1
|
Prado-Álvarez M, Dios S, García-Fernández P, Tur R, Hachero-Cruzado I, Domingues P, Almansa E, Varó I, Gestal C. De novo transcriptome reconstruction in aquacultured early life stages of the cephalopod Octopus vulgaris. Sci Data 2022; 9:609. [PMID: 36209315 PMCID: PMC9547907 DOI: 10.1038/s41597-022-01735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cephalopods have been considered enigmatic animals that have attracted the attention of scientists from different areas of expertise. However, there are still many questions to elucidate the way of life of these invertebrates. The aim of this study is to construct a reference transcriptome in Octopus vulgaris early life stages to enrich existing databases and provide a new dataset that can be reused by other researchers in the field. For that, samples from different developmental stages were combined including embryos, newly-hatched paralarvae, and paralarvae of 10, 20 and 40 days post-hatching. Additionally, different dietary and rearing conditions and pathogenic infections were tested. At least three biological replicates were analysed per condition and submitted to RNA-seq analysis. All sequencing reads from experimental conditions were combined in a single dataset to generate a reference transcriptome assembly that was functionally annotated. The number of reads aligned to this reference was counted to estimate the transcript abundance in each sample. This dataset compiled a complete reference for future transcriptomic studies in O. vulgaris. Measurement(s) | Transcriptome sequencing assay | Technology Type(s) | RNA-seq assay (Illumina) | Sample Characteristic - Organism | Octopus vulgaris | Sample Characteristic - Environment | Ocean | Sample Characteristic - Location | NW Spain (Ría de Vigo, Galicia) |
Collapse
Affiliation(s)
- María Prado-Álvarez
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain
| | - Sonia Dios
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain
| | - Pablo García-Fernández
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain.,Pescanova Biomarine Center, Lugar Ardia 172, 36980, O Grove, Spain
| | - Ricardo Tur
- Centro Oceanográfico de Vigo (COV-IEO), CSIC, Subida a Radio Faro 50-52, 36390, Vigo, Spain.,Pescanova Biomarine Center, Lugar Ardia 172, 36980, O Grove, Spain
| | - Ismael Hachero-Cruzado
- Centro Oceanográfico de Vigo (COV-IEO), CSIC, Subida a Radio Faro 50-52, 36390, Vigo, Spain
| | - Pedro Domingues
- Centro Oceanográfico de Vigo (COV-IEO), CSIC, Subida a Radio Faro 50-52, 36390, Vigo, Spain
| | - Eduardo Almansa
- Centro Oceanográfico de Canarias (COC-IEO), CSIC. Calle La Farola del Mar n° 22, Dársena Pesquera, 38180, Santa Cruz de Tenerife, Spain
| | - Inmaculada Varó
- Instituto de Acuicultura de Torre de la Sal (IATS), CSIC. Torre de la Sal s/n, 12595, Ribera de Cabanes, Spain
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain.
| |
Collapse
|
2
|
Corporeau C, Petton S, Vilaça R, Delisle L, Quéré C, Le Roy V, Dubreuil C, Lacas-Gervais S, Guitton Y, Artigaud S, Bernay B, Pichereau V, Huvet A, Petton B, Pernet F, Fleury E, Madec S, Brigaudeau C, Brenner C, Mazure NM. Harsh intertidal environment enhances metabolism and immunity in oyster (Crassostrea gigas) spat. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105709. [PMID: 35988349 DOI: 10.1016/j.marenvres.2022.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The Pacific oyster Crassostrea gigas is established in the marine intertidal zone, experiencing rapid and highly dynamic environmental changes throughout the tidal cycle. Depending on the bathymetry, oysters face oxygen deprivation, lack of nutrients, and high changes in temperature during alternation of the cycles of emersion/immersion. Here we showed that intertidal oysters at a bathymetry level of 3 and 5 m delayed by ten days the onset of mortality associated with Pacific Oyster Mortality Syndrome (POMS) as compared to subtidal oysters. Intertidal oysters presented a lower growth but similar energetic reserves to subtidal oysters but induced proteomic changes indicative of a boost in metabolism, inflammation, and innate immunity that may have improved their resistance during infection with the Ostreid herpes virus. Our work highlights that intertidal harsh environmental conditions modify host-pathogen interaction and improve oyster health. This study opens new perspectives on oyster farming for mitigation strategies based on tidal height.
Collapse
Affiliation(s)
- Charlotte Corporeau
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France.
| | - Sébastien Petton
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Romain Vilaça
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Lizenn Delisle
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Claudie Quéré
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Valérian Le Roy
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Christine Dubreuil
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, CCMA, Nice, France
| | - Yann Guitton
- Laboratoire d'étude des Résidus et Contaminants dans les Aliments, Oniris, INRA, F-44307, Nantes, France
| | - Sébastien Artigaud
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Benoît Bernay
- Plateforme Proteogen, SFR ICORE 4206, Univ. Caen Basse-Normandie, 14000, Caen, France
| | - Vianney Pichereau
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Arnaud Huvet
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Bruno Petton
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Fabrice Pernet
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Elodie Fleury
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | - Stéphanie Madec
- Ifremer, Univ. Bretagne Occidentale, CNRS, IRD, Équipe soutenue par la fondation ARC, UMR 6539, LEMAR, F, 29280, Plouzané, France
| | | | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches Thérapeutiques, 94805, Villejuif, France
| | - Nathalie M Mazure
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, 151 route St Antoine de Ginestière, 06204, Nice, France
| |
Collapse
|
3
|
Yao S, Li L, Guan X, He Y, Jouaux A, Xu F, Guo X, Zhang G, Zhang L. Pooled resequencing of larvae and adults reveals genomic variations associated with Ostreid herpesvirus 1 resistance in the Pacific oyster Crassostrea gigas. Front Immunol 2022; 13:928628. [PMID: 36059443 PMCID: PMC9437489 DOI: 10.3389/fimmu.2022.928628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
The Ostreid herpesvirus 1 (OsHV-1) is a lethal pathogen of the Pacific oyster (Crassostrea gigas), an important aquaculture species. To understand the genetic architecture of the defense against the pathogen, we studied genomic variations associated with herpesvirus-caused mortalities by pooled whole-genome resequencing of before and after-mortality larval samples as well as dead and surviving adults from a viral challenge. Analysis of the resequencing data identified 5,271 SNPs and 1,883 genomic regions covering 3,111 genes in larvae, and 18,692 SNPs and 28,314 regions covering 4,863 genes in adults that were significantly associated with herpesvirus-caused mortalities. Only 1,653 of the implicated genes were shared by larvae and adults, suggesting that the antiviral response or resistance in larvae and adults involves different sets of genes or differentiated members of expanded gene families. Combined analyses with previous transcriptomic data from challenge experiments revealed that transcription of many mortality-associated genes was also significantly upregulated by herpesvirus infection confirming their importance in antiviral response. Key immune response genes especially those encoding antiviral receptors such as TLRs and RLRs displayed strong association between variation in regulatory region and herpesvirus-caused mortality, suggesting they may confer resistance through transcriptional modulation. These results point to previously undescribed genetic mechanisms for disease resistance at different developmental stages and provide candidate polymorphisms and genes that are valuable for understanding antiviral immune responses and breeding for herpesvirus resistance.
Collapse
Affiliation(s)
- Shanshan Yao
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Li Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Xudong Guan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yan He
- Ministry of Education (MOE) Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Aude Jouaux
- UMR BOREA, “Biologie des Organismes et Ecosystèmes Aquatiques”, MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, Caen, France
| | - Fei Xu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, United States
- *Correspondence: Ximing Guo, ; Guofan Zhang, ; Linlin Zhang,
| | - Guofan Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
- *Correspondence: Ximing Guo, ; Guofan Zhang, ; Linlin Zhang,
| | - Linlin Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
- *Correspondence: Ximing Guo, ; Guofan Zhang, ; Linlin Zhang,
| |
Collapse
|
4
|
Picot S, Faury N, Pelletier C, Arzul I, Chollet B, Dégremont L, Renault T, Morga B. Monitoring Autophagy at Cellular and Molecular Level in Crassostrea gigas During an Experimental Ostreid Herpesvirus 1 (OsHV-1) Infection. Front Cell Infect Microbiol 2022; 12:858311. [PMID: 35444958 PMCID: PMC9014014 DOI: 10.3389/fcimb.2022.858311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Mortality outbreaks of young Pacific oysters, Crassostrea gigas, have seriously affected the oyster-farming economy in several countries around the world. Although the causes of these mortality outbreaks appear complex, a viral agent has been identified as the main factor: a herpesvirus called ostreid herpesvirus 1 (OsHV-1). Autophagy is an important degradation pathway involved in the response to several pathologies including viral diseases. In C. gigas, recent studies indicate that this pathway is conserved and functional in at least haemocytes and the mantle. Furthermore, an experimental infection in combination with compounds known to inhibit or induce autophagy in mammals revealed that autophagy is involved in the response to OsHV-1 infection. In light of these results, the aim of this study was to determine the role of autophagy in the response of the Pacific oyster to infection by virus OsHV-1. For this purpose, an experimental infection in combination with a modulator of autophagy was performed on Pacific oysters known to have intermediate susceptibility to OsHV-1 infection. In haemolymph and the mantle, the autophagy response was monitored by flow cytometry, western blotting, and real-time PCR. At the same time, viral infection was evaluated by quantifying viral DNA and RNA amounts by real-time PCR. Although the results showed activation of autophagy in haemolymph and the mantle 14 hours post infection (after viral replication was initiated), they were also indicative of different regulatory mechanisms of autophagy in the two tissues, thus supporting an important function of autophagy in the response to virus OsHV-1.
Collapse
Affiliation(s)
- Sandy Picot
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Nicole Faury
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Camille Pelletier
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Isabelle Arzul
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Bruno Chollet
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Lionel Dégremont
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, La Tremblade, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
- *Correspondence: Benjamin Morga,
| |
Collapse
|
5
|
Co-occurrence of pathogen assemblages in a keystone species the common cockle Cerastoderma edule on the Irish coast. Parasitology 2022; 148:1665-1679. [PMID: 35060462 PMCID: PMC8564771 DOI: 10.1017/s0031182021001396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite coinfections being recognized as the rule in animal populations, most studies focus on single pathogen systems. Pathogen interaction networks and the drivers of such associations are lacking in disease ecology studies. Common cockle Cerastoderma edule populations are exposed to a great diversity of pathogens, thus making them a good model system to investigate. This study examined the diversity and prevalence of pathogens from different taxonomic levels in wild and fished C. edule on the Irish coast. Potential interactions were tested focussing on abiotic (seawater temperature and salinity) and biotic (cockle size and age, and epiflora on shells) factors. No Microsporidia nor OsHV-1μVar were detected. Single infections with Haplosporidia (37.7%) or Vibrio (25.3%) were more common than two-pathogen coinfected individuals (9.5%), which may more easily succumb to infection. Fished C. edule populations with high cockle densities were more exposed to infections. Higher temperature and presence of epiflora on cockle shells promoted coinfection in warmer months. Low seawater salinity, host condition and proximity to other infected host species influenced coinfection distribution. A positive association between two Minchinia spp. was observed, most likely due to their different pathogenic effect. Findings highlight the major influence that ecological factors have on pathogen interactions and host–pathogen interplay.
Collapse
|
6
|
Pernet F, Lugué K, Petton B. Competition for food reduces disease susceptibility in a marine invertebrate. Ecosphere 2021. [DOI: 10.1002/ecs2.3435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Fabrice Pernet
- Ifremer CNRS IRD LEMAR University of Brest PlouzaneF‐29280France
| | - Klervi Lugué
- Ifremer CNRS IRD LEMAR University of Brest PlouzaneF‐29280France
| | - Bruno Petton
- Ifremer CNRS IRD LEMAR University of Brest PlouzaneF‐29280France
| |
Collapse
|
7
|
Richard M, Rolland JL, Gueguen Y, de Lorgeril J, Pouzadoux J, Mostajir B, Bec B, Mas S, Parin D, Le Gall P, Mortreux S, Fiandrino A, Lagarde F, Messiaen G, Fortune M, Roque d'Orbcastel E. In situ characterisation of pathogen dynamics during a Pacific oyster mortality syndrome episode. MARINE ENVIRONMENTAL RESEARCH 2021; 165:105251. [PMID: 33548594 DOI: 10.1016/j.marenvres.2020.105251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Significant mortality of Crassostrea gigas juveniles is observed systematically every year worldwide. Pacific Oyster Mortality Syndrome (POMS) is caused by Ostreid Herpesvirus 1 (OsHV-1) infection leading to immune suppression, followed by bacteraemia caused by a consortium of opportunistic bacteria. Using an in-situ approach and pelagic chambers, our aim in this study was to identify pathogen dynamics in oyster flesh and in the water column during the course of a mortality episode in the Mediterranean Thau lagoon (France). OsHV-1 concentrations in oyster flesh increased before the first clinical symptoms of the disease appeared, reached maximum concentrations during the moribund phase and the mortality peak. The structure of the bacterial community associated with oyster flesh changed in favour of bacterial genera previously associated with oyster mortality including Vibrio, Arcobacter, Psychrobium, and Psychrilyobacter. During the oyster mortality episode, releases of OsHV-1 and opportunistic bacteria were observed, in succession, in the water surrounding the oyster lanterns. These releases may favour the spread of disease within oyster farms and potentially impact other marine species, thereby reducing marine biodiversity in shellfish farming areas.
Collapse
Affiliation(s)
- Marion Richard
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France.
| | - Jean Luc Rolland
- IHPE, Univ Montpellier, CNRS, Ifremer, UPVD, Montpellier, France
| | - Yannick Gueguen
- IHPE, Univ Montpellier, CNRS, Ifremer, UPVD, Montpellier, France
| | - Julien de Lorgeril
- IHPE, Univ Montpellier, CNRS, Ifremer, UPVD, Montpellier, France; Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800 Nouméa, Nouvelle-Calédonie, France
| | | | - Behzad Mostajir
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Béatrice Bec
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sébastien Mas
- OSU-OREME, Univ Montpellier, CNRS, IRD, IRSTEA, Sète, France
| | - David Parin
- OSU-OREME, Univ Montpellier, CNRS, IRD, IRSTEA, Sète, France
| | - Patrik Le Gall
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Serge Mortreux
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | | - Franck Lagarde
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | | | | | |
Collapse
|
8
|
Petton B, Destoumieux-Garzón D, Pernet F, Toulza E, de Lorgeril J, Degremont L, Mitta G. The Pacific Oyster Mortality Syndrome, a Polymicrobial and Multifactorial Disease: State of Knowledge and Future Directions. Front Immunol 2021; 12:630343. [PMID: 33679773 PMCID: PMC7930376 DOI: 10.3389/fimmu.2021.630343] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The Pacific oyster (Crassostreae gigas) has been introduced from Asia to numerous countries around the world during the 20th century. C. gigas is the main oyster species farmed worldwide and represents more than 98% of oyster production. The severity of disease outbreaks that affect C. gigas, which primarily impact juvenile oysters, has increased dramatically since 2008. The most prevalent disease, Pacific oyster mortality syndrome (POMS), has become panzootic and represents a threat to the oyster industry. Recently, major steps towards understanding POMS have been achieved through integrative molecular approaches. These studies demonstrated that infection by Ostreid herpesvirus type 1 µVar (OsHV-1 µvar) is the first critical step in the infectious process and leads to an immunocompromised state by altering hemocyte physiology. This is followed by dysbiosis of the microbiota, which leads to a secondary colonization by opportunistic bacterial pathogens, which in turn results in oyster death. Host and environmental factors (e.g. oyster genetics and age, temperature, food availability, and microbiota) have been shown to influence POMS permissiveness. However, we still do not understand the mechanisms by which these different factors control disease expression. The present review discusses current knowledge of this polymicrobial and multifactorial disease process and explores the research avenues that must be investigated to fully elucidate the complexity of POMS. These discoveries will help in decision-making and will facilitate the development of tools and applied innovations for the sustainable and integrated management of oyster aquaculture.
Collapse
Affiliation(s)
- Bruno Petton
- Ifremer, LEMAR UMR 6539, UBO/CNRS/IRD/Ifremer, Argenton-en-Landunvez, France
| | | | - Fabrice Pernet
- Ifremer, LEMAR UMR 6539, UBO/CNRS/IRD/Ifremer, Argenton-en-Landunvez, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | | | - Guillaume Mitta
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
9
|
Prado-Alvarez M, García-Fernández P, Faury N, Azevedo C, Morga B, Gestal C. First detection of OsHV-1 in the cephalopod Octopus vulgaris. Is the octopus a dead-end for OsHV-1? J Invertebr Pathol 2021; 183:107553. [PMID: 33596434 DOI: 10.1016/j.jip.2021.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
The ostreid herpes virus (OsHV-1), associated with massive mortalities in the bivalve Crassostrea gigas, was detected for the first time in the cephalopod Octopus vulgaris. Wild adult animals from a natural breeding area in Spain showed an overall prevalence of detection of 87.5% between 2010 and 2015 suggesting an environmental source of viral material uptake. Overall positive PCR detections were significantly higher in adult animals (p = 0.031) compared to newly hatched paralarvae (62%). Prevalence in embryos reached 65%. Sequencing of positive amplicons revealed a match with the variant OsHV-1 µVar showing the genomic features that distinguish this variant in the ORF4. Gill tissues from adult animals were also processed for in situ hybridization and revealed positive labelling. Experimental exposure trials in octopus paralarvae were carried out by cohabitation with virus injected oysters and by immersion in viral suspension observing a significant decrease in paralarval survival in both experiments. An increase in the number of OsHV-1 positive animals was detected in dead paralarvae after cohabitation with virus injected oysters. No signs of viral replication were observed based on lack of viral gene expression or visualization of viral structures by transmission electron microscopy. The octopus response against OsHV-1 was evaluated by gene expression of previously reported transcripts involved in immune response in C. gigas suggesting that immune defences in octopus are also activated after exposure to OsHV-1.
Collapse
Affiliation(s)
- Maria Prado-Alvarez
- Marine Molecular Pathobiology Group, Marine Research Institute, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Pablo García-Fernández
- Marine Molecular Pathobiology Group, Marine Research Institute, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Nicole Faury
- IFREMER, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Carlos Azevedo
- Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Benjamin Morga
- IFREMER, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Camino Gestal
- Marine Molecular Pathobiology Group, Marine Research Institute, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
10
|
Zaczek-Moczydłowska MA, Mohamed-Smith L, Toldrà A, Hooper C, Campàs M, Furones MD, Bean TP, Campbell K. A Single-Tube HNB-Based Loop-Mediated Isothermal Amplification for the Robust Detection of the Ostreid herpesvirus 1. Int J Mol Sci 2020; 21:E6605. [PMID: 32917059 PMCID: PMC7555478 DOI: 10.3390/ijms21186605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 01/05/2023] Open
Abstract
The Ostreid herpesvirus 1 species affects shellfish, contributing significantly to high economic losses during production. To counteract the threat related to mortality, there is a need for the development of novel point-of-care testing (POCT) that can be implemented in aquaculture production to prevent disease outbreaks. In this study, a simple, rapid and specific colorimetric loop-mediated isothermal amplification (LAMP) assay has been developed for the detection of Ostreid herpesvirus1 (OsHV-1) and its variants infecting Crassostrea gigas (C. gigas). The LAMP assay has been optimized to use hydroxynaphthol blue (HNB) for visual colorimetric distinction of positive and negative templates. The effect of an additional Tte UvrD helicase enzyme used in the reaction was also evaluated with an improved reaction time of 10 min. Additionally, this study provides a robust workflow for optimization of primers for uncultured viruses using designed target plasmid when DNA availability is limited.
Collapse
Affiliation(s)
- Maja A. Zaczek-Moczydłowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Letitia Mohamed-Smith
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Anna Toldrà
- IRTA, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (M.C.); (M.D.F.)
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth DT4 8UB, UK;
| | - Mònica Campàs
- IRTA, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (M.C.); (M.D.F.)
| | - M. Dolors Furones
- IRTA, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (M.C.); (M.D.F.)
| | - Tim P. Bean
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK;
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| |
Collapse
|
11
|
Cordier C, Stavrakakis C, Morga B, Degrémont L, Voulgaris A, Bacchi A, Sauvade P, Coelho F, Moulin P. Removal of pathogens by ultrafiltration from sea water. ENVIRONMENT INTERNATIONAL 2020; 142:105809. [PMID: 32554141 DOI: 10.1016/j.envint.2020.105809] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Among water treatment processes, ultrafiltration is known to be efficient for the elimination of micro-organisms (bacteria and viruses). In this study, two pathogens were targeted, a bacterium, Vibrio aestuarianus and a virus, OsHV-1, with the objective to produce high quality water from seawater, in the case of shellfish productions. The retention of those microorganisms by ultrafiltration was evaluated at labscale. In the case of OsHV-1, the protection of oysters was validated by in vivo experiments using oysters spat and larvae, both stages being highly susceptible to the virus. The oysters raised using contaminated seawater which was then subsequently treated by ultrafiltration, had similar mortality to the negative controls. In the case of V. aestuarianus, ultrafiltration allowed a high retention of the bacteria in seawater with concentrations below the detection limits of the 3 analytical methods (flow cytometry, direct seeding and seeding after filtration to 0.22 µm). Thus, the quantity of V. aestuarianus was at least, 400 times inferior to the threshold known to induce mortalities in oysters. Industrial scale experiment on a several months period confirmed the conclusion obtained at lab scale on the Vibrio bacteria retention. Indeed, no bacteria from this genus, potentially harmful for oysters, was detected in permeate and this, whatever the quality of the seawater treated and the bacteria concentration upstream of the membrane. Moreover, the resistance of the process was confirmed with a stability of hydraulic performances over time for two water qualities and even facing an algal bloom. In terms of retention and resistance, ultrafiltration process was validated for the treatment of seawater towards the targeted pathogenic microorganisms, with the aim of biosecuring shellfish productions.
Collapse
Affiliation(s)
- Clémence Cordier
- Aix Marseille Univ., Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340, EPM), Equipe Procédés Membranaires, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340), Aix-Marseille Université, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, France
| | - Christophe Stavrakakis
- Plateforme expérimentale Mollusques Marins, Station Ifremer de Bouin, Polder des Champs, 85230 Bouin, France
| | - Benjamin Morga
- Laboratoire de Génétique et de Pathologie des Mollusques Marins, Station Ifremer de La Tremblade, Avenue du Mus du Loup, 17 390 La Tremblade, France
| | - Lionel Degrémont
- Laboratoire de Génétique et de Pathologie des Mollusques Marins, Station Ifremer de La Tremblade, Avenue du Mus du Loup, 17 390 La Tremblade, France
| | - Alexandra Voulgaris
- Plateforme expérimentale Mollusques Marins, Station Ifremer de Bouin, Polder des Champs, 85230 Bouin, France
| | - Alessia Bacchi
- Plateforme expérimentale Mollusques Marins, Station Ifremer de Bouin, Polder des Champs, 85230 Bouin, France
| | - Patrick Sauvade
- Suez - Aquasource, 20, Avenue Didier Daurat, 31029 Toulouse cedex 04, France
| | - Franz Coelho
- Suez - Aquasource, 20, Avenue Didier Daurat, 31029 Toulouse cedex 04, France
| | - Philippe Moulin
- Aix Marseille Univ., Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340, EPM), Equipe Procédés Membranaires, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2-CNRS-UMR 7340), Aix-Marseille Université, Europôle de l'Arbois, BP 80, Bat. Laennec, Hall C, 13545 Aix-en-Provence cedex 04, France.
| |
Collapse
|
12
|
Detection of isothermally amplified ostreid herpesvirus 1 DNA in Pacific oyster (Crassostrea gigas) using a miniaturised electrochemical biosensor. Talanta 2020; 207:120308. [DOI: 10.1016/j.talanta.2019.120308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 01/10/2023]
|
13
|
Delisle L, Pauletto M, Vidal-Dupiol J, Petton B, Bargelloni L, Montagnani C, Pernet F, Corporeau C, Fleury E. High temperature induces transcriptomic changes in Crassostrea gigas that hinders progress of Ostreid herpesvirus (OsHV-1) and promotes survival. J Exp Biol 2020; 223:jeb.226233. [PMID: 34005719 PMCID: PMC7578350 DOI: 10.1242/jeb.226233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.
Collapse
Affiliation(s)
- Lizenn Delisle
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Bruno Petton
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Fabrice Pernet
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - Elodie Fleury
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
14
|
Divilov K, Schoolfield B, Morga B, Dégremont L, Burge CA, Mancilla Cortez D, Friedman CS, Fleener GB, Dumbauld BR, Langdon C. First evaluation of resistance to both a California OsHV-1 variant and a French OsHV-1 microvariant in Pacific oysters. BMC Genet 2019; 20:96. [PMID: 31830898 PMCID: PMC6909534 DOI: 10.1186/s12863-019-0791-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Variants of the Ostreid herpesvirus 1 (OsHV-1) cause high losses of Pacific oysters globally, including in Tomales Bay, California, USA. A suite of new variants, the OsHV-1 microvariants (μvars), cause very high mortalities of Pacific oysters in major oyster-growing regions outside of the United States. There are currently no known Pacific oysters in the United States that are resistant to OsHV-1 as resistance has yet to be evaluated in these oysters. As part of an effort to begin genetic selection for resistance to OsHV-1, 71 families from the Molluscan Broodstock Program, a US West Coast Pacific oyster breeding program, were screened for survival after exposure to OsHV-1 in Tomales Bay. They were also tested in a quarantine laboratory in France where they were exposed to a French OsHV-1 microvariant using a plate assay, with survival recorded from three to seven days post-infection. RESULTS Significant heritability for survival were found for all time points in the plate assay and in the survival phenotype from a single mortality count in Tomales Bay. Genetic correlations between survival against the French OsHV-1 μvar in the plate assay and the Tomales Bay variant in the field trait were weak or non-significant. CONCLUSIONS Future breeding efforts will seek to validate the potential of genetic improvement for survival to OsHV-1 through selection using the Molluscan Broodstock Program oysters. The lack of a strong correlation in survival between OsHV-1 variants under this study's exposure conditions may require independent selection pressure for survival to each variant in order to make simultaneous genetic gains in resistance.
Collapse
Affiliation(s)
- Konstantin Divilov
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, Oregon USA
| | - Blaine Schoolfield
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, Oregon USA
| | - Benjamin Morga
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Lionel Dégremont
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Colleen A. Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland USA
| | | | - Carolyn S. Friedman
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | | | - Brett R. Dumbauld
- United States Department of Agriculture-Agricultural Research Service, Hatfield Marine Science Center, Newport, Oregon USA
| | - Chris Langdon
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, Oregon USA
| |
Collapse
|
15
|
Pernet F, Tamayo D, Fuhrmann M, Petton B. Deciphering the effect of food availability, growth and host condition on disease susceptibility in a marine invertebrate. ACTA ACUST UNITED AC 2019; 222:jeb.210534. [PMID: 31439650 DOI: 10.1242/jeb.210534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 01/26/2023]
Abstract
Food provisioning influences disease risk and outcome in animal populations in two ways. On the one hand, unrestricted food supply improves the physiological condition of the host and lowers its susceptibility to infectious disease, reflecting a trade-off between immunity and other fitness-related functions. On the other hand, food scarcity limits the resources available to the pathogen and slows the growth and metabolism of the host on which the pathogen depends to proliferate. Here, we investigated how food availability, growth rate and energetic reserves drive the outcome of a viral disease affecting an ecologically relevant model host, the Pacific oyster, Crassostrea gigas We selected fast- and slow-growing animals, and we exposed them to high and low food rations. We evaluated their energetic reserves, challenged them with a pathogenic virus, monitored daily survival and developed a mortality risk model. Although high food levels and oyster growth were associated with a higher risk of mortality, energy reserves were associated with a lower risk. Food availability acts both as an enabling factor for mortality by increasing oyster growth and as a limiting factor by increasing their energy reserves. This study clarifies how food resources have an impact on susceptibility to disease and indicates how the host's physiological condition could mitigate epidemics. Practically, we suggest that growth should be optimized rather than maximized, considering that trade-offs occur with disease resistance or tolerance.
Collapse
Affiliation(s)
- Fabrice Pernet
- Ifremer, UMR LEMAR 6539 (CNRS/UBO/Ifremer/IRD), Technopôle de Brest-Iroise, 29280 Plouzané, France
| | - David Tamayo
- Ifremer, UMR LEMAR 6539 (CNRS/UBO/Ifremer/IRD), Technopôle de Brest-Iroise, 29280 Plouzané, France.,Departamento GAFFA (Animal Physiology), Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
| | - Marine Fuhrmann
- Ifremer, UMR LEMAR 6539 (CNRS/UBO/Ifremer/IRD), Technopôle de Brest-Iroise, 29280 Plouzané, France.,School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Bruno Petton
- Ifremer, UMR LEMAR 6539 (CNRS/UBO/Ifremer/IRD), Technopôle de Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
16
|
Petton B, de Lorgeril J, Mitta G, Daigle G, Pernet F, Alunno-Bruscia M. Fine-scale temporal dynamics of herpes virus and vibrios in seawater during a polymicrobial infection in the Pacific oyster Crassostrea gigas. DISEASES OF AQUATIC ORGANISMS 2019; 135:97-106. [PMID: 31342911 DOI: 10.3354/dao03384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Pacific oyster Crassostrea gigas is currently being impacted by a polymicrobial disease that involves early viral infection by ostreid herpesvirus-1 (OsHV-1) followed by a secondary bacterial infection leading to death. A widely used method of inducing infection consists of placing specific pathogen-free oysters ('recipients') in cohabitation in the laboratory with diseased oysters that were naturally infected in the field ('donors'). With this method, we evaluated the temporal dynamics of pathogen release in seawater and the cohabitation time necessary for disease transmission and expression. We showed that OsHV-1 and Vibrio spp. in the seawater peaked concomitantly during the first 48 h and decreased thereafter. We found that 1.5 h of cohabitation with donors was enough time to transmit pathogens to recipients and to induce mortality later, reflecting the highly contagious nature of the disease. Finally, mortality of recipients was associated with increasing cohabitation time with donors until reaching a plateau at 20%. This reflects the cumulative effect of exposure to pathogens. The optimal cohabitation time was 5-6 d, the mortality of recipients occurring 1-2 d earlier.
Collapse
Affiliation(s)
- Bruno Petton
- Ifremer, LEMAR UMR 6539 (Université de Bretagne Occidentale, CNRS, IRD, Ifremer), 11 presqu'île du Vivier, 29840 Argenton-en-Landunvez, France
| | | | | | | | | | | |
Collapse
|
17
|
Pathirana E, Fuhrmann M, Whittington R, Hick P. Influence of environment on the pathogenesis of Ostreid herpesvirus-1 (OsHV-1) infections in Pacific oysters ( Crassostrea gigas) through differential microbiome responses. Heliyon 2019; 5:e02101. [PMID: 31372553 PMCID: PMC6656993 DOI: 10.1016/j.heliyon.2019.e02101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
The oyster microbiome is thought to contribute to the pathogenesis of mass mortality disease in Pacific oysters, associated with OsHV-1. As filter-feeders, oysters host a microbiota that can be influenced by the estuarine environment. This may alter susceptibility to OsHV-1 infections, causing variable mortality. This study aimed at: (1) differences in the microbiome of Pacific oysters with a common origin but grown in geographically distinct estuaries; (2) evaluating changes occurring in the microbiota, especially in Vibrio, and (3) differential responses of the oyster microbiome, in response to an OsHV-1 infection. Pacific oysters sourced from a single hatchery but raised separately in Patonga Creek, Shoalhaven River and Clyde River of NSW, Australia, were used and challenged with OsHV-1. The initial microbiome composition was different in the three batches and changed further, post-injection (p < 0.05). The Patonga oysters with the highest mortality also had higher OsHV-1 and Vibrio quantities compared to the other two batches (p < 0.05). The higher initial bacterial diversity in Patonga oysters decreased in moribund oysters which was not observed in the other two batches (p < 0.05). The microbiome of survivors of OsHV-1 infection and negative control oysters of two batches, did not show any changes with the relevant pre-challenged microbiome. A strong correlation was observed between the OsHV-1 and Vibrio quantities in OsHV-1 infected oysters (r = 0.6; p < 0.001). In conclusion, the Pacific oyster microbiome differed in different batches despite a common hatchery origin. Different microbiomes responded differently with a differential outcome of OsHV-1 challenge. The higher Vibrio load in oysters with higher OsHV-1 content and higher mortality, suggests a role in Vibrio in the pathogenesis of this mortality disease. This study provided insights of the potential of different estuarine environments to shape the Pacific oyster microbiome and how different microbiomes are associated with different outcomes of OsHV-1 infection.
Collapse
|
18
|
Lupo C, Travers MA, Tourbiez D, Barthélémy CF, Beaunée G, Ezanno P. Modeling the Transmission of Vibrio aestuarianus in Pacific Oysters Using Experimental Infection Data. Front Vet Sci 2019; 6:142. [PMID: 31139636 PMCID: PMC6527844 DOI: 10.3389/fvets.2019.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Vibrio aestuarianus is a bacterium related to mortality outbreaks in Pacific oysters, Crassostrea gigas, in France, Ireland, and Scotland since 2011. Knowledge about its transmission dynamics is still lacking, impairing guidance to prevent and control the related disease spread. Mathematical modeling is a relevant approach to better understand the determinants of a disease and predict its dynamics in imperfectly observed pathosystems. We developed here the first marine epidemiological model to estimate the key parameters of V. aestuarianus infection at a local scale in a small and closed oyster population under controlled laboratory conditions. Using a compartmental model accounting for free-living bacteria in seawater, we predicted the infection dynamics using dedicated and model-driven collected laboratory experimental transmission data. We estimated parameters and showed that waterborne transmission of V. aestuarianus is possible under experimental conditions, with a basic reproduction number R0 of 2.88 (95% CI: 1.86; 3.35), and a generation time of 5.5 days. Our results highlighted a bacterial dose–dependent transmission of vibriosis at local scale. Global sensitivity analyses indicated that the bacteria shedding rate, the concentration of bacteria in seawater that yields a 50% chance of catching the infection, and the initial bacterial exposure dose W0 were three critical parameters explaining most of the variation in the selected model outputs related to disease spread, i.e., R0, the maximum prevalence, oyster survival curve, and bacteria concentration in seawater. Prevention and control should target the exposure of oysters to bacterial concentration in seawater. This combined laboratory–modeling approach enabled us to maximize the use of information obtained through experiments. The identified key epidemiological parameters should be better refined by further dedicated laboratory experiments. These results revealed the importance of multidisciplinary approaches to gain consistent insights into the marine epidemiology of oyster diseases.
Collapse
Affiliation(s)
- Coralie Lupo
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M-LGPMM, Ifremer, La Tremblade, France
| | - Marie-Agnès Travers
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M-LGPMM, Ifremer, La Tremblade, France
| | - Delphine Tourbiez
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M-LGPMM, Ifremer, La Tremblade, France
| | - Clément Félix Barthélémy
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M-LGPMM, Ifremer, La Tremblade, France
| | | | | |
Collapse
|
19
|
Kim HJ, Jun JW, Giri SS, Yun S, Kim SG, Kim SW, Kang JW, Han SJ, Kwon J, Oh WT, Jeon HB, Chi C, Jeong D, Park SC. Mass mortality in Korean bay scallop (Argopecten irradians) associated with Ostreid Herpesvirus-1 μVar. Transbound Emerg Dis 2019; 66:1442-1448. [PMID: 30972971 DOI: 10.1111/tbed.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/16/2019] [Accepted: 04/04/2019] [Indexed: 11/27/2022]
Abstract
Since November 2017, mass mortalities of larvae of bay scallop (Argopecten irradians) were reported in hatcheries located at the southern area of Republic of Korea. Over 90% of larvae aged 5-10 days sank to the bottom of the tank and died. The hatcheries could not produce spat, and thus artificial seed production industry incurred huge losses. We identified Ostreid Herpesvirus-1 μVar (OsHV-1 μVar) associated with mass mortality by PCR, sequencing and transmission electron microscopy (TEM). All the samples were positive for OsHV-1 μVar with 99% sequence identity to previously reported OsHV-1 μVar sequences. Partial sequence of ORF-4 of OsHV-1 detected in this study was more closely related to sequences isolated from Europe. This is the first report to confirm the mortality caused by an OsHV-1 infection in the bay scallop.
Collapse
Affiliation(s)
- Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju, Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jeong Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Woo Taek Oh
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hyung Bae Jeon
- Department of Life Science, Yeungnam University, Gyeongsan, Korea
| | - Cheng Chi
- Laboratory of Aquatic Nutrition and Ecology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dalsang Jeong
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju, Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
20
|
Green TJ, Siboni N, King WL, Labbate M, Seymour JR, Raftos D. Simulated Marine Heat Wave Alters Abundance and Structure of Vibrio Populations Associated with the Pacific Oyster Resulting in a Mass Mortality Event. MICROBIAL ECOLOGY 2019; 77:736-747. [PMID: 30097682 DOI: 10.1007/s00248-018-1242-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Marine heat waves are predicted to become more frequent and intense due to anthropogenically induced climate change, which will impact global production of seafood. Links between rising seawater temperature and disease have been documented for many aquaculture species, including the Pacific oyster Crassostrea gigas. The oyster harbours a diverse microbial community that may act as a source of opportunistic pathogens during temperature stress. We rapidly raised the seawater temperature from 20 °C to 25 °C resulting in an oyster mortality rate of 77.4%. Under the same temperature conditions and with the addition of antibiotics, the mortality rate was only 4.3%, strongly indicating a role for bacteria in temperature-induced mortality. 16S rRNA amplicon sequencing revealed a change in the oyster microbiome when the temperature was increased to 25 °C, with a notable increase in the proportion of Vibrio sequences. This pattern was confirmed by qPCR, which revealed heat stress increased the abundance of Vibrio harveyi and Vibrio fortis by 324-fold and 10-fold, respectively. Our findings indicate that heat stress-induced mortality of C. gigas coincides with an increase in the abundance of putative bacterial pathogens in the oyster microbiome and highlights the negative consequences of marine heat waves on food production from aquaculture.
Collapse
Affiliation(s)
- Timothy J Green
- Department of Biological Sciences, Macquarie University, Sydney, Australia.
- Centre for Shellfish Research, Vancouver Island University, Nanaimo, Canada.
| | - Nachshon Siboni
- Climate Change Cluster (C3) Ocean Microbes Group, University of Technology Sydney, Sydney, Australia
| | - William L King
- Climate Change Cluster (C3) Ocean Microbes Group, University of Technology Sydney, Sydney, Australia
- The School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Maurizio Labbate
- The School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Justin R Seymour
- Climate Change Cluster (C3) Ocean Microbes Group, University of Technology Sydney, Sydney, Australia
| | - David Raftos
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
21
|
Lafont M, Goncalves P, Guo X, Montagnani C, Raftos D, Green T. Transgenerational plasticity and antiviral immunity in the Pacific oyster (Crassostrea gigas) against Ostreid herpesvirus 1 (OsHV-1). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:17-25. [PMID: 30278186 DOI: 10.1016/j.dci.2018.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/03/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The oyster's immune system is capable of adapting upon exposure to a pathogen-associated molecular pattern (PAMP) to have an enhanced secondary response against the same type of pathogen. This has been demonstrated using poly(I:C) to elicit an antiviral response in the Pacific oyster (Crassostrea gigas) against Ostreid herpesvirus (OsHV-1). Improved survival following exposure to poly(I:C) has been found in later life stages (within-generational immune priming) and in the next generation (transgenerational immune priming). The mechanism that the oyster uses to transfer immunity to the next generation is unknown. Here we show that oyster larvae have higher survival to OsHV-1 when their mothers, but not their fathers, are exposed to poly(I:C) prior to spawning. RNA-seq provided no evidence to suggest that parental exposure to poly(I:C) reconfigures antiviral gene expression in unchallenged larvae. We conclude that the improved survival of larvae might occur via maternal provisioning of antiviral compounds in the eggs.
Collapse
Affiliation(s)
- Maxime Lafont
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, France
| | - Priscila Goncalves
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ, USA
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, France
| | - David Raftos
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Timothy Green
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia.
| |
Collapse
|
22
|
Toldrà A, Andree KB, Bertomeu E, Roque A, Carrasco N, Gairín I, Furones MD, Campàs M. Rapid capture and detection of ostreid herpesvirus-1 from Pacific oyster Crassostrea gigas and seawater using magnetic beads. PLoS One 2018; 13:e0205207. [PMID: 30281676 PMCID: PMC6169968 DOI: 10.1371/journal.pone.0205207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Ostreid herpesvirus-1 (OsHV-1) has been involved in mass mortality episodes of Pacific oysters Crassostrea gigas throughout the world, causing important economic losses to the aquaculture industry. In the present study, magnetic beads (MBs) coated with an anionic polymer were used to capture viable OsHV-1 from two types of naturally infected matrix: oyster homogenate and seawater. Adsorption of the virus on the MBs and characterisation of the MB-virus conjugates was demonstrated by real-time quantitative PCR (qPCR). To study the infective capacity of the captured virus, MB-virus conjugates were injected in the adductor muscle of naïve spat oysters, using oyster homogenate and seawater without MBs as positive controls, and bare MBs and sterile water as negative controls. Mortalities were induced after injection with MB-virus conjugates and in positive controls, whereas no mortalities were recorded in negative controls. Subsequent OsHV-1 DNA and RNA analysis of the oysters by qPCR and reverse transcription qPCR (RT-qPCR), respectively, confirmed that the virus was the responsible for the mortality event and the ability of the MBs to capture viable viral particles. The capture of viable OsHV-1 using MBs is a rapid and easy isolation method and a promising tool, combined with qPCR, to be applied to OsHV-1 detection in aquaculture facilities.
Collapse
Affiliation(s)
- Anna Toldrà
- IRTA, Ctra., Sant Carles de la Ràpita, Tarragona, Spain
| | | | | | - Ana Roque
- IRTA, Ctra., Sant Carles de la Ràpita, Tarragona, Spain
| | | | - Ignasi Gairín
- IRTA, Ctra., Sant Carles de la Ràpita, Tarragona, Spain
| | | | - Mònica Campàs
- IRTA, Ctra., Sant Carles de la Ràpita, Tarragona, Spain
- * E-mail:
| |
Collapse
|
23
|
Delisle L, Petton B, Burguin JF, Morga B, Corporeau C, Pernet F. Temperature modulate disease susceptibility of the Pacific oyster Crassostrea gigas and virulence of the Ostreid herpesvirus type 1. FISH & SHELLFISH IMMUNOLOGY 2018; 80:71-79. [PMID: 29859311 DOI: 10.1016/j.fsi.2018.05.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Temperature triggers marine diseases by changing host susceptibility and pathogen virulence. Oyster mortalities associated with the Ostreid herpesvirus type 1 (OsHV-1) have occurred seasonally in Europe when the seawater temperature range reaches 16-24 °C. Here we assess how temperature modulates oyster susceptibility to OsHV-1 and pathogen virulence. Oysters were injected with OsHV-1 suspension incubated at 21 °C, 26 °C and 29 °C and were placed in cohabitation with healthy oysters (recipients) at these three temperatures according to a fractional factorial design. Survival was followed for 14 d and recipients were sampled for OsHV-1 DNA quantification and viral gene expression. The oysters were all subsequently placed at 21 °C to evaluate the potential for virus reactivation, before being transferred to oyster farms to evaluate their long-term susceptibility to the disease. Survival of recipients at 29 °C (86%) was higher than at 21 °C (52%) and 26 °C (43%). High temperature (29 °C) decreased the susceptibility of oysters to OsHV-1 without altering virus infectivity and virulence. At 26 °C, the virulence of OsHV-1 was enhanced. Differences in survival persisted when the recipients were all placed at 21 °C, suggesting that OsHV-1 did not reactivate. Additional oyster mortality followed the field transfer, but the overall survival of oysters infected at 29 °C remained higher.
Collapse
Affiliation(s)
- Lizenn Delisle
- Ifremer/LEMAR UMR 6539, Technopole de Brest-Iroise, 29280, Plouzané, France
| | - Bruno Petton
- Ifremer/LEMAR UMR 6539, Presqu'île du vivier, 29840, Argenton, France
| | | | - Benjamin Morga
- Ifremer/Laboratoire de génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390, La Tremblade, France
| | | | - Fabrice Pernet
- Ifremer/LEMAR UMR 6539, Technopole de Brest-Iroise, 29280, Plouzané, France.
| |
Collapse
|
24
|
Parizadeh L, Tourbiez D, Garcia C, Haffner P, Dégremont L, Le Roux F, Travers M. Ecologically realistic model of infection for exploring the host damage caused byVibrio aestuarianus. Environ Microbiol 2018; 20:4343-4355. [DOI: 10.1111/1462-2920.14350] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/30/2018] [Accepted: 07/01/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Leila Parizadeh
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M‐LGPMMIfremer Avenue de Mus de Loup, 17390 La Tremblade France
| | - Delphine Tourbiez
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M‐LGPMMIfremer Avenue de Mus de Loup, 17390 La Tremblade France
| | - Céline Garcia
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M‐LGPMMIfremer Avenue de Mus de Loup, 17390 La Tremblade France
| | - Philippe Haffner
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M‐LGPMMIfremer Avenue de Mus de Loup, 17390 La Tremblade France
- IHPE UMR 5244, CNRS‐Ifremer‐UM‐UPVDUniversité de Montpellier Place Eugène Bataillon ‐ CC80, 34095 Montpellier Cedex 05 France
| | - Lionel Dégremont
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M‐LGPMMIfremer Avenue de Mus de Loup, 17390 La Tremblade France
| | - Frédérique Le Roux
- IfremerUnité Physiologie Fonctionnelle des Organismes Marins ZI de la Pointe du Diable, CS 10070, F‐29280 Plouzané France
- Sorbonne Universités, UPMC Paris 06CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff CS 90074, F‐29688 Roscoff Cedex France
| | - Marie‐Agnès Travers
- Laboratoire de Génétique et Pathologie des Mollusques Marins, SG2M‐LGPMMIfremer Avenue de Mus de Loup, 17390 La Tremblade France
| |
Collapse
|
25
|
Pernet F, Fuhrmann M, Petton B, Mazurié J, Bouget JF, Fleury E, Daigle G, Gernez P. Determination of risk factors for herpesvirus outbreak in oysters using a broad-scale spatial epidemiology framework. Sci Rep 2018; 8:10869. [PMID: 30022088 PMCID: PMC6052024 DOI: 10.1038/s41598-018-29238-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/06/2018] [Indexed: 11/09/2022] Open
Abstract
Marine diseases have major impacts on ecosystems and economic consequences for aquaculture and fisheries. Understanding origin, spread and risk factors of disease is crucial for management, but data in the ocean are limited compared to the terrestrial environment. Here we investigated how the marine environment drives the spread of viral disease outbreak affecting The Pacific oyster worldwide by using a spatial epidemiology framework. We collected environmental and oyster health data at 46 sites spread over an area of 300 km2 along an inshore-offshore gradient during an epizootic event and conducted risk analysis. We found that disease broke out in the intertidal farming area and spread seaward. Mortalities and virus detection were observed in oysters placed 2 km from the farming areas, but oysters of almost all sites were subclinically infected. Increasing food quantity and quality, growth rate and energy reserves of oyster were associated with a lower risk of mortality offshore whereas increasing turbidity, a proxy of the concentration of suspended particulate matter, and terrestrial inputs, inferred from fatty acid composition of oysters, were associated with a higher risk of mortality. Offshore farming and maintenance of good ecological status of coastal waters are options to limit disease risk in oysters.
Collapse
Affiliation(s)
- Fabrice Pernet
- Ifremer, Unité de Physiologie Fonctionnelle des Organisme Marins, LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France.
| | - Marine Fuhrmann
- Ifremer, Unité de Physiologie Fonctionnelle des Organisme Marins, LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France
| | - Bruno Petton
- Ifremer, Unité de Physiologie Fonctionnelle des Organisme Marins, LEMAR UMR 6539, Presqu'île du vivier, Argenton, France
| | - Joseph Mazurié
- Ifremer, Unité Littorale, Laboratoire Environnement Ressource du Morbihan Pays-de-la-Loire, 12 Rue des Résistants, La Trinité-sur-Mer, France
| | - Jean-François Bouget
- Ifremer, Unité Littorale, Laboratoire Environnement Ressource du Morbihan Pays-de-la-Loire, 12 Rue des Résistants, La Trinité-sur-Mer, France
| | - Elodie Fleury
- Ifremer, Unité de Physiologie Fonctionnelle des Organisme Marins, LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France
| | - Gaétan Daigle
- Université Laval, Département de mathématiques et de statistique, Pavillon Alexandre-Vachon, Québec, QC, Canada
| | - Pierre Gernez
- Mer Molécules Santé (EA 2160), Université de Nantes, Nantes, France
| |
Collapse
|
26
|
Xin L, Huang B, Bai C, Wang C. Validation of housekeeping genes for quantitative mRNA expression analysis in OsHV-1 infected ark clam, Scapharca broughtonii. J Invertebr Pathol 2018; 155:44-51. [DOI: 10.1016/j.jip.2018.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 01/21/2023]
|
27
|
de Lorgeril J, Escoubas JM, Loubiere V, Pernet F, Le Gall P, Vergnes A, Aujoulat F, Jeannot JL, Jumas-Bilak E, Got P, Gueguen Y, Destoumieux-Garzón D, Bachère E. Inefficient immune response is associated with microbial permissiveness in juvenile oysters affected by mass mortalities on field. FISH & SHELLFISH IMMUNOLOGY 2018; 77:156-163. [PMID: 29567138 DOI: 10.1016/j.fsi.2018.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Since 2008, juvenile Crassostrea gigas oysters have suffered from massive mortalities in European farming areas. This disease of complex etiology is still incompletely understood. Triggered by an elevated seawater temperature, it has been associated to infections by a herpes virus named OsHV-1 as well as pathogenic vibrios of the Splendidus clade. Ruling out the complexity of the disease, most of our current knowledge has been acquired in controlled experiments. Among the many unsolved questions, it is still ignored what role immunity plays in the capacity oysters have to survive an infectious episode. Here we show that juvenile oysters susceptible to the disease mount an inefficient immune response associated with microbial permissiveness and death. We found that, in contrast to resistant adult oysters having survived an earlier episode of mortality, susceptible juvenile oysters never exposed to infectious episodes died by more than 90% in a field experiment. Susceptible oysters were heavily colonized by OsHV-1 herpes virus as well as bacteria including vibrios potentially pathogenic for oysters, which proliferated in oyster flesh and body fluids during the mortality event. Nonetheless, susceptible oysters were found to sense microbes as indicated by an overexpression of immune receptors and immune signaling pathways. However, they did not express important immune effectors involved in antimicrobial immunity and apoptosis and showed repressed expression of genes involved in ROS and metal homeostasis. This contrasted with resistant oysters, which expressed those important effectors, controlled bacterial and viral colonization and showed 100% survival to the mortality event. Altogether, our results demonstrate that the immune response mounted by susceptible oysters lacks some important immune functions and fails in controlling microbial proliferation. This study opens the way to more holistic studies on the "mass mortality syndrome", which are now required to decipher the sequence of events leading to oyster mortalities and determine the relative weight of pathogens, oyster genetics and oyster-associated microbiota in the disease.
Collapse
Affiliation(s)
- Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France.
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | - Vincent Loubiere
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | - Fabrice Pernet
- Ifremer, LEMAR UMR6539, CNRS/UBO/IRD/Ifremer, F-29280, Plouzané, France
| | - Patrik Le Gall
- MARBEC UMR 9190 (CNRS-IRD-Ifremer-UM), F34203, Sète, France
| | - Agnès Vergnes
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | - Fabien Aujoulat
- UMR 5569 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Luc Jeannot
- UMR 5569 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Estelle Jumas-Bilak
- UMR 5569 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Patrice Got
- MARBEC UMR 9190 (CNRS-IRD-Ifremer-UM), F34095 Montpellier, France
| | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | | | - Evelyne Bachère
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| |
Collapse
|
28
|
Garcia C, Haond C, Chollet B, Nerac M, Omnes E, Joly JP, Dubreuil C, Serpin D, Langlade A, Le Gal D, Terre-Terrillon A, Courtois O, Guichard B, Arzul I. Descriptions of Mikrocytos veneroïdes n. sp. and Mikrocytos donaxi n. sp. (Ascetosporea: Mikrocytida: Mikrocytiidae), detected during important mortality events of the wedge clam Donax trunculus Linnaeus (Veneroida: Donacidae), in France between 2008 and 2011. Parasit Vectors 2018; 11:119. [PMID: 29499746 PMCID: PMC5834847 DOI: 10.1186/s13071-018-2692-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 02/01/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Microcell parasites are small intracellular protozoans mostly detected in molluscs and can be associated with mortalities. In 2010 and 2011, strong increases in mortality events were reported in different wild beds of the wedge clam Donax trunculus Linnaeus, along the Atlantic coast of France and the presence of potential pathogens, including microcells, was investigated. METHODS Clams collected in different beds showing mortality were examined by histology. Based on histological observations, confirmatory analyses were carried out, including transmission electron microscopy (TEM) and molecular characterization. RESULTS Histological analyses revealed the presence of small protozoans similar to microcell parasites in different tissues of Donax trunculus, particularly in muscular and connective tissues. TEM examination confirmed the intracellular localization of the protozoans. Moreover, the lack of haplosporosomes and mitochondria suggested that the observed parasites belong to the genus Mikrocytos Farley, Wolf & Elston, 1988. Mikrocytos genus-specific PCR and in situ hybridization results supported the microscopic observations. Sequence fragments of the 18S rRNA gene shared 75-83% identity with the different Mikrocytos spp. described previously, including Mikrocytos mackini Farley, Wolf & Elston, 1988 and M. boweri Abbott, Meyer, Lowe, Kim & Johnson, 2014. Phylogenetic analyses confirmed that the microcell parasites observed in Donax trunculus in France belong to the genus Mikrocytos and suggest the existence of two distinct species. CONCLUSIONS Based on morphological, ultrastructural, molecular data and host information, the two microcell parasites detected in Donax trunculus belong to the genus Mikrocytos and are distinct from previously described members of this genus. This is the first report of Mikrocytos spp. found in France and infecting the clam Donax trunculus. Mikrocytos veneroïdes n. sp. was detected in different wild beds and Mikrocytos donaxi n. sp. was detected only in Audierne Bay.
Collapse
Affiliation(s)
- Céline Garcia
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Christophe Haond
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Bruno Chollet
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Mirella Nerac
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Emmanuelle Omnes
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Jean-Pierre Joly
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Christine Dubreuil
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Delphine Serpin
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Aimé Langlade
- Ifremer, ODE-LITTORAL-LERMPL, Station de la Trinité sur Mer, 12, rue des Résistants, F-56470 La Trinité sur Mer, France
| | - Dominique Le Gal
- Ifremer, ODE-LITTORAL-LERBO, Station de Concarneau, Place de la Croix, F-29185 Concarneau, France
| | - Aouregan Terre-Terrillon
- Ifremer, ODE-LITTORAL-LERBO, Station de Concarneau, Place de la Croix, F-29185 Concarneau, France
| | - Olivier Courtois
- Ifremer, ODE-LITTORAL-LERPC, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Benjamin Guichard
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Isabelle Arzul
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| |
Collapse
|
29
|
Mello DF, Danielli NM, Curbani F, Pontinha VA, Suhnel S, Castro MAM, Medeiros SC, Wendt NC, Trevisan R, Magalhães ARM, Dafre AL. First evidence of viral and bacterial oyster pathogens in the Brazilian coast. JOURNAL OF FISH DISEASES 2018; 41:559-563. [PMID: 29193213 DOI: 10.1111/jfd.12755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Affiliation(s)
- D F Mello
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - N M Danielli
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - F Curbani
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - V A Pontinha
- Aquaculture Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - S Suhnel
- Aquaculture Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - M A M Castro
- Aquaculture Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - S C Medeiros
- Aquaculture Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - N C Wendt
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - R Trevisan
- Aquaculture Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - A R M Magalhães
- Aquaculture Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - A L Dafre
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
30
|
Real-time quantitative isothermal detection of Ostreid herpesvirus-1 DNA in Scapharca subcrenata using recombinase polymerase amplification. J Virol Methods 2018; 255:71-75. [PMID: 29428398 DOI: 10.1016/j.jviromet.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Ostreid herpesvirus-1 (OsHV-1) is a well-known pathogen associated with high mortality rates in hatchery-reared larvae and juveniles of different bivalve species worldwide. Early, rapid and accurate diagnosis plays a fundamental role in disease prevention and control in aquaculture. Recombinase polymerase amplification (RPA) is a novel isothermal amplification method, which can amplify detectable amount of DNA at 37 °C-39 °C within 20 min. In the present study, two sets of specific primers and probes were designed for the real-time quantitative RPA (qRPA) detection of OsHV-1 DNA. The sensitivity and specificity of detection were evaluated by comparison with quantitative polymerase chain reaction (qPCR). The detection limit for qRPA assays was shown to be 5 copies DNA/reaction for the primer set ORF95, which was lower than the 100 copies required for the qPCR test. The optimal reaction temperature and time were 37 °C for 20 min, making this approach faster than qPCR. This is the first study to apply qPCR and qRPA methods to detect OsHV-1 in Scapharca subcrenata. The percentage of viral load sample detected by the two methods was 22% and the correlation of the two virus quantitative results was 0.8. Therefore, qRPA assays is sensitive, fast, and high-temperature independent relative to qPCR and is suitable for critical clinical diagnostics use and rapid field analysis in resource-limited settings.
Collapse
|
31
|
The role of the mussel Mytilus spp. in the transmission of ostreid herpesvirus-1 microVar. Parasitology 2017; 145:1095-1104. [PMID: 29262879 DOI: 10.1017/s0031182017002244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Pacific oyster Crassostrea gigas contributes significantly to global aquaculture; however, C. gigas culture has been affected by ostreid herpesvirus-1 (OsHV-1) and variants. The dynamics of how the virus maintains itself at culture sites is unclear and the role of carriers, reservoirs or hosts is unknown. Both wild and cultured mussels Mytilus spp. (Mytilus edulis, Mytilus galloprovincialis and hybrids) are commonly found at C. gigas culture sites. The objective of this study was to investigate if Mytilus spp. can harbour the virus and if viral transmission can occur between mussels and oysters. Mytilus spp. living at oyster trestles, 400-500 m higher up the shore from the trestles and up to 26 km at non-culture sites were screened for OsHV-1 and variants by all the World Organization for Animal Health (OIE) recommended diagnostic methods including polymerase chain reaction (PCR), quantitative PCR (qPCR), histology, in situ hybridization and confirmation using direct sequencing. The particular primers that target OsHV-1 and variants, including OsHV-1 microVar (μVar), were used in the PCR and qPCR. OsHV-1 μVar was detected in wild Mytilus spp. at C. gigas culture sites and more significantly the virus was detected in mussels at non-culture sites. Cohabitation of exposed wild mussels and naïve C. gigas resulted in viral transmission after 14 days, under an elevated temperature regime. These results indicate that mussels can harbour OsHV-1 μVar; however, the impact of OsHV-1 μVar on Mytilus spp. requires further investigation.
Collapse
|
32
|
De-la-Re-Vega E, Sánchez-Paz A, Gallardo-Ybarra C, Lastra-Encinas MA, Castro-Longoria R, Grijalva-Chon JM, López-Torres MA, Maldonado-Arce AD. The Pacific oyster (Crassostrea gigas) Hsp70 modulates the Ostreid herpes virus 1 infectivity. FISH & SHELLFISH IMMUNOLOGY 2017; 71:127-135. [PMID: 28986219 DOI: 10.1016/j.fsi.2017.09.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The Ostreid herpes virus type 1 (OsHV-1) is one of the most devastating pathogen in oyster cultures. Among several factors, as food limitation, oxygen depletion, salinity and temperature variations, episodes of "summer mortality" of the Pacific oyster Crassostrea gigas have also been associated with OsHV-1 infection. Mortalities of C. gigas spat and juveniles have increased significantly in Europe, and contemporary mortality records of this mollusk in México have been associated with the occurrence of OsHV-1. In the present study, the expression of the heat shock protein 70 gene from the Pacific oyster correlates with the abundance of DNA polymerase transcripts from the OsHV-1. This may suggest that the induction on the expression of the Pacific oyster hsp70 may potentially participate in the immune response against the virus. Furthermore, this study reports for the first time a TEM representative image of the OsHV-1 in aqueous solution, which possesses an icosahedral shape with a diameter of 70 nm × 100 nm. Finally, the examined sequence encoding the ORF4 of the OsHV-1 isolate from northwest Mexico showed specific sequence variations when compared with OsHV-1 isolates from distant geographical areas.
Collapse
Affiliation(s)
- Enrique De-la-Re-Vega
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico.
| | - Arturo Sánchez-Paz
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Calle Hermosa 101, Col. Los Ángeles, CP 83106 Hermosillo, Sonora, Mexico
| | - Carolina Gallardo-Ybarra
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - Manuel Adolfo Lastra-Encinas
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - Reina Castro-Longoria
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - José Manuel Grijalva-Chon
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - Marco Antonio López-Torres
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | | |
Collapse
|
33
|
Detection of Ostreid herpesvirus -1 microvariants in healthy Crassostrea gigas following disease events and their possible role as reservoirs of infection. J Invertebr Pathol 2017; 148:20-33. [DOI: 10.1016/j.jip.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
|
34
|
Travers MA, Tourbiez D, Parizadeh L, Haffner P, Kozic-Djellouli A, Aboubaker M, Koken M, Dégremont L, Lupo C. Several strains, one disease: experimental investigation of Vibrio aestuarianus infection parameters in the Pacific oyster, Crassostrea gigas. Vet Res 2017; 48:32. [PMID: 28549482 PMCID: PMC5446674 DOI: 10.1186/s13567-017-0438-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/04/2017] [Indexed: 01/20/2023] Open
Abstract
This study investigated oyster infection dynamics by different strains of Vibrio aestuarianus isolated before and after the apparent re-emergence of this pathogen observed in France in 2011. We conducted experiments to compare minimal infective dose, lethal dose 50 and bacterial shedding for six V. aestuarianus strains. Whatever the strain used, mortality was induced in juvenile oysters by intramuscular injection and reached 90–100% of mortality within 5 days. Moreover, bacterial shedding was comparable among strains and reached its maximum after 20 h (≈10 EXP5 bacteria/mL/animal). Similarly, our first estimations of lethal dose 50 were comparable among strains (minimal infective dose around 0.4 × 10EXP5 bacteria/mL and LD50 around 10EXP5 bacteria/mL) by using seawater containing freshly shed bacteria. These results indicate that, at least with these criteria, despite V. aestuarianus strains genetic diversity, the disease process is similar. The strains isolated after the apparent re-emergence of the bacteria in 2011, do not present a more acute virulence phenotype than the reference strains isolated between 2002 and 2007. Finally, our study provides original and noteworthy data indicating that infected oysters shed bacteria at a level above the threshold of LD50 a few days before they die, meaning that infection is expected to spread in a susceptible population.
Collapse
Affiliation(s)
- Marie-Agnès Travers
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France.
| | - Delphine Tourbiez
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Leïla Parizadeh
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Philippe Haffner
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France.,Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244, CNRS, IFREMER, Université de Perpignan Via Domitia, Université de Montpellier, 34095, Montpellier, France
| | - Angélique Kozic-Djellouli
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | | | - Marcel Koken
- LABOCEA-CNRS, 120 Avenue Alexis de Rochon, 29280, Plouzané, France
| | - Lionel Dégremont
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Coralie Lupo
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| |
Collapse
|
35
|
Arzul I, Corbeil S, Morga B, Renault T. Viruses infecting marine molluscs. J Invertebr Pathol 2017; 147:118-135. [PMID: 28189502 DOI: 10.1016/j.jip.2017.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.
Collapse
Affiliation(s)
- Isabelle Arzul
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Serge Corbeil
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong East, Victoria 3220, Australia
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Tristan Renault
- Ifremer, RBE, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
36
|
Pauletto M, Segarra A, Montagnani C, Quillien V, Faury N, Le Grand J, Miner P, Petton B, Labreuche Y, Fleury E, Fabioux C, Bargelloni L, Renault T, Huvet A. Long dsRNAs promote an anti-viral response in Pacific oyster hampering ostreid herpesvirus 1 replication. J Exp Biol 2017; 220:3671-3685. [DOI: 10.1242/jeb.156299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
Double stranded RNA-mediated genetic interference (RNAi) is a widely used reverse genetic tool for determining the loss-of-function phenotype of a gene. Here, the possible induction of an immune response by long dsRNA was tested in a marine bivalve, i.e. Crassostrea gigas, as well as the specific role of the subunit 2 of the nuclear factor κB inhibitor (IκB2). This gene is a candidate of particular interest for functional investigations in the context of massive mortality oyster events as Cg-IκB2 mRNA levels exhibited significant variation depending on the amount of ostreid herpesvirus 1 (OsHV-1) DNA detected. In the present study, dsRNAs targeting Cg-IκB2 and Green Fluorescence Protein genes were injected in vivo into oysters before being challenged by OsHV-1. Survival appeared close to 100% in both dsRNA injected conditions associated with a low detection of viral DNA and a low expression of a panel of 39 OsHV-1 genes as compared to infected control. Long dsRNA molecules, both Cg-IκB2- and GFP-dsRNA, may have induced an anti-viral state controlling the OsHV-1 replication and precluding the understanding of the Cg-IκB2 specific role. Immune-related genes including Cg-IκB1, Cg-Rel1, Cg-IFI44, Cg-PKR, and Cg-IAP appeared activated in dsRNA-injected condition potentially hampering viral replication and thus conferring a better resistance to OsHV-1 infection. We revealed that long dsRNA-mediated genetic interference triggered an anti-viral state in the oyster, emphasizing the need of new reverse genetics tools for assessing immune gene function and avoiding off-target effects in bivalves.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Amélie Segarra
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France
| | - Caroline Montagnani
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Virgile Quillien
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Nicole Faury
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France
| | | | - Philippe Miner
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Bruno Petton
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Yannick Labreuche
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Elodie Fleury
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Caroline Fabioux
- Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, rue de l'Ile d'Yeu, 44000 Nantes, France
| | - Arnaud Huvet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| |
Collapse
|
37
|
López Sanmartín M, Power DM, de la Herrán R, Navas JI, Batista FM. Evidence of vertical transmission of ostreid herpesvirus 1 in the Portuguese oyster Crassostrea angulata. J Invertebr Pathol 2016; 140:39-41. [DOI: 10.1016/j.jip.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
|
38
|
Green TJ, Helbig K, Speck P, Raftos DA. Primed for success: Oyster parents treated with poly(I:C) produce offspring with enhanced protection against Ostreid herpesvirus type I infection. Mol Immunol 2016; 78:113-120. [PMID: 27616590 DOI: 10.1016/j.molimm.2016.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022]
Abstract
The Pacific oyster (Crassostrea gigas) is farmed globally. Ostreid herpesvirus (OsHV-1) causes severe mortalities of farmed C. gigas. Management of OsHV-1 has proven difficult. Oysters treated with poly(I:C) exhibit enhanced protection (EP) against OsHV-1. This chemical treatment is highly effective, but it is not feasible to treat every oyster on a farm. To circumvent this practical limitation, previous studies on arthropods have suggested that EP can be transferred from parents to their offspring (trans-generational EP, TGEP). This suggests that the treatment of relatively few parents could be used to produce large numbers of offspring with TGEP. Here, we investigated TGEP in oysters to test whether it might be used as a cost effective management tool to control OsHV-1. We found that offspring (D-veliger larvae) produced from poly(I:C)-treated parents had double the chance of surviving exposure to OsHV-1 compared to controls. Furthermore, the larvae of poly(I:C)-treated parents contained elevated levels of mRNA encoding a key transcription factor that regulates antiviral immunity (IRF2). Poly(I:C) treatment had no effect on the survival of oyster parents. Hence, the enhanced immunity of their offspring could not be explained by genetic selection, and instead may reflect epigenetic reprogramming or maternal provisioning.
Collapse
Affiliation(s)
- Timothy J Green
- Macquarie University, Department of Biological Sciences, Sydney, NSW, Australia; Sydney Institute of Marine Science, Chowder Bay, Mosman, NSW, Australia.
| | - Karla Helbig
- La Trobe University, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, Melbourne, Victoria, Australia
| | - Peter Speck
- Flinders University, Department of Biological Sciences, Adelaide, South Australia, Australia
| | - David A Raftos
- Macquarie University, Department of Biological Sciences, Sydney, NSW, Australia; Sydney Institute of Marine Science, Chowder Bay, Mosman, NSW, Australia
| |
Collapse
|
39
|
Antiviral Activity of Myticin C Peptide from Mussel: an Ancient Defense against Herpesviruses. J Virol 2016; 90:7692-702. [PMID: 27307570 DOI: 10.1128/jvi.00591-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Little is known about the antiviral response in mollusks. As in other invertebrates, the interferon signaling pathways have not been identified, and in fact, there is a debate about whether invertebrates possess antiviral immunity similar to that of vertebrates. In marine bivalves, due to their filtering activity, interaction with putative pathogens, including viruses, is very high, suggesting that they should have mechanisms to address these infections. In this study, we confirmed that constitutively expressed molecules in naive mussels confer resistance in oysters to ostreid herpesvirus 1 (OsHV-1) when oyster hemocytes are incubated with mussel hemolymph. Using a proteomic approach, myticin C peptides were identified in both mussel hemolymph and hemocytes. Myticins, antimicrobial peptides that have been previously characterized, were constitutively expressed in a fraction of mussel hemocytes and showed antiviral activity against OsHV-1, suggesting that these molecules could be responsible for the antiviral activity of mussel hemolymph. For the first time, a molecule from a bivalve has shown antiviral activity against a virus affecting mollusks. Moreover, myticin C peptides showed antiviral activity against human herpes simplex viruses 1 (HSV-1) and 2 (HSV-2). In summary, our work sheds light on the invertebrate antiviral immune response with the identification of a molecule with potential biotechnological applications. IMPORTANCE Several bioactive molecules that have potential pharmaceutical or industrial applications have been identified and isolated from marine invertebrates. Myticin C, an antimicrobial peptide from the Mediterranean mussel (Mytilus galloprovincialis) that was identified by proteomic techniques in both mussel hemolymph and hemocytes, showed potential as an antiviral agent against ostreid herpesvirus 1 (OsHV-1), which represents a major threat to the oyster-farming sector. Both hemolymph from mussels and a myticin C peptide inhibited OsHV-1 replication in oyster hemocytes. Additionally, a modified peptide derived from myticin C or the nanoencapsulated normal peptide also showed antiviral activity against the human herpesviruses HSV-1 and HSV-2. Therefore, myticin C is an example of the biotechnological and therapeutic potential of mollusks.
Collapse
|
40
|
Green TJ, Vergnes A, Montagnani C, de Lorgeril J. Distinct immune responses of juvenile and adult oysters (Crassostrea gigas) to viral and bacterial infections. Vet Res 2016; 47:72. [PMID: 27439510 PMCID: PMC4955271 DOI: 10.1186/s13567-016-0356-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022] Open
Abstract
Since 2008, massive mortality events of Pacific oysters (Crassostrea gigas) have been reported worldwide and these disease events are often associated with Ostreid herpesvirus type 1 (OsHV-1). Epidemiological field studies have also reported oyster age and other pathogens of the Vibrio genus are contributing factors to this syndrome. We undertook a controlled laboratory experiment to simultaneously investigate survival and immunological response of juvenile and adult C. gigas at different time-points post-infection with OsHV-1, Vibrio tasmaniensis LGP32 and V. aestuarianus. Our data corroborates epidemiological studies that juveniles are more susceptible to OsHV-1, whereas adults are more susceptible to Vibrio. We measured the expression of 102 immune-genes by high-throughput RT-qPCR, which revealed oysters have different transcriptional responses to OsHV-1 and Vibrio. The transcriptional response in the early stages of OsHV-1 infection involved genes related to apoptosis and the interferon-pathway. Transcriptional response to Vibrio infection involved antimicrobial peptides, heat shock proteins and galectins. Interestingly, oysters in the later stages of OsHV-1 infection had a transcriptional response that resembled an antibacterial response, which is suggestive of the oyster’s microbiome causing secondary infections (dysbiosis-driven pathology). This study provides molecular evidence that oysters can mount distinct immune response to viral and bacterial pathogens and these responses differ depending on the age of the host.
Collapse
Affiliation(s)
- Timothy J Green
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France.,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France.
| | - Julien de Lorgeril
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France
| |
Collapse
|
41
|
In situ localization and tissue distribution of ostreid herpesvirus 1 proteins in infected Pacific oyster, Crassostrea gigas. J Invertebr Pathol 2016; 136:124-35. [PMID: 27066775 DOI: 10.1016/j.jip.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/20/2022]
Abstract
Immunohistochemistry (IHC) assays were conducted on paraffin sections from experimentally infected spat and unchallenged spat produced in hatchery to determine the tissue distribution of three viral proteins within the Pacific oyster, Crassostrea gigas. Polyclonal antibodies were produced from recombinant proteins corresponding to two putative membrane proteins and one putative apoptosis inhibitor encoded by ORF 25, 72, and 87, respectively. Results were then compared to those obtained by in situ hybridization performed on the same individuals, and showed a substantial agreement according to Landis and Koch numeric scale. Positive signals were mainly observed in connective tissue of gills, mantle, adductor muscle, heart, digestive gland, labial palps, and gonads of infected spat. Positive signals were also reported in digestive epithelia. However, few positive signals were also observed in healthy appearing oysters (unchallenged spat) and could be due to virus persistence after a primary infection. Cellular localization of staining seemed to be linked to the function of the viral protein targeted. A nucleus staining was preferentially observed with antibodies targeting the putative apoptosis inhibitor protein whereas a cytoplasmic localization was obtained using antibodies recognizing putative membrane proteins. The detection of viral proteins was often associated with histopathological changes previously reported during OsHV-1 infection by histology and transmission electron microscopy. Within the 6h after viral suspension injection, positive signals were almost at the maximal level with the three antibodies and all studied organs appeared infected at 28h post viral injection. Connective tissue appeared to be a privileged site for OsHV-1 replication even if positive signals were observed in the epithelium cells of different organs which may be interpreted as a hypothetical portal of entry or release for the virus. IHC constitutes a suited method for analyzing the early infection stages of OsHV-1 infection and a useful tool to investigate interactions between OsHV-1 and its host at a protein level.
Collapse
|
42
|
Valverde EJ, Cano I, Labella A, Borrego JJ, Castro D. Application of a new real-time polymerase chain reaction assay for surveillance studies of lymphocystis disease virus in farmed gilthead seabream. BMC Vet Res 2016; 12:71. [PMID: 27048523 PMCID: PMC4822239 DOI: 10.1186/s12917-016-0696-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 03/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Lymphocystis disease (LCD) is the main viral infection reported to affect cultured gilthead seabream (Sparus aurata) in Europe. The existence of subclinical Lymphocystis disease virus (LCDV) infection in this fish species has been recognised by using polymerase chain reaction (PCR)-based methods. Nevertheless, these methods do not provide quantitative results that can be useful in epidemiological and pathological studies. Moreover, carrier fish have been involved in viral transmission, therefore the use of specific and sensitive diagnostic methods to detect LCDV will be relevant for LCD prevention. Results We have developed a real-time PCR (qPCR) assay to detect and quantify LCDV. The assay was evaluated for viral diagnosis in surveillance studies in gilthead seabream farms, and also to identify viral reservoirs in a hatchery. The prevalence of LCDV infection in the asymptomatic gilthead seabream populations tested varied from 30 to 100 %, including data from one farm without previous records of LCD. Estimated viral load in caudal fin of subclinically infected fish was two to five orders of magnitude lower than in diseased fish. The qPCR assay allowed the detection of carrier fish in broodstock from a farm with a history of clinical LCD in juvenile fish. In addition, the quantitative detection of LCDV was achieved in all samples collected in the hatchery, including fertilized eggs, larvae and fingerlings, and also rotifer cultures and artemia metanauplii and cysts used for larval rearing. Conclusions The qPCR assay developed in this study has proved to be a rapid, sensitive, and reliable method for LCDV diagnosis, which could be valuable to identify LCDV reservoirs or to study viral replication in gilthead seabream.
Collapse
Affiliation(s)
| | - Irene Cano
- CEFAS Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
| | - Alejandro Labella
- Departamento de Microbiología, Universidad de Málaga, 29071, Málaga, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071, Málaga, Spain
| | - Dolores Castro
- Departamento de Microbiología, Universidad de Málaga, 29071, Málaga, Spain.
| |
Collapse
|
43
|
Lassudrie M, Soudant P, Nicolas JL, Miner P, Le Grand J, Lambert C, Le Goïc N, Hégaret H, Fabioux C. Exposure to the toxic dinoflagellate Alexandrium catenella modulates juvenile oyster Crassostrea gigas hemocyte variables subjected to different biotic conditions. FISH & SHELLFISH IMMUNOLOGY 2016; 51:104-115. [PMID: 26882980 DOI: 10.1016/j.fsi.2016.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/08/2016] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
The Pacific oyster Crassostrea gigas is an important commercial species cultured throughout the world. Oyster production practices often include transfers of animals into new environments that can be stressful, especially at young ages. This study was undertaken to determine if a toxic Alexandrium bloom, occurring repeatedly in French oyster beds, could modulate juvenile oyster cellular immune responses (i.e. hemocyte variables). We simulated planting on commercial beds by conducting a cohabitation exposure of juvenile, "specific pathogen-free" (SPF) oysters (naïve from the environment) with previously field-exposed oysters to induce interactions with new microorganisms. Indeed, toxic Alexandrium spp. exposures have been reported to modulate bivalve interaction with specific pathogens, as well as physiological and immunological variables in bivalves. In summary, SPF oysters were subjected to an artificial bloom of Alexandrium catenella, simultaneously with a cohabitation challenge. Exposure to A. catenella, and thus to the paralytic shellfish toxins (PSTs) and extracellular bioactive compounds produced by this alga, induced higher concentration, size, complexity and reactive oxygen species (ROS) production of circulating hemocytes. Challenge by cohabitation with field-exposed oysters also activated these hemocyte responses, suggesting a defense response to new microorganism exposure. These hemocyte responses to cohabitation challenge, however, were partially inhibited by A. catenella exposure, which enhanced hemocyte mortality, suggesting either detrimental effects of the interaction of both stressors on immune capacity, or the implementation of an alternative immune strategy through apoptosis. Indeed, no infection with specific pathogens (herpesvirus OsHV-1 or Vibrio aesturianus) was detected. Additionally, lower PST accumulation in challenged oysters suggests a physiological impairment through alteration of feeding-related processes. Overall, results of this study show that a short-term exposure to A. catenella combined with an exposure to a modified microbial community inhibited some hemocyte responses, and likely compromised physiological condition of the juvenile oysters.
Collapse
Affiliation(s)
- Malwenn Lassudrie
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Jean-Louis Nicolas
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France.
| | - Philippe Miner
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France.
| | - Jacqueline Le Grand
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France.
| | - Christophe Lambert
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Nelly Le Goïc
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| |
Collapse
|
44
|
Moreau P, Moreau K, Segarra A, Tourbiez D, Travers MA, Rubinsztein DC, Renault T. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections. Autophagy 2016; 11:516-26. [PMID: 25714877 PMCID: PMC4502751 DOI: 10.1080/15548627.2015.1017188] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.
Collapse
Key Words
- ATG, autophagy-related
- Atg8–PE, Atg8–phosphatidylethenolamine
- Crassostrea gigas
- DNA, deoxyribonucleic acid
- LC3-II, cleaved, lipidated and autophagosome-associated form of LC3
- MAP1LC3A/B (LC3A/B), microtubule-associated proteins 1 light chain 3 alpha/beta (mammalian orthologs of the predicted Crassostrea gigas LC3 and yeast Atg8)
- NH4Cl, ammonium chloride
- OsHV-1
- OsHV-1, Ostreid herpesvirus 1
- PCR, polymerase chain reaction
- Pacific oyster
- Vibrio aestuarianus
- autophagy
- hpi, hours postinfection
Collapse
Affiliation(s)
- Pierrick Moreau
- a Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer); Laboratoire de Génétique et Pathologie des Mollusques Marins; Ronce Les Bains ; La Tremblade , France
| | | | | | | | | | | | | |
Collapse
|
45
|
López Sanmartín M, Power DM, de la Herrán R, Navas JI, Batista FM. Experimental infection of European flat oyster Ostrea edulis with ostreid herpesvirus 1 microvar (OsHV-1μvar): Mortality, viral load and detection of viral transcripts by in situ hybridization. Virus Res 2016; 217:55-62. [PMID: 26945849 DOI: 10.1016/j.virusres.2016.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
Ostreid herpesvirus 1 (OsHV-1) infections have been reported in several bivalve species. Mortality of Pacific oyster Crassostrea gigas spat has increased considerably in Europe since 2008 linked to the spread of a variant of OsHV-1 called μvar. In the present study we demonstrated that O. edulis juveniles can be infected by OsHV-1μvar when administered as an intramuscular injection. Mortality in the oysters injected with OsHV-1μvar was first detected 4 days after injection and reached 25% mortality at day 10. Moreover, the high viral load observed and the detection of viral transcripts by in situ hybridization in several tissues of dying oysters suggested that OsHV-1μvar was the cause of mortality in the O. edulis juveniles. This is therefore the first study to provide evidence about the pathogenicity of OsHV-1μvar in a species that does not belong to the Crassostrea genus. Additionally, we present a novel method to detect OsHV-1 transcripts in infected individuals' using in situ hybridization.
Collapse
Affiliation(s)
- Monserrat López Sanmartín
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Agua del Pino, Junta de Andalucía, Ctra. El Rompido-Punta Umbría, km 4, 21459 Cartaya, Spain.
| | - Deborah M Power
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | - José I Navas
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Agua del Pino, Junta de Andalucía, Ctra. El Rompido-Punta Umbría, km 4, 21459 Cartaya, Spain
| | - Frederico M Batista
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Instituto Português do Mar e da Atmosfera, Divisão de Aquicultura e Valorização, Estação Experimental de Moluscicultura de Tavira, Av. 5 de Outubro, 8700-305 Olhão, Portugal
| |
Collapse
|
46
|
Bai C, Gao W, Wang C, Yu T, Zhang T, Qiu Z, Wang Q, Huang J. Identification and characterization of ostreid herpesvirus 1 associated with massive mortalities of Scapharca broughtonii broodstocks in China. DISEASES OF AQUATIC ORGANISMS 2016; 118:65-75. [PMID: 26865236 DOI: 10.3354/dao02958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the early summer of 2012 and 2013, mass mortalities of blood ark shell (Scapharca [Anadara] broughtonii), broodstocks were reported in several hatcheries on the coast of northern China. Clinical signs including slow response, gaping valves and pale visceral mass were observed in diseased individuals. In response to these reported mortalities, 238 samples were collected from hatcheries at 6 sites. Microscopic changes including lysed connective tissue, dilation of the digestive tubules, eosinophilic inclusion bodies, nuclear chromatin margination and pyknosis were found in affected animals. Transmission electron microscopy (TEM) revealed herpes-like viral particles within the connective tissue of the mantle. Quantative PCR (qPCR) and nested PCR (nPCR) analysis using primers specific for ostreid herpesvirus 1 (OsHV-1) indicated significant higher prevalence of OsHV-1 DNA in cases associated with mass mortalities than those without mass mortalities (p = 0.0012 for qPCR, p < 0.0001 for nPCR). qPCR also indicated that samples associated with mass mortalities carried high viral DNA loads, while the loads in apparently healthy samples were significantly lower (t = 3.15, df = 92, p = 0.002). Sequence analysis of the C2/C6 region of nPCR products revealed 5 newly described variants, which were closely related to each other. Phylogenetic analysis of the 5 virus variants and 48 virus variants reported in previous studies identified 2 main phylogenetic groups, and the 5 virus variants identified here were allocated to a separate subclade. To our knowledge, this is the first report of mass mortalities of bivalve broodstocks associated with OsHV-1 infection.
Collapse
Affiliation(s)
- Changming Bai
- Division of Maricultural Organism Disease Control and Molecular Pathology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Detection and distribution of ostreid herpesvirus 1 in experimentally infected Pacific oyster spat. J Invertebr Pathol 2016; 133:59-65. [DOI: 10.1016/j.jip.2015.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022]
|
48
|
Green TJ, Rolland JL, Vergnes A, Raftos D, Montagnani C. OsHV-1 countermeasures to the Pacific oyster's anti-viral response. FISH & SHELLFISH IMMUNOLOGY 2015; 47:435-443. [PMID: 26384844 DOI: 10.1016/j.fsi.2015.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The host-pathogen interactions between the Pacific oyster (Crassostrea gigas) and Ostreid herpesvirus type 1 (OsHV-1) are poorly characterised. Herpesviruses are a group of large, DNA viruses that are known to encode gene products that subvert their host's antiviral response. It is likely that OsHV-1 has also evolved similar strategies as its genome encodes genes with high homology to C. gigas inhibitors of apoptosis (IAPs) and an interferon-stimulated gene (termed CH25H). The first objective of this study was to simultaneously investigate the expression of C. gigas and OsHV-1 genes that share high sequence homology during an acute infection. Comparison of apoptosis-related genes revealed that components of the extrinsic apoptosis pathway (TNF) were induced in response to OsHV-1 infection, but we failed to observe evidence of apoptosis using a combination of biochemical and molecular assays. IAPs encoded by OsHV-1 were highly expressed during the acute stage of infection and may explain why we didn't observe evidence of apoptosis. However, C. gigas must have an alternative mechanism to apoptosis for clearing OsHV-1 from infected gill cells as we observed a reduction in viral DNA between 27 and 54 h post-infection. The reduction of viral DNA in C. gigas gill cells occurred after the up-regulation of interferon-stimulated genes (viperin, PKR, ADAR). In a second objective, we manipulated the host's anti-viral response by injecting C. gigas with a small dose of poly I:C at the time of OsHV-1 infection. This small dose of poly I:C was unable to induce transcription of known antiviral effectors (ISGs), but these oysters were still capable of inhibiting OsHV-1 replication. This result suggests dsRNA induces an anti-viral response that is additional to the IFN-like pathway.
Collapse
Affiliation(s)
- Timothy J Green
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia.
| | - Jean-Luc Rolland
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| |
Collapse
|
49
|
Barbosa Solomieu V, Renault T, Travers MA. Mass mortality in bivalves and the intricate case of the Pacific oyster, Crassostrea gigas. J Invertebr Pathol 2015. [PMID: 26210497 DOI: 10.1016/j.jip.2015.07.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Massive mortality outbreaks in cultured bivalves have been reported worldwide and they have been associated with infection by a range of viral and bacterial pathogens. Due to their economic and social impact, these episodes constitute a particularly sensitive issue in Pacific oyster (Crassostrea gigas) production. Since 2008, mortality outbreaks affecting C. gigas have increased in terms of intensity and geographic distribution. Epidemiologic surveys have lead to the incrimination of pathogens, specifically OsHV-1 and bacteria of the Vibrio genus, in particular Vibrio aestuarianus. Pathogen diversity may partially account for the variability in the outcome of infections. Host factors (age, reproductive status...) including their genetic background that has an impact on host susceptibility toward infection, also play a role herein. Finally, environmental factors have significant effects on the pathogens themselves, on the host and on the host-pathogen interaction. Further knowledge on pathogen diversity, classification, and spread, may contribute toward a better understanding of this issue and potential ways to mitigate the impact of these outbreaks.
Collapse
Affiliation(s)
- Valérie Barbosa Solomieu
- Université de Bretagne Occidentale, Direction Europe et International, Présidence, 3 rue des Archives, CS93837, 29238 Brest CEDEX 3, France
| | - Tristan Renault
- Ifremer, Unité Santé Génétique Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), 17390 La Tremblade, France.
| | - Marie-Agnès Travers
- Ifremer, Unité Santé Génétique Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), 17390 La Tremblade, France
| |
Collapse
|
50
|
Petton B, Bruto M, James A, Labreuche Y, Alunno-Bruscia M, Le Roux F. Crassostrea gigas mortality in France: the usual suspect, a herpes virus, may not be the killer in this polymicrobial opportunistic disease. Front Microbiol 2015. [PMID: 26217318 PMCID: PMC4491618 DOI: 10.3389/fmicb.2015.00686] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Successive disease outbreaks in oyster (Crassostrea gigas) beds in France have resulted in dramatic losses in production, and subsequent decline in the oyster-farming industry. Deaths of juvenile oysters have been associated with the presence of a herpes virus (OsHV-1 μvar) and bacterial populations of the genus Vibrio. Although the pathogenicity of OsHV-1 μvar, as well as several strains of Vibrio has been demonstrated by experimental infections, our understanding of the complexity of infections occurring in the natural environment remains limited. In the present study, we use specific-pathogen-free (SPF) oysters infected in an estuarine environment to study the diversity and dynamics of cultured microbial populations during disease expression. We observe that rapid Vibrio colonization followed by viral replication precedes oyster death. No correlation was found between the vibrio concentration and viral load in co-infected animals. We show that the quantity of viral DNA is a predictor of mortality, however, in the absence of bacteria, a high load of herpes virus is not sufficient to induce the full expression of the disease. In addition, we demonstrate that juvenile mortalities can occur in the absence of herpes virus, indicating that the herpes virus appears neither essential nor sufficient to cause juvenile deaths; whereas bacteria are necessary for the disease. Finally, we demonstrate that oysters are a reservoir of putative pathogens, and that the geographic origin, age, and cultivation method of oysters influence disease expression.
Collapse
Affiliation(s)
- Bruno Petton
- LEMAR UMR 6539, Ifremer Argenton-en-Landunvez, France
| | - Maxime Bruto
- Unité Physiologie Fonctionnelle des Organismes Marins, Ifremer Plouzané, France ; CNRS, Equipe Génomique des Vibrios, LBI2M, UPMC Paris 06, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités Roscoff, France
| | - Adèle James
- Unité Physiologie Fonctionnelle des Organismes Marins, Ifremer Plouzané, France ; CNRS, Equipe Génomique des Vibrios, LBI2M, UPMC Paris 06, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités Roscoff, France
| | - Yannick Labreuche
- Unité Physiologie Fonctionnelle des Organismes Marins, Ifremer Plouzané, France ; CNRS, Equipe Génomique des Vibrios, LBI2M, UPMC Paris 06, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités Roscoff, France
| | | | - Frédérique Le Roux
- Unité Physiologie Fonctionnelle des Organismes Marins, Ifremer Plouzané, France ; CNRS, Equipe Génomique des Vibrios, LBI2M, UPMC Paris 06, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités Roscoff, France
| |
Collapse
|