon (Si4+), sodium (Na+), calcium (Ca2+), zinc (Zn2+), titanium (Ti4+), lanthanum (La3+), strontium (Sr2+), and magnesium (Mg2+), were found to range from 0.04 to 5.41 ppm, 0.27-2.28 ppm, 2.32-8.47 ppm, 0.16-0.20 ppm, 0.12-2.15 ppm, 0.16-0.49 ppm and 0.01-0.12 ppm, respectively for the series of glass compositions evaluated. Initial release of Zn2+ (1.93-10.40 ppm) was only evident after 120 h. All compositions showed levels of cell viabilities ranging from 61.31 ± 4.33% to 153.7 ± 1.25% at 25%-100% serial extract dilutions. The conformational state of fibrinogen, known to induce thrombi, indicated that no changes were induced with respect of the materials dissolution by-products. Furthermore, the best-in-class experimental composition showed equivalency to contour PVA in terms of inducing platelet adhesion. The data generated here provides requisite evidence to continue to in-vivo pre-clinical evaluation using the best-in-class experimental composition evaluated.
Collapse
Affiliation(s)
- Sharon Kehoe
- Department of Applied Oral Sciences, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada.
| | | | - Aisling Coughlan
- Inamori School of Engineering, Alfred University, Alfred, NY 14802, USA.
| | - Mark R Towler
- Faculty of Engineering & Architectural Science, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, NS, B3H 4R2, Canada.
| | - Robert J Abraham
- Department of Diagnostic Imaging and Interventional Radiology, QE II Health Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Daniel Boyd
- Department of Applied Oral Sciences, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
25
|
Fatimi A, Chabrot P, Berrahmoune S, Coutu JM, Soulez G, Lerouge S. A new injectable radiopaque chitosan-based sclerosing embolizing hydrogel for endovascular therapies. Acta Biomater 2012; 8:2712-21. [PMID: 22487932 DOI: 10.1016/j.actbio.2012.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/16/2012] [Accepted: 04/02/2012] [Indexed: 12/17/2022]
Abstract
Endovascular repair of abdominal aortic aneurysms with a stent graft is limited by the persistence or recurrence of endoleaks. These are believed to be related to the recanalization of the aneurismal sac by endothelialized neochannels, which could lead to late type I and II endoleaks. Embolization has been proposed to treat or prevent endoleaks, but presently commercialized embolizing materials have several drawbacks and do not fully prevent endoleak recurrence. A novel chitosan hydrogel that is injectable, radiopaque and contains sodium tetradecyl sulfate (STS), a well-known sclerosing agent, was developed in order to combine blood flow occlusion and endothelium ablation properties. chitosan/STS hydrogels were characterized and optimized using rheometry, scanning electron microscopy, swelling and ex vivo embolization assay. They were shown to exhibit rapid gelation and good mechanical properties, as well as sclerosing properties. Their potential for the embolization of aneurysms was subjected to preliminary in vivo evaluation in a bilateral iliac aneurysm model (three dogs) reproducing persistent endoleaks after endovascular aneurysm repair (EVAR). At 3 months no endoleak was detected in any of the three aneurysms treated with chitosan/STS hydrogels. In contrast, type I endoleaks were detected in two of the three aneurysms treated with chitosan hydrogels. Generally, chitosan/STS hydrogels have great potential as embolizing and sclerosing agents for EVAR and possibly other endovascular therapies.
Collapse
Affiliation(s)
- Ahmed Fatimi
- École de technologie supérieure, Department of Mechanical Engineering, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Bosman WMPF, Hinnen JW, Kopp WH, van der Steenhoven TJ, Kaptein BL, Koning OHJ, Hamming JF. Influence of aneurysm wall stiffness and the presence of intraluminal thrombus on the wall movement of an aneurysm - an in vitro study. Vascular 2012; 20:203-9. [PMID: 22661613 DOI: 10.1258/vasc.2011.oa0324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this in vitro study was to investigate the influence of aneurysm wall stiffness and of the presence of intraluminal thrombus (ILT) on aneurysm wall movement. Three latex aneurysms were used with different wall stiffness. The aneurysms, equipped with 20 tantalum markers, were attached to an in vitro circulation model. Fluoroscopic roentgenographic stereo photogrammetric analysis was used to measure marker movement during six cardiac cycles at three different systemic pressures. To investigate the influence of ILT on wall movement, we repeated the same experiment with one of the aneurysms. The aneurysm sac was then filled with one of two E-moduli differing thrombus analogues (Novalyse 8 and 20) or with perfusate as a control. It was noted that the amplitude of the wall movement (mm) increased significantly (P < 0.05) as the compliance of the wall increased. The mean amplitude of the wall movement decreased (P < 0.05) as the stiffness (E-modulus) of the ILT increased. In conclusion, ILT has a 'cushioning effect'. Wall movement (and theoretically wall stress) diminishes when the stiffness of the ILT increases. Compliance of the aneurysm wall influences wall movement. When the stiffness of the wall increases, the wall movement diminishes.
Collapse
Affiliation(s)
- W M P F Bosman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Krievins D, Holden A, Savlovskis J, Calderas C, Donayre C, Moll F, Katzen B, Zarins C. EVAR Using the Nellix Sac-anchoring Endoprosthesis: Treatment of Favourable and Adverse Anatomy. Eur J Vasc Endovasc Surg 2011; 42:38-46. [DOI: 10.1016/j.ejvs.2011.03.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/04/2011] [Indexed: 11/28/2022]
|
28
|
Bosman WMPF, Hinnen JW, van der Steenhoven TJ, de Vries AC, Brom HLF, Jacobs MJ, Hamming JF. Treatment of Types II–IV Endoleaks by Injecting Biocompatible Elastomer (PDMS) in the Aneurysm Sac: An In Vitro Study. J Endovasc Ther 2011; 18:205-13. [DOI: 10.1583/10-3251.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Barnett BP, Gailloud P. Assessment of EmboGel--a selectively dissolvable radiopaque hydrogel for embolic applications. J Vasc Interv Radiol 2010; 22:203-11. [PMID: 21185201 DOI: 10.1016/j.jvir.2010.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 08/20/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To evaluate the embolic properties of an alginate-based embolic biomaterial (EmboGel) and its solvent (EmboClear) in treatment of aneurysms. MATERIALS AND METHODS EmboGel is a mixture of iohexol and alginate that polymerizes into a hydrocoil when delivered through a coaxial catheter with a distal mixing tip, exposing alginate to a calcium chloride solution. In contrast to previously reported embolic agents, EmboGel can be selectively dissolved by EmboClear, a mixture of the enzyme alginate lyase and ethylenediaminetetraacetic acid (EDTA). The embolic and contrast properties of EmboGel were assessed in in vitro models of saccular aneurysm and an aortic aneurysm endoleak. The dissolvability of EmboGel with EmboClear was assessed further after endovascular delivery in the New Zealand white rabbit in the native aortoiliofemoral territory, a created saccular aneurysm, and the native carotid arteries. RESULTS EmboGel effectively filled aneurysm cavities in the case of stent excluded saccular and fusiform aneurysms. EmboGel was readily dissolved by EmboClear in vitro and after in vivo embolization. When the distal abdominal aorta and pelvic arteries were occluded with EmboGel, within 1 minute of EmboClear infusion, patency of the aorta and most of the pelvic circulation was regained as noted by angiography. Embolization in the subclavian artery and numerous distal branches was rapidly dissolved by EmboClear. Finally, the carotid artery occluded with EmboGel regained patency after administration of EmboClear. CONCLUSIONS EmboGel is a dissolvable alginate-based biomaterial that can be used for numerous embolic applications. EmboGel can be selectively dissolved with EmboClear, a solution of alginate lyase and EDTA.
Collapse
Affiliation(s)
- Brad P Barnett
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
30
|
The effect of injectable biocompatible elastomer (PDMS) on the strength of the proximal fixation of endovascular aneurysm repair grafts: An in vitro study. J Vasc Surg 2010; 52:152-8. [DOI: 10.1016/j.jvs.2010.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/28/2009] [Accepted: 01/03/2010] [Indexed: 11/17/2022]
|
31
|
Bosman W, Vlot J, van der Steenhoven T, van den Berg O, Hamming J, de Vries A, Brom H, Jacobs M. Aortic Customize: An In Vivo Feasibility Study of a Percutaneous Technique for the Repair of Aortic Aneurysms Using Injectable Elastomer. Eur J Vasc Endovasc Surg 2010; 40:65-70. [DOI: 10.1016/j.ejvs.2010.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/25/2010] [Indexed: 11/26/2022]
|
32
|
Schwaner SL, Haug SB, Matsumoto AH. Overview of Embolotherapy: Agents, Indications, Applications, and Nursing Management. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.cpen.2010.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|