1
|
Butel-Simoes G, Steinig E, Savic I, Zhanduisenov M, Papadakis G, Tran T, Moselen J, Caly L, Williamson DA, Lim CK. Optimising nucleic acid recovery from rapid antigen tests for whole genome sequencing of respiratory viruses. J Clin Virol 2024; 174:105714. [PMID: 39038394 DOI: 10.1016/j.jcv.2024.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Whole genome sequencing (WGS) of respiratory viruses from rapid antigen tests (RAT-WGS) is a novel approach to expanding genomic surveillance of respiratory infections. To date however, there are limited data on the genomic stability of these viruses on RATs. In this study, we investigated the effect of storage conditions and nucleic acid preservatives on the ability to enhance stability and improve recovery of respiratory virus genomes from RATs. METHODS A mixture of common respiratory viruses was used to inoculate RATs at different environmental temperatures (4°C, 20°C and 36°C), with two preservative reagents (RNALater and DNA/RNA shield) Nucleic acid was extracted from RATs at two different timepoints (72 h and seven days) and subject to real-time multiplex respiratory PCR to detect a range of respiratory viruses. WGS was performed using target-enrichment with the TWIST Comprehensive Viral Research Panel. Defined metrics from an automated in-house bioinformatic pipeline were used to assess and compare viral genome recovery under different conditions. RESULTS Nucleic acid degradation (indicated by relative change in PCR cycle threshold and WGS-based metrics) was most notable at 20 °C and 36 °C. Storage in either RNALater or DNA / RNA shield improved genome recovery for respiratory viruses across all temperature conditions, although this was most pronounced for RNALater. Subtyping of Influenza viruses demonstrated the applicability of RAT-WGS in downstream genomic epidemiological surveillance. CONCLUSIONS Under simulated conditions, RAT-WGS demonstrated that (i) viral genomes were generally stable at 4°C at 72 h and 1 week, (ii) RNALater has a more significant preservation of nucleic acids compared to DNA/RNA Shield and (iii) genome recovery can be achieved using a sequencing depth of 500,000 reads per sample in RNALater, across all respiratory viruses and conditions.
Collapse
Affiliation(s)
- G Butel-Simoes
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - E Steinig
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - I Savic
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - M Zhanduisenov
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - G Papadakis
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - T Tran
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - J Moselen
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - L Caly
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - D A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - C K Lim
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Munguía-Ramírez B, Giménez-Lirola L, Zimmerman J. Assessment of Strategies for Preserving Swine Viral RNA Targets in Diagnostic Specimens. Microorganisms 2024; 12:410. [PMID: 38399814 PMCID: PMC10892022 DOI: 10.3390/microorganisms12020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Successful downstream molecular analyses of viral ribonucleic acid (RNA) in diagnostic laboratories, e.g., reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or next-generation sequencing, are dependent on the quality of the RNA in the specimen. In swine specimens, preserving the integrity of RNA requires proper sample handling at the time the sample is collected on the farm, during transport, and in the laboratory until RNA extraction is performed. Options for proper handling are limited to maintaining the cold chain or using commercial specimen storage matrices. Herein, we reviewed the refereed literature for evidence that commercial specimen storage matrices can play a role in preserving swine viral RNA in clinical specimens. Refereed publications were included if they compared RNA detection in matrix-treated vs. untreated samples. At present, the small number of refereed studies and the inconsistency in reported results preclude the routine use of commercial specimen storage matrices. For example, specimen storage matrices may be useful under specific circumstances, e.g., where it is mandatory to render the virus inactive. In a broader view, statistically sound side-by-side comparisons between specimens, viral RNA targets, and storage conditions are needed to establish if, when, and how commercial specimen storage matrices could be used in diagnostic medicine.
Collapse
Affiliation(s)
- Berenice Munguía-Ramírez
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (L.G.-L.); (J.Z.)
| | | | | |
Collapse
|
3
|
Vereecke N, Woźniak A, Pauwels M, Coppens S, Nauwynck H, Cybulski P, Theuns S, Stadejek T. Successful Whole Genome Nanopore Sequencing of Swine Influenza A Virus (swIAV) Directly from Oral Fluids Collected in Polish Pig Herds. Viruses 2023; 15:435. [PMID: 36851649 PMCID: PMC9962634 DOI: 10.3390/v15020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Influenza A virus (IAV) is a single-stranded, negative-sense RNA virus and a common cause of seasonal flu in humans. Its genome comprises eight RNA segments that facilitate reassortment, resulting in a great variety of IAV strains. To study these processes, the genetic code of each segment should be unraveled. Fortunately, new third-generation sequencing approaches allow for cost-efficient sequencing of IAV segments. Sequencing success depends on various factors, including proper sample storage and processing. Hence, this work focused on the effect of storage of oral fluids and swIAV sequencing. Oral fluids (n = 13) from 2017 were stored at -22 °C and later transferred to -80 °C. Other samples (n = 21) were immediately stored at -80 °C. A reverse transcription quantitative PCR (RT-qPCR) pre- and post-storage was conducted to assess IAV viral loads. Next, samples were subjected to two IAV long-read nanopore sequencing methods to evaluate success in this complex matrix. A significant storage-associated loss of swIAV loads was observed. Still, a total of 17 complete and 6 near-complete Polish swIAV genomes were obtained. Genotype T, (H1avN2, seven herds), P (H1N1pdm09, two herds), U (H1avN1, three herds), and A (H1avN1, 1 herd) were circulated on Polish farms. In conclusion, oral fluids can be used for long-read swIAV sequencing when considering appropriate storage and segment amplification protocols, which allows us to monitor swIAV in an animal-friendly and cost-efficient manner.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Aleksandra Woźniak
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | | | | | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Piotr Cybulski
- Goodvalley Agro S.A., Dworcowa 25, 77-320 Przechlewo, Poland
| | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
4
|
Pepin KM, Hopken MW, Shriner SA, Spackman E, Abdo Z, Parrish C, Riley S, Lloyd-Smith JO, Piaggio AJ. Improving risk assessment of the emergence of novel influenza A viruses by incorporating environmental surveillance. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180346. [PMID: 31401963 PMCID: PMC6711309 DOI: 10.1098/rstb.2018.0346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reassortment is an evolutionary mechanism by which influenza A viruses (IAV) generate genetic novelty. Reassortment is an important driver of host jumps and is widespread according to retrospective surveillance studies. However, predicting the epidemiological risk of reassortant emergence in novel hosts from surveillance data remains challenging. IAV strains persist and co-occur in the environment, promoting co-infection during environmental transmission. These conditions offer opportunity to understand reassortant emergence in reservoir and spillover hosts. Specifically, environmental RNA could provide rich information for understanding the evolutionary ecology of segmented viruses, and transform our ability to quantify epidemiological risk to spillover hosts. However, significant challenges with recovering and interpreting genomic RNA from the environment have impeded progress towards predicting reassortant emergence from environmental surveillance data. We discuss how the fields of genomics, experimental ecology and epidemiological modelling are well positioned to address these challenges. Coupling quantitative disease models and natural transmission studies with new molecular technologies, such as deep-mutational scanning and single-virus sequencing of environmental samples, should dramatically improve our understanding of viral co-occurrence and reassortment. We define observable risk metrics for emerging molecular technologies and propose a conceptual research framework for improving accuracy and efficiency of risk prediction. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Kim M. Pepin
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
- e-mail:
| | - Matthew W. Hopken
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
- Colorado State University, Fort Collins, CO 80523, USA
| | - Susan A. Shriner
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Research, USDA-ARS, Athens, GA 30605, USA
| | - Zaid Abdo
- Colorado State University, Fort Collins, CO 80523, USA
| | - Colin Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London, SW7 2AZ, UK
| | - James O. Lloyd-Smith
- UCLA, Los Angeles, CA 90095, USA
- Department of Ecology and Evolutionary Biology, Fogarty International Center, National Institutes of Health, Bethesda MD 20892, USA
| | | |
Collapse
|
5
|
Smith O, Dunshea G, Sinding MHS, Fedorov S, Germonpre M, Bocherens H, Gilbert MTP. Ancient RNA from Late Pleistocene permafrost and historical canids shows tissue-specific transcriptome survival. PLoS Biol 2019; 17:e3000166. [PMID: 31361744 PMCID: PMC6667121 DOI: 10.1371/journal.pbio.3000166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/25/2019] [Indexed: 01/31/2023] Open
Abstract
While sequencing ancient DNA (aDNA) from archaeological material is now commonplace, very few attempts to sequence ancient transcriptomes have been made, even from typically stable deposition environments such as permafrost. This is presumably due to assumptions that RNA completely degrades relatively quickly, particularly when dealing with autolytic, nuclease-rich mammalian tissues. However, given the recent successes in sequencing ancient RNA (aRNA) from various sources including plants and animals, we suspect that these assumptions may be incorrect or exaggerated. To challenge the underlying dogma, we generated shotgun RNA data from sources that might normally be dismissed for such study. Here, we present aRNA data generated from two historical wolf skins, and permafrost-preserved liver tissue of a 14,300-year-old Pleistocene canid. Not only is the latter the oldest RNA ever to be sequenced, but it also shows evidence of biologically relevant tissue specificity and close similarity to equivalent data derived from modern-day control tissue. Other hallmarks of RNA sequencing (RNA-seq) data such as exon-exon junction presence and high endogenous ribosomal RNA (rRNA) content confirms our data’s authenticity. By performing independent technical library replicates using two high-throughput sequencing platforms, we show not only that aRNA can survive for extended periods in mammalian tissues but also that it has potential for tissue identification. aRNA also has possible further potential, such as identifying in vivo genome activity and adaptation, when sequenced using this technology. Ancient DNA is known to survive in cold environments for tens of millennia, but it is assumed that ancient RNA could not persist in such a way due to its relative instability. However, this study shows that under permafrost conditions, ancient RNA can survive well enough to show tissue specificity even in mammalian soft tissues.
Collapse
Affiliation(s)
- Oliver Smith
- Section for Evogenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Glenn Dunshea
- Section for Evogenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Holger S. Sinding
- Section for Evogenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Sergey Fedorov
- Mammoth Museum, Institute of Applied Ecology of the North of the North-Eastern Federal University, Yakutsk, Russia
| | - Mietje Germonpre
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Science, Brussels, Belgium
| | - Hervé Bocherens
- Department of Geosciences, Palaeobiology, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - M. T. P. Gilbert
- Section for Evogenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| |
Collapse
|
6
|
Evaluation of two workflows for whole genome sequencing-based typing of influenza A viruses. J Virol Methods 2019; 266:30-33. [PMID: 30677464 DOI: 10.1016/j.jviromet.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
We compared two sample preparation protocols for whole genome sequencing of influenza A viruses. Each protocol was assessed using cDNA quantity and quality and the resulting mean genome coverage after sequencing. Both protocols produced acceptable result for samples with high viral load, whereas one protocol performed slightly better with limited virus count.
Collapse
|
7
|
Bergner LM, Orton RJ, da Silva Filipe A, Shaw AE, Becker DJ, Tello C, Biek R, Streicker DG. Using noninvasive metagenomics to characterize viral communities from wildlife. Mol Ecol Resour 2018; 19:128-143. [PMID: 30240114 PMCID: PMC6378809 DOI: 10.1111/1755-0998.12946] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
Microbial communities play an important role in organismal and ecosystem health. While high-throughput metabarcoding has revolutionized the study of bacterial communities, generating comparable viral communities has proven elusive, particularly in wildlife samples where the diversity of viruses and limited quantities of viral nucleic acid present distinctive challenges. Metagenomic sequencing is a promising solution for studying viral communities, but the lack of standardized methods currently precludes comparisons across host taxa or localities. Here, we developed an untargeted shotgun metagenomic sequencing protocol to generate comparable viral communities from noninvasively collected faecal and oropharyngeal swabs. Using samples from common vampire bats (Desmodus rotundus), a key species for virus transmission to humans and domestic animals, we tested how different storage media, nucleic acid extraction procedures and enrichment steps affect viral community detection. Based on finding viral contamination in foetal bovine serum, we recommend storing swabs in RNAlater or another nonbiological medium. We recommend extracting nucleic acid directly from swabs rather than from supernatant or pelleted material, which had undetectable levels of viral RNA. Results from a low-input RNA library preparation protocol suggest that ribosomal RNA depletion and light DNase treatment reduce host and bacterial nucleic acid, and improve virus detection. Finally, applying our approach to twelve pooled samples from seven localities in Peru, we showed that detected viral communities saturated at the attained sequencing depth, allowing unbiased comparisons of viral community composition. Future studies using the methods outlined here will elucidate the determinants of viral communities across host species, environments and time.
Collapse
Affiliation(s)
- Laura M Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Andrew E Shaw
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, Georgia.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Carlos Tello
- Association for the Conservation, Development of Natural Resources, Lima, Peru.,Yunkawasi, Lima, Peru
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
8
|
Wille M, Yin H, Lundkvist Å, Xu J, Muradrasoli S, Järhult JD. RNAlater ® is a viable storage option for avian influenza sampling in logistically challenging conditions. J Virol Methods 2017; 252:32-36. [PMID: 29129490 DOI: 10.1016/j.jviromet.2017.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022]
Abstract
Surveillance of wild birds is critical in monitoring for highly pathogenic avian influenza A viruses (AIVs). However, a successful surveillance regime requires proper treatment of samples in the field - rapid placement of samples in -80°C and subsequent maintenance of cold-chain. Given the logistical difficulties of this, many avian taxa and/or geographic locations are not sampled, or, when sampled may result in false negatives due to poor sample treatment in the field. Here, we assessed the utility of RNAlater® as a stabilization agent for AIV sampling. We found no difference in real time PCR performance between virus transport media at optimal conditions and RNAlater® at -80°C, -20°C, 4°C or room temperature up to two weeks, at either low or high virus load. Not only was RNAlater® useful in comparison of spiked samples or those from duck experiments, it was employed successfully in a field study of backyard birds in China. We detected AIV in cloacal and oropharyngeal samples from chickens and a sample with a low Cq was successfully subtyped as H9, although sample storage conditions were suboptimal. Thus, despite limitations in downstream characterization such virus isolation and typing, RNAlater® is a viable option for AIV sampling under logistically challenging circumstances.
Collapse
Affiliation(s)
- Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Hong Yin
- Department of Laboratory Medicine, Division of Clinical Microbiology, Dalarna County, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Juan Xu
- Xuanwu Hospital, Capital Medical University, China
| | - Shaman Muradrasoli
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Josef D Järhult
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Abstract
Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 105 to 2 × 105 ml−1 (n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome. The hydrothermally active ocean basement is voluminous and likely provided conditions critical to the origins of life, but the microbiology of this vast habitat is not well understood. Viruses in particular, although integral to the origins, evolution, and ecology of all life on earth, have never been documented in basement fluids. This report provides the first estimate of free virus particles (virions) within fluids circulating through the extrusive basalt of the seafloor and describes the morphological and genetic signatures of basement viruses. These data push the known geographical limits of the virosphere deep into the ocean basement and point to a wealth of novel viral diversity, exploration of which could shed light on the early evolution of viruses.
Collapse
|
10
|
Caron A, Cappelle J, Gaidet N. Challenging the conceptual framework of maintenance hosts for influenza A viruses in wild birds. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alexandre Caron
- UPR AGIRs; Department Environment & Societies; Cirad; Campus International de Baillarguet; Montpellier 34398 Montpellier Cedex 5 France
- Faculdade de Veterinária; Universidade Edouardo Mondlane; Av. de Moçambique Km; 1,5 - Caixa Postal 257 Maputo 01009 Moçambique
| | - Julien Cappelle
- UPR AGIRs; Department Environment & Societies; Cirad; Campus International de Baillarguet; Montpellier 34398 Montpellier Cedex 5 France
- Institut Pasteur du Cambodge; Epi-SP, 5; Boulevard Monivong; BP 983 Phnom Penh Cambodia
| | - Nicolas Gaidet
- UPR AGIRs; Department Environment & Societies; Cirad; Campus International de Baillarguet; Montpellier 34398 Montpellier Cedex 5 France
| |
Collapse
|
11
|
Liu H, Gan Y, Wu Y, Weng H, Lei P, Shen G. Effects of different lysis buffers of nucleic acid purification kit on the stability of influenza virus RNA. Future Virol 2014. [DOI: 10.2217/fvl.14.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Aim: Under suboptimal storage and transport conditions, influenza virus (flu-v) RNA is prone to degradation and lysis buffers from RNA extraction kits have a potential to stabilize RNA. The aim of this study was to investigate the effects of different lysis buffers on the stability of flu-v RNA. Materials & methods: Aliquots of flu-v suspension were processed in parallel with two lysis buffers, and then underwent cyclic freeze–thaw or prolonged storage at 4, 22 and -20°C. The viral RNA was analyzed by using real-time and conventional RT-PCR amplifying, respectively, partial and full-length sequences of the flu-v matrix gene. Results: The viral RNA remained intact in samples treated with either of the two lysis buffers for at least 7 days at 4°C, 90 days at -20°C or following seven freeze–thaw cycles, but buffer A was superior to buffer B in protecting RNA from degradation at 4°C and 22°C, or following a further increase of freeze–thaw cycles. Conclusion: Lysis buffer preservatives provide viral RNA stabilization, whereas different lysis buffers vary in their ability to stabilize viral RNA, and thus their performance characteristics should be evaluated prior to their application in clinical practice.
Collapse
Affiliation(s)
- Hongbo Liu
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Virology Laboratory, Center for Disease Control and Prevention of Zhongshan, Zhongshan, China
| | - Yan Gan
- Neuroimmunology Laboratory, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Yanheng Wu
- Virology Laboratory, Center for Disease Control and Prevention of Zhongshan, Zhongshan, China
| | - Hui Weng
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ping Lei
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
12
|
Barr KL, Messenger AM, Anderson BD, Friary JA, Heil GL, Reece K, Gray GC. Recovery of live virus after storage at ambient temperature using ViveST™. J Clin Virol 2012; 56:57-61. [PMID: 23046621 DOI: 10.1016/j.jcv.2012.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND A major impediment to performing virological field studies in developing nations is the lack of ultra-low freezers as well as the expense and difficulty of shipping frozen samples. A commercially available product, ViveST™, was developed to preserve nucleic acids at ambient temperature for use in specimen storage and transportation. However, its applications as a viral storage, transport and recovery device have not been evaluated. OBJECTIVE To examine the ability of ViveST to preserve live virus following storage at ambient temperature. STUDY DESIGN A panel of six viruses was stored at ambient temperature (~22°C) in ViveST with fetal bovine serum (FBS), or ViveST with minimal essential media (MEM) and compared with virus stored in universal transport media (M4RT), MEM, and FBS alone. Stored viruses included: human adenovirus (14p), dengue virus 2 (16608), echovirus 3 (Morrisey), human rhinovirus 15 (1734), Coxsackie virus B5 (Faulkner), and herpes simplex virus 1 (HF). After 7 days storage at ambient temperature, virus recovery was measured via titration using viral plaque assays or focus-forming unit assays. RESULTS Viral titer studies indicate that ViveST with either FBS or M4RT preserved/recovered 5 different viruses for 1 week at ambient temperature. MEM preserved 4 viruses while FBS and ViveST with MEM preserved 3 viruses each. Statistical analyses indicate that M4RT and ViveST with FBS preserved significantly more virus than the other treatments. CONCLUSIONS These data suggest that ViveST with either FBS or M4RT may be useful in field specimen collection scenarios where ultra-cold storage is not available.
Collapse
Affiliation(s)
- Kelli L Barr
- College of Public Health and Health Professions and The Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang X, Zoueva O, Zhao J, Ye Z, Hewlett I. Stability and infectivity of novel pandemic influenza A (H1N1) virus in blood-derived matrices under different storage conditions. BMC Infect Dis 2011; 11:354. [PMID: 22192363 PMCID: PMC3260324 DOI: 10.1186/1471-2334-11-354] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/22/2011] [Indexed: 11/15/2022] Open
Abstract
Background Influenza A virus has been detected in the blood of some infected individuals, and may pose a safety concern for collection, handling and transport of specimens for epidemiological and public health investigations if infectious virus is present in samples. Furthermore the effect of storage on virus stability and infectivity has not been well studied. Methods We examined the stability of novel pandemic influenza A (H1N1) virus RNA when the virus was stored in phosphate buffered saline (PBS), plasma, or buffy coated blood at either room temperature or 4°C using a sensitive Taqman RT-PCR assay. We also investigated virus infectivity using the EID50 assay when virus was stored in PBS, plasma, or buffy coats isolated from blood at 4°C. Results Viral RNA stability was affected by the matrix used for storage. The recovery of viral RNA was highest when virus was stored in PBS with lower amounts being recovered from plasma and buffy coats at either room temperature or 4°C. Incubation time did not appear to be a major factor for viral RNA stability, although there was gradual decline after longer periods post-incubation. Both sample matrix and incubation time affected virus infectivity. The decay in virus infectivity was greatest in PBS followed by buffy coats and plasma. Virus infectivity was abolished in buffy coats at day 20 post-incubation when virus concentrations were low. Conclusion These data indicate that encapsidated viral RNA was stable overall in all three liquid matrices at room temperature or 4°C although it was most stable in PBS; virus infectivity in buffy coats at 4°C decayed in a time dependent manner while it remained unchanged in plasma. These findings have implications for storage, handling and transport of blood derived samples from influenza patients for epidemiological and laboratory investigations. It should be noted that there is little known about influenza viremia, and whether influenza viruses can be transmitted by blood or blood derived samples.
Collapse
Affiliation(s)
- Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, CBER/FDA, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
14
|
Xia JF, Yan XF, Yu H, Qu D, Long JE. Simple and rapid detection of human enterovirus 71 by reverse-transcription and loop-mediated isothermal amplification: cryopreservation affected the detection ability. Diagn Microbiol Infect Dis 2011; 71:244-51. [PMID: 21899976 PMCID: PMC7127202 DOI: 10.1016/j.diagmicrobio.2011.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/16/2011] [Accepted: 07/26/2011] [Indexed: 11/25/2022]
Abstract
Human enterovirus 71 (EV71) is the primary pathogen of hand, foot, and mouth disease (HFMD). EV71 infection may lead to neurologic damage, with higher incidence of fatality compared with other HFMD pathogens. An effective drug or vaccine against EV71 infection is currently unavailable. It is desirable to determine the pathogen of HFMD accurately and quickly for early treatment. In the current study, reverse-transcription and loop-mediated isothermal amplification (RT-LAMP) technology were developed to detect EV71. The efficacy of detecting EV71 was compared with regular nested reverse-transcription polymerase chain reaction (RT-PCR). After detecting 108 clinical specimens, results showed that RT-LAMP can specifically detect EV71, but not Coxsackie virus A16, and exhibited a specificity of 100% and a sensitivity of 97.1%, which was higher than regular RT-PCR. The findings indicate that RT-LAMP is a practical method for EV71 diagnostic applications, particularly in small county institutes of medical service. The detection ability of RT-LAMP was significantly affected by cryopreservation as the clinical specimens were repeatedly subject to freezing and thawing treatments.
Collapse
Affiliation(s)
- Ju-Feng Xia
- Department of Medical Microbiology and Parasitology, Laboratory of Medical Microbiology, Shang Medical College of Fudan University, Shanghai 200032, PR China
| | | | | | | | | |
Collapse
|
15
|
Rapid detection of avian influenza virus in chicken fecal samples by immunomagnetic capture reverse transcriptase-polymerase chain reaction assay. Diagn Microbiol Infect Dis 2011; 69:258-65. [PMID: 21353948 DOI: 10.1016/j.diagmicrobio.2010.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/09/2010] [Accepted: 09/29/2010] [Indexed: 11/22/2022]
Abstract
Avian influenza virus (AIV) causes great economic losses for the poultry industry worldwide and threatens the human population with a pandemic. The conventional detection method for AIV involves sample preparation of viral RNA extraction and purification from raw sample such as bird droppings. In this study, magnetic beads were applied for immunoseparation and purification of AIV from spiked chicken fecal sample. The beads were conjugated with monoclonal antibodies against the AIV nucleoprotein, which is conserved in all the AIV. The bead-captured virus was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) without RNA extraction because of effective removal of RT-PCR inhibitors. The developed bead-based assay showed a similar detection limit comparable to the RNA extraction and the classic virus isolation method. Using ready-to-use antibody-conjugated bead, the method requires less than 5 h. Furthermore, the method has potential to integrate into a Lab-on-a-chip system for rapid detection and identification of AIV.
Collapse
|
16
|
Kraus RHS, van Hooft P, Waldenström J, Latorre-Margalef N, Ydenberg RC, Prins HHT. Avian influenza surveillance with FTA cards: field methods, biosafety, and transportation issues solved. J Vis Exp 2011:2832. [PMID: 21847074 PMCID: PMC3211123 DOI: 10.3791/2832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Avian Influenza Viruses (AIVs) infect many mammals, including humans(1). These AIVs are diverse in their natural hosts, harboring almost all possible viral subtypes(2). Human pandemics of flu originally stem from AIVs(3). Many fatal human cases during the H5N1 outbreaks in recent years were reported. Lately, a new AIV related strain swept through the human population, causing the 'swine flu epidemic'(4). Although human trading and transportation activity seems to be responsible for the spread of highly pathogenic strains(5), dispersal can also partly be attributed to wild birds(6, 7). However, the actual reservoir of all AIV strains is wild birds. In reaction to this and in face of severe commercial losses in the poultry industry, large surveillance programs have been implemented globally to collect information on the ecology of AIVs, and to install early warning systems to detect certain highly pathogenic strains(8-12). Traditional virological methods require viruses to be intact and cultivated before analysis. This necessitates strict cold chains with deep freezers and heavy biosafety procedures to be in place during transport. Long-term surveillance is therefore usually restricted to a few field stations close to well equipped laboratories. Remote areas cannot be sampled unless logistically cumbersome procedures are implemented. These problems have been recognised(13, 14) and the use of alternative storage and transport strategies investigated (alcohols or guanidine)(15-17). Recently, Kraus et al.(18) introduced a method to collect, store and transport AIV samples, based on a special filter paper. FTA cards(19) preserve RNA on a dry storage basis(20) and render pathogens inactive upon contact(21). This study showed that FTA cards can be used to detect AIV RNA in reverse-transcription PCR and that the resulting cDNA could be sequenced and virus genes and determined. In the study of Kraus et al.(18) a laboratory isolate of AIV was used, and samples were handled individually. In the extension presented here, faecal samples from wild birds from the duck trap at the Ottenby Bird Observatory (SE Sweden) were tested directly to illustrate the usefulness of the methods under field conditions. Catching of ducks and sample collection by cloacal swabs is demonstrated. The current protocol includes up-scaling of the work flow from single tube handling to a 96-well design. Although less sensitive than the traditional methods, the method of FTA cards provides an excellent supplement to large surveillance schemes. It allows collection and analysis of samples from anywhere in the world, without the need to maintaining a cool chain or safety regulations with respect to shipping of hazardous reagents, such as alcohol or guanidine.
Collapse
|
17
|
Direct detection of highly pathogenic avian influenza A/H5N1 virus from mud specimens. J Virol Methods 2011; 176:69-73. [PMID: 21683738 DOI: 10.1016/j.jviromet.2011.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 05/21/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Contaminated mud and soil may play roles as reservoirs and sources of transmission for avian influenza A virus. However, the persistence of highly pathogenic avian influenza (HPAI) H5N1 virus in soil or mud has not been well documented, and specific methods of H5N1 virus detection in mud and soil specimens have not been described. The aim of this work was to evaluate the capacities of five different commercial kits and one elution-concentration technique to extract nucleic acids from H5N1 virus and to detect infectious viral particles in experimentally infected mud specimens. The viral RNA detection thresholds for the QIAamp kit, Trizol LS and the MagNA Pure LC kit were 5 × 10(2)RNA copies per gram of mud. Trizol reagent and the RNA PowerSoil™ kit were unsuccessful in recovering any viral RNA from mud. When the elution-concentration technique was performed prior to nucleic acid extraction, the performance of the MagNA Pure kit increased to a level that allowed the detection of H5N1 nucleic acids in naturally contaminated environmental samples that had previously tested negative after direct extraction using commercial kits. The levels of detection of infectious virus after inoculation into embryonated eggs were higher in concentrates than in eluates.
Collapse
|
18
|
Conlan JV, Jarman RG, Vongxay K, Chinnawirotpisan P, Melendrez MC, Fenwick S, Thompson RCA, Blacksell SD. Hepatitis E virus is prevalent in the pig population of Lao People's Democratic Republic and evidence exists for homogeneity with Chinese Genotype 4 human isolates. INFECTION GENETICS AND EVOLUTION 2011; 11:1306-11. [PMID: 21550423 DOI: 10.1016/j.meegid.2011.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/06/2011] [Accepted: 04/19/2011] [Indexed: 11/25/2022]
Abstract
The objective of this study was to determine the prevalence and genotypic range of Hepatitis E virus (HEV) in the pig population of northern Lao People's Democratic Republic (PDR). We collected 181 faecal samples from indigenous-breed pigs ≤ 6 months of age and the faeces was stored in RNA stabilisation buffer due to cold-chain and transport limitations. Twenty-one (11.6%) pigs had detectable HEV RNA and 43.5% of village pig herds were infected. Based on a 240 base pair-nucleotide sequence flanking the junction of open reading frames 1, 2 and 3 (ORF1, ORF2 and ORF3) the isolates were phylogenetically classified within genotype 4. Phylogenetic analyses revealed distinct genetic groupings of the Lao HEV isolates and two groups clustered with human and pig HEV isolates from China. This was the first study to demonstrate genotype 4 HEV in Lao PDR and indicates pigs are a potential reservoir for human HEV infection.
Collapse
Affiliation(s)
- James V Conlan
- School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Evaluation and clinical validation of an alcohol-based transport medium for preservation and inactivation of respiratory viruses. J Clin Microbiol 2011; 49:2138-42. [PMID: 21508158 DOI: 10.1128/jcm.00327-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The clinical and public health importance of influenza and other respiratory viruses has accelerated the development of highly sensitive molecular diagnostics, but data are limited regarding preanalytical stages of diagnostic testing. We evaluated CyMol, an alcohol-based transport medium, for its ability to maintain specimen integrity for up to 21 days of storage at various temperatures; for its ability to inactivate virus; and for its compatibility with antigen- or nucleic acid-based diagnostics for respiratory viruses in clinical samples. In mock-infected samples, both universal transport medium (UTM-RT) and CyMol maintained equivalent viral quantities for at least 14 days at room temperature or colder, whereas a dry swab collection maintained viral quantities only if refrigerated or frozen. CyMol inactivated influenza virus within 5 min of sample immersion. UTM-RT- and CyMol-collected nasal swab specimens from 73 symptomatic students attending a campus health clinic were positive for a respiratory virus in 56.2% of subjects by multiplex PCR testing, including influenza A and B viruses, rhinovirus/enteroviruses, coronaviruses, respiratory syncytial virus, parainfluenza viruses, metapneumovirus, and adenovirus. Detection by PCR was equivalent in UTM-RT- and CyMol-collected specimens and in self- and staff-collected swabs. Direct fluorescent antibody (DFA) testing was substantially less sensitive (23.3%) than multiplex PCR, and DFA testing from UTM-RT-collected swabs was more sensitive than that from CyMol-collected swabs. These data indicate that an alcohol-based transport medium such as CyMol preserves respiratory virus integrity, rapidly inactivates viruses, and is compatible with PCR-based respiratory diagnostics.
Collapse
|
20
|
Cumming GS, Caron A, Abolnik C, Cattoli G, Bruinzeel LW, Burger CE, Cecchettin K, Chiweshe N, Mochotlhoane B, Mutumi GL, Ndlovu M. The ecology of influenza A viruses in wild birds in southern Africa. ECOHEALTH 2011; 8:4-13. [PMID: 21516374 DOI: 10.1007/s10393-011-0684-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/03/2011] [Accepted: 04/04/2011] [Indexed: 05/30/2023]
Abstract
Avian influenza viruses (AIVs) are pathogens of global concern, but there has been little previous research on avian influenza in southern Africa and almost nothing is known about the dynamics of AIVs in the region. We counted, captured and sampled birds regularly at five sites, two in South Africa (Barberspan and Strandfontein) and one in each of Botswana (Lake Ngami), Mozambique (Lake Chuali) and Zimbabwe (Lakes Manyame and Chivero) between March 2007 and May 2009. The South African and Zimbabwean sites were visited every 2 months and the sites in Botswana and Mozambique every 4 months. During each visit we undertook 5-7 days of standardised bird counts followed by 5-10 days of capturing and sampling water-associated birds. We sampled 4,977 birds of 165 different species and completed 2,503 half-hour point counts. We found 125 positive rRT-PCR cases of avian influenza across all sites. Two viruses (H1N8 and H3N8) were isolated and additional H5, H6 and H7 strains were identified. We did not positively identify any highly pathogenic H5N1. Overall viral prevalence (2.51%) was similar to the lower range of European values, considerable spatial and temporal variation occurred in viral prevalence, and there was no detectable influence of the annual influx of Palearctic migrants. Although waterbirds appear to be the primary viral carriers, passerines may link wild birds and poultry. While influenza cycles are probably driven by the bird movements that result from rainfall patterns, the epidemiology of avian influenza in wild birds in the subregion is complex and there appears to be the possibility for viral transmission throughout the year.
Collapse
Affiliation(s)
- Graeme S Cumming
- Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 2010; 84:11336-49. [PMID: 20686038 DOI: 10.1128/jvi.00650-10] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bats may host emerging viruses, including coronaviruses (CoV). We conducted an evaluation of CoV in rhinolophid and vespertilionid bat species common in Europe. Rhinolophids carried severe acute respiratory syndrome (SARS)-related CoV at high frequencies and concentrations (26% of animals are positive; up to 2.4×10(8) copies per gram of feces), as well as two Alphacoronavirus clades, one novel and one related to the HKU2 clade. All three clades present in Miniopterus bats in China (HKU7, HKU8, and 1A related) were also present in European Miniopterus bats. An additional novel Alphacoronavirus clade (bat CoV [BtCoV]/BNM98-30) was detected in Nyctalus leisleri. A CoV grouping criterion was developed by comparing amino acid identities across an 816-bp fragment of the RNA-dependent RNA polymerases (RdRp) of all accepted mammalian CoV species (RdRp-based grouping units [RGU]). Criteria for defining separate RGU in mammalian CoV were a >4.8% amino acid distance for alphacoronaviruses and a >6.3% distance for betacoronaviruses. All the above-mentioned novel clades represented independent RGU. Strict associations between CoV RGU and host bat genera were confirmed for six independent RGU represented simultaneously in China and Europe. A SARS-related virus (BtCoV/BM48-31/Bulgaria/2008) from a Rhinolophus blasii (Rhi bla) bat was fully sequenced. It is predicted that proteins 3b and 6 were highly divergent from those proteins in all known SARS-related CoV. Open reading frame 8 (ORF8) was surprisingly absent. Surface expression of spike and staining with sera of SARS survivors suggested low antigenic overlap with SARS CoV. However, the receptor binding domain of SARS CoV showed higher similarity with that of BtCoV/BM48-31/Bulgaria/2008 than with that of any Chinese bat-borne CoV. Critical spike domains 472 and 487 were identical and similar, respectively. This study underlines the importance of assessments of the zoonotic potential of widely distributed bat-borne CoV.
Collapse
|
22
|
Pfefferle S, Oppong S, Drexler JF, Gloza-Rausch F, Ipsen A, Seebens A, Müller MA, Annan A, Vallo P, Adu-Sarkodie Y, Kruppa TF, Drosten C. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis 2010; 15:1377-84. [PMID: 19788804 PMCID: PMC2819850 DOI: 10.3201/eid1509.090224] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We tested 12 bat species in Ghana for coronavirus (CoV) RNA. The virus prevalence in insectivorous bats (n = 123) was 9.76%. CoV was not detected in 212 fecal samples from Eidolon helvum fruit bats. Leaf-nosed bats pertaining to Hipposideros ruber by morphology had group 1 and group 2 CoVs. Virus concentrations were < or =45,000 copies/100 mg of bat feces. The diversified group 1 CoV shared a common ancestor with the human common cold virus hCoV-229E but not with hCoV-NL63, disputing hypotheses of common human descent. The most recent common ancestor of hCoV-229E and GhanaBt-CoVGrp1 existed in approximately 1686-1800 ad. The GhanaBt-CoVGrp2 shared an old ancestor (approximately 2,400 years) with the severe acute respiratory syndrome-like group of CoV.
Collapse
|
23
|
Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, Kruppa T, Müller MA, Kalko EKV, Adu-Sarkodie Y, Oppong S, Drosten C. Henipavirus RNA in African bats. PLoS One 2009; 4:e6367. [PMID: 19636378 PMCID: PMC2712088 DOI: 10.1371/journal.pone.0006367] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022] Open
Abstract
Background Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat. Methodology/Principal Findings Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected. Virus RNA concentrations in feces were low. Conclusions/Significance The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans.
Collapse
Affiliation(s)
- Jan Felix Drexler
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Victor Max Corman
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | | | - Antje Seebens
- Noctalis, Centre for Bat Protection and Information, Bad Segeberg, Germany
| | - Augustina Annan
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Anne Ipsen
- Noctalis, Centre for Bat Protection and Information, Bad Segeberg, Germany
| | - Thomas Kruppa
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Marcel A. Müller
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Elisabeth K. V. Kalko
- Institute of Experimental Ecology, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Yaw Adu-Sarkodie
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Oppong
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Drosten
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
- * E-mail:
| |
Collapse
|
24
|
Abstract
Viruses are often transmitted via food and the environment. Contamination may be controlled either by preventing its occurrence or by inactivating the contaminating virus. The majority of agents transmitted in this way are human enteric viruses, produced either in the intestines or the liver. They are shed in human feces (noroviruses also in vomitus) in a broad range of circumstances, and they are relatively stable outside the host. Non-enteric viruses are less often transmitted via foods and are generally less environmentally stable. Insofar as vaccines are available, they are able to prevent fecal shedding. Viruses shed in feces via the water-carriage toilet may be eliminated by proper treatment and disinfection of the wastewater. In the foods context, the most effective antiviral measures are cooking and hand washing. Detection methods are most useful after the fact, in investigating outbreaks and devising preventive measures.
Collapse
Affiliation(s)
- Dean O. Cliver
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616-8743 USA
| |
Collapse
|
25
|
Animal health and welfare aspects of avian influenza and the risk of its introduction into the EU poultry holdings - Scientific opinion of the Panel on Animal Health and Welfare. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|