1
|
Hu X, Zhang M, Liu Y, Li YT, Li W, Li T, Li J, Xiao X, He Q, Zhang ZY, Zhang GJ. A portable transistor immunosensor for fast identification of porcine epidemic diarrhea virus. J Nanobiotechnology 2024; 22:239. [PMID: 38735951 PMCID: PMC11089749 DOI: 10.1186/s12951-024-02440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024] Open
Abstract
Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.
Collapse
Affiliation(s)
- Xiao Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China
| | - Yiwei Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, P. R. China
| | - Yu-Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, P.R. China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China
| | - Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Jiahao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
| | - Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China.
| | - Zhi-Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China.
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, P.R. China.
| |
Collapse
|
2
|
Kim TH, Park JY, Jung J, Sung JS, Kwon S, Bae HE, Shin HJ, Kang MJ, Jose J, Pyun JC. A one-step immunoassay based on switching peptides for diagnosis of porcine epidemic diarrhea virus (PEDV) using screened Fv-antibodies. J Mater Chem B 2024; 12:3751-3763. [PMID: 38532694 DOI: 10.1039/d4tb00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this study, a one-step immunoassay for porcine epidemic diarrhea virus (PEDV) based on Fv-antibodies and switching peptides was developed, and the assay results of PEDV were obtained by just mixing samples without any further reaction or washing steps. The Fv-antibodies with binding affinity to the spike protein of PEDV were screened from the Fv-antibody library using the receptor-binding domain (RBD) of the spike protein as a screening probe. Screened Fv-antibodies with binding affinities to the RBD antigen were expressed, and the binding constants (KD) were calculated to be 83-142 nM. The one-step immunoassay for the detection of PEDV was configured as a displacement immunoassay using a fluorescence-labeled switching peptide. The one-step immunoassay based on switching peptides was performed using PEDV, and the limit of detection (LOD) values for PEDV detection were estimated to be Ct = 39.7-36.4. Compared with the LOD value for a conventional lateral flow immunoassay (Ct = 33.0), the one-step immunoassay showed a remarkably improved LOD for the detection of PEDV. Finally, the interaction between the screened Fv-antibodies and the PEDV RBD was investigated using docking simulations and compared with the amino acid sequences of the receptors on host cells, such as aminopeptidase N (APN) and angiotensin-converting enzyme-2 (ACE-2).
Collapse
Affiliation(s)
- Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westfälischen Wilhelms-Universität Münster, Muenster, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| |
Collapse
|
3
|
An ultrasensitive electrochemical sensor for detecting porcine epidemic diarrhea virus based on a Prussian blue-reduced graphene oxide modified glassy carbon electrode. Anal Biochem 2023; 662:115013. [PMID: 36493864 DOI: 10.1016/j.ab.2022.115013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
This study developed a novel, ultrasensitive sandwich-type electrochemical immunosensor for detecting the porcine epidemic diarrhea virus (PEDV). By electrochemical co-deposition of graphene and Prussian blue, a Prussian blue-reduced graphene oxide-modified glassy carbon electrode was made, further modified with PEDV-monoclonal antibodies (mAbs) to create a new PEDV immunosensor using the double antibody sandwich technique. The electrochemical characteristics of several modified electrodes were investigated using cyclic voltammetry (CV). We optimized the pH levels and scan rate. Additionally, we examined specificity, reproducibility, repeatability, accuracy, and stability. The study indicates that the immunosensor has good performance in the concentration range of 1 × 101.88 to 1 × 105.38 TCID50/mL of PEDV, with a detection limit of 1 × 101.93 TCID50/mL at a signal-to-noise ratio of 3σ. The composite membranes produced via co-deposition of graphene and Prussian blue effectively increased electron transport to the glassy carbon electrode, boosted response signals, and increased the sensitivity, specificity, and stability of the immunosensor. The immunosensor could accurately detect PEDV, with results comparable to real-time quantitative PCR. This technique was applied to PEDV detection and served as a model for developing additional immunosensors for detecting hazardous chemicals and pathogenic microbes.
Collapse
|
4
|
Niu TM, Yu LJ, Zhao JH, Zhang RR, Ata EB, Wang N, Zhang D, Yang YL, Qian JH, Chen QD, Yang GL, Huang HB, Shi CW, Jiang YL, Wang JZ, Cao X, Zeng Y, Wang N, Yang WT, Wang CF. Characterization and pathogenicity of the porcine epidemic diarrhea virus isolated in China. Microb Pathog 2023; 174:105924. [PMID: 36473667 DOI: 10.1016/j.micpath.2022.105924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Piglet diarrhea caused by the porcine epidemic diarrhea virus (PEDV) is a common problem on pig farms in China associated with high morbidity and mortality rates. In this study, three PEDV isolates were successfully detected after the fourth blind passage in Vero cells. The samples were obtained from infected piglet farms in Jilin (Changchun), and Shandong (Qingdao) Provinces of China and were designated as CH/CC-1/2018, CH/CC-2/2018, and CH/QD/2018. According to the analysis of the complete S protein gene sequence, the CH/CC-1/2018 and CH/CC-2/2018 were allocated to the G2b branch, while CH/QD/2018 was located in the G1a interval and was closer to the vaccine strain CV777. Successful detection and identification of the isolated strains were carried out using electron microscopy and indirect immunofluorescence. Meanwhile, animal challenge experiments and viral RNA copies determination were used to compare the pathogenicity. The results showed that CH/CC-1/2018 in Changchun was more pathogenic than CH/QD/2018 in Qingdao. In conclusion, the discovery of these new strains is conducive to the development of vaccines to prevent the pandemic of PEDV, especially that the CH/CC-1/2018, and CH/CC-2/2018 were not related to the classical vaccine strain CV777.
Collapse
Affiliation(s)
- Tian-Ming Niu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ling-Jiao Yu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jin-Hui Zhao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Rong-Rong Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Dep, Vet. Res. Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Nan Wang
- Jilin Province Animal Disease Prevention and Control Center, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yong-Lei Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jia-Hao Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Qiao-Dan Chen
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
5
|
Yang Z, Shen B, Yue L, Miao Y, Hu Y, Ouyang R. Application of Nanomaterials to Enhance Polymerase Chain Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248854. [PMID: 36557991 PMCID: PMC9781713 DOI: 10.3390/molecules27248854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Polymerase Chain Reaction (PCR) is one of the most common technologies used to produce millions of copies of targeted nucleic acid in vitro and has become an indispensable technique in molecular biology. However, it suffers from low efficiency and specificity problems, false positive results, and so on. Although many conditions can be optimized to increase PCR yield, such as the magnesium ion concentration, the DNA polymerases, the number of cycles, and so on, they are not all-purpose and the optimization can be case dependent. Nano-sized materials offer a possible solution to improve both the quality and productivity of PCR. In the last two decades, nanoparticles (NPs) have attracted significant attention and gradually penetrated the field of life sciences because of their unique chemical and physical properties, such as their large surface area and small size effect, which have greatly promoted developments in life science and technology. Additionally, PCR technology assisted by NPs (NanoPCR) such as gold NPs (Au NPs), quantum dots (QDs), and carbon nanotubes (CNTs), etc., have been developed to significantly improve the specificity, efficiency, and sensitivity of PCR and to accelerate the PCR reaction process. This review discusses the roles of different types of NPs used to enhance PCR and summarizes their possible mechanisms.
Collapse
Affiliation(s)
- Zhu Yang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (Y.H.); (R.O.)
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (Y.M.); (Y.H.); (R.O.)
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (Y.H.); (R.O.)
| |
Collapse
|
6
|
Xia J, Bu T, Jia P, He K, Wang X, Sun X, Wang L. Polydopamine nanospheres-assisted direct PCR for rapid detection of Escherichia coli O157:H7. Anal Biochem 2022; 654:114797. [DOI: 10.1016/j.ab.2022.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/01/2022]
|
7
|
Li R, Tian X, Pang J, Li L, Yuan J, Tian Z, Wang Z. Point-of-Care Tests for Rapid Detection of Porcine Epidemic Diarrhea Virus: A Systematic Review and Meta-Analysis. Viruses 2022; 14:v14071355. [PMID: 35891337 PMCID: PMC9321219 DOI: 10.3390/v14071355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 12/21/2022] Open
Abstract
The timely and accurate diagnosis of porcine epidemic diarrhea virus (PEDV) infection is crucial to reduce the risk of viral transmission. Therefore, the objective of this review was to evaluate the overall diagnostic accuracy of rapid point-of-care tests (POCTs) for PEDV. Studies published before 7 January 2022 were identified by searching PubMed, EMBASE, Springer Link, and Web of Science databases, using subject headings or keywords related to point of care and rapid test diagnostic for PEDV and PED. Two investigators independently extracted data, rated risk of bias, and assessed the quality using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The bivariate model and the hierarchical summary receiver operating characteristic (HSROC) model were used for performing the meta-analysis. Threshold effect, subgroup analysis, and meta-regression were applied to explore heterogeneity. Of the 2908 records identified, 24 eligible studies involving 3264 specimens were enrolled in the meta-analysis, including 11 studies on evaluation of lateral flow immunochromatography assay (ICA)-based, and 13 on nucleic acid isothermal amplification (NAIA)-based POCTs. The overall pooled sensitivity, specificity and diagnostic odds ratio (DOR) were 0.95 (95% CI: 0.92–0.97), 0.96 (95% CI 0.88–0.99) and 480 (95% CI 111–2074), respectively; for ICA-based POCTs and the corresponding values for NAIA-based, POCTs were 0.97 (95% CI 0.94–0.99), 0.98 (95% CI 0.91–0.99) and 1517 (95% CI 290–7943), respectively. The two tests showed highly comparable and satisfactory diagnostic performance in clinical utility. These results support current recommendations for the use of rapid POC tests when PEDV is suspected.
Collapse
Affiliation(s)
- Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China
- Correspondence:
| | - Junzeng Pang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Linyue Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Jiakang Yuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Zhuangzhuang Tian
- School of International Education, Xinxiang Medical University, Xinxiang 453003, China;
| | - Ziliang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| |
Collapse
|
8
|
Rahimpour E, Lotfipour F, Jouyban A. A minireview on nanoparticle-based sensors for the detection of coronaviruses. Bioanalysis 2021; 13:1837-1850. [PMID: 34463130 PMCID: PMC8407278 DOI: 10.4155/bio-2021-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoVs) are a class of viruses that cause respiratory tract infections in birds and mammals. Severe acute respiratory syndrome and Middle East respiratory syndrome are pathogenic human viruses. The ongoing coronavirus causing a pandemic of COVID-19 is a recently identified virus from this group. The first step in the control of spreading the disease is to detect and quarantine infected subjects. Consequently, the introduction of rapid and reliable detection methods for CoVs is crucial. To date, several methods were reported for the detection of coronaviruses. Nanoparticles play an important role in detection tools, thanks to their high surface-to-volume ratio and exclusive optical property enables the development of susceptible analytical nanoparticle-based sensors. The studies performed on using nanoparticles-based (mainly gold) sensors to detect CoVs in two categories of optical and electrochemical were reviewed here. Details of each reported sensor and its relevant analytical parameters are carefully provided and explained.
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Food & Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Farzaneh Lotfipour
- Food & Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Biotecnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Faculty of Pharmacy, Near East University, PO box 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
9
|
Wang Y, Wang Y, Chen Z, Liu G, Jiang S, Li C. A multiplex nanoparticle-assisted polymerase chain reaction assay for detecting three canine epidemic viruses using a dual priming oligonucleotide system. J Virol Methods 2021; 298:114290. [PMID: 34543695 DOI: 10.1016/j.jviromet.2021.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/08/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
A rapid and accurate diagnosis of mixed viral infections is important for providing timely therapeutic interventions. The aim of this study was to develop a highly sensitive and specific method for the simultaneous detection of canine distemper virus (CDV), canine parvovirus (CPV) and canine coronavirus (CCV) in mixed infections by combining the high specificity of a dual priming oligonucleotide (DPO) primer system with the high sensitivity of a nanoparticle-assisted PCR (nanoPCR) assay. Under the optimised assay conditions, the multiplex DPO-nanoPCR assay developed using DPO primers was 100-fold more sensitive than the multiplex PCR assay using conventional primers. The detection limits of the multiplex DPO-nanoPCR assay for the recombinant plasmids containing the cloned CDV, CPV and CCV target sequences were 5.4 × 102, 6.5 × 102 and 1.6 × 102 copies in a 25 μL assay, respectively. No cross-reaction with other canine viruses was observed. This is the first reported use of a multiplex nanoPCR assay with the DPO primer system for the simultaneous detection of CDV, CPV and CCV in mixed infections. The high sensitivity and specificity of the assay indicated its potential for use in clinical diagnosis and field surveillance of animal epidemics.
Collapse
Affiliation(s)
- Yong Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yuanhong Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zongyan Chen
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Guangqing Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Shudong Jiang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanfeng Li
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| |
Collapse
|
10
|
Qin T, Wang J, Cui SJ. Development of a nanoparticle-assisted PCR assay to distinguish canine coronaviruses I and II. J Vet Diagn Invest 2021; 33:104-107. [PMID: 33350347 DOI: 10.1177/1040638720974114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nanoparticle-assisted PCR (nanoPCR) is a novel method for the simple, rapid, and specific detection of viruses. We developed a nanoPCR method to detect and differentiate canine coronavirus I (CCoV I) and II (CCoV II). Primer pairs were designed against the M gene conserved region of CCoV I and CCoV II, producing specific fragments of 239 bp (CCoV I) and 105 bp (CCoV II). We optimized the annealing temperature and primer concentrations for the CCoV nanoPCR assay and assessed its sensitivity and specificity. Under optimized nanoPCR reaction conditions, the detection limits were 6.47 × 101 copies/μL for CCoV I and 6.91 × 102 copies/μL for CCoV II. No fragments were amplified using other canine viruses as templates. The sensitivity of the nanoPCR assay was 100-fold higher than that of a conventional RT-PCR assay. Among 60 clinical samples collected from Beijing, China, the assay detected 12% positive for CCoV I and 48% positive for CCoV II. Our nanoPCR method is an effective method to rapidly detect CCoV I and CCoV II alone, or as a mixed infection, in dogs.
Collapse
Affiliation(s)
- Tong Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Jing Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Shang-Jin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| |
Collapse
|
11
|
Fan B, Sun J, Zhu L, Zhou J, Zhao Y, Yu Z, Sun B, Guo R, He K, Li B. Development of a Novel Double Antibody Sandwich Quantitative Enzyme-Linked Immunosorbent Assay for Detection of Porcine Epidemic Diarrhea Virus Antigen. Front Vet Sci 2020; 7:540248. [PMID: 33195513 PMCID: PMC7649156 DOI: 10.3389/fvets.2020.540248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea and dehydration in sucking piglets with a high mortality rate. Here, we developed a double antibody sandwich quantitative enzyme-linked immunosorbent assay (DAS-qELISA) for detection of PEDV using a specific monoclonal antibody against PEDV N protein and anti-PEDV rabbit serum. Using DAS-qELISA, the detection limit of recombinant PEDV N protein and virus titer were approximately 1 μg/L and 102.0 TCID50/ml, respectively. A total of 90 intestinal and 237 fecal samples were then screened for the presence of PEDV using DAS-qELISA and reverse transcriptase PCR (RT-PCR). DAS-qELISA had a high specificity of 98.1% and sensitivity of 93.5%. The accuracy rate between DAS-qELISA and RT-PCR was 95.7%. More importantly, the viral antigen concentrations remained unchanged before and after one inactivated vaccine preparation by using the DAS-qELISA. These results suggest DAS-qELISA could be used for antigen detection of inactivated vaccine samples and clinical samples. It is a novel method for diagnosing diseases and evaluation of the PEDV vaccine.
Collapse
Affiliation(s)
- Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Jie Sun
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Lin Zhu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinzhu Zhou
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongxiang Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhengyu Yu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Bing Sun
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Rongli Guo
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Kongwang He
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Alphandéry E. The Potential of Various Nanotechnologies for Coronavirus Diagnosis/Treatment Highlighted through a Literature Analysis. Bioconjug Chem 2020; 31:1873-1882. [PMID: 32639742 PMCID: PMC7359670 DOI: 10.1021/acs.bioconjchem.0c00287] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/07/2020] [Indexed: 12/14/2022]
Abstract
With the current COVID-19 outbreak, it has become essential to develop efficient methods for the treatment and detection of this virus. Among the new approaches that could be tested, that relying on nanotechnology finds one of its main grounds in the similarity between nanoparticle (NP) and coronavirus (COV) sizes, which promotes NP-COV interactions. Since COVID-19 is very recent, most studies in this field have focused on other types of coronavirus than COVID-19, such as those involved in MERS or SARS diseases. Although their number is limited, they have led to promising results on various COV using a wide range of different types of nanosystems, e.g., nanoparticles, quantum dos, or nanoassemblies of polymers/proteins. Additional efforts deserve to be spent in this field to consolidate these findings. Here, I first summarize the different nanotechnology-based methods used for COV detection, i.e., optical, electrical, or PCR ones, whose sensitivity was improved by the presence of nanoparticles. Furthermore, I present vaccination methods, which comprise nanoparticles used either as adjuvants or as active principles. They often yield a better-controlled immune response, possibly due to an improved antigen presentation/processing than in non-nanoformulated vaccines. Certain antiviral approaches also took advantage of nanoparticle uses, leading to specific mechanisms such as the blocking of virus replication at the cellular level or the reduction of a COV induced apoptotic cellular death.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Paris Sorbonne
Université, Muséum National
d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de
Minéralogie, de Physique des Matériaux et de
Cosmochimie, IMPMC, 75005, Paris, France
- Nanobacterie
SARL, 36 Boulevard Flandrin, 75116, Paris,
France
- Institute of Anatomy, UZH
University of Zurich, Winterthurerstrasse 190,
CH-8057, Zurich, Switzerland
| |
Collapse
|
13
|
Uskoković V. Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic? Nanomedicine (Lond) 2020; 15:1719-1734. [PMID: 32462968 PMCID: PMC7265684 DOI: 10.2217/nnm-2020-0163] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Prior research on nanotechnologies in diagnostics, prevention and treatment of coronavirus infections is reviewed. Gold nanoparticles and semiconductor quantum dots in colorimetric and immunochromatographic assays, silica nanoparticles in the polymerase chain reaction and spike protein nanospheres as antigen carriers and adjuvants in vaccine formulations present notable examples in diagnostics and prevention, while uses of nanoparticles in coronavirus infection treatments have been merely sporadic. The current absence of antiviral therapeutics that specifically target human coronaviruses, including SARS-CoV-2, might be largely due to the underuse of nanotechnologies. Elucidating the interface between nanoparticles and coronaviruses is timely, but presents the only route to the rational design of precisely targeted therapeutics for coronavirus infections. Such a fundamental approach is also a viable prophylaxis against future pandemics of this type.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical & Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Rapid and efficient detection methods of pathogenic swine enteric coronaviruses. Appl Microbiol Biotechnol 2020; 104:6091-6100. [PMID: 32430534 PMCID: PMC7235545 DOI: 10.1007/s00253-020-10645-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Abstract Porcine enteric coronaviruses (CoVs) cause highly contagious enteric diarrhea in suckling piglets. These COV infections are characterized by clinical signs of vomiting, watery diarrhea, dehydration, and high morbidity and mortality, resulting in significant economic losses and tremendous threats to the pig farming industry worldwide. Because the clinical manifestations of pigs infected by different CoVs are similar, it is difficult to differentiate between the specific pathogens. Effective high-throughput detection methods are powerful tools used in the prevention and control of diseases. The immune system of piglets is not well developed, so serological methods to detect antibodies against these viruses are not suitable for rapid and early detection. This paper reviews various PCR-based methods used for the rapid and efficient detection of these pathogenic CoVs in swine intestines. Key points Swine enteric coronaviruses (CoVs) emerged and reemerged in past years. Enteric CoVs infect pigs at all ages with high mortality rate in suckling pigs. Rapid and efficient detection methods are needed and critical for diagnosis.
Collapse
|
15
|
PRAJAPATI SAPNA, GURURAJ K, ANDANI DIMPLE, PACHORI ANJALI, KUMAR ASHOK, PAWAIYA RVS. Development of real-time RT-PCR assay for diagnosis of viral enteritis in neonatal goat kids. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i2.98763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rotavirus gastroenteritis is a worldwide disease affecting primarily infants, young children and young ones of wide variety of mammalian and avian species. Diarrhoea in goat kids is most frequently found associated with Group A rotavirus (GARV) and another enteric pathogen bovine coronavirus (BCoV), a major viral pathogen associated with neonatal diarrhoea. Enteric BCoV replicates in epithelial cells of gut, destroying villi, resulting in severe, often bloody diarrhoea in calves. It requires highly sensitive and specific assays to diagnose the disease at field level. In the present study, a real-time reverse-transcriptase (RT) polymerase chain reaction (PCR) were developed and validated for specific detection and quantification of GARV and BCoV with high sensitivity and specificity. For real-time RT-PCR, primers were designed to target nucleocapsid gene for BCoV; NSP4 gene and VP6 gene were designed for GARV using discontiguous conserved sequences. Real-time RT-PCR assay was standardized by serial dilution of positive GARV and BCoV RNA. The rotavirus real-time RT-PCR assay was found to be specific to rotavirus, but broadly reactive to GARV. The sensitivity of the assay for detecting rotavirus and BCoV in faecal samples and tissue sample was found to be high in such reactions. The real-time RT-PCR assay was effective in detecting GARV and BCoV in all positive samples obtained from sheds, farms and outbreaks. The results of this study demonstrate that the real-time RT-PCR assay for viral enteritis is broadly reactive, specific, and sensitive for detection of GARV and BCoV in faecal sample and tissue samples.
Collapse
|
16
|
Xu F, Jin Z, Zou S, Chen C, Song Q, Deng S, Xiao W, Zhang X, Jia A, Tang Y. EuNPs-mAb fluorescent probe based immunochromatographic strip for rapid and sensitive detection of porcine epidemic diarrhea virus. Talanta 2020; 214:120865. [PMID: 32278431 PMCID: PMC7111840 DOI: 10.1016/j.talanta.2020.120865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022]
Abstract
Porcine epidemic diarrhea (PED), induced by porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets, resulting in significant economic losses in the pig industries. In this study, an immunochromatographic assay (ICA) based on a EuNPs-mAb fluorescent probe was developed and optimized for rapid detection of PEDV. The limit of detection (LOD) of the ICA was 0.218 μg/mL (2.725 × 103 TCID50/mL) and its linear detection range was 0.03125-8 μg/mL (3.91 × 102-105 TCID50/mL). The ICA was also validated for the detection of PEDV in swine stool samples. 60 swine stool samples from southern China were analyzed by the ICA and RT-PCR, and the results showed that the coincidence rate of the ICA to RT-PCR was 86.67%, which was significantly higher than that of AuNPs based ICA. The ICA is sensitive and specific and can achieve on-site rapid detection of swine stool samples. Therefore, the ICA has a great potential for PED diagnosis and prevention.
Collapse
Affiliation(s)
- Fei Xu
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Zhiyuan Jin
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Siyi Zou
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Chaoqun Chen
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Qifang Song
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Shengchao Deng
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Wei Xiao
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Xiaoli Zhang
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China.
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry & Veterinary, PR China.
| | - Yong Tang
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China; Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
17
|
Han HY, Zheng HH, Zhao Y, Tian RB, Xu PL, Hou HL, Chen HY, Yang MF. Development of a SYBR green I-based duplex real-time fluorescence quantitative PCR assay for the simultaneous detection of porcine epidemic diarrhea virus and porcine circovirus 3. Mol Cell Probes 2019; 44:44-50. [PMID: 30735700 PMCID: PMC7172278 DOI: 10.1016/j.mcp.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 01/22/2023]
Abstract
The development of a rapid, specific, and sensitive SYBR Green I-based duplex real-time quantitative PCR assay is described for the simultaneous detection of porcine epidemic diarrhea virus (PEDV) and porcine circovirus type 3 (PCV3). The assay specifically detected PEDV and PCV3, with no fluorescence detected for other non-targeted pig pathogens. The assay showed a good linear relationship, and the limits of detection for this assay were 34.6 copies/μL and 61.2 copies/μL for PEDV and PCV3, respectively. The assay exhibited high repeatability and reproducibility, with intra-assay and inter-assay variation coefficients less than 2.0%. A clinical evaluation using intestinal tissue and fecal samples from piglets suffering from diarrhea at different pig farms in China revealed that the singular infection rates of PEDV and PCV3 were 43.94% (29/66) and 16.67% (11/66), respectively, while the co-infection rate of PCV3 with PEDV was 27.27% (18/66). The results indicate this assay is a rapid and reliable diagnostic tool for PEDV and PCV3 monitoring and surveillance in the field, and provides technical support for the quantitative detection of clinical samples infected or co-infected with PEDV and PCV3. PED outbreaks have been resulted in a huge economic loss in the pig farming industry. PCV3 is a novel virus and has been detected in piglets affected with diarrhea. A duplex qPCR assay was developed for the simultaneous detection of PEDV and PCV3. The LOD for this assay were 34.6 copies/μL and 61.2 copies/μL for PEDV and PCV3, respectively.
Collapse
Affiliation(s)
- Hao-Ying Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Hui-Hua Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Yu Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Run-Bo Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Peng-Li Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Hua-Lin Hou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Hong-Ying Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China; Zhengzhou Major Pig Disease Prevention and Control Laboratory, Zhengzhou, 450046, Henan Province, People's Republic of China.
| | - Ming-Fan Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China; Zhengzhou Major Pig Disease Prevention and Control Laboratory, Zhengzhou, 450046, Henan Province, People's Republic of China.
| |
Collapse
|
18
|
Wang J, Zhang R, Wang J, Han Q, Liu L, Li Y, Yuan W. Real-time reverse transcription recombinase polymerase amplification assay for rapid detection of porcine epidemic diarrhea virus. J Virol Methods 2018; 253:49-52. [PMID: 29330084 DOI: 10.1016/j.jviromet.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Porcine epidemic diarrhea (PED), which is caused by porcine epidemic diarrhea virus (PEDV), is an acute, highly contagious enteric disease characterized by severe watery diarrhea, vomiting, dehydration, and high mortality in suckling piglets. A real-time reverse-transcription recombinase polymerase amplification assay (RT-RPA) was developed based on the nucleocapsid gene of PEDV. RT-RPA assay was performed at 40 °C for 20 min. The assay could detect both the classical and variant PEDV strains, and there was no cross-reaction with other pathogens tested. Using the in vitro transcribed PEDV RNA as template, the analytical sensitivity was 23 copies per reaction. The assay performance was evaluated by testing 76 clinical samples. PEDV RNA positive rate was 55.3% (42/76) by RT-RPA and 59.2% (45/76) by real-time RT-PCR. The diagnostic agreement between the two assays was 96.1% (73/76), and the R2 value of the two assays was 0.903 by linear regression analysis. The developed RT-RPA assay provides a useful alternative tool for simple, rapid and reliable detection of PEDV in resource-limited diagnostic laboratories and on-site facilities.
Collapse
Affiliation(s)
- Jianchang Wang
- Hebei Academy of Science and Technology for Inspection and Quarantine, Shijiazhuang 050051, China; Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang 050051, China
| | - Ruoxi Zhang
- Hebei Animal Disease Control Center, Shijiazhuang 050050, China
| | - Jinfeng Wang
- Hebei Academy of Science and Technology for Inspection and Quarantine, Shijiazhuang 050051, China; Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang 050051, China
| | - Qingan Han
- Hebei Animal Disease Control Center, Shijiazhuang 050050, China
| | - Libing Liu
- Hebei Academy of Science and Technology for Inspection and Quarantine, Shijiazhuang 050051, China; Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang 050051, China
| | - Yanan Li
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China.
| |
Collapse
|
19
|
Su Y, Liu Y, Chen Y, Xing G, Hao H, Wei Q, Liang Y, Xie W, Li D, Huang H, Deng R, Zhang G. A novel duplex TaqMan probe-based real-time RT-qPCR for detecting and differentiating classical and variant porcine epidemic diarrhea viruses. Mol Cell Probes 2017; 37:6-11. [PMID: 29104088 DOI: 10.1016/j.mcp.2017.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/11/2017] [Accepted: 10/30/2017] [Indexed: 02/01/2023]
Abstract
Two different genotypes of porcine epidemic diarrhea virus (PEDV), the classical and variant strains, are classified by multiple insertions and deletions in their S genes. It is critical to detect and differentiate two genotypes in the pork industry to prevent PEDV outbreaks. In the present study, a novel duplex TaqMan RT-PCR was developed for detecting and differentiating PEDV strains in China. There was no cross-amplification between the two probes when using standard recombinant plasmids, and the specificity was further confirmed by using other seven non-PEDV swine pathogens. The minimum copies required for the detection of both classical and variant PEDV were 4.8 × 102 DNA copies/reaction. The repeatability of TaqMan RT-PCR was evaluated using standard recombinant plasmids and gave coefficients of variation 0.19-4.93. In recent 5 years, 79 clinical samples were collected from piglets with severe diarrhea in the Central China. Among these clinical samples, 51 were confirmed as PEDV positive by conventional RT-PCR, whereas 63 variant PEDV, 3 co-infections and 1 classical PEDV were confirmed by this duplex TaqMan RT-PCR, with viral loads of 102-108, 102-103, and 104 copies/reaction, respectively. Therefore, the duplex TaqMan RT-PCR could be a useful method for detecting and differentiating variant and classical PEDV strains. The results showed that variant PEDV was prevalent in clinical samples in central China. Moreover, in this study, co-infection by PEDV strains was detected for the first time and might help explain the emergence of the novel recombinant PEDV in recent years.
Collapse
Affiliation(s)
- Yunfang Su
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yumei Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Huifang Hao
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yue Liang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Weitao Xie
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Dongliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
| | - Huimin Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225000, China.
| |
Collapse
|
20
|
Development of Nano-Polymerase Chain Reaction and Its Application. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61051-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
El-Husseini DM, Helmy NM, Tammam RH. Application of gold nanoparticle-assisted PCR for equine herpesvirus 1 diagnosis in field samples. Arch Virol 2017; 162:2297-2303. [DOI: 10.1007/s00705-017-3379-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/21/2017] [Indexed: 11/25/2022]
|
22
|
Xing N, Guan X, An B, Cui B, Wang Z, Wang X, Zhang X, Du Q, Zhao X, Huang Y, Tong D. Ultrasensitive Detection of Porcine Epidemic Diarrhea Virus from Fecal Samples Using Functionalized Nanoparticles. PLoS One 2016; 11:e0167325. [PMID: 27936019 PMCID: PMC5147876 DOI: 10.1371/journal.pone.0167325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/13/2016] [Indexed: 12/02/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the main causative agent of porcine diarrhea, which has resulted in devastating damage to swine industry and become a perplexed global problem. PEDV infection causes lesions and clinical symptoms, and infected pigs often succumb to severe dehydration. If there is not a timely and effective method to control its infection, PEDV will spread rapidly across the whole swine farm. Therefore, preclinical identification of PEDV is of great significance for preventing the outbreak and spread of this disease. In this study, a functionalized nanoparticles-based PCR method (UNDP-PCR) specific for PEDV was developed through systematic optimization of functionalized magnetic beads and gold nanoparticles which were further used to specifically enrich viral RNA from the lysate of PEDV stool samples, forming a MMPs-RNA-AuNPs complex. Then, oligonucleotides specific for PEDV coated on AuNPs were eluted from the complex and were further amplified and characterized by PCR. The detection limitation of the established UNDP-PCR method for PEDV was 25 copies in per gram PEDV stool samples, which is 400-fold more sensitive than conventional RT-PCR for stool samples. The UNDP-PCR for PEDV exhibited reliable reproducibility and high specificity, no cross-reaction was observed with other porcine viruses. In 153 preclinical fecal samples, the positive detection rate of UNDP-PCR specific for PEDV (30.72%) was much higher than that of conventional RT-PCR (5.88%) and SYBR Green real-time RT-PCR. In a word, this study provided a RNA extraction and transcription free, rapid and economical method for preclinical PEDV infection, which showed higher sensitivity, specificity and reproducibility, and exhibited application potency for evaluating viral loads of preclinical samples.
Collapse
Affiliation(s)
- Na Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaoxiao Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Bin An
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Beibei Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zengguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaoya Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
- * E-mail: (DT); (YH)
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
- * E-mail: (DT); (YH)
| |
Collapse
|
23
|
Zhu Y, Liang L, Luo Y, Wang G, Wang C, Cui Y, Ai X, Cui S. A sensitive duplex nanoparticle-assisted PCR assay for identifying porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus from clinical specimens. Virus Genes 2016; 53:71-76. [PMID: 27815750 PMCID: PMC7089489 DOI: 10.1007/s11262-016-1405-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022]
Abstract
In this study, a novel duplex nanoparticle-assisted polymerase chain reaction (nanoPCR) assay was developed to detect porcine epidemic diarrhea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV). Two pairs of primers were designed based on the conserved region within the N gene of PEDV and TGEV. In a screening of 114 clinical samples from four provinces in China for PEDV and TGEV, 48.2 and 3.5 % of the samples, respectively, tested positive. Under optimized conditions, the duplex nanoPCR assay had a detection limit of 7.6 × 101 and 8.5 × 101 copies μL−1 for PEDV and TGEV, respectively. The sensitivity of the duplex nanoPCR assay was ten times higher than that of a conventional PCR assay. Moreover, no fragments were amplified when the duplex nanoPCR assay was used to test samples containing other porcine viruses. Our results indicate that the duplex nanoPCR assay described here is useful for the rapid detection of PEDV and TGEV and can be applied in clinical diagnosis.
Collapse
Affiliation(s)
- Yu Zhu
- College of Animal Science and Technology, HLJ August First Land Reclamation University, Daqing, 163319, China
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Yuanmingyuan West Road 2, Hai Dian District, Beijing, 100193, China
| | - Lin Liang
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Yuanmingyuan West Road 2, Hai Dian District, Beijing, 100193, China
| | - Yakun Luo
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Yuanmingyuan West Road 2, Hai Dian District, Beijing, 100193, China
| | - Guihua Wang
- Animal Medical Center DBN Technology Group, Beijing, 100195, China
| | - Chunren Wang
- College of Animal Science and Technology, HLJ August First Land Reclamation University, Daqing, 163319, China
| | - Yudong Cui
- College of Animal Science and Technology, HLJ August First Land Reclamation University, Daqing, 163319, China
| | - Xia Ai
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Shangjin Cui
- College of Animal Science and Technology, HLJ August First Land Reclamation University, Daqing, 163319, China.
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Yuanmingyuan West Road 2, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
24
|
Zhu Y, Wang GH, Cui YD, Cui SJ. Establishment of a nanoparticle-assisted RT-PCR assay to distinguish field strains and attenuated strains of porcine epidemic diarrhea virus. Arch Virol 2016; 161:2543-7. [PMID: 27287433 PMCID: PMC7087100 DOI: 10.1007/s00705-016-2918-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection.
Collapse
Affiliation(s)
- Yu Zhu
- Institute of Animal Science(IAS), Chinese Academy of Agricultural Sciences(CAAS), Yuanmingyuan West Road 2, Hai Dian District, Beijing, 100193, China
- College of Animal Science and Technology, HLJ August First Land Reclamation University, Daqing, 163319, China
| | - Gui-Hua Wang
- Animal Medical Center DBN Technology Group, Beijing, 100195, China
| | - Yu-Dong Cui
- College of Animal Science and Technology, HLJ August First Land Reclamation University, Daqing, 163319, China.
| | - Shang-Jin Cui
- Institute of Animal Science(IAS), Chinese Academy of Agricultural Sciences(CAAS), Yuanmingyuan West Road 2, Hai Dian District, Beijing, 100193, China.
- College of Animal Science and Technology, HLJ August First Land Reclamation University, Daqing, 163319, China.
| |
Collapse
|
25
|
Liu X, Wang Q. Reverse transcription-PCR assays for the differentiation of various US porcine epidemic diarrhea virus strains. J Virol Methods 2016; 234:137-41. [PMID: 27134071 PMCID: PMC7173223 DOI: 10.1016/j.jviromet.2016.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 11/07/2022]
Abstract
Concurrently, several porcine epidemic diarrhea virus (PEDV) variants are circulating in US swine farms, including the original US and the spike insertion-deletion (S-INDEL) strains. In this study, reverse transcription (RT)-PCR assays for the detection and differentiation of different US PEDV variants were developed based on the differences in the S1 domain of the spike (S) gene. This assay successfully differentiated three PEDV strains: PC22A (the original US virulent), Iowa106 (S-INDEL), and PC177 (S-197DEL) that was derived from cell culture adaptation and has a 197 amino acid-deletion in the S1 domain. The assays did not amplify the porcine deltacoronavirus OH-FD22 strain or transmissible gastroenteritis virus Miller strain. It is the first report on the development of RT-PCR assays allowing the detection and differentiation of all major types of US PEDV variants.
Collapse
Affiliation(s)
- Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
26
|
Wang FX, Yuan DY, Jin YN, Hu L, Sun ZY, He Q, Zhao SH, Zhan SB, Wen YJ. Reverse Transcription Cross-Priming Amplification-Nucleic Acid Test Strip for Rapid Detection of Porcine Epidemic Diarrhea Virus. Sci Rep 2016; 6:24702. [PMID: 27090105 PMCID: PMC4835727 DOI: 10.1038/srep24702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/04/2016] [Indexed: 12/04/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly transmissible coronavirus that causes a severe enteric disease particularly in neonatal piglets. In this study, a rapid method for detecting PEDV was developed based on cross-priming amplification and nucleic acid test strip(CPA-NATS). Five primers specific for the N gene sequence of PEDV were used for the cross-priming amplification. Detection of amplification products based on labeled probe primers was conducted with strip binding antibody of labeled markers. The CPA method was evaluated and compared with a PCR method. The reverse transcription CPA system was further optimized for detecting PEDV RNA in clinical specimens. Results showed that the method was highly specific for the detection of PEDV, and had the same sensitivity as PCR, with detection limit of 10−6 diluted plasmid containing the target gene of PEDV. It was also successfully applied to detecting PEDV in clinical specimens. The reverse transcription CPA-NATS detection system established in this study offers a specific, sensitive, rapid, and simple detection tool for screening PEDV, which can contribute to strategies in the effective control of PEDV in swine.
Collapse
Affiliation(s)
- Feng-Xue Wang
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, Jilin, 130112, People's Republic of China
| | - Dan-Yi Yuan
- (Sino-USA) SiChuan Nabii Bio-Tech Co., Ltd., Chengdu, SiChuan, 610041, People's Republic of China
| | - Ya-Nan Jin
- Ustar Biotechnologies (Hangzhou), Ltd., Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Lin Hu
- Ustar Biotechnologies (Hangzhou), Ltd., Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Zhi-Yong Sun
- (Sino-USA) SiChuan Nabii Bio-Tech Co., Ltd., Chengdu, SiChuan, 610041, People's Republic of China
| | - Qian He
- (Sino-USA) SiChuan Nabii Bio-Tech Co., Ltd., Chengdu, SiChuan, 610041, People's Republic of China
| | - Shi-Hua Zhao
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, Inner Mongolia, 010031, People's Republic of China
| | - Shu-Bai Zhan
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, Inner Mongolia, 010031, People's Republic of China
| | - Yong-Jun Wen
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, Jilin, 130112, People's Republic of China.,Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, Inner Mongolia, 010031, People's Republic of China
| |
Collapse
|
27
|
El-Husseini DM, Helmy NM, Tammam RH. The effect of gold nanoparticles on the diagnostic polymerase chain reaction technique for equine herpes virus 1 (EHV-1). RSC Adv 2016. [DOI: 10.1039/c6ra08513j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We experimented the effect of 15 nm unmodified citrate coated GNPs on the key PCR reactants to see if these would enhance the overall outcomes of the reaction. Thus, the optimized GNPs-assisted PCR could be used for more efficient diagnosis of EHV-1.
Collapse
Affiliation(s)
- Dalia M. El-Husseini
- Biotechnology Department
- Animal Health Research Institute
- Agriculture Research Centre
- Giza
- Egypt
| | - Nashwa M. Helmy
- Biotechnology Department
- Animal Health Research Institute
- Agriculture Research Centre
- Giza
- Egypt
| | - Reham H. Tammam
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza
- Egypt
| |
Collapse
|