1
|
Golender N, Hoffmann B, Kenigswald G, Scheinin S, Kedmi M, Gleser D, Klement E. Bovine Ephemeral Fever Viruses in Israel 2014-2023: Genetic Characterization of Local and Emerging Strains. Pathogens 2024; 13:636. [PMID: 39204237 PMCID: PMC11357334 DOI: 10.3390/pathogens13080636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024] Open
Abstract
Bovine ephemeral fever (BEF) is an arthropod-borne viral disease, which frequently causes significant epizootics in susceptible water buffalo and cattle in Africa, Australia, Asia and the Middle East. In the current study, a two-stage protocol for BEFV viral isolation was developed. Data on the clinical signs, geographic distribution and phylogenetic analysis of BEFV strains isolated in Israel in 2015, 2018, 2021 and 2023 were summarized. It was found that during 2015-2021, all BEF outbreaks were caused by local BEFV strains, whereas the epizootic of BEFV in 2023 was caused by a new "Mayotte-like" BEFV strain. A comparison of bluetongue (BT) and BEF outbreaks during 2023 in Israel demonstrated that the incidence of BEFV was 2.21 times higher and its pathogenicity was more serious for the cattle population compared to that caused by BTVs. A phylogenetic analysis of Israeli and global BEFV revealed the emergence of non-local strains in new areas. This finding suggests that BEFV can no longer be classified based only upon geographic distribution. Considering a phylogenetic, genetic and proteomic analysis of all available BEFV strains, we suggest classifying them as a single serotype, which includes four lineages.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 5025001, Israel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel; (D.G.); (E.K.)
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Gabriel Kenigswald
- Hachaklait Veterinary Services, Caesarea 3088900, Israel; (G.K.); (S.S.); (M.K.)
| | - Shani Scheinin
- Hachaklait Veterinary Services, Caesarea 3088900, Israel; (G.K.); (S.S.); (M.K.)
| | - Maor Kedmi
- Hachaklait Veterinary Services, Caesarea 3088900, Israel; (G.K.); (S.S.); (M.K.)
| | - Dan Gleser
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel; (D.G.); (E.K.)
| | - Eyal Klement
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel; (D.G.); (E.K.)
| |
Collapse
|
2
|
Voigt A, Kampen H, Heuser E, Zeiske S, Hoffmann B, Höper D, Holsteg M, Sick F, Ziegler S, Wernike K, Beer M, Werner D. Bluetongue Virus Serotype 3 and Schmallenberg Virus in Culicoides Biting Midges, Western Germany, 2023. Emerg Infect Dis 2024; 30:1438-1441. [PMID: 38916645 PMCID: PMC11210651 DOI: 10.3201/eid3007.240275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
In October 2023, bluetongue virus serotype 3 (BTV-3) emerged in Germany, where Schmallenberg virus is enzootic. We detected BTV-3 in 1 pool of Culicoides biting midges collected at the time ruminant infections were reported. Schmallenberg virus was found in many vector pools. Vector trapping and analysis could elucidate viral spread.
Collapse
|
3
|
Rahmani Shahraki A, Bittar JHJ, Wisely SM, Campos-Krauer JM. A Case of Severe Abomasal Sand Impaction in a Farmed White-Tailed Deer ( Odocoileus virginianus) in Florida. Animals (Basel) 2024; 14:1602. [PMID: 38891649 PMCID: PMC11171194 DOI: 10.3390/ani14111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The University of Florida's Cervidae Health Research Initiative (CHeRI) conducted a post-mortem examination of a two-year-old white-tailed doe deceased at a northern Florida white-tailed deer farm. The carcass of the deer had notable emaciation and bloating. Upon opening of the carcass, there was pneumonia and the rumen was tympanic and enlarged. Additionally, the abomasum was distended and contained approximately 5 kg of sand. It is not uncommon for white-tailed deer to engage in geophagia (eating soil or sand), which typically does not result in diseases or fatalities. However, in this animal, we suspect a chronic process that created a physical barrier, hindering nutrient absorption and resulting in physical irritation of the abomasal mucosa with subsequent inflammation. This may have caused a disturbance in immune system function, allowing opportunistic bacteria to colonize and invade other organs, such as the lungs, contributing to the animal's death.
Collapse
Affiliation(s)
- Alireza Rahmani Shahraki
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (A.R.S.); (J.H.J.B.)
| | - João H. J. Bittar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (A.R.S.); (J.H.J.B.)
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Juan M. Campos-Krauer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (A.R.S.); (J.H.J.B.)
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
4
|
Steele CH, McDermott EG. From forests to fields: investigating Culicoides (Diptera: Ceratopogonidae) abundance and diversity in cattle pastures and adjacent woodlands. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:473-480. [PMID: 38085671 DOI: 10.1093/jme/tjad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 03/14/2024]
Abstract
Culicoides Latreille (Diptera: Ceratopogonidae) biting midges are hematophagous flies that feed on wild and domestic ruminants. They can transmit arboviruses, such as bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), which circulate in the United States. Larvae occupy a range of aquatic and semiaquatic habitats, and disperse short distances from their development sites. In the southeastern United States, there are limited studies on the abundance and diversity of Culicoides in wooded and adjacent livestock pasture habitats. In this study, we characterized Culicoides diversity and abundance within these distinct habitat types. BG-Sentinel and CDC miniature suction traps baited with CO2 or UV-light were placed in wooded and pasture habitats at 2 locations on a university beef farm in Savoy, Arkansas. Traps were set once per week for 9 wk during August-October of 2021 and 2022. Fifteen species were collected during this study, and the 2 most abundant species were Culicoides haematopotus Malloch and Culicoides stellifer Coquillett. There was a significant effect of site and location on C. haematopotus collections, and a significant effect and interaction of site and trap on C. stellifer collections. In the woods, significantly more C. stellifer were collected from CDC-UV traps, while in the pasture significantly more were collected in CDC-CO2 traps. These data suggest that C. stellifer, a putative vector of BTV and EHDV in the southeast, may be traveling into the pasture to host-seek, while C. haematopotus remains primarily in wooded areas. This study reveals community differences between these habitat types and implications for Culicoides control.
Collapse
Affiliation(s)
- Cassandra H Steele
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Emily G McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
5
|
Golender N, Hoffmann B. The Molecular Epidemiology of Epizootic Hemorrhagic Disease Viruses Identified in Israel between 2015 and 2023. EPIDEMIOLOGIA 2024; 5:90-105. [PMID: 38390919 PMCID: PMC10885110 DOI: 10.3390/epidemiologia5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an infectious, non-contagious viral disease seriously affecting cattle and some wild ruminants and has a worldwide distribution. All viruses can be subdivided into "Eastern" and "Western" topotypes according to geographic distribution via the phylogenetic analysis of internal genes. In Israel, during the last decade, three outbreaks were registered: caused by EHDV-6 in 2015, by EHDV-1 in 2016, and by EHDV-7 in 2020. Additionally, RNA of EHDV-8 was found in imported calves from Portugal in 2023. During the same period in other countries of the region, non-Israeli-like EHDV-6 and EHDV-8 were identified. Full genome sequencing, BLAST, and phylogenetic analyses of the locally and globally known EHDV genomes allowed us to presume the probable route and origin of these viruses detected in Israel. Thus, EHDV-6 has probably been circulating in the region for a long period when EHDV-1 and -8 appeared here for the last years, while their route of introduction into the new areas was probably natural; all of them belonged to the "Western" topotype. In contrast, EHDV-7 probably had the "Eastern", anthropogenic origin. Data from the study can facilitate the evaluation of the appearance or reappearance of EHDVs in the Mediterranean area and enhance the planning of prevention measures.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 5025001, Israel
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Viadanna PHO, Surphlis A, Cheng AC, Dixon CE, Meisner S, Wilson KN, White ZS, DeRuyter E, Logan TD, Krauer JMC, Lednicky JA, Wisely SM, Subramaniam K. A novel bluetongue virus serotype 2 strain isolated from a farmed Florida white-tailed deer (Odocoileus virginianus) arose from reassortment of gene segments derived from co-circulating serotypes in the Southeastern USA. Virus Genes 2024; 60:100-104. [PMID: 38182930 DOI: 10.1007/s11262-023-02047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Bluetongue disease is a reportable animal disease that affects wild and farmed ruminants, including white-tailed deer (WTD). This report documents the clinical findings, ancillary diagnostics, and genomic characterization of a novel reassortant bluetongue virus serotype 2 (BTV-2) strain isolated from a dead Florida farmed WTD in 2022. Our analyses support that this BTV-2 strain likely stemmed from the acquisition of genome segments from co-circulating BTV strains in Florida and Louisiana. In addition, our analyses also indicate that genetically uncharacterized BTV strains may be circulating in the Southeastern USA; however, the identity and reassortant status of these BTV strains cannot be determined based on the VP2 and VP5 genome sequences. Hence, continued surveillance based on complete genome characterization is needed to understand the genetic diversity of BTV strains in this region and the potential threat they may pose to the health of deer and other ruminants.
Collapse
Affiliation(s)
- Pedro H O Viadanna
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
| | - Austin Surphlis
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
| | - An-Chi Cheng
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Catherine E Dixon
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Sarah Meisner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Kristen N Wilson
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USA
| | - Zoe S White
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USA
| | - Emily DeRuyter
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, Gainesville, FL, 32610, USA
| | - Tracey D Logan
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, Gainesville, FL, 32610, USA
| | - Juan M C Krauer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - John A Lednicky
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, Gainesville, FL, 32610, USA
| | - Samantha M Wisely
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA.
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Banks JM, Capistrano KJ, Brandini DA, Zaidi F, Thakkar P, Rahat R, Schwartz J, Naqvi AR. Herpesviruses and SARS-CoV-2: Viral Association with Oral Inflammatory Diseases. Pathogens 2024; 13:58. [PMID: 38251365 PMCID: PMC10819702 DOI: 10.3390/pathogens13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
The oral cavity is a niche for diverse microbes, including viruses. Members of the Herpesviridae family, comprised of dsDNA viruses, as well as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an ssRNA virus, are among the most prevalent viruses infecting the oral cavity, and they exhibit clinical manifestations unique to oral tissues. Viral infection of oral mucosal epithelia triggers an immune response that results in prolonged inflammation. The clinical and systemic disease manifestations of HHV have been researched extensively, and several recent studies have illuminated the relationship between HHV and oral inflammatory diseases. Burgeoning evidence suggests the oral manifestation of SARS-CoV-2 infection includes xerostomia, dysgeusia, periodontal disease, mucositis, and opportunistic viral and bacterial infections, collectively described as oral post-acute sequelae of COVID-19 (PASC). These diverse sequelae could be a result of intensified immune responses initially due to the copious production of proinflammatory cytokines: the so-called "cytokine storm syndrome", facilitating widespread oral and non-oral tissue damage. This review explores the interplay between HHV, SARS-CoV-2, and oral inflammatory diseases such as periodontitis, endodontic disease, and peri-implantitis. Additionally, the review discusses proper diagnostic techniques for identifying viral infection and how viral diagnostics can lead to improved overall patient health.
Collapse
Affiliation(s)
- Jonathan M. Banks
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
| | - Kristelle J. Capistrano
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
| | - Daniela A. Brandini
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil;
| | - Filza Zaidi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
| | - Pari Thakkar
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
| | - Rani Rahat
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
| | - Joel Schwartz
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Abera D, Mossie T. A review on pneumonic pasteurellosis in small ruminants. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2146123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dessie Abera
- Debre markos Agricultural Research Center, Debre markos, Ethiopia
| | - Tesfa Mossie
- Jimma Agricultural Research Center, Jimma, Ethiopia
| |
Collapse
|
9
|
Cauvin AR, Wisely SM, Baiser B, Peters RM, Sayler KA, Orange JP, Blackburn JK, Stacy NI. Blood analytes of clinically normal and diseased neonatal and weaned farmed white-tailed deer ( Odocoileus virginianus) fawns. Vet Q 2023; 43:1-10. [PMID: 37589252 PMCID: PMC10453971 DOI: 10.1080/01652176.2023.2249072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Recent research focused on farmed deer has exposed many knowledge gaps regarding health assessment protocols for white-tailed deer (WTD). The objectives of this study were to establish de novo blood analyte reference intervals for farmed WTD fawns at birth (1-2 days of age; n = 84) and again at weaning (76-125 days of age; n = 28), to compare data at birth and at weaning to understand how these analytes are affected by the intrinsic factors age and sex in clinically normal WTD fawns, and to compare between clinically normal and sick WTD weanlings (respiratory disease n = 12; orbivirus-infected n = 6). Reference intervals were established for WTD fawns at birth and weaning. Female WTD neonates had significantly higher red blood cell counts, hematocrit, and hemoglobin compared to males. Most blood analytes were significantly different in clinically normal WTD neonates compared to weanlings, suggesting an effect of age. The observed sex- and age-related variations in WTD highlight the need to establish reference intervals that account for intrinsic factors. The comparison of clinically normal and sick WTD weanlings in this study identified higher MCHC and absolute monocytes in sick weanlings but these findings were presumably not biologically relevant given the small sample size for sick fawns. While the reference interval data presented herein will be useful for the veterinary care of WTD fawns at critical time periods in a high-density farm setting, this study also demonstrates the need to identify more sensitive and specific biomarkers for the assessment of health status in farmed WTD with specific underlying diseases.
Collapse
Affiliation(s)
- Allison R. Cauvin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Benjamin Baiser
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Rebecca M. Peters
- Department of Geography, University of Florida, Gainesville, FL, USA
| | - Katherine A. Sayler
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Jeremy P. Orange
- Department of Geography, University of Florida, Gainesville, FL, USA
| | | | - Nicole I. Stacy
- Department of Comparative, Diagnostic, & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Viadanna PHO, Grace SG, Logan TD, DeRuyter E, Loeb JC, Wilson KN, White ZS, Krauer JMC, Lednicky JA, Waltzek TB, Wisely SM, Subramaniam K. Characterization of two novel reassortant bluetongue virus serotype 1 strains isolated from farmed white-tailed deer (Odocoileus virginianus) in Florida, USA. Virus Genes 2023; 59:732-740. [PMID: 37439882 DOI: 10.1007/s11262-023-02019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Hemorrhagic diseases caused by epizootic hemorrhagic disease virus or by bluetongue virus (BTV) are the most important orbivirus diseases affecting ruminants, including white-tailed deer (WTD). Bluetongue virus is of particular concern for farmed WTD in Florida, given its lethality and its wide distribution throughout the state. This study reports the clinical findings, ancillary diagnostics, and genomic characterization of two BTV serotype 1 strains isolated from two farmed WTD, from two different farms in Florida in 2019 and 2022. Phylogenetic and genetic analyses indicated that these two novel BTV-1 strains were reassortants. In addition, our analyses reveal that most genome segments of these strains were acquired from BTVs previously detected in ruminants in Florida, substantiating their endemism in the Southeastern U.S. Our findings underscore the need for additional research to determine the genetic diversity of BTV strains in Florida, their prevalence, and the potential risk of new BTV strains to WTD and other ruminants.
Collapse
Affiliation(s)
- Pedro H O Viadanna
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 32611, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA
| | - Savannah G Grace
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA
- Department of Wildlife Ecology and Conservation, University of Florida, 32611, Gainesville, FL, USA
| | - Tracey D Logan
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 32611, Gainesville, FL, USA
| | - Emily DeRuyter
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 32611, Gainesville, FL, USA
| | - Julia C Loeb
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 32611, Gainesville, FL, USA
| | - Kristen N Wilson
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA
- Department of Wildlife Ecology and Conservation, University of Florida, 32611, Gainesville, FL, USA
| | - Zoe S White
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA
- Department of Wildlife Ecology and Conservation, University of Florida, 32611, Gainesville, FL, USA
| | - Juan M C Krauer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 32611, Gainesville, FL, USA
- Washington Animal Disease Diagnostic Laboratory, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, 99164, Pullman, WA, USA
| | - John A Lednicky
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 32611, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 32611, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA
- Washington Animal Disease Diagnostic Laboratory, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, 99164, Pullman, WA, USA
| | - Samantha M Wisely
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA
- Department of Wildlife Ecology and Conservation, University of Florida, 32611, Gainesville, FL, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 32611, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, 32611, Gainesville, FL, USA.
| |
Collapse
|
11
|
Golender N, Klement E, Ofer L, Hoffmann B, Wernike K, Beer M, Pfaff F. Hefer valley virus: a novel ephemerovirus detected in the blood of a cow with severe clinical signs in Israel in 2022. Arch Virol 2023; 168:234. [PMID: 37608200 DOI: 10.1007/s00705-023-05850-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 08/24/2023]
Abstract
A novel ephemerovirus was identified in a Holstein-Friesian cow in the Hefer Valley, Israel, that showed severe and fatal clinical signs resembling an arboviral infection. A sample taken during the acute phase tested negative for important endemic arboviral infectious cattle diseases. However, sequencing from blood revealed the full genome sequence of Hefer Valley virus, which is likely to represent a new species within the genus Ephemerovirus, family Rhabdoviridae. Archived samples from cattle with comparable clinical signs collected in Israel in 2021 and 2022 tested negative for the novel virus, and therefore, the actual distribution of the virus is unknown. As this is a recently identified new viral infection, the viral vector and the prevalence of the virus in the cattle population are still unknown but will be the subject of future investigations.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel.
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Eyal Klement
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Ofer
- Hachaklait veterinary services, Caesarea, Israel
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| |
Collapse
|
12
|
Golender N, Klement E, Kovtunenko A, Even-Tov B, Zamir L, Tiomkin E, Kenigswald G, Hoffmann B. Comparative Molecular and Epidemiological Analyses of Israeli Bluetongue Viruses Serotype 1 and 9 Causing Outbreaks in 2018-2020. Microorganisms 2023; 11:microorganisms11020366. [PMID: 36838331 PMCID: PMC9966015 DOI: 10.3390/microorganisms11020366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Israel is endemic to bluetongue virus (BTV). The introduction of novel-for-the-region arboviruses have been recorded annually in recent years. In 2019, previously non-reported in-the-country BTV-1 and BTV-9 were identified. BTV-1 caused a single-season outbreak, probably linked to mild infection in ruminants. BTV-9 was retrospectively detected in the field samples collected from August 2018 until 2020. It was the dominant serotype in 2019, out of the six serotypes recorded during that calendar year. Clinical manifestation of the disease in cases diagnosed with BTV-9 were compared to those in cases determined to have BTV-1. BLAST and phylogenetic analyses of BTV-1 showed that the nucleotide (nt) sequence coding the viral outer protein 1 (VP2) determining the serotype is closely related to BTV-1 isolated in Sudan in 1987, and the coding sequence of the outer protein 2 (VP5) is related to South African BTV-1 from 2017. A probable common ancestor with Libyan BTV-9 strains isolated in 2008 was seen in an analysis of Israeli BTV-9 nt sequences. Notably, the outbreak-caused BTV-9 strains collected in 2019 exhibited a distinct level of genetic reassortment with local Israeli strains compared to BTV-9 strains registered in 2018 and 2020.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 5025000, Israel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
- Correspondence: ; Tel.: +972-3968-1668; Fax: +972-3968-1788
| | - Eyal Klement
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Anita Kovtunenko
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 5025000, Israel
| | - Boris Even-Tov
- Veterinary Servises in the Field, Galil-Golan 1231400, Israel
| | - Lior Zamir
- Veterinary Servises in the Field, Galil-Golan 1231400, Israel
| | - Eitan Tiomkin
- Hachaklait Veterinary Services, Caesarea 3088900, Israel
| | | | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
13
|
Golender N, Varsano JS, Nissimyan T, Tiomkin E. Identification of Novel Reassortant Shuni Virus Strain in Clinical Cases of Israeli Ruminants, 2020–2021. Trop Med Infect Dis 2022; 7:tropicalmed7100297. [PMID: 36288038 PMCID: PMC9606876 DOI: 10.3390/tropicalmed7100297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The Shuni virus (SHUV) causes an endemic viral infection in Israel and South Africa. It belongs to the Simbu serogroup within the order Bunyavirales, family Peribunyaviridae, genus Orthobunyavirus. Recently, it has been identified in aborted cases of domestic ruminants, young cattle and horses manifesting neural signs and acute death, symptomatic cows, and in carcasses of wild animals. Moreover, SHUV was isolated and identified in humans. In this study, we describe clinical cases of SHUV infection in Israeli domestic ruminants in 2020–2021, which represented clinical manifestations of simbuviral infection including abortions, a neural lethal case in a fattening calf, and an acute symptomatic case in a beef cow. In all cases, SHUV was confirmed by complete or partial viral genome sequencing. There is a significant difference of M and L segments of the novel strains compared with those of all known SHUV strains, while the S segments have more than 99% nucleotide (nt) identity with Israeli and African “Israeli-like” strains previously circulated in 2014–2019. This indicates a reassortment origin of the strain. At the same time, M and S segment nt sequences showed about 98–99% nt identity with some South African strains collected in 2016–2018. Nevertheless, the viral origin and the geographical place of the reassortment stayed unknown.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 5025000, Israel
- Correspondence: ; Tel.: +972-3968-1668; Fax: +972-3968-1788
| | | | | | - Eitan Tiomkin
- Hachaklait Veterinary Services, Caesarea 3088900, Israel
| |
Collapse
|
14
|
Cichon N, Barry Y, Stoek F, Diambar A, Ba A, Ziegler U, Rissmann M, Schulz J, Haki ML, Höper D, Doumbia BA, Bah MY, Groschup MH, Eiden M. Co-circulation of Orthobunyaviruses and Rift Valley Fever Virus in Mauritania, 2015. Front Microbiol 2022; 12:766977. [PMID: 35003005 PMCID: PMC8739971 DOI: 10.3389/fmicb.2021.766977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Ngari virus (NRIV) has been mostly detected during concurrent outbreaks of Rift Valley fever virus (RVFV). NRIV is grouped in the genus Orthobunyavirus within the Bunyaviridae family and RVFV in the genus Phlebovirus in the family Phenuiviridae. Both are zoonotic arboviruses and can induce hemorrhagic fever displaying the same clinical picture in humans and small ruminants. To investigate if NRIV and its parental viruses, Bunyamwera virus (BUNV) and Batai virus (BATV), played a role during the Mauritanian RVF outbreak in 2015/16, we analyzed serum samples of sheep and goats from central and southern regions in Mauritania by quantitative real-time RT-PCR, serum neutralization test (SNT) and ELISA. 41 of 458 samples exhibited neutralizing reactivity against NRIV, nine against BATV and three against BUNV. Moreover, complete virus genomes from BUNV could be recovered from two sheep as well as two NRIV isolates from a goat and a sheep. No RVFV-derived viral RNA was detected, but 81 seropositive animals including 22 IgM-positive individuals were found. Of these specimens, 61 samples revealed antibodies against RVFV and at least against one of the three orthobunyaviruses. An indirect ELISA based on NRIV/BATV and BUNV derived Gc protein was established as complement to SNT, which showed high performance regarding NRIV, but decreased sensitivity and specificity regarding BATV and BUNV. Moreover, we observed high cross-reactivity among NRIV and BATV serological assays. Taken together, the data indicate the co-circulation of at least BUNV and NRIV in the Mauritanian sheep and goat populations.
Collapse
Affiliation(s)
- Nicole Cichon
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Yahya Barry
- Office National de Recherche et de Développement de l'Elevage (ONARDEL), Nouakchott, Mauritania
| | - Franziska Stoek
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Abdellah Diambar
- Office National de Recherche et de Développement de l'Elevage (ONARDEL), Nouakchott, Mauritania
| | - Aliou Ba
- Office National de Recherche et de Développement de l'Elevage (ONARDEL), Nouakchott, Mauritania
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.,Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jana Schulz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.,Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Mohamed L Haki
- Office National de Recherche et de Développement de l'Elevage (ONARDEL), Nouakchott, Mauritania
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Baba A Doumbia
- Ministère du Développement Rural, Nouakchott, Mauritania
| | - Mohamed Y Bah
- Ministère du Développement Rural, Nouakchott, Mauritania
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
15
|
Agerholm JS, Wernike K. Occurrence of malformed calves in April-May 2021 indicates an unnoticed 2020 emergence of Schmallenberg virus in Denmark. Transbound Emerg Dis 2021; 69:3128-3132. [PMID: 34850578 DOI: 10.1111/tbed.14405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023]
Abstract
During the European emergence of Schmallenberg virus (SBV) in 2011, examination of Culicoides spp. showed that SBV-infected midges were present across Denmark. However, SBV-associated malformations in ruminant species have not been reported in Denmark. In April 2021, seven calves with severe congenital generalized arthrogryposis and reduced body weight originating from a narrow region of the Jutlandic peninsula were submitted for examination. Analysis of fetal brain tissue for SBV viral RNA and pleural effusion for fetal anti-SBV antibodies identified SBV as the cause of the congenital syndrome. Backwards calculation from the calving dates indicated the occurrence of an unnoticed emergence of SBV in Denmark from early August 2020 and during the late summer and autumn. As SBV-associated malformations may lead to severe dystocia requiring fetotomy or caesarean section, veterinarians performing obstetric intervention are first-line personnel in recognition of SBV emergence in domestic ruminants.
Collapse
Affiliation(s)
- Jørgen Steen Agerholm
- Department of Veterinary Clinical Sciences, University of Copenhagen, Høje Taastrup, Denmark
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| |
Collapse
|
16
|
Golender N, Bumbarov V, Kovtunenko A, David D, Guini-Rubinstein M, Sol A, Beer M, Eldar A, Wernike K. Identification and Genetic Characterization of Viral Pathogens in Ruminant Gestation Abnormalities, Israel, 2015-2019. Viruses 2021; 13:v13112136. [PMID: 34834943 PMCID: PMC8619439 DOI: 10.3390/v13112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023] Open
Abstract
Infectious agents including viruses are important abortifacients and can cause fetal abnormalities in livestock animals. Here, samples that had been collected in Israel from aborted or malformed ruminant fetuses between 2015 and 2019 were investigated for the presence of the following viruses: the reoviruses bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), the flaviviruses bovine viral diarrhea virus (BVDV) and border disease virus (BDV), the peribunyaviruses Shuni virus (SHUV) and Akabane virus (AKAV), bovine herpesvirus type 1 (BoHV-1) and bovine ephemeral fever virus (BEFV). Domestic (cattle, sheep, goat) and wild/zoo ruminants were included in the study. The presence of viral nucleic acid or antigen could be confirmed in 21.8 % of abnormal pregnancies (213 out of 976 investigated cases), with peribunyaviruses, reoviruses and pestiviruses being the most prevalent. At least four different BTV serotypes were involved in abnormal courses of pregnancy in Israel. The subtyping of pestiviruses revealed the presence of two BDV and several distinct BVDV type 1 strains. The peribunyaviruses AKAV and SHUV were identified annually throughout the study period, however, variation in the extent of virus circulation could be observed between the years. In 2018, AKAV even represented the most detected pathogen in cases of small domestic ruminant gestation abnormalities. In conclusion, it was shown that various viruses are involved in abnormal courses of pregnancy in ruminants in Israel.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
- Correspondence: ; Tel.: +972-3968-8949; Fax: +972-3968-1788
| | - Velizar Bumbarov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Anita Kovtunenko
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Dan David
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Marisol Guini-Rubinstein
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Asaf Sol
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (K.W.)
| | - Avi Eldar
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (K.W.)
| |
Collapse
|
17
|
Genomic Analysis Illustrated a Single Introduction and Evolution of Israeli Bluetongue Serotype 8 Virus Population 2008-2019. Microorganisms 2021; 9:microorganisms9091955. [PMID: 34576850 PMCID: PMC8470199 DOI: 10.3390/microorganisms9091955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Outbreaks of the European Bluetongue virus (BTV) serotype 8 (BTV-8), which are characterized by activity cycles separated by years of inactivity, may be influenced by genetic changes of the virus or by herd immunity. BTV activity in Israel is characterized by similar dynamics, but differs from European countries in its vector population, environmental conditions, and lack of cattle vaccination against this serotype. Comparison of these two geographical systems and characterization of their epidemiological connection is therefore of high interest in-order to better understand the factors influencing BTV-8 evolution. BTV-8, closely related to the European strain, was introduced to Israel in 2008. It was at the center of BT outbreaks in 2010 and 2015–2016 and thereafter was lastly isolated in Israel in 2019. We performed genetic analyses of twelve BTV-8 Israeli strains isolated between 2008 and 2019 and compared them with published sequences of BTV-8 isolated in other countries. The analysis revealed a single introduction of BTV-8 into Israel and thereafter extensive occurrence of genomic drifts and multiple reassortments with local BTV strains. Comparison of the Israeli and Cypriot BTV-8 from 2015 to 2016 suggests transmission of the virus between the two countries and a separate and parallel development from European or other Israeli BTV-8 strains. The parallel development of other BTV-8 strains was demonstrated by the identification of the Israeli BTV-8 ISR-1194/1/19 strain, which exhibited common origin with reassorted Israeli BTV-8 strains from 2010 and additional reassortment of seven segments. In order to reveal the source of BTV-8 introduction into Israel we performed BEAST analysis which showed that a probable common ancestor for both European and Israeli BTV-8 presumably existed in 2003–2004. In 2019, a possible new introduction occurred in Israel, where a novel BTV-8 strain was detected, sharing ~95% identity by segments 2 and 6 with Nigerian BTV-8NIG1982/07 and European–Middle Eastern strains. The results of the study indicate that Israel and neighboring countries consist a separate environmental and evolutionary system, distinct from European ones.
Collapse
|
18
|
A Mortality-Based Description of EHDV and BTV Prevalence in Farmed White-Tailed Deer ( Odocoileus virginianus) in Florida, USA. Viruses 2021; 13:v13081443. [PMID: 34452309 PMCID: PMC8402819 DOI: 10.3390/v13081443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022] Open
Abstract
Hemorrhagic disease (HD) caused by bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) is the most important viral disease of farmed and wild white-tailed deer (WTD; Odocoileus virginianus) and can cause substantial mortality in susceptible hosts. Captive cervid farming is an emerging industry in Florida, an HD-enzootic region. Morbidity and mortality due to HD are major concerns among deer farmers, but the impact of HD on Florida’s cervid farming industry is unknown. Our primary objective was to determine the prevalence of epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) among WTD submitted to the University of Florida Institute of Food and Agricultural Sciences Cervidae Health Research Initiative (CHeRI) for post-mortem diagnostics. Our secondary objectives were to identify the predominant circulating EHDV serotypes during each sampling year and to determine the age class with the greatest proportion of EHDV- and BTV-positive post-mortem specimens. From 2016 to 2020, spleen samples from 539 farmed WTD with unexplained mortality were tested for the presence of EHDV and BTV by RT-qPCR. Overall, the prevalence of EHDV, BTV, or EHDV/BTV coinfection was 26%, 16%, and 10%, respectively, and 44% of deer (237/539) were diagnosed with HD by RT-qPCR. The predominant circulating EHDV serotype varied by year. Overall, EHDV-2 was the most commonly identified serotype (55% of PCR-positive cases), and EHDV-1 was the least frequently identified serotype (16% of PCR-positive cases). The greatest proportion of EHDV/BTV positives among mortality cases was observed in young WTD aged 3–6 months (50%–82% positive). There was a significant difference in the prevalence of EHDV/BTV by age when comparing specimens from WTD over 1 year old (p = 0.029, n = 527). Among these samples, the number of reported mortalities and the prevalence of EHDV/BTV were highest in yearling animals (56%). These data provide the first estimate of EHDV and BTV prevalence and virus serotypes among farmed WTD in Florida, identify the WTD age groups with the greatest proportions of EHDV- and BTV-positive specimens, and suggest that HD caused by these two viruses may be a major source of mortality challenging the captive cervid farming industry in Florida.
Collapse
|
19
|
Epizootic Hemorrhagic Disease Virus and Bluetongue Virus Seroprevalence in Wild White-Tailed Deer (Odocoileus virginianus) in Florida, USA. J Wildl Dis 2021; 56:928-932. [PMID: 32544030 DOI: 10.7589/2019-10-263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/09/2020] [Indexed: 11/20/2022]
Abstract
A wild population of white-tailed deer (Odocoileus virginianus) was surveyed for evidence of past or current epizootic hemorrhagic disease virus (EHDV) and current bluetongue virus (BTV) infections. We collected 121 blood samples from hunter-harvested or live-captured deer from two state-managed properties in northwest Florida, US; live captures were in support of a movement ecology study. Blood samples were tested for antibodies against titers to three EHDV serotypes (EHDV-1, EHDV-2, and EHDV-6), and multiplex quantitative reverse transcription PCR was used to identify the presence of EHDV or BTV viral RNA. Of these samples, 81% (98/121) tested seropositive for at least one of three serotypes of EHDV. Of those testing seropositive, 33% (40/121) contained antibodies for two serotypes, and 19% (24/121) contained antibodies for all three EHDV serotypes. Furthermore, results of generalized linear models indicated that the probability of infection by EHDV serotypes 1 and 6 increased with an animal's age. Our findings indicate that seroprevalence may be high for multiple serotypes in regions where these orbiviruses are endemic. These results could prove useful for managing disease risk in naïve deer populations.
Collapse
|
20
|
McGregor BL, Erram D, Alto BW, Lednicky JA, Wisely SM, Burkett-Cadena ND. Vector Competence of Florida Culicoides insignis (Diptera: Ceratopogonidae) for Epizootic Hemorrhagic Disease Virus Serotype-2. Viruses 2021; 13:v13030410. [PMID: 33807536 PMCID: PMC7998304 DOI: 10.3390/v13030410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/28/2023] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV; family Reoviridae, genus Orbivirus) is an arthropod-borne virus of ungulates, primarily white-tailed deer in North America. Culicoides sonorensis, the only confirmed North American vector of EHDV, is rarely collected from Florida despite annual virus outbreaks. Culicoides insignis is an abundant species in Florida and is also a confirmed vector of the closely related Bluetongue virus. In this study, oral challenge of C. insignis was performed to determine vector competence for EHDV serotype-2. Field-collected female midges were provided bovine blood spiked with three different titers of EHDV-2 (5.05, 4.00, or 2.94 log10PFUe/mL). After an incubation period of 10 days or after death, bodies and legs were collected. Saliva was collected daily from all females from 3 days post feeding until their death using honey card assays. All samples were tested for EHDV RNA using RT-qPCR. Our results suggest that C. insignis is a weakly competent vector of EHDV-2 that can support a transmissible infection when it ingests a high virus titer (29% of midges had virus positive saliva when infected at 5.05 log10PFUe/mL), but not lower virus titers. Nevertheless, due to the high density of this species, particularly in peninsular Florida, it is likely that C. insignis plays a role in the transmission of EHDV-2.
Collapse
Affiliation(s)
- Bethany L. McGregor
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
- Correspondence: ; Tel.: +1-785-477-1259
| | - Dinesh Erram
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA; (D.E.); (B.W.A.); (N.D.B.-C.)
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA; (D.E.); (B.W.A.); (N.D.B.-C.)
| | - John A. Lednicky
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA;
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Nathan D. Burkett-Cadena
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA; (D.E.); (B.W.A.); (N.D.B.-C.)
| |
Collapse
|
21
|
EVIDENCE OF EPIZOOTIC HEMORRHAGIC DISEASE VIRUS AND BLUETONGUE VIRUS EXPOSURE IN NONNATIVE RUMINANT SPECIES IN NORTHERN FLORIDA. J Zoo Wildl Med 2021; 51:745-751. [PMID: 33480554 DOI: 10.1638/2019-0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 11/21/2022] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) are vector-borne viruses of ruminants nearly worldwide. They can affect white-tailed deer (WTD; Odocoileus virginianus), the ranching industry, and nonindigenous hoof stock species managed for conservation. One potential risk factor for ranched WTD is commingling with nonindigenous species on high-fenced properties. Nonindigenous species provide novel viewing and hunting opportunities; however, their presence may create disease hazards. Furthermore, animals within conservation properties may be at a risk from commingling exotics and adjacent wild WTD. Currently, knowledge about EHDV and BTV seroprevalence and transmission is limited in nonindigenous populations in the southeastern United States. The authors conducted a serological survey of 10 Bovidae and 5 Cervidae species residing within two properties in northern Florida. The first site was a conservation property breeding threatened nonindigenous species for conservation. The second property was a private high-fenced game preserve managing WTD and nonindigenous species for breeding, sale, and harvest. Blood samples were tested for titers to three EHDV serotypes (1, 2, and 6) and active circulating viral EHDV and BTV. The private ranch had evidence of EHDV or BTV in one of three (33.3%) Bovidae species and four of five (80%) Cervidae species sampled. At the conservation property, evidence of EHDV infection was found in four of seven (57.1%) Bovidae and one of one (100%) Cervidae species sampled. The presence of antibodies in many nonindigenous species sampled might indicate these species are potential viral hosts and may be a risk to ranched WTD and other species within the same property. Nonindigenous species within the private ranch and conservation properties are at risk of contracting EHDV and BTV, and herd managers should reduce vector-host interactions and consider increased biosecurity measures when translocating animals.
Collapse
|
22
|
Antibodies to Epizootic Hemorrhagic Disease Virus (EHDV) in Farmed and Wild Florida White-Tailed Deer (Odocoileus virginianus). J Wildl Dis 2020. [DOI: 10.7589/2019-02-034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Three New Orbivirus Species Isolated from Farmed White-Tailed Deer ( Odocoileus virginianus) in the United States. Viruses 2019; 12:v12010013. [PMID: 31861885 PMCID: PMC7019857 DOI: 10.3390/v12010013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/04/2023] Open
Abstract
We report the detection and gene coding sequences of three novel Orbivirus species found in six dead farmed white-tailed deer in the United States. Phylogenetic analyses indicate that the new orbiviruses are genetically closely related to the Guangxi, Mobuck, Peruvian horse sickness, and Yunnan orbiviruses, which are thought to be solely borne by mosquitos. However, four of the six viruses analyzed in this work were found as co-infecting agents along with a known cervid pathogen, epizootic hemorrhagic disease virus-2 (EHDV-2), raising questions as to whether the new viruses are primary pathogens or secondary pathogens that exacerbate EHDV-2 infections. Moreover, EHDV-2 is known to be a Culicoides-borne virus, raising additional questions as to whether Culicoides species can also serve as vectors for the novel orbiviruses, if mosquitoes can vector EHDV-2, or whether the deer were infected through separate bites by the insects. Our findings expand knowledge of the possible viral pathogens of deer in the United States. Moreover, due to the close genetic relatedness of the three new orbiviruses to viruses that are primary pathogens of cattle and horses, our findings also underscore a crucial need for additional research on the potential role of the three new orbiviruses as pathogens of other animals.
Collapse
|
24
|
Bumbarov V, Golender N, Jenckel M, Wernike K, Beer M, Khinich E, Zalesky O, Erster O. Characterization of bluetongue virus serotype 28. Transbound Emerg Dis 2019; 67:171-182. [PMID: 31469936 DOI: 10.1111/tbed.13338] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022]
Abstract
Bluetongue virus (Reoviridae; Orbivirus, BTV), which is usually transmitted by biting midges, affects wild and domestic ruminants worldwide, thereby causing an economically important disease. Recently, a putative new BTV strain was isolated from contaminated vaccine batches. In this study, we investigated the genomic and clinical characteristics of this isolate, provisionally designated BTV-28. Phylogenetic analysis of BTV-28 segment 2 (Seg-2) showed that it is related to Seg-2 from BTV serotypes 4, 10, 11, 17, 20 and 24, sharing 64%-66% identity in nucleotide sequences (nt) and 59%-62% in amino acid (aa) sequences of BTV VP2. BTV-28 Seg-6 is related to the newly reported XJ1407 BTV isolate, sharing 76.70% nt and 90.87% aa sequence identity. Seg-5 was most closely related to a South African BTV-4 strain, and all other segments showed close similarity to BTV-26. Experimental infection by injection of 6-month-old ewes caused clinical signs in all injected animals, lasting from 2 to 3 days to several weeks post-infection, including high body temperature, conjunctivitis, nasal discharge and rhinitis, facial oedema, oral hyperaemia, coronitis, cough, depression and tongue cyanosis. Naïve control animals, placed together with the infected sheep, displayed clinical signs and were positive for viral RNA, but their acute disease phase was shorter than that of BTV-injected ewes. Control animals that were kept in a separated pen did not display any clinical signs and were negative for viral RNA presence throughout the experiment. Seroconversion was observed in the injected and in one of the two contact-infected animals. These findings demonstrate that BTV-28 infection of sheep can result in clinical manifestation, and the clinical signs detected in the contact animals suggest that it might be directly transmitted between the mammalian hosts.
Collapse
Affiliation(s)
- Velizar Bumbarov
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Natalia Golender
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Maria Jenckel
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Evgeny Khinich
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Olga Zalesky
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Oran Erster
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| |
Collapse
|
25
|
Molecular characterization of a novel reassortment Mammalian orthoreovirus type 2 isolated from a Florida white-tailed deer fawn. Virus Res 2019; 270:197642. [PMID: 31228510 DOI: 10.1016/j.virusres.2019.197642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
Mammalian orthoreovirus (MRV) is the type species of the genus Orthoreovirus and causes a range of significant respiratory, nervous or enteric diseases in humans and animals. In 2016 a farmed white-tailed deer (Odocoileus virginianus) fawn became ill, displaying clinical signs of lethargy, dehydration, and profuse foul-smelling diarrhea. A necropsy was performed after the three-week-old fawn died and various tissue samples were submitted to the University of Florida's Cervidae Health Research Initiative for diagnostic evaluation. Aliquots of homogenized heart, liver, and spleen tissues were inoculated onto Vero E6 cells. After virus-specific cytopathic effects (CPE) were detected in Vero cells inoculated with spleen homogenate, infected cells were fixed in glutaraldehyde and analyzed by transmission electron microscopy (TEM), which revealed icosahedral virus particles approximately 75 nm in diameter with morphologies consistent with those of reoviruses within the cytoplasm of the infected cells. RNA extracted from virions in the spent media of infected cells with advanced CPE was used to prepare a cDNA library, which was sequenced using an Illumina MiSeq sequencer. Complete coding sequences for ten separate reovirus segments were attained, and these indicated the isolated agent was a MRV. Genetic and phylogenetic analyses based on the outer capsid sigma-1 (σ1) protein gene sequences supported the Florida white-tailed fawn isolate as a type 2 MRV that branched as the sister group to a MRV-2 strain previously characterized from the urine of a moribund lion (Panthera leo) in Japan. However, analyses based on 7/10 genes (L1-L2, M2-M3, S2-S4) supported the white-tailed deer MRV as the closest relative to a type 3 MRV strain isolated from a dead mink in China. These data suggest the white-tailed deer MRV may have resulted from the natural reassortment of MRVs originating from multiple wildlife species. To our knowledge, this is the first detection of MRV-2 infection in a white-tailed deer. Continued surveillance efforts are needed to determine whether this MRV-2 strain poses a health threat to farmed white-tailed deer populations.
Collapse
|
26
|
Merrill MM, Boughton RK, Lollis LO, Sayler KA, Wisely SM. Epidemiology of Bluetongue Virus and Epizootic Hemorrhagic Disease Virus in Beef Cattle on a Ranch in South-Central Florida. Vector Borne Zoonotic Dis 2019; 19:752-757. [PMID: 31135300 PMCID: PMC6765206 DOI: 10.1089/vbz.2018.2406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) infect a variety of wild and domestic ruminant hosts in the United States, with outcomes ranging from subclinical infection to clinical disease resulting in mortality. Because cattle have been suggested as a temporary reservoir for both BTV and EHDV, ongoing national surveillance for these viruses may benefit from inclusion of domestic cattle as a supplement to current programs, such as surveillance of wild white-tailed deer. To better understand the prevalence of BTV and EHDV in cattle, we surveyed for viral RNA (vRNA) in the blood of 1,604 beef cattle on a south-central Florida cattle ranch over 3 years. While overall prevalence of vRNA in blood was low (<2% for either virus), the occurrence of vRNA was much higher in young animals: in 2016, 24% of animals 2 years old were positive by PCR for either BTV or EHDV. Our results suggest that cattle are a likely temporary reservoir for these viruses in Florida, and could provide additional information on the spatial distribution, viral diversity, and timing of emergence of these viruses, particularly if surveillance was restricted to cattle ≤2 years of age.
Collapse
Affiliation(s)
- Mary M Merrill
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Raoul K Boughton
- Range Cattle Research and Education Center, University of Florida, Ona, Florida
| | - Laurent O Lollis
- Buck Island Ranch, MacArthur Agro-Ecology Research Center, Archbold Biological Station, Lake Placid, Florida
| | - Katherine A Sayler
- Department of Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Samantha M Wisely
- Department of Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
27
|
Field data implicating Culicoides stellifer and Culicoides venustus (Diptera: Ceratopogonidae) as vectors of epizootic hemorrhagic disease virus. Parasit Vectors 2019; 12:258. [PMID: 31122295 PMCID: PMC6533733 DOI: 10.1186/s13071-019-3514-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/19/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Epizootic hemorrhagic disease virus (EHDV) is an Orbivirus of veterinary importance which is transmitted by biting midges of the genus Culicoides (Diptera: Ceratopogonidae) to ruminants. Culicoides sonorensis Wirth & Jones, the only confirmed vector of EHDV in the USA, is rare in the southeastern states where transmission persists, suggesting that other Culicoides species transmit EHDV in this region. The present study aimed to determine which Culicoides species transmitted EHDV in Florida and Alabama, two states in the southeastern USA. Viral RNA was detected in field-collected midges using molecular methods. These data are presented alongside data on Culicoides blood meal analysis, white-tailed deer (Odocoileus virginianus) aspiration, and seasonality to demonstrate an interaction between potential vector species and EHDV hosts. RESULTS Out of 661 pools tested, 20 pools were positive for EHDV viral RNA, including six pools from Culicoides stellifer (Coquillett) and 14 pools from Culicoides venustus Hoffman. The overall infection rate was 0.06% for C. stellifer and 2.18% for C. venustus. No positive pools were identified for a further 17 species. Serotypes identified in Culicoides included EHDV-2, EHDV-6, and coinfections of EHDV-2 and EHDV-6 and were identified in similar proportions to serotypes in deer at 3 of 4 deer farms. Viral detections conducted in Alabama also identified one positive pool of C. venustus. Blood meal analysis revealed that both Culicoides species fed on white-tailed deer (verified through aspiration), fallow deer, and elk, species for which EHDV viremia has been documented. Seasonality data indicated that both species were present throughout the period in which viral transmission occurred to EHDV hosts in 2016 in addition to the 2017 epizootic. CONCLUSIONS Our finding of EHDV positive pools of field-collected C. stellifer and C. venustus and an interaction between these species and EHDV hosts satisfy two of the four criteria for vector incrimination as set by the World Health Organization. Determining the vectors of EHDV is an important step towards developing sound strategies for the control of vector Culicoides and management of EHDV in the southeastern USA.
Collapse
|
28
|
McGregor BL, Erram D, Acevedo C, Alto BW, Burkett-Cadena ND. Vector Competence of Culicoides sonorensis (Diptera: Ceratopogonidae) for Epizootic Hemorrhagic Disease Virus Serotype 2 Strains from Canada and Florida. Viruses 2019; 11:v11040367. [PMID: 31013588 PMCID: PMC6521025 DOI: 10.3390/v11040367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 01/12/2023] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV), an Orbivirus transmitted by Culicoides spp. vectors, is represented by seven serotypes and numerous strains worldwide. While studies comparing vector competence between serotypes exist, studies between viral strains are lacking. In this study, we examined the rates of infection, dissemination, and transmission of two strains of EHDV-2 orally fed to the known vector, Culicoides sonorensis Wirth & Jones. Culicoides sonorensis cohorts were fed an infectious blood meal containing EHDV-2 strains from either Alberta, Canada (Can-Alberta) or Florida (5.5 log10 PFUe/mL) and tested for the vector’s susceptibility to infection and dissemination. In addition, transmission rates of the virus were assessed and compared using capillary tube and honey card methods. Our results show that the Florida strain had higher infection and dissemination rates than the Can-Alberta strain in spite of the Florida strain having significantly lower viral titers in C. sonorensis bodies, legs, and saliva than the Can-Alberta strain. Overall transmission rates were not significantly different between the two strains but varied significantly between the methods used. These findings suggest that the consequences of EHDV infection in C. sonorensis vary between virus strains and have huge implications in future vector competence studies involving Culicoides species and Orbiviruses.
Collapse
Affiliation(s)
- Bethany L McGregor
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA.
| | - Dinesh Erram
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA.
| | - Carolina Acevedo
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA.
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA.
| | - Nathan D Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA.
| |
Collapse
|
29
|
Ecology and epidemiology of rabies in humans, domestic animals and wildlife in Namibia, 2011-2017. PLoS Negl Trop Dis 2019; 13:e0007355. [PMID: 30990805 PMCID: PMC6486109 DOI: 10.1371/journal.pntd.0007355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/26/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
Rabies is a fatal zoonotic disease that causes a heavy burden on societies. Namibia, a country in southern Africa, is aiming at controlling the disease in its main reservoir, the domestic dog. To facilitate the implementation comprehensive information on the ecology and epidemiology of the disease and surveillance is of utmost importance. The study presented assesses the baseline data for both human and animal rabies surveillance in Namibia in recent times and establishes correlations with ecological and socio-economic data in order to provide an up-to-date picture on the epidemiology of rabies in Namibia. For instance, it was important to identify the main drivers in the epidemiology, and whether the control strategy by mass vaccination of dogs is undermined by cycles of rabies in wildlife. Rabies in humans was reported mainly from the Northern Communal Areas (NCAs), with a total of 113 cases from 2011 to 2017, representing an incidence of between 1.0 and 2.4 annual human rabies deaths per 100,000 inhabitants. Kavango, the region with the highest human rabies incidence was also the region with the lowest animal rabies surveillance intensity. Generally, the vast majority (77%) of dog samples originated from communal farm land, followed by urban areas (17%), while only a small fraction (3%) was submitted from freehold farm areas. In contrast, kudu and eland submissions were almost exclusively from freehold farmland (76%) and urban areas (19%), whereas the submission of cattle samples was evenly distributed among freehold farms (46%) and communal farm land (46%). The likelihood of sample submission decreased exponentially with distance to one of the two laboratories. Overall, 67% (N = 1,907) of all samples submitted tested rabies-positive, with the highest positivity rate observed in kudus (89%) and jackals (87%). The transmission cycle of rabies in dogs appears restricted to the northern communal areas of Namibia, whilst rabies in wildlife species is predominately reported from farmland in central Namibia, mostly affecting kudu (Tragelaphus strepsiceros) and livestock with a likely reservoir in wildlife canids such as jackals or bat-eared foxes. The analysis confirms the presence of two independent transmission cycles in Namibia with little geographic overlap, thus allowing for a sustainable control of rabies in dogs in the NCAs.
Collapse
|
30
|
Sayler KA, Subramaniam K, Jacob JM, Loeb JC, Craft WF, Farina LL, Stacy NI, Moussatche N, Cook L, Lednicky JA, Wisely SM, Waltzek TB. Characterization of mule deerpox virus in Florida white-tailed deer fawns expands the known host and geographic range of this emerging pathogen. Arch Virol 2018; 164:51-61. [PMID: 30238163 DOI: 10.1007/s00705-018-3991-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022]
Abstract
Infections caused by mule deerpox virus (MDPV) have been sporadically reported in North American cervids. White-tailed deer (Odocoileus virginianus) fawns from a farm located in South Central Florida presented with ulcerative and crusting lesions on the coronary band as well as the mucocutaneous tissues of the head. Evaluation of the crusted skin lesions was undertaken using microscopic pathology and molecular techniques. A crusted skin sample was processed for virus isolation in four mammalian cell lines. The resulting isolate was characterized by negative staining electron microscopy and deep sequencing. Histopathologic evaluation of the skin lesions from the fawns revealed a hyperplastic and proliferative epidermis with ballooning degeneration of epidermal and follicular keratinocytes with intracytoplasmic eosinophilic inclusions. Electron microscopy of cell culture supernatant demonstrated numerous large brick-shaped particles typical of most poxviruses. Polymerase chain reaction assays followed by Sanger sequencing revealed a poxvirus gene sequence nearly identical to that of previous strains of MDPV. The full genome was recovered by deep sequencing and genetic analyses supported the Florida white-tailed deer isolate (MDPV-F) as a strain of MDPV. Herein, we report the first genome sequence of MDPV from a farmed white-tailed deer fawn in the South Central Florida, expanding the number of locations and geographic range in which MDPV has been identified.
Collapse
Affiliation(s)
- Katherine A Sayler
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Bldg 1379, Mowry Road, Gainesville, FL, 32611, USA
| | - Jessica M Jacob
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Bldg 1379, Mowry Road, Gainesville, FL, 32611, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - William F Craft
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Lisa L Farina
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Laurie Cook
- BDRL Whitetail Paradise Farm, Okeechobee, FL, USA
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Samantha M Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Bldg 1379, Mowry Road, Gainesville, FL, 32611, USA.
| |
Collapse
|
31
|
Schlottau K, Wernike K, Forth L, Holsteg M, Höper D, Beer M, Hoffmann B. Presence of two different bovine hepacivirus clusters in Germany. Transbound Emerg Dis 2018; 65:1705-1711. [PMID: 29971937 DOI: 10.1111/tbed.12930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
Abstract
During the last years, genetic information of hepaciviruses (family Flaviviridae), whose type species is the human hepatitis C virus, was detected in a wide range of primates and non-primate vertebrates. Here, samples collected from 263 German cattle kept in 22 different holdings were analysed for the presence of hepacivirus N (syn. bovine hepacivirus; BovHepV). One hundred eighty-six cattle that suffered from unspecific clinical signs such as fever and a reduced milk yield as well as 77 apparently healthy animals were included. A total of 39 cattle (14.8%) tested positive for BovHepV by real-time RT-PCR, but a correlation between clinical signs and virus infection could not be found. From 31 of the virus-positive samples, sequences of the NS3 coding region were generated and from two samples, viral sequences of the complete coding region were produced and compared to further European and African BovHepV sequences. Based on the NS3 genomic region, two distinct German BovHepV clusters were identified which differed between each other up to 20% at the nucleotide level, the diversity within the individual clusters reached up to 10%. Based on the full-length sequences, the newly detected virus variants group together with further German and African viruses in a sister relationship to other hepaciviruses from primates and further mammalians, but form distinct clusters within the BovHepV branch. In conclusion, highly diverse hepaciviruses were detected in German cattle further expanding the known phylogenetic diversity of the genus Hepacivirus.
Collapse
Affiliation(s)
- Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| | - Leonie Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| | - Mark Holsteg
- Chamber of Agriculture for North Rhine-Westphalia, Bovine Health Service, Bad Sassendorf, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| |
Collapse
|
32
|
Evaluation of Targeted Next-Generation Sequencing for Detection of Bovine Pathogens in Clinical Samples. J Clin Microbiol 2018; 56:JCM.00399-18. [PMID: 29695524 PMCID: PMC6018347 DOI: 10.1128/jcm.00399-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
The laboratory diagnosis of infectious diseases, especially those caused by mixed infections, is challenging. Routinely, it requires submission of multiple samples to separate laboratories. Advances in next-generation sequencing (NGS) have provided the opportunity for development of a comprehensive method to identify infectious agents. This study describes the use of target-specific primers for PCR-mediated amplification with the NGS technology in which pathogen genomic regions of interest are enriched and selectively sequenced from clinical samples. In the study, 198 primers were designed to target 43 common bovine and small-ruminant bacterial, fungal, viral, and parasitic pathogens, and a bioinformatics tool was specifically constructed for the detection of targeted pathogens. The primers were confirmed to detect the intended pathogens by testing reference strains and isolates. The method was then validated using 60 clinical samples (including tissues, feces, and milk) that were also tested with other routine diagnostic techniques. The detection limits of the targeted NGS method were evaluated using 10 representative pathogens that were also tested by quantitative PCR (qPCR), and the NGS method was able to detect the organisms from samples with qPCR threshold cycle (CT) values in the 30s. The method was successful for the detection of multiple pathogens in the clinical samples, including some additional pathogens missed by the routine techniques because the specific tests needed for the particular organisms were not performed. The results demonstrate the feasibility of the approach and indicate that it is possible to incorporate NGS as a diagnostic tool in a cost-effective manner into a veterinary diagnostic laboratory.
Collapse
|
33
|
Rahpaya SS, Tsuchiaka S, Kishimoto M, Oba M, Katayama Y, Nunomura Y, Kokawa S, Kimura T, Kobayashi A, Kirino Y, Okabayashi T, Nonaka N, Mekata H, Aoki H, Shiokawa M, Umetsu M, Morita T, Hasebe A, Otsu K, Asai T, Yamaguchi T, Makino S, Murata Y, Abi AJ, Omatsu T, Mizutani T. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs. J Vet Sci 2018; 19:350-357. [PMID: 29284216 PMCID: PMC5974516 DOI: 10.4142/jvs.2018.19.3.350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 11/20/2022] Open
Abstract
Bovine abortion, diarrhea, and respiratory disease complexes, caused by infectious agents, result in high and significant economic losses for the cattle industry. These pathogens are likely transmitted by various vectors and reservoirs including insects, birds, and rodents. However, experimental data supporting this possibility are scarce. We collected 117 samples and screened them for 44 bovine abortive, diarrheal, and respiratory disease complex pathogens by using Dembo polymerase chain reaction (PCR), which is based on TaqMan real-time PCR. Fifty-seven samples were positive for at least one pathogen, including bovine viral diarrhea virus, bovine enterovirus, Salmonella enterica ser. Dublin, Salmonella enterica ser. Typhimurium, and Neospora caninum; some samples were positive for multiple pathogens. Bovine viral diarrhea virus and bovine enterovirus were the most frequently detected pathogens, especially in flies, suggesting an important role of flies in the transmission of these viruses. Additionally, we detected the N. caninum genome from a cockroach sample for the first time. Our data suggest that insects (particularly flies), birds, and rodents are potential vectors and reservoirs of abortion, diarrhea, and respiratory infectious agents, and that they may transmit more than one pathogen at the same time.
Collapse
Affiliation(s)
- Sayed Samim Rahpaya
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
- Faculty of Veterinary Science, Paraclinic Department, Kabul University, Kabul 1006, Afghanistan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Yuka Nunomura
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Saki Kokawa
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Yumi Kirino
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tamaki Okabayashi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Nariaki Nonaka
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Mai Shiokawa
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Moeko Umetsu
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Tatsushi Morita
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Ayako Hasebe
- Education and Research Center for Food Animal Health (GeFAH), Gifu University, Gifu 501-1193, Japan
| | - Keiko Otsu
- Education and Research Center for Food Animal Health (GeFAH), Gifu University, Gifu 501-1193, Japan
| | - Tetsuo Asai
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
- Education and Research Center for Food Animal Health (GeFAH), Gifu University, Gifu 501-1193, Japan
| | | | - Shinji Makino
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, TX 77555-1019, USA
| | - Yoshiteru Murata
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Ahmad Jan Abi
- Faculty of Veterinary Science, Paraclinic Department, Kabul University, Kabul 1006, Afghanistan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
34
|
Natural History of Plasmodium odocoilei Malaria Infection in Farmed White-Tailed Deer. mSphere 2018; 3:3/2/e00067-18. [PMID: 29669881 PMCID: PMC5907657 DOI: 10.1128/msphere.00067-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/16/2018] [Indexed: 12/15/2022] Open
Abstract
Malaria parasites of the genus Plasmodium are known to infect a variety of vertebrate hosts, including ungulates (hoofed mammals). A recent study found that up to a quarter of white-tailed deer (Odocoileus virginianus) in North America are infected with the parasite Plasmodium odocoilei. In addition to occupying an important ecological niche, white-tailed deer are popular game animals and deer farming represents a rapidly growing industry. However, the effect of P. odocoilei infection in this ecologically and economically important ungulate species is unknown. Our work is significant because (i) we identified a high prevalence of P. odocoilei in farmed deer and (ii) we found evidence for both cleared and persistent infection, as well as an association with decreased survival of young fawns. White-tailed deer (Odocoileus virginianus), an ecologically and economically important species, are the most widely distributed large animals in North America. A recent study indicated that up to 25% of all white-tailed deer may be infected with Plasmodium odocoilei, a malaria parasite belonging to the distinct clade of ungulate-infecting Plasmodium spp. Because the clinical impact of P. odocoilei on deer health and survival is unknown, we undertook a retrospective longitudinal study of farmed Floridian O. virginianus fawns. We found that a substantial proportion (21%) of fawns acquire malaria infection during the first 8 months of life. Some animals naturally clear P. odocoilei infection, while other animals remain persistently positive. Importantly, we found that animals that acquire malaria parasites very early in life have poor survival compared to animals that remain uninfected. Our report thus provides the first evidence of a clinically significant impact of malaria infection in young deer. IMPORTANCE Malaria parasites of the genus Plasmodium are known to infect a variety of vertebrate hosts, including ungulates (hoofed mammals). A recent study found that up to a quarter of white-tailed deer (Odocoileus virginianus) in North America are infected with the parasite Plasmodium odocoilei. In addition to occupying an important ecological niche, white-tailed deer are popular game animals and deer farming represents a rapidly growing industry. However, the effect of P. odocoilei infection in this ecologically and economically important ungulate species is unknown. Our work is significant because (i) we identified a high prevalence of P. odocoilei in farmed deer and (ii) we found evidence for both cleared and persistent infection, as well as an association with decreased survival of young fawns.
Collapse
|
35
|
Wiley LA, Burnight ER, Drack AV, Banach BB, Ochoa D, Cranston CM, Madumba RA, East JS, Mullins RF, Stone EM, Tucker BA. Using Patient-Specific Induced Pluripotent Stem Cells and Wild-Type Mice to Develop a Gene Augmentation-Based Strategy to Treat CLN3-Associated Retinal Degeneration. Hum Gene Ther 2016; 27:835-846. [PMID: 27400765 DOI: 10.1089/hum.2016.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a childhood neurodegenerative disease with early-onset, severe central vision loss. Affected children develop seizures and CNS degeneration accompanied by severe motor and cognitive deficits. There is no cure for JNCL, and patients usually die during the second or third decade of life. In this study, independent lines of induced pluripotent stem cells (iPSCs) were generated from two patients with molecularly confirmed mutations in CLN3, the gene mutated in JNCL. Clinical-grade adeno-associated adenovirus serotype 2 (AAV2) carrying the full-length coding sequence of human CLN3 was generated in a U.S. Food and Drug Administration-registered cGMP facility. AAV2-CLN3 was efficacious in restoring full-length CLN3 transcript and protein in patient-specific fibroblasts and iPSC-derived retinal neurons. When injected into the subretinal space of wild-type mice, purified AAV2-CLN3 did not show any evidence of retinal toxicity. This study provides proof-of-principle for initiation of a clinical trial using AAV-mediated gene augmentation for the treatment of children with CLN3-associated retinal degeneration.
Collapse
Affiliation(s)
- Luke A Wiley
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Erin R Burnight
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Bailey B Banach
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Dalyz Ochoa
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Cathryn M Cranston
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert A Madumba
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jade S East
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert F Mullins
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
36
|
Knight-Jones TJD, Robinson L, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 4 - Diagnostics. Transbound Emerg Dis 2016; 63 Suppl 1:42-8. [DOI: 10.1111/tbed.12523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - L. L. Rodriguez
- Plum Island Animal Disease Center; ARS; USDA; Greenport NY USA
| | - C. G. Gay
- Agricultural Research Service; USDA; National Program 103-Animal Health; Beltsville MD USA
| | - K. J. Sumption
- European Commission for the Control of FMD (EuFMD); FAO; Rome Italy
| | - W. Vosloo
- Australian Animal Health Laboratory; CSIRO-Biosecurity Flagship; Geelong VIC Australia
| |
Collapse
|
37
|
Shirafuji H, Yazaki R, Shuto Y, Yanase T, Kato T, Ishikura Y, Sakaguchi Z, Suzuki M, Yamakawa M. Broad-range detection of arboviruses belonging to Simbu serogroup lineage 1 and specific detection of Akabane, Aino and Peaton viruses by newly developed multiple TaqMan assays. J Virol Methods 2015; 225:9-15. [PMID: 26341063 DOI: 10.1016/j.jviromet.2015.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 08/30/2015] [Accepted: 08/30/2015] [Indexed: 12/22/2022]
Abstract
TaqMan assays were developed for the broad-range detection of arboviruses belonging to Simbu serogroup lineage 1 in the genus Orthobunyavirus and also for the specific detection of three viruses in the lineage, Akabane, Aino and Peaton viruses (AKAV, AINOV and PEAV, respectively). A primer and probe set was designed for the broad-range detection of Simbu serogroup lineage 1 (Pan-Simbu1 set) mainly targeting AKAV, AINOV, PEAV, Sathuperi and Shamonda viruses (SATV and SHAV), and the forward and reverse primers of the Pan-Simbu1 set were also used for the specific detection of AKAV with another probe (AKAV-specific set). In addition, two more primer and probe sets were designed for AINOV- and PEAV-specific detection, respectively (AINOV- and PEAV-specific sets). All of the four primer and probe sets successfully detected targeted viruses, and thus broad-range and specific detection of all the targeted viruses can be achieved by using two multiplex assays and a single assay in a dual (two-color) assay format when another primer and probe set for a bovine β-actin control is also used. The assays had an analytical sensitivity of 10 copies/tube for AKAV, at least 100 copies/tube for AINOV, 100 copies/tube for PEAV, one copy/tube for SATV and at least 10 copies/tube for SHAV, respectively. Diagnostic sensitivity of the assays was tested with field-collected bovine samples, and the results suggested that the sensitivity was higher than that of a conventional RT-PCR. These data indicate that the newly developed TaqMan assays will be useful tools for the diagnosis and screening of field-collected samples for infections of AKAV and several other arboviruses belonging to the Simbu serogroup lineage 1.
Collapse
Affiliation(s)
- Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Japan.
| | - Ryu Yazaki
- Kusu Livestock Hygiene Service Center, Oita Prefectural Government, Japan
| | - Yozo Shuto
- Oita Livestock Hygiene Service Center, Oita Prefectural Government, Japan
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Japan
| | - Tomoko Kato
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Japan
| | - Youji Ishikura
- Domestic Livestock Disease Identification Office, Food Safety Promotion Division, Shimane Prefectural Government, Japan
| | - Zenjiro Sakaguchi
- Kagoshima Central Livestock Hygiene Service Center, Kagoshima Prefectural Government, Japan
| | - Moemi Suzuki
- Okinawa Prefectural Institute of Animal Health, Okinawa Prefectural Government, Japan
| | - Makoto Yamakawa
- Viral Disease and Epidemiology Research Division, NIAH, NARO, Japan
| |
Collapse
|